a2 United States Patent

US011539946B2

ao) Patent No.: US 11,539,946 B2

Wang et al. 45) Date of Patent: Dec. 27, 2022
(54) SAMPLE PADDING FOR (52) US. CL
CROSS-COMPONENT ADAPTIVE LOOP CPC HO4N 19/117 (2014.11); HO4N 19/186
FILTERING (2014.11); HO4N 19/96 (2014.11)
. osss (58) Field of Classification Search
7D Apphcams']nggﬁﬁﬁlo]}ytegz“cﬁ tﬁ“ggiﬁl Ny CPC ... HO4N 19/117; HO4N 19/186; HHO4N 19/96
Byte dancgeylnc -’Los :&nge%esgc A ([,JS) See application file for complete search history.
(72) Inventors: Yang Wang, Beijing (CN); Li Zhang, (56) References Cited
San Diego, CA (US); Hongbin Liu,
Beijing (CN); Kai Zhang, San Diego, U.S. PATENT DOCUMENTS
CA (US); Zhipin Deng, Beijing (CN);
7,991,236 B2 8/2011 Guo et al.
Yue Wang, Beijing (CN) 9,077,998 B2 7/2015 Wang et al.
(73) Assignees: BELJING BYTEDANCE NETWORK (Continued)
(TCENC).HBNSTLE(]))GAEEE "m%_])ioBseljmg FOREIGN PATENT DOCUMENTS
Angeles, CA (US) CN 107750459 A 3/2018
CN 109219958 A 1/2019
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
OTHER PUBLICATIONS
(21) Appl. No.: 17/837,216)))
Liu et al. “Non-CE5: Padding method for samples at variant
(22) Filed: Jun. 10, 2022 boundaries in ALF”. Jul. 2019. (Year: 2019).*
(Continued)
(65) Prior Publication Data
US 2022/0312008 A1 Sep. 29, 2022 Primary Examiner — Zhihan Zhou
. (74) Attorney, Agent, or Firm — Perkins Coie LLP
Related U.S. Application Data
(63) Continuation of application No. 1)) ABSTRACT
PCT/CN2020/135134, filed on Dec. 10, 2020. A method for video processing is described. The method
(30) Foreign Application Priority Data includes determining, for a conversion between a video unit
of a video and a bitstream representation of the video,
Dec. 11,2019 (WO) .ccovvvenncn. PCT/CN2019/124481 Wwhether to enable a mirrored padding process for padding an
unavailable luma sample during an application of a loop
(51) Imt. CL filtering tool to the video unit; and performing the conver-
H04N 19/00 (2014.01) sion based on the determining.
HO4N 19/117 (2014.01)
(Continued) 20 Claims, 38 Drawing Sheets

® 8 B8 @ & =

X X X ®¥ % X

e oeation of hans

OXeer @ B &8 B ® B

see
»oOOWm X
*s
3
vamnple

s of chevaa sargpde

US 11,539,946 B2
Page 2

(51) Int. CL

HO4N 19/96
HO4N 19/186

(56)

9,247,258
9,473,779
9,591,325
9,628,792
9,807,406
10,057,574
10,200,700
10,321,130
10,404,999
10,419,757
10,469,847
10,506,230
10,531,111
10,708,592
10,721,469
10,728,573
10,764,576
10,778,974
10,855,985
10,939,128
10,965,941
10,979,717
2015/0350648
2017/0238020
2017/0244975
2018/0014017
2018/0041778
2018/0041779
2018/0184127
2019/0215532
2019/0230353
2019/0238845
2019/0306502
2020/0092574
2020/0120359
2020/0236353
2020/0252619
2020/0260120
2020/0267381
2020/0314418
2020/0322632
2020/0413038
2020/0359016
2020/0359017
2020/0359018
2020/0359051
2020/0366910
2020/0366933
2020/0374540
2020/0382769
2021/0076034
2021/0092395
2021/0092396
2021/0136413
2021/0152837
2021/0152841
2021/0185353
2021/0211662
2021/0211681
2021/0235109
2021/0258571
2021/0258572
2021/0297694
2021/0314595
2021/0314628
2021/0321095
2021/0321121
2021/0321131
2021/0337228
2021/0337239

(2014.01)
(2014.01)

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

1/2016
10/2016
3/2017
4/2017
10/2017
8/2018
2/2019
6/2019
9/2019
9/2019
11/2019
12/2019
1/2020
7/2020
7/2020
7/2020
9/2020
9/2020
12/2020
3/2021
3/2021
4/2021
12/2015
8/2017
8/2017
1/2018
2/2018
2/2018
6/2018
7/2019
7/2019
8/2019
10/2019
3/2020
4/2020
7/2020
8/2020
8/2020
8/2020
10/2020
10/2020
10/2020
11/2020
11/2020
11/2020
11/2020
11/2020
11/2020
11/2020
12/2020
3/2021
3/2021
3/2021
5/2021
5/2021
5/2021
6/2021
7/2021
7/2021
7/2021
8/2021
8/2021
9/2021
10/2021
10/2021
10/2021
10/2021
10/2021
10/2021
10/2021

Coban et al.
Rapaka et al.
Li et al.
Rapaka et al.

Ramasubramonian et al.

Li et al.
Zhang et al.
Dong et al.
Liu et al.
Chen et al.
Xiu et al.
Zhang et al.
Li et al.
Dong et al.
Zhang et al.
Sun et al.

Li et al.
Karczewicz et al.
Zhang et al.
Zhang et al.
Zhao et al.
Zhang et al.
Fu et al.
Karczewicz et al.
Wang et al.
Li et al.
Zhang et al.
Zhang et al.
Zhang et al.
He et al.
Gadde et al.
Zhang et al.
Gadde et al.
Li et al.
Hanhart et al.
Zhang et al.
Zhang et al.
Hanhart et al.
Vanam et al.
Wang et al.
Hanhart et al.
Zhang et al.
Li et al.

Li et al.

Li et al.
Zhang et al.
Zhang et al.
Zhang et al.
Wang et al.
Zhang et al.
Misra et al.
Zhang et al.
Zhang et al.
He et al.
Zhang et al.

Xiu et al.

Wang et al.
Zhang et al.
Liu et al.

Zhang et al.
Zhang et al.
Zhang et al.
Zhang et al.
Zhang et al.
Zhang et al.
Zhang et al.
Zhang et al.
Wang et al.
Zhang et al.

HO4N 19/105

2021/0344902 Al 112021 Zhang et al.
2021/0368171 Al 112021 Zhang et al.
2021/0377524 Al 12/2021 Zhang et al.
2021/0385446 Al 12/2021 Liu et al.
2021/0392381 Al 12/2021 Wang et al.
2021/0400260 Al 12/2021 Zhang et al.
2021/0409703 Al 12/2021 Wang et al.
2022/0007014 Al 1/2022 Wang et al.
2022/0007053 Al 1/2022 Hanhart et al.
2022/0132104 Al 4/2022 Zhang et al.
2022/0141461 Al 5/2022 Zhang et al.
2022/0217331 Al 7/2022 Li et al.

FOREIGN PATENT DOCUMENTS

CN 109600611 A 4/2019
WO 2013058876 Al 4/2013
WO 2016204531 Al 12/2016

OTHER PUBLICATIONS

Zhou. “AHG16/HLS: A clean-up for the ALF sample padding”. Sep.
2019. (Year: 2019).*

Chen et al. “Algorithm description for Versatile Video Coding and
Test Model 7 (VIM 7)”. Nov. 2019. (Year: 2019).*

Misra et al. “CES-related: On the design of CC-ALF”. Oct. 2019.
(Year: 2019).*

Bross et al. “Versatile Video Coding (Draft 7),” Joint Video Experts
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11 16th Meeting: Geneva, CH, Oct. 1-11, 2019, document JVET-
P2001, 2019. phenix.it-sudparis.ew/jvet/doc_end_user/documents/
16_Geneva/wgl l/JVET-P2001-v14.zip.

Bross et al. “Versatile Video Coding (Draft 10),” Joint Video
Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11 19th Meeting: by teleconference, Jun. 22-Jul. 1, 2020,
document JVET-S2001, 2020.

Chen et al. “Description of Core Experiment 5 (CES): Cross
Component Adaptative Loop Filtering,” Joint Video Experts Team
(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
16th Meeting: Geneva, CH, Oct. 1-11, 2019, document JVET-
P2025, 2019.

Kotra et al. “AHG16/CES-Related: Simplifications for Cross Com-
ponent Adaptive Loop Filter,” Joint Video Experts Team (JVET) of
ITU-T SG 16 WP 3 and ISO/AEC JTC 1/SC 29/WG 11 16th
Meeting: Geneva, CH, Oct. 1-11, 2019, focument JVET-P0106,
20109.

Li et al. “AHG16/Non-CE5: Cross Component ALF Simplifica-
tion,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 16th Meeting: Geneva, CH, Oct.
1-11, 2019, document JVET-P0173, 2019.

Misra et al. “Cross-Component Adaptive Loop Filter for Chroma,”
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE, Jul.
3-12, 2019, document JVET-00636, 2019.

Misra et al. “CES-2.1, CE5-2.2: Cross Component Adaptive Loop
Filter,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 16th Meeting: Geneva, CH, Oct.
1-11, 2019,document JVET-BO080, 2019.

Zhang et al. “AHG12: Control of Loop Filtering Across Subpicture/
Tile/Slice Boundaries,” Joint Video Experts Team (JVET) of ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 18th Meeting: by
teleconference, Apr. 15-24, 2020, document JVET-R0069, 2020.
Zhao et al. “CES-related: Simplified CCALF with 6 Filter Coeffi-
cients, ”Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3
and ISO/IEC JTC 1/SC 29/WG 11 16th Meeting: Geneva, CH, Oct.
1-11, 2019, document JVET-P0251, 2019.
https://vegithhi.fraunhofer.de/jvet/ VVCSoftiware VTM/-/tags/VTM-
7.0.

International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/135134 dated Mar. 3, 2021 (9
pages).

US 11,539,946 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

International Search Report and Written Opinion from International
Patent Application No. PCT/CN2021/102938 dated Sep. 30, 2021

(9 pages).

* cited by examiner

US 11,539,946 B2

Sheet 1 of 38

Dec. 27,2022

U.S. Patent

1

0¥

X X X ® X X

I "Old

=
#
%
o
&%
&

¥ X X X X

US 11,539,946 B2

Sheet 2 of 38

Dec. 27,2022

U.S. Patent

€ Old

i
i
i

e o b

i

t

PO .

US 11,539,946 B2

Sheet 3 of 38

Dec. 27,2022

U.S. Patent

¥ "Old

S

S S S

US 11,539,946 B2

Sheet 4 of 38

Dec. 27,2022

U.S. Patent

G

Old

3

E

vv e deracnnn
H
H
[
H

DS S

ES

B

SRS S

i

t

! H
SERSE SRS S,

» i

SR |
)

i

S SN SHR S

i

B

3

US 11,539,946 B2

Sheet 5 of 38

Dec. 27,2022

U.S. Patent

wngadany

OB XBOXROO XX 0 X Xy

K
AReLXX 08
: »

o

SINNOXNBINNEIX

9
3
3

U.S. Patent Dec. 27, 2022 Sheet 6 of 38 US 11,539,946 B2

FIG. 7B

FIG. 7C

FIG. 7A

U.S. Patent

Mon-overkapping blocks of 8«8 samples,

7

Vartical block boundary
ot the Bx8 grid

Blook of 8x8
sampies
ie

which can be deblocked in paraliel

Dec. 27,2022

BEESEH S RESE LRSS

Sheet 7 of 38

3011'!‘!‘&#!#!#%#!
5'#6‘###0#"“’%&#*#&

FLUSUSNB USRS H G
soee
ssue
“sen

“swe
TE XN
TEXE)

Y Yy
EsUEBESED
tEreDEBED

sy 3T

Q!ii%‘.‘*
¢S EVRGEY
eV EERY

SERVOU RO

AL S LA R I
a0t LR R
HE B E TR B R

SRV OORY

Ra 12 T REE
HET O NEN

SRESEBES N

HE2 . LA

T T

PR NERERESR
HER: I NEE

. 1
tossevey
tenBEBEY

Q*l*

wwwﬂi&i&‘!‘*i*iﬁ*!‘
E AR RS LR ERSEEE S

I T R
EPEBENEBDOEVEBRDES

Horizorgal bm}a hmndary

an the 8x8 grid

US 11,539,946 B2

FIG. 8

U.S. Patent Dec. 27, 2022 Sheet 8 of 38 US 11,539,946 B2

vy
@
o
a —
o T
- o
<t %
-t
w) [
povd @
S w
- o~ 0 <+ © © o~
[ar) [aed [ae [ae) [ae [ae [ae] [aed
o o o o (> (> (> (>
<3 e N el < Uy
o o o o o™ o~ ™~ ™~
o o o o o o o o
b o4 -+ u o b
o ot o o o o o
o o o o o o o o

FIG. 9
FIG. 10

o = g © ~

< < < < [ew} [ew) [es] <
Q. Q. Q. Q. . o . o

-]

R - R R = = = =
o o o o o o o o
o - o~] 0 o ~
] o [o N N N N
[=8 [=8 [=8 Q. Q. [=%

p3
P34
p3
p3
p3s
p3
P3s
p3,

U.S. Patent Dec. 27, 2022 Sheet 9 of 38 US 11,539,946 B2

FIG. 11

U.S. Patent Dec. 27, 2022 Sheet 10 of 38 US 11,539,946 B2

=] x| |=x| |=x 8| & (&} |8
T x| || |z a
x T EQ
N
x 11) S -
N —{ .
T IF Qw
: O : L
x | — a
1
x| x| |=| |= a8 {8l [af {3
s > |® s 5| |&] |a
> I > | >1 | > “Q
N < -)
N N
> - R -
n n
> = 5]
-) X O
Li. ° L.
1 I > x> x> 5 by
o3 R I N I B I 5| |&| |s] |a

US 11,539,946 B2

Sheet 11 of 38

Dec. 27,2022

U.S. Patent

§Z'3~ Y Bl puUe [SLlf RIS
SeniEA sBSSE0 1840 eBp3 OYS
2~ {siend pelagy (VS p- saur
- {xiend 43 jeJUCZUOH} N-M S3UIT

etusanhal 104N BUIT BI0)

€l

Ol

US 11,539,946 B2

Sheet 12 of 38

Dec. 27,2022

U.S. Patent

EIEDuresy

GTO ~ W BUH PUE [S} USRIAIRG
SenEn jepsse feeus o8 Ove
- (e Dol (el P A

7~ (St 40 FUOZUOH) N S

pisussnnbal JREng S |

LA i SRR i et S

¥l "Old

U.S. Patent Dec. 27, 2022 Sheet 13 of 38 US 11,539,946 B2

e CT{J Botndary

FIG. 15

7,

CTU Boundary

CTU Boundary

US 11,539,946 B2

Sheet 14 of 38

Dec. 27,2022

U.S. Patent

auif prg
)

oty prg

4

auy pug

91 "Old

§

s peg

T MO

¥

¥
g prg

a1 prg

uif prg

5

US 11,539,946 B2

Sheet 15 of 38

Dec. 27,2022

U.S. Patent

V.l "Old

Supsayy H sun Bugany i aur

Amveemand
PRt

Asepunog ajduwes aydiues
[enuiA tpeg [T 1ped
€d €d
0d 0d
ajdives Asepunog ajduwes
1 ped fenuiA T ped

US 11,539,946 B2

Sheet 16 of 38

Dec. 27,2022

U.S. Patent

gl "Old

Bupayjy | aun unayy 13un

[T
At

tged | ed | ved | ged | oed | ved |
hiepunog : : sojduies : : sajduies
jenLA yped e ¥ ped
g9&d €d ved g¢d €d Ved
804 0d v0d 40d 0d Y0d
sajdwes Arepunog sajdwes
" m : ; ¥ ped [ERUA : ; : ; v ped
m 80d i Od m V0d m m 80d) 0Od : V0d m
oereeenes R b ; S L b ;
{0 | P 0d |

US 11,539,946 B2

Sheet 17 of 38

Dec. 27,2022

U.S. Patent

9.1 "Old

BuLIBYl ¥ Bun Buayy £ eun

P o0d | Pood |
P 80d | o0d | vod ! Pa0d | 04 | VOd |

004 | 80d | o4 | vod | cod | A t 204 | 80d | 0d | V04 | Q04 | 4
Aiepunog : : sajdwes : ! sajduwes
[EnAA g ped 8 ped

204 | 804 | 0d | Vo4 | a0d 24 | 80d | od | vod | GOd
Asepuncg
] v sajdwes jenup ' V sajdues
{004 | g0d | 04 | W04 | Q04 8 Ped } 204 | 804 | 04 | vod | QOd | 8ped

{g0d ! 04 ! vod

wmg 0d 1 vOd

suvmcaana

U.S. Patent Dec. 27, 2022 Sheet 18 of 38 US 11,539,946 B2

FIG. 18

US 11,539,946 B2

Sheet 19 of 38
PicHeight >

Dec. 27,2022

U.S. Patent

61 'Old

{OW punoue
-desm jeyuozisoy Ag pajesauas
Suipped ND W) , Suipped 00} 93U4343) ued papeys) 3ol muzemwmm
1YL / 3y nczem,nmaae,z, o) ngmuo_-ﬁ ,,,,,,,

X PPIM gy3— Ko ,,_ / ,,/

} i
| | .

|

.
|
.
|
w
|
_
|
|

YIPIALd

aunpid Jus4n) anpid 3ouasajRY

US 11,539,946 B2

Sheet 20 of 38

Dec. 27,2022

U.S. Patent

s
i

R

o

\
o
i
22

i
lllll“ \wm.....“w\
.-.-.u.-. -.

SRS

US 11,539,946 B2

Sheet 21 of 38

Dec. 27,2022

U.S. Patent

= | YA

Ol

> anjen awEg

Vic "Old

)=

BUIHIYD
i

15T R—

US 11,539,946 B2

Sheet 22 of 38

Dec. 27,2022

U.S. Patent

¢¢ '9Old

5} AN

sy osogyy TR

S Y B0

s SR, Py

SN0 CRICREY

amfysg

e slin

g pg

U.S. Patent Dec. 27, 2022 Sheet 23 of 38

Chroma Sample being refined

Chroma Sample being refined

g
o
£
@
£
0 ©

oooodooood“ 0000
G20 8D G20 (80 G20 (80 G0 (20

&“r@ OO0000000OOO
GO G20 G0 BD BD RO (8D (&BD
O00000OO0O0OOOOOOOO0
G0 GRD G0 BD RO &0 D GO

US 11,539,946 B2

FIG. 23

US 11,539,946 B2

Sheet 24 of 38

Dec. 27,2022

U.S. Patent

¥Z "Old

IO FEREA

BcousRas:

apcenns BTUn] POTRIVIIO])

opdmes vworg) G

st} ped

ALRpuTE

U.S. Patent Dec. 27, 2022 Sheet 25 of 38 US 11,539,946 B2

Center sample
FIG. 25

US 11,539,946 B2

Sheet 26 of 38

Dec. 27,2022

U.S. Patent

spdes
W PAIVIOIO))

opdwes prroIyo

LZ 'Old

aduaes
BUII POIROOHOD)

opduaes vIIOND

9¢ OId

US 11,539,946 B2

8¢ Old

£

&

&

347

Sheet 27 of 38

W)

Q341

A3 098

E

Dec. 27,2022

AW 0

93 Qvs

»

B 1Y

E X

U.S. Patent

£UNT OYS

US 11,539,946 B2

Sheet 28 of 38

Dec. 27,2022

U.S. Patent

6¢ 'Old

opdumes
Jurpuodsanio)

opdures Twmy paedRpO)

apdwrs wwoy)

Avavaw seserens »N\w.,

adiurs ojqejreanuy

US 11,539,946 B2

Sheet 29 of 38

Dec. 27,2022

U.S. Patent

autj peg

BPRIHN

o

0€¢ 'Old

vs LU PAIEDOTIO))

apdwes vrmoag)

sur ped

auy| peg

oy peg

US 11,539,946 B2

Sheet 30 of 38

Dec. 27,2022

U.S. Patent

it ped

1€ "Old

aulf peg

S ped

&

2uTf pry suy ped

pcues wnng P

opduwes B0y

auty peg

U.S. Patent Dec. 27, 2022 Sheet 31 of 38 US 11,539,946 B2

1910

1908

1900

1906

FIG. 32

1904

1902

US 11,539,946 B2

Sheet 32 of 38

Dec. 27,2022

U.S. Patent

€€ "OId

909¢ AIOUop
Annoann
Bursseooid oopIA ¥09¢€
108$920.d
¢039¢

009¢

US 11,539,946 B2

Sheet 33 of 38

Dec. 27,2022

U.S. Patent

¥€ "Old

Poye ———

Buiuiwelep
By} U0 PaSE(q UOISIBAUOD 8y Builliopad

cOve ——uo]

sajdwes ewnj ajgejieaeun 1o} anbiuyos) Buipped
paJioiuw e sesn sy dooj aadepe jusuodwos
-$$040 9y} uIaym ‘uonelado ey dooj sandepe
JUBUOJWIOD-8S0I0 B @SN 0] ‘UOLIBIO B UO paseq
‘09pIA BY] JO UOHRJUDSSIdBI PBPOD B 0BPIA B JO
HUN 0BPIA B U2BMID(Q UOISISAUOD B 10} ‘Buiuiuiielag

/

00vE

US 11,539,946 B2

Ge "old

— 91t

Y
e FORPINUT (/]
SORISIUT ()/] e JIANTT (/]

e

Sheet 34 of 38

; i T
' L dIosen ﬂ

JPOdR OapIA

IIPOIIP OIPIA

M e mmmM ﬂ

Dec. 27,2022

el e ARSI T ol
aotap Appdsp S ofeiol o 22108 UOPIA

w5 001 a1t

HOIAHO NOLLYNLLSHO A A AHAHA U008

U.S. Patent

kS

AN

..{..(....{(i&.{\...

US 11,539,946 B2

Sheet 35 of 38

Dec. 27,2022

U.S. Patent

9¢ "OId

ITE Gun
W pEuely
TSRk

Rt

0T
i SN EEE
Fpous

L35t BF:

T —

. B P s BE

* owmw%uwﬁ LB et

SEERSENT TR ; TR LR

papoTR m TOT B LG RIS e
E UIET R WEAE

F0T B S
BRR L &1 3 * M
L)

TR - Ul
oapIs

P
[l
L

o .,'

US 11,539,946 B2

Sheet 36 of 38

Dec. 27,2022

U.S. Patent

L€ "Old

oo

EIE SEEIR
PP e

LEE bRl

AEIBAE

REERIEURIY B

TOE sl

T

B wmiEmMeni

TOE e

T B

EUDROV

Bupoag

Sdoaues

THRE smp00ap
mEma

RIS N1
CEEIIIE

US 11,539,946 B2

Sheet 37 of 38

Dec. 27,2022

U.S. Patent

V8¢ "Old

P18 ——

BuiuiLuielep 8yl Uo Paseq UoISIOAUOD ay} Buiwsopad

L8 ——

UUN O8pPIA
ay1 03 1003 Buusyy dooj e jo uonedydde ue Buunp
ajdwes ewnj sjgejeaeun ue bBuipped Joy ssad0id

Buipped paiouitl B 9jqeus 0] JSYlaym ‘0apn
8y} JO uopejuasaIdal WeslISlig B pue 08piA B Jo

HUN OBPIA B UBBMIB(Q UOISISAUOD B 10} ‘Buuiuieiaq

/

0L8E

US 11,539,946 B2

Sheet 38 of 38

Dec. 27,2022

U.S. Patent

g8¢ "Old

YZ8E ——

Buiuiwisep
BY} UO paseq UoISIoAU0D ay Bulluiopad

¢C8C ——]

HUN O8PIA
ay) 0} |00} Buueyy dooj e jo uoneoydde ue Buunp
sidwes ewn] ajqejieaeun ue Buipped Joy ssesoud

Buipped paiouiwl 9jqeUS 0] JAYIBYM ‘02pIA
3y} Jo uoielussasdal Wesdislig B pue O8pIA B O
HUN O3PIA B USIMIB(J UOISIRAUOD B 10} ‘Buiuiuis}sq

/

08¢

US 11,539,946 B2

1
SAMPLE PADDING FOR
CROSS-COMPONENT ADAPTIVE LOOP
FILTERING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Patent
Application No. PCT/CN2020/135134, filed on Dec. 10,
2020, which claims the priority to and benefits of Interna-
tional Patent Application No. PCT/CN2019/124481, filed on
Dec. 11, 2019. All the aforementioned patent applications
are hereby incorporated by reference in their entireties.

TECHNICAL FIELD

This patent document relates to image and video coding
and decoding.

BACKGROUND

Digital video accounts for the largest bandwidth use on
the internet and other digital communication networks. As
the number of connected user devices capable of receiving
and displaying video increases, it is expected that the
bandwidth demand for digital video usage will continue to
Zrow.

SUMMARY

The present document discloses techniques that can be
used by video encoders and decoders to perform cross-
component adaptive loop filtering during video encoding or
decoding.

In one example aspect, a method of video processing is
disclosed. The method includes determining, for a conver-
sion between a video unit of a video and a bitstream
representation of the video, whether to enable a mirrored
padding process for padding an unavailable luma sample
during an application of a loop filtering tool to the video
unit; and performing the conversion based on the determin-
ing.

In another example aspect, a method of video processing
is disclosed. The method includes determining, for a con-
version between a video unit of a video and a bitstream
representation of the video, whether to apply a repetitive
padding process and/or a mirrored padding process for
padding a sample located at a virtual boundary based on
coded information of the video unit; and performing the
conversion based on the determining.

In yet another example aspect, a video encoder apparatus
is disclosed. The video encoder comprises a processor
configured to implement above-described methods.

In yet another example aspect, a video decoder apparatus
is disclosed. The video decoder comprises a processor
configured to implement above-described methods.

In yet another example aspect, a computer readable
medium having code stored thereon is disclose. The code
embodies one of the methods described herein in the form of
processor-executable code.

These, and other, features are described throughout the
present document.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows nominal vertical and horizontal locations of
4:2:2 luma and chroma samples in a picture.

15

20

30

35

40

45

50

60

65

2

FIG. 2 is an example of encoder block diagram.

FIG. 3 shows a picture with 18 by 12 luma CTUs that is
partitioned into 12 tiles and 3 raster-scan slices.

FIG. 4 shows a picture with 18 by 12 luma CTUs that is
partitioned into 24 tiles and 9 rectangular slices.

FIG. 5 shows a picture that is partitioned into 4 tiles and
4 rectangular slices.

FIG. 6 shows a picture that is partitioned into 15 tiles, 24
slices and 24 subpictures.

FIG. 7A-7C show: FIG. 7TA—CTBs crossing the bottom
picture border; FIG. 7B—CTBs crossing the right picture
border; and FIG. 7C—CTBs crossing the right bottom
picture border.

FIG. 8 is an illustration of picture samples and horizontal
and vertical block boundaries on the 8x8 grid, and the
nonoverlapping blocks of the 8x8 samples, which can be
deblocked in parallel.

FIG. 9 shows pixels involved in filter on/off decision and
strong/weak filter selection.

FIG. 10 shows four 1-D directional patterns for EO
sample classification: horizontal (EO class=0), vertical (EO
class=1), 135° diagonal (EO class=2), and 45° diagonal (EO
class=3)

FIG. 11 shows examples of ALF filter shapes (chroma:
5%5 diamond, luma: 7x7 diamond).

FIG. 12A shows subsampled positions for vertical gradi-
ent, FIG. 12B shows subsampled positions for horizontal
gradient, FIG. 12C shows subsampled positions for diagonal
gradient, and FIG. 12D shows subsampled positions for
diagonal gradient.

FIG. 13 shows an example of Loop filter line buffer
requirement in VIM-4.0 for Luma component.

FIG. 14 illustrates an example of loop filter line buffer
requirement in VIM-4.0 for Chroma component.

FIG. 15 shows an example of modified block classifica-
tion at virtual boundaries.

FIG. 16 shows an example of modified ALF filtering for
Luma component at virtual boundaries.

FIG. 17A shows one required line above/below VB need
to be padded (per side), FIG. 17B shows 2 required lines
above/below VB need to be padded (per side), and FIG. 17C
shows 3 required lines above/below VB need to be padded
(per side).

FIG. 18 shows examples of repetitive padding for luma
ALF filtering at picture/subpicture/slice/tile boundary.

FIG. 19 shows an example of a Horizontal wrap around
motion compensation in VVC.

FIG. 20 shows an image of HEC in 3x2 layout.

FIG. 21A shows a placement of CC-ALF with respect to
other loop filters. FIG. 21B shows a diamond shaped filter.

FIG. 22 shows an example of repetitive padding at ALF
virtual boundary for CC-ALF in JVET-P0080.

FIG. 23 shows a 3x4 Diamond Shape Filter with 8 unique
coeflicients.

FIG. 24 is an example of repetitive padding at ALF virtual
boundary for CC-ALF in JVET-P1008.

FIG. 25 shows CC-ALF filter shape of 8 coefficients in
JVET-P0106.

FIG. 26 shows CC-ALF filter shape of 6 coefficients in
JVET-P0173.

FIG. 27 shows CC-ALF filter shape of 6 coefficients in
JVET-P0251.

FIG. 28 shows an example of a JC-CCALF workflow.

FIG. 29 shows example locations of samples to be padded
for the CC-ALF filtering method with 8-tap 4x3 filter shape.

FIG. 30 shows an example of mirrored padding method 1.

FIG. 31 shows an example of mirrored padding method 2.

US 11,539,946 B2

3

FIG. 32 is a block diagram of an example video process-
ing system in which disclosed techniques may be imple-
mented.

FIG. 33 is a block diagram of an example hardware
platform used for video processing.

FIG. 34 is a flowchart for an example method of video
processing.

FIG. 35 is a block diagram that illustrates a video coding
system in accordance with some embodiments of the present
disclosure.

FIG. 36 is a block diagram that illustrates an encoder in
accordance with some embodiments of the present disclo-
sure.

FIG. 37 is a block diagram that illustrates a decoder in
accordance with some embodiments of the present disclo-
sure.

FIGS. 38A and 38B are flowcharts for example methods
of video processing based on some implementations of the
disclosed technology.

DETAILED DESCRIPTION

Section headings are used in the present document for
ease of understanding and do not limit the applicability of
techniques and embodiments disclosed in each section only
to that section. Furthermore, H.266 terminology is used in
some description only for ease of understanding and not for
limiting scope of the disclosed techniques. As such, the
techniques described herein are applicable to other video
codec protocols and designs also.

1. Brief Summary

This document is related to video coding technologies.
Specifically, it is related picture/subpicture/slice/tile bound-
ary, and 360-degree video virtual boundary and ALF virtual
boundary coding especially for cross component adaptive
loop filter (CC-ALF) and other coding tools in image/video
coding. It may be applied to the existing video coding
standard like HEVC, or the standard (Versatile Video Cod-
ing) to be finalized. It may be also applicable to future video
coding standards or video codec.

2. Video Coding Introduction

Video coding standards have evolved primarily through
the development of the well-known ITU-T and ISO/IEC
standards. The ITU-T produced H.261 and H.263, ISO/IEC
produced MPEG-1 and MPEG-4 Visual, and the two orga-
nizations jointly produced the H.262/MPEG-2 Video and
H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/
HEVC standards. Since H.262, the video coding standards
are based on the hybrid video coding structure wherein
temporal prediction plus transform coding are utilized. To
explore the future video coding technologies beyond HEVC,
Joint Video Exploration Team (JVET) was founded by
VCEG and MPEG jointly in 2015. Since then, many new
methods have been adopted by JVET and put into the
reference software named Joint Exploration Model (JEM).

10

15

20

25

30

35

40

45

50

4
In April 2018, the Joint Video Expert Team (JVET) between
VCEG (Q6/16) and ISO/IEC JTC1 SC29/WGI11 (MPEG)
was created to work on the VVC standard targeting at 50%
bitrate reduction compared to HEVC.
2.1. Color Space and Chroma Subsampling

Color space, also known as the color model (or color
system), is an abstract mathematical model which simply
describes the range of colors as tuples of numbers, typically
as 3 or 4 values or color components (e.g. RGB). Basically
speaking, color space is an elaboration of the coordinate
system and sub-space.

For video compression, the most frequently used color
spaces are YCbCr and RGB.

YCbCr, Y'CbCr, or Y Pb/Cb Pr/Cr, also written as
YCBCR or Y'CBCR, is a family of color spaces used as a
part of the color image pipeline in video and digital pho-
tography systems. Y' is the luma component and CB and CR
are the blue-difference and red-difference chroma compo-
nents. Y' (with prime) is distinguished from Y, which is
luminance, meaning that light intensity is nonlinearly
encoded based on gamma corrected RGB primaries.

Chroma subsampling is the practice of encoding images
by implementing less resolution for chroma information
than for luma information, taking advantage of the human
visual system’s lower acuity for color differences than for
luminance.

2.1.1. 4:4:4

Each of the three Y'CbCr components have the same
sample rate, thus there is no chroma subsampling. This
scheme is sometimes used in high-end film scanners and
cinematic post production.

2.1.2. 4:2:2

The two chroma components are sampled at half the
sample rate of luma: the horizontal chroma resolution is
halved while the vertical chroma resolution is unchanged.
This reduces the bandwidth of an uncompressed video signal
by one-third with little to no visual difference. An example
of nominal vertical and horizontal locations of 4:2:2 color
format is depicted in FIG. 1 in VVC working draft.

2.1.3. 4:2:0

In 4:2:0, the horizontal sampling is doubled compared to
4:1:1, but as the Cb and Cr channels are only sampled on
each alternate line in this scheme, the vertical resolution is
halved. The data rate is thus the same. Cb and Cr are each
subsampled at a factor of 2 both horizontally and vertically.
There are three variants of 4:2:0 schemes, having different
horizontal and vertical siting.

In MPEG-2, Cb and Cr are cosited horizontally. Cb and Cr
are sited between pixels in the vertical direction (sited
interstitially).

In JPEG/JFIF, H.261, and MPEG-1, Cb and Cr are sited
interstitially, halfway between alternate luma samples.

In 4:2:0 DV, Cb and Cr are co-sited in the horizontal
direction. In the vertical direction, they are co-sited on
alternating lines.

TABLE 2-1

SubWidthC and SubHeightC values derived from
chroma_format_idc and separate_colour plane_flag

Chroma
chroma_format_idc separate_colour_plane flag format SubWidthC SubHeightC
0 0 Mono- 1 1
chrome
1 0 4:2:0 2 2
2 0 4:2:2 2 1

US 11,539,946 B2

5
TABLE 2-1-continued

SubWidthC and SubHeightC values derived from
chroma_format idc and separate_colour_plane flag

SubHeightC

Chroma
chroma_format idc separate_colour_plane flag format SubWidthC
3 0 4:4:4 1
3 1 4:4:4 1

1
1

2.2. Coding Flow of a Typical Video Codec

FIG. 2 shows an example of encoder block diagram of
VVC, which contains three in-loop filtering blocks: deblock-
ing filter (DF), sample adaptive offset (SAO) and ALF.
Unlike DF, which uses predefined filters, SAO and ALF
utilize the original samples of the current picture to reduce
the mean square errors between the original samples and the
reconstructed samples by adding an offset and by applying
a finite impulse response (FIR) filter, respectively, with
coded side information signalling the offsets and filter
coeflicients. ALF is located at the last processing stage of
each picture and can be regarded as a tool trying to catch and
fix artifacts created by the previous stages.

2.3. Example Definitions of Video Units

A picture is divided into one or more tile rows and one or
more tile columns. A tile is a sequence of CTUs that covers
a rectangular region of a picture. The CTUs in a tile are
scanned in raster scan order within that tile.

A slice consists of an integer number of complete tiles or
an integer number of consecutive complete CTU rows
within a tile of a picture.

Two modes of slices are supported, namely the raster-scan
slice mode and the rectangular slice mode. In the raster-scan
slice mode, a slice contains a sequence of complete tiles in
a tile raster scan of a picture. In the rectangular slice mode,
a slice contains either a number of complete tiles that

20

25

collectively form a rectangular region of the picture or a
number of consecutive complete CTU rows of one tile that
collectively form a rectangular region of the picture. Tiles
within a rectangular slice are scanned in tile raster scan order
within the rectangular region corresponding to that slice.

A subpicture contains one or more slices that collectively
cover a rectangular region of a picture.

FIG. 3 shows an example of raster-scan slice partitioning
of a picture, where the picture is divided into 12 tiles and 3
raster-scan slices.

FIG. 4 in the VVC specification shows an example of
rectangular slice partitioning of a picture, where the picture
is divided into 24 tiles (6 tile columns and 4 tile rows) and
9 rectangular slices.

FIG. 4 A picture with 18 by 12 luma CTUs that is
partitioned into 24 tiles and 9 rectangular slices (informa-
tive)

FIG. 5 shows an example of a picture partitioned into tiles
and rectangular slices, where the picture is divided into 4
tiles (2 tile columns and 2 tile rows) and 4 rectangular slices.

FIG. 6 shows an example of subpicture partitioning of a
picture, where a picture is partitioned into 15 tiles covering
4 by 4 CTUs, 24 slices and 24 subpictures of varying
dimensions.

2.3.1. CTU/CTB Sizes

In VVC, the CTU size, signaled in SPS by the syntax

element log 2_ctu_size_minus2, could be as small as 4x4.

7.3.2.3 Sequence parameter set RBSP syntax

Descriptor
seq_parameter_set_rbsp() {

sps_decoding_parameter_set_id u4)
sps_video_parameter_set_id u4)
sps_max_sub_layers_minusl u(3)
sps_reserved_zero_5bits u(s)
profile_tier_level(sps_max_sub_layers_minusl)
gra_enabled_flag u(l)
sps_seq_parameter_set_id ue(v)
chroma_format_idc ue(v)
if{ chroma_format_idc == 3)

separate_colour_plane_flag u(l)
pic_width_in luma samples ue(v)
pic_height in_luma samples ue(v)
conformance_window_flag u(l)
if(conformance_window_flag) {

conf win_left offset ue(v)

conf win_right_offset ue(v)

conf_win_top_offset ue(v)

conf_win_bottom_offset ue(v)
}
bit_depth_luma_minus8 ue(v)
bit_depth_chroma_minus8 ue(v)
log2_max_pic_order_cnt_lsb_minus4 ue(v)
sps_sub_layer_ordering_info_present_flag u(l)
for(i = (sps_sub_layer_ordering_info_present_flag ? 0 : sps_max_sub_layers_minusl);

i <= sps_max_sub_layers_minusl; i++) {
sps_max_dec_pic_buffering minus1[i] ue(v)

US 11,539,946 B2

-continued

7.3.2.3 Sequence parameter set RBSP syntax

Descriptor

sps_max_num_reorder_pics[i]
sps_max_latency_increase_plus1[i]

}

long_term_ref pics_flag

sps_idr_rpl_present_flag

rpll_same_as_1pl0_flag

for(i=0;i<!rpll_same as_rplO_flag ? 2 : 1; i++) {
num_ref pic_lists in_sps[i]
for(j = 0; j < num_ref pic_lists_in_sps[i]; j++)

ref_pic_list_struct(i, j)

qtbtt_dual_tree_intra_flag

log2_ctu_size_minus2

log2_min_luma_coding block size_minus2

partition_constraints_ovenide_enabled_flag

sps_log2_diff min_qt_min_cb_intra_slice_luma

sps_log2_diff min_qt_min_cb_inter_slice

sps_max_mtt_hierarchy_depth_inter_slice

sps_max_mtt_hierarchy_depth_intra_slice_luma

if(sps_max_mtt_hierarchy_depth_intra_slice_luma !=0) {
sps_log2_diff max_bt_min_qt_intra_slice_luma
sps_log2_diff max_tt min_qt_intra_slice_luma

if(sps_max_mtt_hierarchy_depth_inter_slices !=0) {
sps_log2_diff max_bt_min_qt_inter_slice
sps_log2_diff max_tt_min_qt_inter_slice

if(qtbtt_dual_tree_intra_flag) {
sps_log2_diff min_qt_min_cb_intra_slice_chroma
sps_max_mtt_hierarchy_depth_intra_slice_chroma
if (sps_max_mtt_hierarchy_depth_intra_slice_chroma !=0) {
sps_log2_diff max_bt_min_qt_intra_slice_chroma
sps_log2_diff max_tt min_qt_intra_slice_chroma

}

rbsp_trailing_bits()

ue(v)
ue(v)

u(l)
u(l)
u(1)

ue(v)

u(l)
ue(v)
ue(v)

u(l)
ue(v)
ue(v)
ue(v)
ue(v)

ue(v)

ue(v)

ue(v)
ue(v)

ue(v)
ue(v)

ue(v)
ue(v)

log2_ctu_size_minus2 plus 2 specifies the luma coding tree
block size of each CTU.
log2_min_luma_c0ding_block_size_minus2 plus 2 specifies
the minimum luma coding block size.

The valiables CtbLog2SizeY, CtbSizeY, MinCbLog2SizeY,
MinCbSizeY, MinTbLog2SizeY, MaXTblLog2SizeY,
MinTbSizeY, MaXTbSizeY, PicWidthInCtbsY, PicHeight-
InCtbsY, PicSizelnCtbsY, PicWidthInMinCbsY,
PicHeightInMinCbsY, PicSizeInMinCbsY, PicSizeln-
SamplesY, PicWidthInSamplesC and PicHeightInSamplesC
are derived as follows:

CtbLog2SizeY=log2_ctu_size minus2+2 (7-9)
CtbSizeY=1<<CtbLog2SizeY (7-10)
MinCbLog2SizeY=log2_min_luma_coding_block size_

minus2+2 (7-11)
MinCbSizeY=1<<MinCbLog2SizeY (7-12)
MinTbLog2SizeY=2 (7-13)
MaxTbLog2Size Y=6 (7-14)
MinTbSizeY=1<<MinTbLog2SizeY (7-15)
MaxTbSizeY=1<<MaxTbLog2SizeY (7-16)

40

45

50

55

60

65

PicWidthInCtbs Y=Ceil

(pic_width_in_luma_samples+CtbSizeY) (7-17)
PicHeightInCtbsY=Ceil

(pic_height in luma samples+CtbSizeY) (7-18)
PicSizeInCtbsY=PicWidthInCtbsY*PicHeightInCtbsY (7-19)
PiCWidthInMinCbsY=pic_width_in_luma_samples/

MinCbSizeY (7-20)
PicHeightinMinCbsY=pic_height in luma_samples/

MinCbSizeY (7-21)
PicSizeInMinCbs Y=PicWidthInMinCbsY*PicHeightInMin-

CbsY (7-22)
PicSizeInSamplesY=pic_width_in luma samples*pic_

height_in_luma_samples (7 -23)
PicWidthInSamplesC=pic_width_in_luma_samples/

SubWidthC (7 -24)
PicHeightInSamplesC=pic_height in luma_samples/

SubHeightC (7 -25)

2.3.2. C1Us in a Picture

Suppose the CTB/L.CU size indicated by MxN (typically
M is equal to N, as defined in HEVC/VVC), and for a CTB
located at picture (or tile or slice or other kinds of types,
picture border is taken as an example) border, KxL samples
are within picture border wherein either K<M or L<N. For

US 11,539,946 B2

9
those CTBs as depicted in FIG. 7A-7C, the CTB size is still
equal to MxN, however, the bottom boundary/right bound-
ary of the CTB is outside the picture.

10
TABLE 2-2

Boundary strength (when SPS IBC is disabled)

FIG. 7 shows examples of CTBs crossing picture borders, Priority Conditions Y U Vv
(a) K=M. Lf<N; (b) KM, L:N; (C) K<M, L<N. Also, (a) 5 At least one of the adjacent blocks is 2 2 2
CTBs crossing the bottom picture border (b) CTBs crossing intra
the right picture border, (c) CTBs crossing the right bottom 4 TU boundary and at least one 1 1 1

icture bord of the adjacent blocks has non-
picture border zero transform coefficients
2.4. Deblocking Filter (DB) 10 3 Reference pictures or number of 1 NA NA
. . MVs (1 for uni-prediction,

The input of DB is the reconstructed samples before 2 for bi-prediction) of

in-loop filters. the adjacent blocks are different
. . . 2 Absolute difference between the motion 1 N/A NA
The vertical edges in a picture are filtered first. Then the vectors of same reference
horizontal edges in a picture are filtered with samples ;s picture that belong to the adjacent
dified by th rtical edee filteri . . Th blocks is greater than or equal to one
mo: .l (& Yy e.Ve 1cal edge : €ring process as mput. c integer luma sample
vertical and horizontal edges in the CTBs of each CTU are 1 Otherwise 0 0 0
processed separately on a coding unit basis. The vertical
edges of the coding blocks in a coding unit are filtered
TABLE 2-3
Boundary strength (when SPS IBC is enabled)
Priority Conditions Y U \'
At least one of the adjacent blocks is intra 2 2 2
7 TU boundary and at least one of the adjacent blocks has non-zero 1 1 1
transform coefficients
6 Prediction mode of adjacent blocks is different (e.g., one is IBC, 1
one is inter)
5 Both IBC and absolute difference between the motion vectors that 1 N/A NA
belong to the adjacent blocks is greater than or equal to one integer
luma sample
4 Reference pictures or number of MVs (1 for uni-prediction, 2 for 1 N/A NA
bi-prediction) of the adjacent blocks are different
3 Absolute difference between the motion vectors of same reference 1 N/A NA
picture that belong to the adjacent blocks is greater than or equal to
one integer luma sample
1 Otherwise 0 0 0

starting with the edge on the left-hand side of the coding
blocks proceeding through the edges towards the right-hand
side of the coding blocks in their geometrical order. The
horizontal edges of the coding blocks in a coding unit are
filtered starting with the edge on the top of the coding blocks
proceeding through the edges towards the bottom of the
coding blocks in their geometrical order.

FIG. 8 is an Illustration of picture samples and horizontal
and vertical block boundaries on the 8x8 grid, and the
nonoverlapping blocks of the 8x8 samples, which can be
deblocked in parallel.

2.4.1. Boundary Decision

Filtering is applied to 8x8 block boundaries. In addition,
it must be a transform block boundary or a coding subblock
boundary (e.g., due to usage of Affine motion prediction,
ATMVP). For those which are not such boundaries, filter is
disabled.

2.4.2. Boundary Strength Calculation

For a transform block boundary/coding subblock bound-
ary, if it is located in the 8x8 grid, it may be filtered and the
setting of bS[xDi][yDj] (wherein [xDi][yDj] denotes the
coordinate) for this edge is defined in Table 2-2 and Table
2-3, respectively.

45

50

55

60

65

2.4.3. Deblocking Decision for Luma Component
The deblocking decision process is described in this
sub-section.
Wider-stronger luma filter is filters are used only if all the
Conditionl, Condition2 and Condition3 are TRUE.
The condition 1 is the “large block condition”. This condi-
tion detects whether the samples at P-side and Q-side belong
to large blocks, which are represented by the variable
bSidePisLargeBlk and bSideQisLargeBlk respectively. The
bSidePisLargeBlk and bSideQisLargeBlk are defined as
follows.
bSidePisLargeBlk=((edge type is vertical and p,, belongs
to CU with width>=32)||(edge type is horizontal and p,,
belongs to CU with height>=32))? TRUE: FALSE
bSideQisLargeBlk=((edge type is vertical and q, belongs
to CU with width>=32)||(edge type is horizontal and g,
belongs to CU with height>=32))? TRUE: FALSE
Based on bSidePisLargeBlk and bSideQisLargeBlk, the
condition 1 is defined as follows.
Condition1=(bSidePisLargeBlk|[bSidePisLargeBlk)?
TRUE: FALSE
Next, if Condition 1 is true, the condition 2 will be further
checked. First, the following variables are derived:
dp0, dp3, dq0, dq3 are first derived as in HEVC
if (p side is greater than or equal to 32)

US 11,539,946 B2

11
dp0=(dp0+Abs(p5,-2*pdy+p3,)+1)>>1
dp3=(dp3+Abs(p5,-2%pd;+p3,)+1)>>1

if (q side is greater than or equal to 32)
dq0=(dq0+Abs(q5,-2%*qdy+q3,)+1)>>1
dq3=(dq3+Abs(q5;-2%qd;+q35)+1)>>1

Condition2=(d<@)? TRUE: FALSE

where d=dp0+dq0+dp3+dq3.

If Conditionl and Condition2 are valid, whether any of the
blocks uses sub-blocks is further checked:

It (bSidePisLargeBlk)

{

If (mode block P==SUBBLOCKMODE)
Sp=5

else
Sp=7

}

else

Sp=3

It (bSideQisLargeBlk)

If (mode block Q=—SUBBLOCKMODE)
Sq=5
else
Sq=7
t

else
Sq=3

Finally, if both the Condition 1 and Condition 2 are valid, the
proposed deblocking method will check the condition 3 (the
large block strong filter condition), which is defined as
follows.

In the Condition3 StrongFilterCondition, the following
variables are derived:

dpq is derived as in HEVC.

sp;=Abs(p;—p,), derived as in HEVC

if (p side is greater than or equal to 32)

if (Sp==5)
sps=(sps+Abs(ps—p;)+1)>>1
else

sp;=(sps+Abs(p,—p;)+1)>>1
$q;=Abs(qy—95), derived as in HEVC
if (q side is greater than or equal to 32)

If(Sq=5)
$95=(5q3+Abs(qs—q;)+1)>>1
else

8q3=(8q3+Abs(q,~q5)+1)>>1
As in HEVC, StrongFilterCondition=(dpq is less than
(p>>2), sps+sq; is less than (3*p>>5), and Abs(py—q,) is
less than (5*t.+1)>>1)? TRUE: FALSE.
2.4.4. Stronger Deblocking Filter for Luma (Designed for
Larger Blocks)

Bilinear filter is used when samples at either one side of
a boundary belong to a large block. A sample belonging to
a large block is defined as when the width>=32 for a vertical
edge, and when height>=32 for a horizontal edge.

The bilinear filter is listed below.

Block boundary samples p, for i=0 to Sp-1 and q, for j=0
to Sqg-1 (pi and qi are the i-th sample within a row for
filtering vertical edge, or the i-th sample within a column for
filtering horizontal edge) in HEVC deblocking described
above) are then replaced by linear interpolation as follows:

—p,;/=(f*Middle, +(64~f))*Ps+32)>>6),clipped to
pixtePD;

-q;=(g;*Middle, +(64-g;)* Qs+32)>>6),clipped to
g;£tcPD;

10

15

20

25

30

35

40

45

55

65

12
where tcPD, and tcPD; term is a position dependent clipping
described in Section 2.4.7 and g, f,, Middle, ,, P;and Q, are
given below:
2.4.5. Deblocking Control for Chroma

The chroma strong filters are used on both sides of the
block boundary. Here, the chroma filter is selected when
both sides of the chroma edge are greater than or equal to 8
(chroma position), and the following decision with three
conditions are satisfied: the first one is for decision of
boundary strength as well as large block. The proposed filter
can be applied when the block width or height which
orthogonally crosses the block edge is equal to or larger than
8 in chroma sample domain. The second and third one is
basically the same as for HEVC luma deblocking decision,
which are on/off decision and strong filter decision, respec-
tively.

In the first decision, boundary strength (bS) is modified
for chroma filtering and the conditions are checked sequen-
tially. If a condition is satisfied, then the remaining condi-
tions with lower priorities are skipped.

Chroma deblocking is performed when bS is equal to 2,
or bS is equal to 1 when a large block boundary is detected.

The second and third condition is basically the same as
HEVC luma strong filter decision as follows.

In the second condition:
d is then derived as in HEVC luma deblocking.
The second condition will be TRUE when d is less than

5,8

In the third condition StrongFilterCondition is derived as
follows:

dpq is derived as in HEVC.

sps=Abs(p;-p,), derived as in HEVC

sq;=Abs(q,-q5), derived as in HEVC

As in HEVC design, StrongFilterCondition=(dpq is less
than (p>>2), spy+sq; is less than (B>>3), and Abs(p,—q,) is
less than (5*t+1)>>1)
2.4.6. Strong Deblocking Filter for Chroma

The following strong deblocking filter for chroma is
defined:

DP2=(3%Pp3.2"potpitpotqotd)>>3
P1=(2*p3+p2,2"P Pt g0t 1 +4)>>3

DPo=(P3tDrtp 42 potqotq +gt4)>>3

The proposed chroma filter performs deblocking on a 4x4
chroma sample grid.

2.4.7. Position Dependent Clipping

The position dependent clipping tcPD is applied to the
output samples of the luma filtering process involving strong
and long filters that are modifying 7, 5 and 3 samples at the
boundary. Assuming quantization error distribution, it is
proposed to increase clipping value for samples which are
expected to have higher quantization noise, thus expected to
have higher deviation of the reconstructed sample value
from the true sample value.

For each P or Q boundary filtered with asymmetrical filter,
depending on the result of decision-making process in
section 2.4.2, position dependent threshold table is selected
from two tables (i.e., Tc7 and Tc3 tabulated below) that are
provided to decoder as a side information:

Tc7={6, 5, 4, 3, 2, 1, 1}; Tc3={6, 4, 2},
tcPD=(Sp==3)? Tc3: Tc7;
tcQD=(Sq==3)? Tc3: Tc7,;

US 11,539,946 B2

13

For the P or Q boundaries being filtered with a short
symmetrical filter, position dependent threshold of lower
magnitude is applied:

Te3={3,2, 1}

Following defining the threshold, filtered p'; and q'; sample
values are clipped according to tcP and tcQ clipping values:
p" =Clip3(p’+tcP,, p'~tcP;, p'y):
q"=Clip3(g'7+cQ;, 4;~tcQ;, q);

where p'; and ¢, are filtered sample values, p"; and q'; are
output sample value after the clipping and tcP;cP; are
clipping thresholds that are derived from the VVC tc param-
eter and tcPD and tcQD. The function Clip3 is a clipping
function as it is specified in VVC.

2.4.8. Sub-Block Deblocking Adjustment

To enable parallel friendly deblocking using both long
filters and sub-block deblocking the long filters is restricted
to modify at most 5 samples on a side that uses sub-block
deblocking (AFFINE or ATMVP or DMVR) as shown in the
luma control for long filters. Additionally, the sub-block
deblocking is adjusted such that that sub-block boundaries
on an 8x8 grid that are close to a CU or an implicit TU
boundary is restricted to modify at most two samples on
each side. Following applies to sub-block boundaries that
not are aligned with the CU boundary.

If (mode block Q==SUBBLOCKMODE && edge !=0) {
if (1(implicitTU && (edge==(64/4))))

if (edge==2pedge==(orthogonall.ength—2)|ledge==
(56/4)|ledge==(72/4))
Sp=Sq=2;

else
Sp=Sq=3;

else

Sp=Sq=bSideQisLargeBlk? 5:3

¥

Where edge equal to O corresponds to CU boundary, edge
equal to 2 or equal to orthogonalL.ength-2 corresponds to
sub-block boundary 8 samples from a CU boundary etc.
Where implicit TU is true if implicit split of TU is used.
2.5. Sample Adaptive Offset (SAO)

The input of SAO is the reconstructed samples after DB.
The concept of SAO is to reduce mean sample distortion of
a region by first classifying the region samples into multiple
categories with a selected classifier, obtaining an offset for
each category, and then adding the offset to each sample of
the category, where the classifier index and the offsets of the
region are coded in the bitstream. In HEVC and VVC, the
region (the unit for SAO parameters signaling) is defined to
be a CTU.

Two SAO types that can satisfy the requirements of low
complexity are adopted in HEVC. Those two types are edge
offset (EO) and band offset (BO), which are discussed in
further detail below. An index of an SAO type is coded
(which is in the range of [0, 2]). For EO, the sample
classification is based on comparison between current
samples and neighboring samples according to 1-D direc-
tional patterns: horizontal, vertical, 135° diagonal, and 45°
diagonal.

FIG. 10A-10D show four 1-D directional patterns for EO
sample classification: horizontal (EO class=0), vertical (EO
class=1), 135° diagonal (EO class=2), and 45° diagonal (EO
class=3)

For a given EO class, each sample inside the CTB is
classified into one of five categories. The current sample
value, labeled as “c,” is compared with its two neighbors
(labeled as “a” and “b”) along the selected 1-D pattern. The
classification rules for each sample are summarized in Table
2-4. Categories 1 and 4 are associated with a local valley and

20

25

30

35

40

45

50

55

60

65

14

a local peak along the selected 1-D pattern, respectively.
Categories 2 and 3 are associated with concave and convex
corners along the selected 1-D pattern, respectively. If the
current sample does not belong to EO categories 1-4, then it
is category 0 and SAO is not applied.

TABLE 2-4

Sample Classification Rules for Edge Offset

Category Condition
1 c<aandc<b
2 c<a&&c=Db)|(c=a&&c<b)
3 c>a&&c=Db)|(c=a&&c>b)
4 c>a&&c>b
5 None of above

2.6. Adaptive Loop Filter (ALF)

In VVC, an Adaptive Loop Filter (ALF) with block-based
filter adaption is applied. For the luma component, one
among 25 filters is selected for each 4x4 block, based on the
direction and activity of local gradients.

2.6.1. Filter Shape

Two diamond filter shapes (as shown in FIG. 11) are used.
The 7x7 diamond shape is applied for luma component and
the 5x5 diamond shape is applied for chroma components.

FIG. 11 shows ALF filter shapes (chroma: 5x5 diamond,
luma: 7x7 diamond).

2.6.2. Block Classification

For luma component, each 4x4 block is categorized into
one out of 25 classes. The classification index C is derived
based on its directionality D and a quantized value of
activity A, as follows:

C=5D+A @2-D

To calculate D and A, gradients of the horizontal, vertical
and two diagonal direction are first calculated using 1-D
Laplacian:

i+3 43 2_2)
g= . > Vi Vg = [2RUe, 1) = RUe, 1= 1) = Rk, 1+ 1)
k=i-21=j-2
+3 43 (2_3)
g = D, D Hip Hey=12R(Kk D= Rk =1,)= Rk +1,)|
k=i-21=j-2
i+3 43 (2_4)
ga1 = Z Z Dlyy,
k=i-21=j-3
Dl =2R(e,)= R(k—1,1- 1) = Rk + 1,1+ 1)|
+3 43 (2_5)
gar = Z Z D2y,
k=i-21=j-2
D2 =2R(e,)= Rk—1,1+ 1) = Rk +1,1-1)|
Where indices i and j refer to the coordinates of the upper
left sample within the 4x4 block and R(i,j) indicates a
reconstructed sample at coordinate (i,j).

To reduce the complexity of block classification, the
subsampled 1-D Laplacian calculation is applied. FIG. 12
shows subsampled Laplacian calculation. FIG. 12A shows
subsampled positions for vertical gradient, FIG. 12B shows
subsampled positions for horizontal gradient, FIG. 12C
shows subsampled positions for diagonal gradient, and FIG.
12D shows subsampled positions for diagonal gradient.

US 11,539,946 B2

15

Then D maximum and minimum values of the gradients
of horizontal and vertical directions are set as:

8h T =MaX(81, 8,8y =MIN(g 8, (2-6)

The maximum and minimum values of the gradient of two
diagonal directions are set as:

ng,dlmax:max(gdo)gdl)agdo,dlmin:min(gdo)gdl) 2-7)

To derive the value of the directionality D, these values
are compared against each other and with two thresholds t,
and t,:

Step 1. If both gh,vaStl'gh,vmm and ng,dlmaxStl'ng,dlmm
are true, D is set to 0.

Step 2. If g, /g, "> ot /80", continue from
Step 3; otherwise continue from Step 4.

Step 3. If g, ,™**>t,-g, ™", D is set to 2; otherwise D is set
to 1.

Step 4. If g0 1™ >toEan.t™, D is set to 4; otherwise D is
set to 3.

The activity value A is calculated as:

“+3 j+3

4= Z Z (Vieq + Hiy)

k=i—2i=j-2

(-9

A is further quantized to the range of 0 to 4, inclusively, and
the quantized value is denoted as A.

For chroma components in a picture, no classification
method is applied, i.e. a single set of ALF coefficients is
applied for each chroma component.

2.6.3. Geometric Transformations of Filter Coefficients and
Clipping Values

Before filtering each 4x4 luma block, geometric transfor-
mations such as rotation or diagonal and vertical flipping are
applied to the filter coefficients f(k.]) and to the correspond-
ing filter clipping values c(k.l) depending on gradient values
calculated for that block. This is equivalent to applying these
transformations to the samples in the filter support region.
The idea is to make different blocks to which ALF is applied
more similar by aligning their directionality. Three geomet-
ric transformations, including diagonal, vertical flip and
rotation are introduced:

Diagonal: fr(k, D=1 k),cpkD=c(Lk), 2-9

Vertical flip: f(k,D=fik K——1),c (k. D=c(k, K—I-1) (2-10)

Rotation: fx(k N=fK—I—1,k),cx(k D=c(K—I-1,k) (2-11)

where K is the size of the filter and 0<k,<K-1 are
coefficients coordinates, such that location (0,0) is at the
upper left corner and location (K—1, K-1) is at the lower
right corner. The transformations are applied to the filter
coefficients f(k,1) and to the clipping values c(k,]) depending
on gradient values calculated for that block. The relationship
between the transformation and the four gradients of the four
directions are summarized in the following table.

TABLE 2-5

Mapping of the gradient calculated for one
block and the transformations

Gradient values Transformation

8s < gq and g, < g, No transformation

8 < gy and g, < g, Diagonal
gn <gpandg,<g, Vertical flip
gs < gpand g, <g, Rotation

20

25

30

35

40

45

50

55

60

65

16

2.6.4. Filter Parameters Signalling

ALF filter parameters are signalled in Adaptation Param-
eter Set (APS). In one APS, up to 25 sets of luma filter
coefficients and clipping value indexes, and up to eight sets
of chroma filter coefficients and clipping value indexes
could be signalled. To reduce bits overhead, filter coeffi-
cients of different classification for luma component can be
merged. In slice header, the indices of the APSs used for the
current slice are signaled.

Clipping value indexes, which are decoded from the APS,
allow determining clipping values using a table of clipping
values for both luma and Chroma components. These clip-
ping values are dependent of the internal bitdepth. More
precisely, the clipping values are obtained by the following
formula:

AlfClip={round(25-**") for ne[0 . . . N~1]} (2-12)

with B equal to the internal bitdepth, a is a pre-defined
constant value equal to 2.35, and N equal to 4 which is the
number of allowed clipping values in VVC.

In slice header, up to 7 APS indices can be signaled to
specify the luma filter sets that are used for the current slice.
The filtering process can be further controlled at CTB level.
A flag is always signalled to indicate whether ALF is applied
to a luma CTB. A luma CTB can choose a filter set among
16 fixed filter sets and the filter sets from APSs. A filter set
index is signaled for a luma CTB to indicate which filter set
is applied. The 16 fixed filter sets are pre-defined and
hard-coded in both the encoder and the decoder.

For chroma component, an APS index is signaled in slice
header to indicate the chroma filter sets being used for the
current slice. At CTB level, a filter index is signaled for each
chroma CTB if there is more than one chroma filter set in the
APS.

The filter coefficients are quantized with norm equal to
128. In order to restrict the multiplication complexity, a
bitstream conformance is applied so that the coefficient
value of the non-central position shall be in the range of —27
to 271, inclusive. The central position coefficient is not
signalled in the bitstream and is considered as equal to 128.
2.6.5. Filtering Process

At decoder side, when ALF is enabled for a CTB, each
sample R(i,j) within the CU is filtered, resulting in sample
value R'(i,j) as shown below,

RUEND=RENHE a0 Znaf o DXER ik jHD—RE, ok,
D)+64)>>T)
where f(k,]) denotes the decoded filter coefficients, K(x,y)
is the clipping function and c(k,]) denotes the decoded
clipping parameters. The variable k and 1 varies between
—L/2 and L/2 where L denotes the filter length. The clipping
function K(x,y)=min (y,max(-y,x)) which corresponds to
the function Clip3 (—v,y.x).
2.6.6. Virtual Boundary Filtering Process for Line Buffer
Reduction
In hardware and embedded software, picture-based pro-
cessing is practically unacceptable due to its high picture
buffer requirement. Using on-chip picture buffers is very
expensive and using off-chip picture buffers significantly
increases external memory access, power consumption, and
data access latency. Therefore, DF, SAO, and ALF will be
changed from picture-based to LCU-based decoding in real
products. When LCU-based processing is used for DF, SAO,
and ALF, the entire decoding process can be done LCU by
LCU in a raster scan with an LCU-pipelining fashion for
parallel processing of multiple LCUs. In this case, line
buffers are required for DF, SAO, and ALF because pro-

(2-13)

US 11,539,946 B2

17
cessing one LCU row requires pixels from the above LCU
row. If off-chip line buffers (e.g. DRAM) are used, the
external memory bandwidth and power consumption will be
increased; if on-chip line buffers (e.g. SRAM) are used, the
chip area will be increased. Therefore, although line buffers
are already much smaller than picture buffers, it is still
desirable to reduce line buffers.

In VIM-4.0, as shown in FIG. 13, the total number of line
buffers required is 11.25 lines for the Luma component. The
explanation of the line buffer requirement is as follows: The
deblocking of horizontal edge overlapping with CTU edge
cannot be performed as the decisions and filtering require
lines K, L, M, M from the first CTU and Lines O, P from the
bottom CTU. Therefore, the deblocking of the horizontal
edges overlapping with the CTU boundary is postponed
until the lower CTU comes. Therefore, for the lines K, L, M,
N reconstructed luma samples have to be stored in the line
buffer (4 lines). Then the SAO filtering can be performed for
lines A till J. The line J can be SAO filtered as deblocking
does not change the samples in line K. For SAO filtering of
line K, the edge offset classification decision is only stored
in the line buffer (which is 0.25 Luma lines). The ALF
filtering can only be performed for lines A-F. As shown in
FIG. 13, the ALF classification is performed for each 4x4
block. Each 4x4 block classification needs an activity win-
dow of size 8x8 which in turn needs a 9x9 window to
compute the 1d Laplacian to determine the gradient.

Therefore, for the block classification of the 4x4 block
overlapping with lines G, H, 1, J needs, SAO filtered samples
below the Virtual boundary. In addition, the SAO filtered
samples of lines D, E, F are required for ALF classification.
Moreover, the ALF filtering of Line G needs three SAO
filtered lines D, E, F from above lines. Therefore, the total
line buffer requirement is as follows:

Lines K-N(Horizontal DF pixels): 4 lines

Lines D-J (SAO filtered pixels): 7 lines

SAO Edge offset classifier values between line J and line

K: 0.25 line

Therefore, the total number of luma lines required is
7+4+0.25=11.25.

Similarly, the line buffer requirement of the Chroma
component is illustrated in FIG. 14. The line buffer require-
ment for Chroma component is evaluated to be 6.25 lines.

FIG. 13 shows a loop filter line buffer requirement in
VTM-4.0 for Luma component.

FIG. 14 shows a Loop filter line buffer requirement in
VTM-4.0 for Chroma component.

In order to eliminate the line buffer requirements of SAO
and ALF, the concept of virtual boundary (VB) is introduced
to reduce the line buffer requirement of ALF in the latest
VVC. Modified block classification and filtering are
employed for the samples near horizontal CTU boundaries.
As shown in FIG. 13, VBs are upward shifted horizontal
LCU boundaries by N pixels. For each LCU, SAO and ALF
can process pixels above the VB before the lower LCU
comes but cannot process pixels below the VB until the
lower LCU comes, which is caused by DF. With consider-
ation of the hardware implementation cost, the space
between the proposed VB and the horizontal LCU boundary
is set as four pixels for luma component (i.e. N=4 in FIG. 13
or FIG. 15) and two pixels for chroma component (i.e. N=2).

FIG. 15 shows a modified block classification at virtual
boundaries

Modified block classification is applied for the Luma
component as depicted in FIG. 16. For the 1D Laplacian
gradient calculation of the 4x4 block above the virtual
boundary, only the samples above the virtual boundary are

20

25

30

35

40

45

55

18

used. Similarly, for the 1D Laplacian gradient calculation of
the 4x4 block below the virtual boundary, only the samples
below the virtual boundary are used. The quantization of
activity value A is accordingly scaled by taking into account
the reduced number of samples used in 1D Laplacian
gradient calculation.

For filtering processing, mirrored (symmetric) padding
operation at the virtual boundaries are used for both Luma
and Chroma components. As shown in FIG. 16 when the
sample being filtered is located below the virtual boundary,
the neighboring samples that are located above the virtual
boundary are padded. Meanwhile, the corresponding
samples at the other sides are also padded, symmetrically.

FIG. 16 shows a modified ALF filtering for Luma com-
ponent at virtual boundaries

For another example, if one sample located at (i,j) (e.g.,
the POA with dash line in FIG. 17B is padded, then the
corresponding sample located at (m,n) (e.g., the P3B with
dash line in FIG. 17B which share the same filter coefficient
is also padded even the sample is available, as depicted in
FIGS. 17A-17C.

FIG. 17A shows one required line above/below VB need
to be padded (per side).

FIG. 17B shows 2 required lines above/below VB need to
be padded (per side).

FIG. 17C shows 3 required lines above/below VB need to
be padded (per side).

FIG. 27 shows examples of modified luma ALF filtering
at virtual boundary

Different to the mirrored (symmetric) padding method
used at horizontal CTU boundaries, repetitive (one-side)
padding process is applied for slice, tile and subpicture
boundaries when filter across the boundaries is disabled. The
repetitive (one-side) padding process is also applied at
picture boundary. The padded samples are used for both
classification and filtering process. FIG. 18 depicts an
example of repetitive padding method for luma ALF filtering
at picture/subpicture/slice/tile boundary.

FIG. 18 shows examples of repetitive padding for luma
ALF filtering at picture/subpicture/slice/tile boundary
2.7. 360-Degree Video Coding

The horizontal wrap around motion compensation in the
VTMS is a 360-specific coding tool designed to improve the
visual quality of reconstructed 360-degree video in the
equi-rectangular (ERP) projection format. In conventional
motion compensation, when a motion vector refers to
samples beyond the picture boundaries of the reference
picture, repetitive padding is applied to derive the values of
the out-of-bounds samples by copying from those nearest
neighbors on the corresponding picture boundary. For 360-
degree video, this method of repetitive padding is not
suitable, and could cause visual artefacts called “seam
artefacts” in a reconstructed viewport video. Because a
360-degree video is captured on a sphere and inherently has
no “boundary,” the reference samples that are out of the
boundaries of a reference picture in the projected domain
can always be obtained from neighboring samples in the
spherical domain. For a general projection format, it may be
difficult to derive the corresponding neighboring samples in
the spherical domain, because it involves 2D-to-3D and
3D-to-2D coordinate conversion, as well as sample interpo-
lation for fractional sample positions. This problem is much
simpler for the left and right boundaries of the ERP projec-
tion format, as the spherical neighbors outside of the left
picture boundary can be obtained from samples inside the

US 11,539,946 B2

19

right picture boundary, and vice versa. FIG. 19 shows an
example of horizontal wrap around motion compensation in
vvC

The horizontal wrap around motion compensation process
is as depicted in FIG. 19 When a part of the reference block
is outside of the reference picture’s left (or right) boundary
in the projected domain, instead of repetitive padding, the
“out-of-boundary” part is taken from the corresponding
spherical neighbors that are located within the reference
picture toward the right (or left) boundary in the projected
domain. Repetitive padding is only used for the top and
bottom picture boundaries. As depicted in FIG. 19, the
horizontal wrap around motion compensation can be com-
bined with the non-normative padding method often used in
360-degree video coding. In VVC, this is achieved by
signaling a high-level syntax element to indicate the wrap-
around offset, which should be set to the ERP picture width
before padding; this syntax is used to adjust the position of
horizontal wrap around accordingly. This syntax is not
affected by the specific amount of padding on the left and
right picture boundaries, and therefore naturally supports
asymmetric padding of the ERP picture, i.e., when left and
right padding are different. The horizontal wrap around
motion compensation provides more meaningful informa-
tion for motion compensation when the reference samples
are outside of the reference picture’s left and right bound-
aries.

For projection formats composed of a plurality of faces,
no matter what kind of compact frame packing arrangement
is used, discontinuities appear between two or more adjacent
faces in the frame packed picture. For example, considering
the 3x2 frame packing configuration depicted in FIG. 20, the
three faces in the top half are continuous in the 3D geometry,
the three faces in the bottom half are continuous in the 3D
geometry, but the top and bottom halves of the frame packed
picture are discontinuous in the 3D geometry. If in-loop
filtering operations are performed across this discontinuity,
face seam artifacts may become visible in the reconstructed
video.

To alleviate face seam artifacts, in-loop filtering opera-
tions may be disabled across discontinuities in the frame-
packed picture. A syntax was proposed to signal vertical
and/or horizontal virtual boundaries across which the in-
loop filtering operations are disabled. Compared to using
two tiles, one for each set of continuous faces, and to disable
in-loop filtering operations across tiles, the proposed signal-
ing method is more flexible as it does not require the face
size to be a multiple of the CTU size.

FIG. 20 shows an in image of HEC in 3x2 layout.

2.8. JVET-P0080: CES5-2.1, CE5-2.2: Cross Component
Adaptive Loop Filter

FIG. 21A illustrates the placement of CC-ALF [1] with
respect to the other loop filters. CC-ALF operates by apply-
ing a linear, diamond shaped filter FIG. 21B to the luma
channel for each chroma component, which is expressed as

AL,)= D Iolxc + Yo, Yo + Yo)eEos Yo,
(x0.v0)eS;

where
(x,y) is chroma component i location being refined
(XY) is the luma location based on (x,y)
S; is filter support in luma for chroma component i
c,(Xq.¥o) represents the filter coefficients

20

25

30

35

40

45

50

55

60

65

20
(2-14)

FIG. 21A shows an example placement of CC-ALF with
respect to other loop filters. FIG. 21B shows a Diamond
shaped filter.

The luma location (X.,y-), around which the support
region is centered, is computed based on the spatial scaling
factor between the luma and chroma planes. All filter
coefficients are transmitted in the APS and have 8-bit
dynamic range. An APS may be referenced in the slice
header. CC-ALF coefficients used for each chroma compo-
nent of a slice are also stored in a buffer corresponding to a
temporal sublayer. Reuse of these sets of temporal sublayer
filter coefficients is facilitated using slice-level flags. The
application of the CC-ALF filters is controlled on a variable
block size (i.e. 16x16, 32x32, 64x64, 128x128) and sig-
nalled by a context-coded flag received for each block of
samples. The block size along with an CC-ALF enabling
flag is received at the slice-level for each chroma compo-
nent. Boundary padding for the horizontal virtual boundaries
makes use of repetition. For the remaining boundaries the
same type of padding is used as for regular ALF.

2.8.1. Specification on CC-ALF in JVET-P0080

x.x.X.Xx Cross Component Filtering Process for Block of
Chroma Samples

Inputs of this process are:

a reconstructed luma picture sample array recPicture,

prior to the luma adaptive loop filtering process,

a filtered reconstructed chroma picture sample array
alfPictureC,

a chroma location (xC,yC) specifying the top left sample
of the current block of chroma samples relative to the
top left sample of the current picture,

a width ccAlfWidth of block of chroma samples

a height ccAlfHeight of block of chroma samples

cross component filter coefficients CcAlfCoeft[j], with
j=0.13

Output of this process is the modified filtered recon-
structed chroma picture sample array ccAlfPicture.

The coding tree block luma location (xCtb, yCtb) is

derived as follows:
xCtb=(((xC*SubWidthC)>>Cth Log 2SizeY)<<(Cth
Log 2SizeY (8-1229)
yCtb=(((yC*SubHeightC)>>Cth Log 2SizeY)<<Cth
Log 2SizeY (8-1229)

For the derivation of the filtered reconstructed chroma
samples ccAlfPicture[xC+x][yC+y], each reconstructed
chroma sample inside the current chroma block of samples
alfPicture -[xC+x][yC+y] with x=0 . . . ccAlfWidth—1,
y=0. . . ccAlfHeight-1, is filtered as follows:

The luma location (xL,yL) corresponding to the current
chroma sample at chroma location (xC+x,yC+y) is set
equal to ((xC+x)*SubWidthC, (yC+y)*SubHeightC)

The luma locations (h,,, Vv, with i=2 . . . 2,
j=2 ... 3 inside the array recPicture, are derived as
follows:

If pps_loop_filter_across_virtual_boundaries_dis-
abled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and xL—Pps-
VirtualBoundariesPosX[n] is greater than or equal to
0 and less than 3 for any n=0 . . . pps_num_ver_vir-
tual_boundaries—1, the following applies:

A, . =Clip3(PpsVirtualBoundariesPosX[n],

pic_width_in_luma_samples—1,x7+i) (8-1229)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and PpsVirtual-

US 11,539,946 B2

21

BoundariesPosX[n]-xL is greater than 0 and less than
4 for any n=0 . . . pps_num_ver_virtual_boundaries-1,
the following applies:

.., =Clip3(0,PpsVirtualBoundariesPosX[#]-1,xL+i) (8-1230)
Otherwise, the following applies:
b, ~Clip3(0,pic_width_in_luma_samples—1xL+i) (8-1231)

It pps_loop_filter_across_virtual_boundaries_disabled_
flag is equal to 1, and PpsVirtualBoundariesPosY [n]%
CtbSizeY is not equal to 0, and yL-PpsVirtualBound-
ariesPosY|[n] is greater than or equal to 0 and less than
3 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,.,7~Clip3(PpsVirtualBoundariesPos Y[r] pic_height_

in_luma_samples—1,yL+7) (8-1232)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosY[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosY[n]-yL is greater than 0 and less than
4 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,.,7~Clip3(0,PpsVirtualBoundariesPosY[#]-1,vL+) (8-1233)
erwise, the following applies:

Oth the foll g appl
v,,,~Clip3(0,pic_height in luma_samples-1,yL+7) (8-1234)

The variables clipLeftPos, clipRightPos, clipTopPos and
clipBottomPos are derived by invoking the ALF
boundary position derivation process as specified in
clause 8.8.5.5 with (xCtb, yCtb) and (xL.-xCtb, yL-
yCtb) as inputs.

The vertical sample position offsets yM2, yM1, yP1, yP2
and yP3 are specified in Table 2-6 according to the
vertical luma sample position yL, clipLeftPos and
clipRightPos.

The horizontal sample position offsets xM1, xM2, xP1
and xP2 are specified in Table 2-7 according to the
horizontal luma sample position xL, clipl.eftPos and
clipRightPos.

The variable curr is derived as follows:
curr=alfPicture [xC+x,yC+y] (8-1286)

The array of cross component filter coefficients fJj] is
derived as follows with j=0 . . . 13:

J71=CcAlfCoefl[;]

The variable sum is derived as follows:

(8-1287)

sum=f[0]*recPicturez [/, v, a0]+ 1]*recPicture,
PsxarsVyaa WA 2] recPicture [, v, 00 14/13]
*recPicture; [A,,xp1,Vyuan | 1/14] *recPicture,,
[rxaro vy IS ¥ recPicture, [A, agy, v, 14/
[6]*recPicturey [A,,v, 4/ 7]*recPicture [A,,.p1,

v, 1441 recPicture; [A,., po, v,]+ (8-1289)

JTAT* recPicture [4,, vap, Vyapp1 18] * recPicture,
[Pt Vyyp [HA9)* recPicture, [f,,v,, .1 14/110]
*recPicture; [A,,p1,V,p1 1 4/4] *recPicture,
[rrxp2 Vyusp1 [H 111 *recPicture, A car,
Vyuyp2 [t 12]*recPicture, [4,,v,,,po] +/13]
*recPicture; [A,,,p1,V,,p2] #/10] *recPicture, [£,,

V,4yp3lsUm=curr+(sum+64)>>7) (8-1290)

The modified filtered reconstructed chroma picture
sample array ccAlfPicture[xC+x][yC+y] is derived as
follows:

ccAlfPicture[xC+x][yC+y]=Clip3(0,(1<<BitDepth)-

1,5um) (8-1291)

10

15

20

25

30

35

40

45

50

55

60

22
TABLE 2-6

Specification of yM1, yM2, yP1, yP2 and yP3 according to the
vertical luma sample position yvL, clipTopPos and clipBottomPos

Condition yM2 yMl1 yP1 yP2 yP3
yL = = clipTopPos + 1 -1 -1 1 2 3
yL = = clipTopPos 0 0 1 2 3
yL = = clipBottomPos — 1 -2 -1 0 0 0
yL = = clipBottomPos — 2 -2 -1 1 1 1
yL = = clipBottomPos - 3 -2 -1 1 2 2
Otherwise -2 -1 1 2 3
TABLE 2-7

Specification of xM1, xM2, xP1, and xP2 according to the horizontal
luma sample position XL, clipLeftPos and clipRightPos

Condition xM2 xM1 xP1 xP2
xL = = clipLeftPos + 1 -1 -1 1 2
xL = = clipLeftPos 0 0 1 2
xL = = clipRightPos — 1 -2 -1 0 0
xL = = clipRightPos — 2 -2 -1 1 1
Otherwise -2 -1 1 2

2.8.2. Padding Method at Virtual Boundary in JVET-PO08O
Similar to luma ALF/chroma ALF, repetitive padding is
utilized at ALF virtual boundary for CC-ALF in JVET-
P0080. As shown in FIG. 22, if the luma samples above or
below the ALF virtual boundary are unavailable, the nearest
sample line is utilized for padding. The detailed padding
method is also shown in Table 2-6.
2.9. JVET-P1008: CE5-Related: On the Design of CC-ALF

In JVET-00636 [1] and CES-2.1 [2], the Cross Compo-
nent Adaptive Loop Filter (CC-ALF) was introduced and
studied. The filter uses a linear filter to filter luma sample
values and generate a residual correction for the chroma
channels from the co-located filtered output. The filter is
designed to operate in parallel with the existing luma ALF.

A CC-ALF design is proposed that is asserted to be both
simplified and better aligned with the existing ALF. The
design uses a 3x4 diamond shape with 8 unique coeflicients.
This reduces the number of multiplies by 43% compared to
the 5x6 design studied in CE5-2.1. When a restriction is
placed that enables either chroma ALF or CC-ALF for
chroma component of a CTU we limit the per-pixel multi-
plier count to 16 (current ALF is 15). The filter coefficient
dynamic range is limited to 6-bit signed. An illustration of
the filters for both the proposed and CES-2.1 solution are
shown in FIG. 23.

To be better aligned with the existing ALF design, the
filter coefficients are signaled in the APS. Up to four filters
are supported, and filter selection is indicated at the CTU-
level. Symmetric line selection is used at the virtual bound-
ary to further harmonize with ALF. Finally, to limit the
amount of storage needed by the correction output, the
CC-ALF residual output is clipped to -25#PerHcl tq
pBitDepthC-1_1 inclusive.

Specification on CC-ALF in JVET-P1008.
x.x.x.Xx Cross Component Filtering Process for Block of
Chroma Samples
Inputs of this process are:

a reconstructed luma picture sample array recPicture,

prior to the luma adaptive loop filtering process,

a filtered reconstructed chroma picture sample array

alfPicture .,

US 11,539,946 B2

23

a chroma location (xCtbC,yCtbC) specifying the top-left
sample of the current chroma coding tree block relative
to the top left sample of the current picture,

a width ccAlfWidth of block of chroma samples

a height ccAlfHeight of block of chroma samples

cross component filter coefficients CcAlfCoefl]j], with
=0...7

Output of this process is the modified filtered recon-
structed chroma picture sample array ccAlfPicture.

The coding tree block luma location (XCtb, yCtb) is
derived as follows:

XCth=(((xCtbC*SubWidthC)>>Ctbh Log 2SizeY)

<<Cth Log 2SizeY (8-1229)
yCtb=(((yCtbC*SubHeightC)>>Ctbh Log 2SizeY)
<<Cth Log 2SizeY (8-1229)

For the derivation of the filtered reconstructed chroma
samples

ccAlfPicture[xCthC+x][yCtbC+y], each reconstructed
chroma sample inside the current chroma block of samples
alfPictureC[xCtbC+x][yCtbC+y] with x=0 . . . ccAlfWidth-
1, y=0 . . . ccAlfHeight-1, is filtered as follows:

The luma location (xL,yL) corresponding to the current
chroma sample at chroma location (XCtbC+x, yCtbC+
y) is set equal to ((XCthC+x)*SubWidthC, (yCtbhC+y)
*SubHeightC)

The luma locations (h,,,, v,+) with i==1 . . . 1,
j==1 ... 2 inside the array recPicture, are derived as
follows:

If pps_loop_filter_across_virtual_boundaries_dis-
abled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and xL.-Pps-
VirtualBoundariesPosX[n] is greater than or equal to
0 and less than 3 for any n=0 . . . pps_num_ver_vir-
tual_boundaries-1, the following applies:

h,; ,.=Clip3(PpsVirtualBoundariesPosX[#],

pic_width_in_luma_samples—1 xL+i) (8-1229)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosX[n]-xL is greater than 0 and less than
4 for any n=0 . . . pps_num_ver_virtual_boundaries-1,
the following applies:

h,..~Clip3(0,PpsVirtualBoundariesPosX [#]-1,xL+i) (8-1230)
Otherwise, the following applies:
b, ~Clip3(0,pic_width_in_luma_samples—1xL+i) (8-1231)

It pps_loop_filter_across_virtual_boundaries_disabled_
flag is equal to 1, and PpsVirtualBoundariesPosY [n]%
CtbSizeY is not equal to 0, and yL-PpsVirtualBound-
ariesPosY|[n] is greater than or equal to 0 and less than
3 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,.,7~Clip3(PpsVirtualBoundariesPos Y[r] pic_height_

in_luma_samples—1,yL+7) (8-1232)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosY[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosY[n]-yL is greater than 0 and less than
4 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,.,7~Clip3(0,PpsVirtualBoundariesPosY[#]-1,vL+) (8-1233)

10

15

20

25

30

35

40

45

50

55

60

65

24

Otherwise, the following applies:
v,.,7~Clip3(0,pic_height_in_luma_samples—1,pL+j) (8-1234)

The variables clipLeftPos, clipRightPos, clipTopPos and
clipBottomPos are derived by invoking the ALF
boundary position derivation process as specified in
clause 8.8.5.5 with (xCtb, yCtb) and (xL-xCtb, yL-
yCtb) as inputs.

The vertical sample position offsets yM1, yP1 and yP2 are
specified in Table 2-8 according to the vertical luma
sample position yL, clipLeftPos and clipRightPos.

The horizontal sample position offsets xM1 and xP1 are
specified in Table 2-9 according to the horizontal luma
sample position xL, clipLeftPos and clipRightPos.

The variable curr is derived as follows:
curr=alfPicture [XCtbC+x,yCtbC+y] (8-1286)

The array of cross component filter coefficients f]j] is
derived as follows with =0 .. . 7:

J71=CcAlfCoefl]/]
The variable sum is derived as follows:

(8-1287)

sum=f[0]*recPicturez [/, v, a0] +/[1]*recPicture [/,
*M1,V, | +/]2]*recPicture, [/,,v,] +/[3]*recPicture,
rrspr Vs 1+ (8-1289)
JAT*recPicture [2,uar1,Vyayp1 [H 5 *recPicture; [4,,

Va1 [Hf16] recPicture, [, p1, vy usp1 [417]
*recPicturez [, v,.4,p2]

sum=Clip3(-(1<<(BitDepth —1)),(1<<(BitDepth —
1))-1,sum)(8-1290)

sum=curr+(sum+64)>>(7+(BitDepth;—BitDepth) (8-1290)

The modified filtered reconstructed chroma picture
sample array ccAlfPicture[xCtbC+x][yCtbC+y] is
derived as follows:

ccAlfPicture[xCtbC+x] [yCtbC+y]=Clip3(0,(1<<Bit-

Depth)-1,sum) (8-1291)

TABLE 2-8

Specification of yM1, yP1 and yP2 according to the vertical
luma sample position yL. clipTopPos and clipBottomPos

Condition yM1 yP1 yP2

yL = = clipTopPos + 1 -1 1 1

yL = = clipTopPos 0 0 1

yL = = clipBottomPos — 1 0 0 1

yL = = clipBottomPos — 2 -1 1 1

Otherwise -1 1 2
TABLE 2-9

Specification of xM1 and xP1 according to the horizontal

luma sampe position XL, clipLeftPos and clipRightPos
Condition xM1 xP1
xL = = clipLeftPos 0 0
xL = = clipRightPos - 1 0 0
xL = = clipRightPos - 2 -1 1
Otherwise -1 1

2.9.1. Padding Method at Virtual Boundary in JVET-P1008

Mirrored (symmetric) padding is utilized at ALF virtual
boundary for CC-ALF in JVET-P1008. As shown in FIG.
24, if the luma samples above or below the ALF virtual
boundary are unavailable, the nearest sample line is utilized

US 11,539,946 B2

25

for padding, and the corresponding samples also need to be
padded. The detailed padding method is also shown in Table
2-9.

2.10. Simplified Methods of CC-ALF in JVET-P2025
2.10.1. Alternative Filter Shapes

The CC-ALF filter shape is modified to have 8 or 6
coeflicients as shown in the figure below.

FIG. 25 shows CC-ALF filter shape of 8 coefficients in
JVET-P0106.

FIG. 26 shows CC-ALF filter shape of 6 coefficients in
JVET-P0173.

FIG. 27 shows CC-ALF filter shape of 6 coefficients in
JVET-P0251.

2.10.2. Joint Chroma Cross-Component Adaptive Filtering

Joint Chroma Cross-Component Adaptive Loop Filter
(JC-CCALF) uses only one set of CCALF filter coefficients
trained at the encoder to generate one filtered output as the
refinement signal, which will be added directly to the Cb
component, and be properly weighted and then added to the
Cr component. Filters are indicated at the CTU-level or
indicated with a block size, which is signalled per slice.

The supported such chroma block sizes range from the
minimum chroma CTU size to the current chroma CTU size.
The minimum chroma CTU size is the minimum between
the smallest possible width and height of a chroma CTU, i.e.
Min(32/SubWidthC, 32/SubHeightC), while the current
chroma CTU size is the minimum between the width and
height of the current chroma CTU, ie. Min(CtbWidthC,
CtbHeightC). For example, if CTU size is set to the maximal
128x128, the JC-CCALF chroma block size of a slice will
be one from 32x32, 64x64 and 128x128 for 4:4:4 video, or
one from 16x16,32x32 and 64x64 for 4:2:0 and 4:2:2 video.

FIG. 28 shows a JC-CCALF workflow.

3. Technical Problems Solved by Technical Solutions
Described Herein

The current design of boundary padding for CC-ALF has
the following problems:

1. The padding method at ALF virtual boundary in
CC-ALF may be sub-optimal, since padded samples
are utilized which may be less efficient.

2. Different ways for handling ALF virtual boundary and
video unit boundary (e.g., picture/subpicture/slice/tile
boundary) and 360-degree virtual boundary, i.e., dif-
ferent padding methods are existing.

3. In ALF, the mirror padding is applied wherein the
distance to the current sample is calculated to deter-
mine which corresponding sample needs to be padded.
However, in CC-ALF, especially, for 4:2:0, to filter one
chroma sample, multiple luma samples are involved.
How to determine which corresponding sample needs
to be padded is unknown.

4. Example Listing of Techniques and Embodiments

The listing below should be considered as examples to
explain general concepts. These items should not be inter-
preted in a narrow way. Furthermore, these items can be
combined in any manner.

In some embodiments described in this disclosure, the
term ‘CC-ALF’ represents a coding tool that utilizes the
sample values in a second color component (e.g., Y) or
multiple color components (e.g., both Y and Cr) to refine the
samples in a first color component (e.g., Cb). It is not limited
to the CC-ALF technologies described in [1]-[4]. “corre-
sponding filtering sample set” may be used to represent
those samples included in a filter support, e.g., for CC-ALF,
the “corresponding filtering sample set” may be used to
represent the collocated luma sample and neighboring luma

10

15

20

25

30

35

40

45

50

55

60

65

26

samples of the collocated luma sample of a chroma sample
which are utilized to derive the refinement/offset of the
chroma sample.

The padding method used for ALF virtual boundaries may
be denoted as ‘Mirrored Padding’ wherein for a first unavail-
able sample located at (i,j), is padded, and a second sample,
defined by ‘corresponding sample of the first sample’ in the
filter support (e.g., the corresponding sample located at
(m,n) which share the same distance from the current luma
sample) in ALF is also padded even if the second sample is
available.

In one example, vertical padding is utilized, such as the
sample to be padded located at (x,y1) is set equal to the
sample located at (x,y2), wherein y1 denotes the y-coordi-
nate of the sample or the corresponding sample and y2
denotes the y-coordinate of the sample utilized for padding.

In one example, horizontal padding is utilized, such as the
sample to be padded located at (x1,y) is set equal to the
sample located at (x2,y), wherein x1 denotes the x-coordi-
nate of the sample or the corresponding sample and x2
denotes the x-coordinate of the sample utilized for padding.

The padding method used for picture/subpicture/slice/tile
boundaries/360-degree video virtual boundaries, normal
boundaries (e.g, top and bottom boundaries) may be denoted
as ‘Repetitive Padding’ wherein if one sample to be used is
outside the boundaries, it is copied from an available one
inside the boundary.

In the disclosure, a neighbouring (adjacent or non-adja-
cent) sample is “unavailable” if it is located in a different
video processing unit (e.g., out of: the current picture, or
current subpicture, or current tile, or current slice, or current
brick, or current CTU, or current processing unit (such as
ALF processing unit or narrow ALF processing unit), or any
other current video unit) or not reconstructed or cross-
filtering video processing unit is disallowed.

Handling ALF Virtual Boundary for CC-ALF

1. For an unavailable luma sample to be padded at the ALF
virtual boundary, mirrored padding may be utilized to
derive the unavailable luma sample and one or multiple
corresponding luma samples of the unavailable luma
sample, for filtering in CC-ALF. That is, at least one
corresponding luma sample of the unavailable sample
needs to be padded as well even it is available.

a. In one example, a luma sample that is determined as a
corresponding sample of an unavailable luma sample
may be padded using the mirrored padding method.

b. In one example, whether a luma sample (in the corre-
sponding filtering sample set) is determined as a cor-
responding sample of an unavailable sample may be
dependent on the distance of the sample relative to a
representative luma sample or/and the distance of the
unavailable sample relative to the representative luma
sample. Denote the center row wherein the represen-
tative luma sample is located by C. Suppose KL filter
shape which makes use of K rows of samples and L
columns of samples is used in CC-ALF.

i. In one example, the representative luma sample is
defined as the collocated luma sample of current
chroma sample to be filtered.

1) In one example, the position of the collocated
luma sample of current chroma sample may
depend on the color format.

a) In one example, the collocated luma sample of
a chroma sample located at (x,y) is defined as
the one located at (2x,2y) in 4:2:0 chroma
format.

US 11,539,946 B2

27

b) In one example, the collocated luma sample of
a chroma sample located at (x,y) is defined as
the one located at (2x,y) in 4:2:2 chroma format.

¢) In one example, the collocated luma sample of
a chroma sample located at (x,y) is defined as
the one located at (x,y) in 4:4:4 chroma format.

ii. In one example, the distance may refer to the vertical
distance between a row containing a luma sample
and the row containing the representative luma
sample. For example, the distance may be calculated
as the absolute y-coordinate difference between a
luma sample and the representative luma sample.
1) As shown in FIG. 29, denote the center row

wherein the representative luma sample is located,

the row of an unavailable sample, and the row of
the corresponding samples as C, M, and N respec-
tively, and M is not equal to N. Deonte d(x,y) as

the absolute y-coordinate difference between x

and y, meaning that the distance between row x

and row y.

iii. In one example, the determination of the corre-
sponding samples to be padded in mirrored padding
may be dependent on how many rows of samples
would be utilized by the filter shape.

iv. In one example, if the unavailable sample is located
at row M (e.g., M<C<N or M>C>N), then samples
located at row N are determined as the corresponding
samples to be padded, when d(C,M)=d(N,C).

1) In one example, If the value K (e.g., KxI. CC-ALF
filter shape) is odd, the mirrored padding method
for ALF (e.g., FIG. 16) may be utilized for CC-
ALF wherein the center luma sample is selected as
the representative luma sample.

a) In one example, suppose K=5 and denote
yM2=-2, yM1=-1, yL.=0, yP1=1, yP2=2 as the
y-coordinator of the five sample rows respec-
tively, shown in Table 4-5. The ALF virtual
boundary is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is above the representative luma sample, the
unavailable samples may be padded using the
nearest row below the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row above the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-3 and the row yM2 is unavailable, the
samples (x, yM2) at the row yM2 may be
padded using samples (x, yM1) at the row yM1.
Meanwhile, the samples (x, yP2) at the corre-
sponding row yP2 may be padded using
samples (X, yP1) at the row yP1.

2. In one example, when yL is equal to Ctb-
SizeY-4 and the rows yM2 and yM1 are
unavailable, the samples (x, yM2) and (x, yM1)
at the row yM2 and yM1 may be padded using
samples (x, yL) at the row yL. Meanwhile, the
samples (x, yP2) and (x, yP1) at the correspond-
ing row yP2 and yP1 may be padded using
samples (X, yL) at the row yL.

ii. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.

20

40

45

60

28

1. In one example, when yL is equal to Ctb-
SizeY-6 and the row yP2 is unavailable, the
samples (X, yP2) at the row yP2 may be padded
using samples (x, yP1) at the row yP1. Mean-
while, the samples (x, yM2) at the correspond-
ing row yM2 may be padded using samples (X,
yM1) ath the row yM1.

2. In one example, when yL is equal to Ctb-
SizeY-5 and the rows yP2 and yP1 are unavail-
able, the samples (X, yP2) and (x, yP1) at the
row yP2 and yP1 may be padded using samples
(x, yL) at the row yL.. Meanwhile, the samples
(x, YM2) and (x, yM1) at the corresponding row
yM2 and yM1 may be padded using samples (x,
yL) at the row yL.

2) In one example, If the value K (e.g., KxI. CC-ALF

filter shape) is even, the mirrored padding method

defined in FIG. 30 may be utilized. When the

unavailable samples located at row M (N) above

(below) the ALF virtual boundary and they are

padded from the nearest sample row below

(above) the ALF virtual boundary. It is proposed

that the corresponding samples located at row N

(M) below (above) the ALF virtual boundary may

be padded from the nearest sample row above

(below) row N (M).

a) In one example, suppose K=2 and denote yL.=0
and yP1=1 as the y-coordinator of the two
sample rows, shown in Table 4-1. The ALF
virtual boundary is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is above the representative luma sample, the
unavailable samples may be padded using the
nearest row below the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row above the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-4 and the row above yL is unavailable,
the samples (x, yP1) at the corresponding row
yP1 may be padded using samples (x, yL) at the
row yL.

ii. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-5 and the row yP1 is unavailable, the
samples (X, yP1) at the row yP1 may be padded
using samples (x, yL) at the row yL.

b) In one example, suppose K=4 and denote
yM1=-1, yL=0, yP1=1, yP2=2 as the y-coor-
dinator of the four sample rows respectively,
shown in Table 4-3. The ALF virtual boundary
is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is above the representative luma sample, the
unavailable samples may be padded using the
nearest row below the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row above the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-3 and the row above yM1 is unavailable,

US 11,539,946 B2

29

the samples (x, yP2) at the corresponding row
yP2 may be padded using samples (x, yP1) at
the row yP1.

2. In one example, when yL is equal to Ctb-
SizeY-4 and the row above yM1 and yM1 are
unavailable, the samples (x, yM1) at the row
yM1 may be padded using samples (x, yL) at
the row yL.. Meanwhile, the samples (x, yP2)
and (%, yP1) at the corresponding row yP2 and
yP1 may be padded using samples (x, yL.) at the
row yL.

ii. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-6 and the row yP2 is unavailable, the
samples (X, yP2) at the row yP2 may be padded
using samples (x, yP1) at the row yP1.

2. In one example, when yL is equal to Ctb-
SizeY-5 and the rows yP2 and yP1 are unavail-
able, the samples (X, yP2) and (x, yP1) at the
row yP2 and yP1 may be padded using samples
(x, yL) at the row yL.. Meanwhile, the samples
(x, yM1) at the corresponding row yM1 may be
padded using samples (x, yL.) at the row yL.
¢) In one example, suppose K=6 and denote
yM2=-2, yMl=-1, yL=0, yP1=1, yP2=2,
yP3=3 as the y-coordinator of the six sample
rows respectively, shown in Table 4-6. The ALF
virtual boundary is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is above the representative luma sample, the
unavailable samples may be padded using the
nearest row below the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row above the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-2 and the row above yM2 is unavailable,
the samples (x, yP3) at the corresponding row
yP3 may be padded using samples (x, yP2) at
the row yP2.

2. In one example, when yL is equal to Ctb-
SizeY-3 and the row above yM2 and yM2 are
unavailable, the samples (x, yM2) at the row
yM2 may be padded using samples (x, yM1) at
the row yM1. Meanwahile, the samples (x, yP3)
and (%, yP2) at the corresponding row yP3 and
yP2 may be padded using samples (x, yP1) at
the row yP1.

3. In one example, when yL is equal to Ctb-
SizeY-4 and the row above yM2, yM2, and yM1
are unavailable, the samples (X, yM2) and (X,
yM1) at the row yM2 and yM1 may be padded
using samples (x, yL) at the row yL. Mean-
while, the samples (x, yP3), (x, yP2) and (x,
yP1) at the corresponding row yP3, yP2 and
yP1 may be padded using samples (x, yL.) at the
row yL.

ii. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.

10

15

20

25

30

35

40

45

50

55

60

65

30

Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-7 and the row yP3 is unavailable, the
samples (X, yP3) at the row yP3 may be padded
using samples (x, yP2) at the row yP2.

2. In one example, when yL is equal to Ctb-
SizeY-6 and the rows yP3 and yP2 are unavail-
able, the samples (X, yP3) and (x, yP2) at the
row yP3 and yP2 may be padded using samples
(x, yP1) at the row. Meanwhile, the samples (x,
yM2) at the corresponding row yM2 may be
padded using samples (x, yM1) at the row yM1.
3. In one example, when yL is equal to Ctb-
SizeY-5 and the rows yP3, yP2 and yP1 are
unavailable, the samples (x, yP3), (X, yP2) and
(x, yP1) at the row yP3, yP2 and yP1 may be
padded using samples (x, yL) at the row yL.
Meanwhile, the samples (x, yM2) and (x, yM1)
at the corresponding row yM2 and yM1 may be
padded using samples (x, yL.) at the row.

v. In one example, if the unavailable sample is
located at row M (e.g., M<C), then samples
located at row N are determined as the corre-
sponding samples to be padded, when d(C,M)=d
(N,C)-offset (wherein offset is an integer value,
e.g., equal to 1) or d(C,M)<d(N,C).

1) In one example, if the unavailable sample is
located at row M (e.g., M>C), then samples
located at row N are treated as the correspond-
ing samples to be padded, when d(M,C)=d(C,
N)-offset (wherein offset is an integer value,
e.g., equal to 1) or d(C,M)<d(N,C).

2) In one example, the mirrored padding method
defined in FIG. 31 may be utilized. When the
unavailable samples located at row M (N)
above (below) the ALF virtual boundary and
they are padded from the nearest sample row
below (above) the ALF virtual boundary. It is
proposed that the corresponding samples
located row N (M) below (above) the ALF
virtual boundary may be padded from the near-
est sample row above (below) row N (M).

a) In one example, suppose K=2 and denote
yL=0 and yP1=1 as the y-coordinator of the two
sample rows, shown in Table 4-2. The ALF
virtual boundary is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-5 and the row yP1 is unavailable, the
samples (X, yP1) at the row yP1 may be padded
using samples (x, yL) at the row yL.

b) In one example, suppose K=4 and denote
yM1=-1, yL=0, yP1=1, yP2=2 as the y-coor-
dinator of the four sample rows respectively,
shown in Table 4-4. The ALF virtual boundary
is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is above the representative luma sample, the
unavailable samples may be padded using the

US 11,539,946 B2

31

nearest row below the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row above the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-4 and the row above yM1 and yM1 are
unavailable, the samples (x, yM1) at the row
yM1 may be padded using samples (x, yL) at
the row yL. Meanwhile, the samples (x, yP2) at
the corresponding row yP2 may be padded
using samples (x, yP1) at the row yP1.

ii. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-6 and the row yP2 is unavailable, the
samples (X, yP2) at the row yP2 may be padded
using samples (x, yP1) at the row yP1.

2. In one example, when yL is equal to Ctb-
SizeY-5 and the rows yP2 and yP1 are unavail-
able, the samples (X, yP2) and (x, yP1) at the
row yP2 and yP1 may be padded using samples
(x, yL) at the row yL.. Meanwhile, the samples
(x, yM1) at the corresponding row yM1 may be
padded using samples (x, yL.) at the row yL.
¢) In one example, suppose K=6 and denote
yM2=-2, yMl=-1, yL=0, yPl1=1, yP2=2,
yP3=3 as the y-coordinator of the six sample
rows respectively, shown in Table 4-7. The ALF
virtual boundary is equal to CtbSizeY-4.

i. In one example, when the ALF virtual bound-
ary is above the representative luma sample, the
unavailable samples may be padded using the
nearest row below the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row above the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-3 and the row above yM2 and yM2 are
unavailable, the samples (x, yM2) at the row
yM2 may be padded using samples (x, yM1) at
the row yM1. Meanwahile, the samples (x, yP3)
at the corresponding row yP3 may be padded
using samples (x, yP2) at the row yP2.

2. In one example, when yL is equal to Ctb-
SizeY-4 and the row above yM2, yM2, and yM1
are unavailable, the samples (X, yM2) and (X,
yM1) at the row yM2 and yM1 may be padded
using samples (x, yL) at the row yL. Mean-
while, the samples (x, yP3) and (x, yP2) at the
corresponding row yP3 and yP2 may be padded
using samples (x, yP1) at the row yP1.

ii. In one example, when the ALF virtual bound-
ary is below the representative luma sample, the
unavailable samples may be padded using the
nearest row above the ALF virtual boundary.
Meanwhile, the corresponding samples may be
padded using the nearest row below the row
where the corresponding samples are located at.
1. In one example, when yL is equal to Ctb-
SizeY-7 and the row yP3 is unavailable, the
samples (X, yP3) at the row yP3 may be padded
using samples (x, yP2) at the row yP2. Mean-

10

15

20

25

30

35

40

45

50

55

60

65

32

while, the samples (x, yM2) at the correspond-
ing row yM2 may be padded using samples (X,
yM1) at the row yM1.

2. In one example, when yL is equal to Ctb-
SizeY-6 and the rows yP3 and yP2 are unavail-
able, the samples (X, yP3) and (x, yP2) at the
row yP3 and yP2 may be padded using samples
(x, yP1) at the row yPl. Meanwhile, the
samples (X, yM2) and (x, yM1) at the corre-
sponding row yM2 and yM1 may be padded
using samples (x, yL) at the row yL.

3. In one example, when yL is equal to Ctb-
SizeY-5 and the rows yP3, yP2 and yP1 are
unavailable, the samples (x, yP3), (X, yP2) and
(x, yP1) at the row yP3, yP2 and yP1 may be
padded using samples (X, yL.) at the yL.. Mean-
while, the samples (x, yM2) and (x, yM1) at the
corresponding row yM2 and yM1 may be pad-
ded using samples (x, yL) at the yL.

c. FIG. 29 depicts an example of the location of an
unavailable sample (above the ALF virtual bound-
ary, denoted by CO) and its corresponding sample
(denoted by C7) when filtering current chroma
sample located at (X, Y,).

d. In one example, whether to enable or disable
mirrored padding at ALF virtual boundary for
CC-ALF/chroma ALF/luma ALF/other kinds of
filtering methods may be signalled at sequence
level/picture level/slice level/tile group level, such
as in sequence header/picture header/SPS/VPS/
DPS/PPS/APS/slice header/tile group header.

e. In one example, whether to enable or disable
repetitive padding and/or mirrored padding at
ALF virtual boundary may be dependent on coded
information.

i. In one example, the coded information may refer
to block size, such as CTU/CTB size.
1) In one example, mirrored padding may be
utilized at ALF virtual boundary when the
CTU/CTB size is larger than or equal to T, such
as T=32/64/128.
2) In one example, repetitive padding may be
utilized at ALF virtual boundary when the
CTU/CTB size is smaller than or equal to T,
such as T=4/8/16.

2. In above bullet, the vertical padding may be replaced by
horizontal padding.

a. Alternatively, furthermore, which padding direction
(vertical or horizontal) to be used may depend on
whether the boundary is a horizontal boundary or
vertical boundary.

b. Alternatively, furthermore, the vertical distance may be
replaced by the horizontal distance.

3. The mirrored padding method in Bullet 1 may be utilized
for picture/subpicture/slice/tile boundary and/or 360-de-
gree boundary.

General Solutions

4. Whether to and/or how to apply the disclosed methods
above may be signalled at sequence level/picture level/
slice level/tile group level, such as in sequence header/
picture header/SPS/VPS/DPS/PPS/APS/slice header/tile
group header.

5. Whether to and/or how to apply the disclosed methods
above may be dependent on coded information, such as
color format, single/dual tree partitioning, the position of
a sample (e.g., relative to a CU/CTU).

33
TABLE 4-1

US 11,539,946 B2

34

TABLE 4-2

Specification of yP1 according to the vertical luma
sample position vL and applyAlfLineBufBoundary

Specification of yP1 according to the vertical luma
sample position vL and applyAlfLineBufBoundary

Condition

yP1 5 Condition

yP1

(yL = = CtbSizeY - 4) &&
(applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 5) &&
(applyAlfLineBufBoundary = = 1)
Otherwise

0 (yL = = CtbSizeY - 4) &&

(applyAlfLineBufBoundary = = 1)

0 (yL = = CtbSizeY - 5) &&

(applyAlfLineBufBoundary = = 1)

1 10 Otherwise

1

TABLE 4-3

Specification of yM1, yP1 and yP2 according to the vertical

luma sample position yL and applyAlfLineBufBoundary

Condition

yM1

yP1

yP2

(yL = = CtbSizeY - 3) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 4) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 5) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 6) && (applyAlfLineBufBoundary = = 1)

Otherwise

—

o O

—

o O

TABLE 4-4

Specification of yM1, yP1 and yP2 according to the vertical
luma sample position yL and applyAlfLineBufBoundary

Condition

yM1

yP1

yP2

(yL = = CtbSizeY - 4) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 5) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 6) && (applyAlfLineBufBoundary = = 1)

Otherwise

0
0
0

-1

— = o -

I e R

TABLE 4-5

Specification of yM2, yM1, yP1 and yP2 according to the vertical luma sample

position vL and applyAlfLineBufBoundary

Condition

yM2

yM1

yP1

yP2

(yL = = CtbSizeY - 3) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 4) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 5) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 6) && (applyAlfLineBufBoundary = = 1)

Otherwise

—_——0 O

[e

TABLE 4-6

Specification of yM2, yM1, yP1, yP2, and yP3 according to the vertical luma sample

position vL and applyAlfLineBufBoundary

Condition

(yL = = CtbSizeY - 2) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 3) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 4) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 5) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 6) && (applyAlfLineBufBoundary = = 1)
(yL = = CtbSizeY - 7) && (applyAlfLineBufBoundary = = 1)
Otherwise

— O O

RN = OO N

WK = OO~

US 11,539,946 B2

35
TABLE 4.7

36

Specification of yM2, yM1, yP1, yP2, and yP3 according to the vertical luma sample

position vL and applyAlfLineBufBoundary

Condition yM2 yMl1 yP1 yP2 yP3
(yL = = CtbSizeY - 3) && (applyAlfLineBufBoundary = = 1) -1 -1 1 2 2
(yL = = CtbSizeY - 4) && (applyAlfLineBufBoundary = = 1) 0 0 1 1 1
(yL = = CtbSizeY - 5) && (applyAlfLineBufBoundary = = 1) 0 0 0 0 0
(yL = = CtbSizeY - 6) && (applyAlfLineBufBoundary = = 1) 0 0 1 1 1
(yL = = CtbSizeY - 7) && (applyAlfLineBufBoundary = = 1) -1 -1 1 2 2
Otherwise -2 -1 1 2 3
5. Embodiments BoundariesPosX[n]-xL is greater than 0 and less than
The changes are highlighted by showing deletion and 15 4 for any n=0 . . . pps_num_ver_virtual_boundaries-1,
additions. the following applies:
5.1. Embodiment #1)) h,.,~Clip3(0,PpsVirtualBoundariesPosX[#]-1,xL+i) (8-1230)
The working draft specified in JVET-PO0S8O may be . . .
changed as below. Otherwise, the following applies:
x.x.xX Cross Component Filtering Process for Block of 20 h,,~Clip3(0,pic_width_in_luma_samples—1xL+) (8-1231)
Chroma Sarpples] If pps_loop_filter_across_virtual_boundaries_disabled_
Inputs of this process are: . . flag is equal to 1, and PpsVirtualBoundariesPosY[n]%
a reconstructed luma picture sample array recPicture, CtbSizeY is not equal to 0, and yL-PpsVirtualBound-
prior to the luma adaptive loop filtering process, 5 ariesPosY[n] is greater than or equal to 0 and less than
a ﬁltered reconstructed chroma picture sample array 3 forany n=0 . .. pps_num_hor_virtual_boundaries-1,
alfPicture, the following applies:
a chroma location (xC,yC) specifying the top left sample . . . o
of the current block of chroma samples relative to the ¥y~ Clip3(BpsVirtualBoundatiesPosY[n].pic_height
. in_luma_samples—1,yL+j) (8-1232)
top left sample of the current picture,
a width ccAlfWidth of block of chroma samples 30 Otherwise, if pps_loop_filter_across_virtual_boundaries_
a height ccAlfHeight of block of chroma samples disabled_flag is .equal. to 1, and PpsVu‘tualBoundanes-
cross component filter coefficients CcAlfCoefl]j], with PosY[n]% CtbSizeY is not equal to 0, and PpsVirtual-
i=0...13 BoundariesPosY[n]-yL is greater .than 0 and les§ than
Output of this process is the modified filtered recon- 4hf0; alllly n=0... %).ps._num_hor_vu‘tual_boundarles—1,
structed chroma picture sample array ccAlfPicture. = the following applies:
The cpding tree block luma location (xCtb, yCtb) is v,.,,~Clip3(0,PpsVirtualBoundariesPosY [1]-1,yL+/) (8-1233)
derived as follows: Otherwise, the following applies:
xCtb=(((xC*SubWidthC)>>Ctb Log 2SizeY)<<Cth v,,,;~Clip3(0,pic_height_in_luma_samples-1,vL+/) (8-1234)
Log 2SizeY (8-1229) 40 .] o .
The variables clipLeftPos, clipRightPos, clipTopPos and
clipBottomPos are derived by invoking the ALF
yCtb=(((vC*SubHeightC)>>Ctb Log 28izeY)<<Cth boundary position derivation process as specified in
Log 28izeY (8-1229) clause 8.8.5.5 with (xCtb, yCtb) and (xL-xCtb, yL-
For the derivation of the filtered reconstructed chroma 45 yCtb) as inputs. -
samples ccAlfPicture[xC+x][yC+y], each reconstructed The vertical sample? p051.t10n offsets yM2, }’le yP1, yP2
chroma sample inside the current chroma block of samples and yP.3 are spemﬁed.m Table 4-1. Spe01ﬁc.aF10n of yP1
alfPicture [xC+x][yC+y] with x=0 . . . ccAlfWidth-1, according .to the vertical luma sample position yL and
y=0 . . . ccAlfHeight-1, is filtered as follows: apply AlfLineBufBoundary
The luma location (xL,yL) corresponding to the current 5
chroma sample at chroma location (XC+x,yC+y) is set —
equal to ((xC+x)*SubWidthC, (yC+y)*SubHeightC) Condition yP1
The luma locations (h,, v,,) with i=-2 . . . 2, (L = = CtbSizeY - 4) && 0
j==2 ... 3 inside the array recPicture, are derived as (applyAlfLineBufBoundary = = 1)
follows: 55 L - :&F’Siéeé‘ S)d&& L 0
If pps_loop_filter_across_virtual_boundaries_dis- glirywise ineBufBoundary = = 1) 1
abled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and xL.-Pps-
VirtualBoundariesPosX[n] is greater than or equal to
0 and less than 3 for any n=0 . . . pps_num_ver_vir- ¢, TABLE 4-2
tual_boundaries-1, the following applies: .]]
Specification of yP1 according to the vertical luma
sample position vL and applyAlfLineBufBoundary
b, . ~Clip3(PpsVirtualBoundariesPosX[#],
pic_width_in_luma_samples—1 xL+i) (8-1229) Condition yP1
Otherwise, if pps_loop_filter_across_virtual_boundaries_ 65 (YL = = CtbSizeY - 4) && 1

disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and PpsVirtual-

(applyAlfLineBufBoundary = = 1)

US 11,539,946 B2

37
TABLE 4-2-continued

38
TABLE y-yy

Specification of yP1 according to the vertical luma
sample position vL and applyAlfLineBufBoundary

Specification of xM1, xM2, xP1, and xP2 according to the horizontal
luma sample position XL, clipLeftPos and clipRightPos

Condition yP1 5 Condition xM2 xM1 xP1 xP2
(yL = = CtbSizeY - 5) && 0 xL = = clipLeftPos + 1 -1 -1 1 2
(applyAlfLineBufBoundary = = 1) clipLeftPos 0 0 1 2
Otherwise 1 xL = = clipRightPos — 1 -2 -1 0 0
xL = = clipRightPos — 2 -2 -1 1 1
10 Otherwise -2 -1 1 2

according to the vertical luma sample position yL,
clipLeftPos and clipRightPos.

The horizontal sample position offsets xM1, xM2, xP1
and xP2 are specified in Table y-yyyy according to the
horizontal luma sample position xL, clipl.eftPos and
clipRightPos.

The variable curr is derived as follows:

curr=alfPicture [xC+x,yC+y] (8-1286)

The array of cross component filter coefficients fJj] is
derived as follows with j=0 . . . 13:

J1=CeAlfCoefI[j] (8-1287)

The variable sum is derived as follows:

sum=f[0]*recPicturez [/, v, a0]+ 1]*recPicture,
PsxarsVyaa WA 2] recPicture [, v, 00 14/13]
*recPicture; [/,,,p 1V, syar 1 4/14]*recPicture,
[Pz VYA 5] recPicturey [, 01, v, 1 4/16]
*recPicture, [A,, v, J4/[7]*recPicture [, p1, v,] 4/
[4]*recPicturey [Fynpo, v,]+ (8-1289)

JTAT* recPicture [4,, xap, Vy a1] #/18] *recPicture,,

[rxar1,Vyagp 1 1/19] *recPicture [, v,,,p1]4/110]
*recPicturez [A,,xp1, Vyuyp1 | +/14] *recPicture,,

(P xpor Yy pr [t T recPicture, B, ag1, Yy pol+
121 *recPicturez [A,, V..., po] 4/ 13]*recPicture,,
[Psxp1s Va2 JHA0] *recPicture, [A,, v, p3]+
sum=curr+(sum+64)>>7) (8-1290)
The modified filtered reconstructed chroma picture
sample array ccAlfPicture[xC+x][yC+y] is derived as
follows:

ccAlfPicture[xC+x][yC+y]=Clip3(0,(1<<BitDepth)-
1,sum) (8-1291)

TABLE x-xx

Specification of yM1, yM2, yP1, yP2 and yP3 according to the
vertical luma sample position yL, clipTopPos and clipBottomPos

Delete the following table:

Condition yM2 yMl1 yP1 yP2 yP3
yL = = clipTopPos + 1 -1 -1 1 2 3
yL = = clipTopPos 0 0 1 2 3
yL = = clipBottomPos — 1 -2 -1 0 0 0
yL = = clipBottomPos — 2 -2 -1 1 1 1
yL = = clipBottomPos - 3 -2 -1 1 2 2
Otherwise -2 -1 1 2 3

Add the following table instead of the above table:

Condition yM2 yMl1 yP1 yP2 yP3
yL = = clipTopPos + 1 -1 -1 1 2 2
yL = = clipTopPos 0 0 1 1 1
yL = = clipBottomPos — 1 0 0 0 0 0
yL = = clipBottomPos — 2 0 0 1 1 1
yL = = clipBottomPos - 3 -1 -1 1 2 2
Otherwise -2 -1 1 2 3

15

20

25

30

35

40

55

60

65

5.2. Embodiment #2

The working draft specified in JVET-PO0O80 may be changed
as below.

x.x.x.Xx Cross Component Filtering Process for Block of
Chroma Samples

Inputs of this process are:

a reconstructed luma picture sample array recPicture;
prior to the luma adaptive loop filtering process,

a filtered reconstructed chroma picture sample array
alfPicture .,

a chroma location (xC,yC) specifying the top left sample
of the current block of chroma samples relative to the
top left sample of the current picture,

a width ccAlfWidth of block of chroma samples

a height ccAlfHeight of block of chroma samples

cross component filter coefficients CcAlfCoefl]j], with
j=0...13

Output of this process is the modified filtered recon-
structed chroma picture sample array ccAlfPicture.

The coding tree block luma location (xCtb, yCtb) is

derived as follows:

xCtb=(((xC*SubWidthC)>>Ctb Log 28SizeY)<<Cth
Log 2SizeY (8-1229)

yCtb=(((yC*SubHeightC)>>Cth Log 28izeY)<<Cth
Log 2SizeY (8-1229)
For the derivation of the filtered reconstructed chroma
samples ccAlfPicture[xC+x][yC+y], each reconstructed
chroma sample inside the current chroma block of samples
alfPicture [xC+x|[yC+y] with x=0 . . . ccAlfWidth-1,
y=0 . . . ccAlfHeight-1, is filtered as follows:

The luma location (xL,yL.) corresponding to the current
chroma sample at chroma location (xC+x,yC+y) is set
equal to ((xC+x)*SubWidthC, (yC+y)*SubHeightC)

The luma locations (h,;,;, v,.+) with i==2 . . . 2,
j==2 ... 3 inside the array recPicture, are derived as
follows:

If pps_loop_filter_across_virtual_boundaries_dis-
abled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and xL.-Pps-
VirtualBoundariesPosX[n] is greater than or equal to
0 and less than 3 for any n=0 . . . pps_num_ver_vir-
tual_boundaries-1, the following applies:

b, . ~Clip3(PpsVirtualBoundariesPosX[#],
pic_width_in_luma_samples—1xL+i) (8-1229)
Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosX[n]-xL is greater than 0 and less than
4 for any n=0 . . . pps_num_ver_virtual_boundaries—1,
the following applies:

h,..~Clip3(0,PpsVirtualBoundariesPosX [#]-1,xL+i) (8-1230)

US 11,539,946 B2

39

Otherwise, the following applies:
b, ~Clip3(0,pic_width_in_luma_samples—1xL+i) (8-1231)

It pps_loop_filter_across_virtual_boundaries_disabled_

40
The variable sum is derived as follows:

sum=f[0]*recPicturez[%,,v,,,a0]+/[1]*recPicture, [
Reixaa Vyran | H[2]*recPicture [7,, v, a0 14/13]
*recPicture [y .p 1.V, yari 144 *recPicture,
(B iarz vl H15] *recPicture, (7, s, v,] 4/16]

flag i§ equ?ll to 1, and PpsVirtualBoundariF:sPosY[n]% 5 *recPicture, [, v, |+/[7]*tecPicture, [, ,.p1,v, 4/
CtbSizeY is not equal to 0, and yL-PpsVirtualBound- [4]*recPicturey [/, , .oV,]+(8-1289)
ariesPosY|[n] is greater than or equal to 0 and less than P) S
3 for any n=0 . . . pps_num_hor_virtual_boundaries-1, ST recPicture, | a2 VysyP 1[+/[8]FrecPicture,
. S [Pixat Vyouyp1 [RA9) *recPicture, [4,,v,,,p1] 4/110]
the following applies: *recPictures [, ,py, Vyapry [4H14]* recPicture,
10 [P Vyupp1 1t 11] recPictures [, agi, Vi
v,.,7~Clip3(PpsVirtualBoundariesPos Y[r] pic_height_ 2] +f[12]* recPicture, [, v, ,po] +/]13] *recPic-
in_luma_samples—1,yL+7) (8-1232) turez[F cp1, Vyayp2] #/10] *recPicture [, v, p3]+
. . . . sum=curr+(sum+64)>>7) (8-1290)

Otherwise, if pps_loop_filter_across_virtual_boundaries_])
disabled_flag is equal to 1, and PpsVirtualBoundaries- The modified ﬁltered. reconstructed chrqma Plcture
PosY[n]% CtbSizeY is not equal to 0, and PpsVirtual- 15 sample array ccAlfPicture[xC+x][yC+y] is derived as
BoundariesPosY[n]-yL is greater than 0 and less than follows:

4 for any n=0 . . . pps_num_hor_virtual_boundaries-1, ccAlfPicture[xC+x][yC+y]=Clip3(0,(1<<BitDepth)-
the following applies: 1,sum) (8-1291)
v,.,7~Clip3(0,PpsVirtualBoundariesPosY [n]-1,yL+j) (8-1233) 20 TABLE x-xX

Otherwise, the following applies:

Specification of yM1, yM2, yP1, yP2 and yP3 according to the
v,,~Clip3(0 pic_height in luma_ samples—1 yL+) (8-1234) vertical luma sample position yL, clipTopPos and clipBottomPos

The variables clipLeftPos, clipRightPos, clipTopPos and Delete the following table:
clipBottomPos are derived by invoking the ALF Condition M2 yM1 yPl yP2 yP3
boundary position derivation process as specified in
clause 8.8.5.5 with (xCtb, yCtb) and (xL-xCtb, yL- yL = = clipTopPos + 1 -1 -1 1 2 3
yCtb) as inputs. yi == C}?péoft’tPosP) g ? é é 3

. .. yL = = clipBottomPos — - -

The vertical sample? position offsets yM2, .yMl,. YPL YP2 54 01 _ _ GiipBotiomPos - 2 - -1 1 1 1
and yP3 are specified in Table 4-1. Specification of yP1 yL = = clipBottomPos - 3 -2 -1 1 2 2
according to the vertical luma sample position yL and Otherwise -2 -1 1 2 3
applyAlleneBufBoundary Add the following table instead of the above table:

35 Condition yM2 yMl1 yP1 yP2 yP3
Condition yP1
yL = = clipTopPos + 1 -2 -1 1 2 2
(YL = = CtbSizeY - 4) && 0 yL = = clipTopPos -1 -1 1 1 1
(applyAlfLineBufBoundary = = 1) yL = = clipBottomPos - 1 0 0 0 0 0
(L = = CtbSizeY - 5) && 0 yL = = clipBottomPos — 2 0 0 0 0 0
(applyAlfLineBufBoundary = = 1) a0 YL== clipBottomPos — 3 -2 -1 1 2 2
Otherwise 1 Otherwise -2 -1 1 2 3
TABLE 4-2 TABLE y-yy
. . . 45
Specification of yP1 according to the vertical luma Specification of xXM1, xM2, xP1, and xP2 according to the horizontal
sample position yL. and applyAlfl.ineBufBoundary luma sample position xL, clipLeftPos and clipRightPos
Condition yP1 Condition xM2 xM1 xP1 %P2
(YL = = CtbSizeY - 4) && 1 xL = = clipLeftPos + 1 -1 -1 1 2
(applyAlfLinelBufBoundary ==1) 50 XL = = clipLeftPos 0 0 1 2
(VL = = CtbSizeY - 5) && 0 xL = = clipRightPos - 1 -2 -1 0 0
(applyAlfLineBufBoundary = = 1) xL = = clipRightPos - 2 -2 -1 1 1
Otherwise 1 Otherwise -2 -1 1 2

according to the vertical luma sample position yL, 55 5.3. Embodiment #3
clipLeftPos and clipRightPos. The working draft specified in JVET-P1008 may be changed

The horizontal sample position offsets xM1, xM2, xP1 as below.
and xP2 are specified in Table y-yyyy according to the x.x.x.x Cross Component Filtering Process for Block of
horizontal luma sample position xL, clipl.eftPos and Chroma Samples
clipRightPos. 60 Inputs of this process are:

The variable curr is derived as follows: a reconstructed luma picture sample array recPicture,

prior to the luma adaptive loop filtering process,
curr=alfPicture [xC+x,yC+y] (8-1286) a filtered reconstructed chroma picture sample array

The array of cross component filter coefficients fJj] is alfPicture .,

65 a chroma location (xCtbC,yCtbC) specifying the top-left

derived as follows with j=0 . . . 13:

J1=CeAlfCoefI[j] (8-1287)

sample of the current chroma coding tree block relative
to the top left sample of the current picture,

US 11,539,946 B2

41
a width ccAlfWidth of block of chroma samples
a height ccAlfHeight of block of chroma samples
cross component filter coefficients CcAlfCoefl]], with
=0...7
Output of this process is the modified filtered recon-
structed chroma picture sample array ccAlfPicture.
The coding tree block luma location (xCtb, yCtb) is derived
as follows:

XCth=(((xCtbC*SubWidthC)>>Ctbh Log 2SizeY)

<<Cth Log 2SizeY (8-1229)
yCtb=(((yCtbC*SubHeightC)>>Ctbh Log 2SizeY)
<<Cth Log 2SizeY (8-1229)

For the derivation of the filtered reconstructed chroma
samples
ccAlfPicture[xCthC+x][yCtbC+y], each reconstructed
chroma sample inside the current chroma block of samples
alfPicture [xCtbC+x][yCthC+y] with x=0 . . . ccAlfWidth-
1, y=0 . . . ccAlfHeight-1, is filtered as follows:
The luma location (xL,yL) corresponding to the current
chroma sample at chroma location (XCtbC+x, yCtbC+
y) is set equal to ((XCthC+x)*SubWidthC, (yCtbhC+y)

*SubHeightC)

The luma locations (h,; ., v,;,;) with i==1 . . . 1,
j==1 ... 2 inside the array recPicture, are derived as
follows:

It pps_loop_filter_across_virtual_boundaries_disabled_
flag is equal to 1, and PpsVirtualBoundariesPosX|[n]%
CtbSizeY is not equal to 0, and xL.-PpsVirtualBound-
ariesPosX|[n] is greater than or equal to 0 and less than
3 for any n=0 . . . pps_num_ver_virtual_boundaries-1,
the following applies:

h,; ,.=Clip3(PpsVirtualBoundariesPosX[#],

pic_width_in_luma_samples—1 xL+i) (8-1229)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosX[n]-xL is greater than 0 and less than
4 for any n=0 . . . pps_num_ver_virtual_boundaries-1,
the following applies:

h,..~Clip3(0,PpsVirtualBoundariesPosX [#]-1,xL+i) (8-1230)
Otherwise, the following applies:
h,.,=Clip3(0,pic_width_in_luma_samples—1,xL+7) (8-1231)

It pps_loop_filter_across_virtual_boundaries_disabled_
flag is equal to 1, and PpsVirtualBoundariesPosY [n]%
CtbSizeY is not equal to 0, and yL-PpsVirtualBound-
ariesPosY|[n] is greater than or equal to 0 and less than
3 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,.,7~Clip3(PpsVirtualBoundariesPos Y[r] pic_height_

in_luma_samples—1,yL+7) (8-1232)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosY[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosY[n]-yL is greater than 0 and less than
4 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,,,=Clip3(0,PpsVirtualBoundariesPosY[n]-1,pL+) (8-1233)
Otherwise, the following applies:
g app
v,..7~Clip3(0 pic_height_in_luma_samples—1,pL+j) (8-1234)

The variables clipLeftPos, clipRightPos, clipTopPos and
clipBottomPos are derived by invoking the ALF

10

15

20

25

30

35

40

45

50

55

60

65

42
boundary position derivation process as specified in
clause 8.8.5.5 with (xCtb, yCtb) and (xL-xCtb, yL-
yCtb) as inputs.

The vertical sample position offsets yM1, yP1 and yP2 are
specified in Table 4-1. Specification of yP1 according
to the vertical luma sample position yL. and apply-
AlfLineBufBoundary

Condition yP1
(yL = = CtbSizeY - 4) && 0
(applyAlfLineBufBoundary = = 1)

(yL = = CtbSizeY - 5) && 0
(applyAlfLineBufBoundary = = 1)

Otherwise 1

TABLE 4-2

Specification of yP1 according to the vertical luma
sample position vL and applyAlfLineBufBoundary

Condition yP1
(yL = = CtbSizeY - 4) && 1
(applyAlfLineBufBoundary = = 1)

(yL = = CtbSizeY - 5) && 0
(applyAlfLineBufBoundary = = 1)

Otherwise 1

according to the vertical luma sample position yL,
clipLeftPos and clipRightPos.

The horizontal sample position offsets xM1 and xP1 are
specified in Table y-yyyy according to the horizontal
luma sample position xL, clipLefiPos and clipRight-
Pos.

The variable curr is derived as follows:

curr=alfPicture [XCtbC+x,yCtbC+y] (8-1286)

The array of cross component filter coefficients f]j] is
derived as follows with =0 .. . 7:

J/1=CeAlfCoef]] (8-1287)

The variable sum is derived as follows:

sum=f[0]*recPicturez [}, v, a0] +/[1]*recPicture [/,
*m1, Y)+ 2] *recPicturey [4,,v,] +/[3] *recPicture,,
UiV, 1#(8-1289)

141 recPicture; [A,, 01, Vyupp1 |4/ 5] recPicture, [/,
Va1 [Hf16] recPicture [, p1, vy usp1 [417]
*recPicture [, v,.4,p2]

sum=Clip3(-(1<<(BitDepth —1)),(1<<(BitDepth —

1))-1,5um) (8-1290)

sum=curr+(sum+64)>>(7+(BitDepth;—BitDepth) (8-1290)

The modified filtered reconstructed chroma picture
sample array ccAlfPicture[xCtbC+x][yCtbC+y] is
derived as follows:

ccAlfPicture[xCtbC+x] [yCtbC+y]=Clip3(0,(1<<Bit-

Depth)-1,sum) (8-1291)

US 11,539,946 B2

43
TABLE x-xx

Specification of yM1, yP1 and yP2 according to the
vertical luma sample position yL, clipTopPos and clipBottomPos

Delete the following table:
Condition yM1 yP1 yP2
yL = = clipTopPos + 1 -1 1 1
yL = = clipTopPos 0 0 1
yL = = clipBottomPos — 1 0 0 1
yL = = clipBottomPos — 2 -1 1 1
Otherwise -1 1 2
Add the following table instead of the above table:
Condition yM1 yP1 yP2
yL = = clipTopPos 0 1 1
yL = = clipBottomPos — 1 0 0 0
yL = = clipBottomPos — 2 0 1 1
Otherwise -1 1 2
TABLE y-yy
Specification of xM1 and xP1 according to the horizontal
luma sample position XL, clipLeftPos and clipRightPos

Condition xM1 xP1
xL = = clipLeftPos 0 0
xL = = clipRightPos - 1 0 0
xL = = clipRightPos - 2 -1 1
Otherwise -1 1

5.4. Embodiment #4

The working draft specified in JVET-P1008 may be changed
as below.

x.x.x.Xx Cross Component Filtering Process for Block of
Chroma Samples

Inputs of this Process are:

a reconstructed luma picture sample array recPicture,
prior to the luma adaptive loop filtering process,

a filtered reconstructed chroma picture sample array
alfPicture .,

a chroma location (xCtbC,yCtbC) specifying the top-left
sample of the current chroma coding tree block relative
to the top left sample of the current picture,

a width ccAlfWidth of block of chroma samples

a height ccAlfHeight of block of chroma samples

cross component filter coefficients CcAlfCoefl]j], with
=0...7

Output of this process is the modified filtered recon-
structed chroma picture sample array ccAlfPicture.

The coding tree block luma location (xCtb, yCtb) is derived
as follows:

XCth=(((xCtbC*SubWidthC)>>Ctbh Log 2SizeY)

<<Cth Log 2SizeY (8-1229)
yCtb=(((yCtbC*SubHeightC)>>Ctbh Log 2SizeY)
<<Cth Log 2SizeY (8-1229)

For the derivation of the filtered reconstructed chroma

samples

ccAlfPicture[xCthC+x][yCtbC+y], each reconstructed

chroma sample inside the current chroma block of samples

alfPicture [xCtbC+x][yCthC+y] with x=0 . . . ccAlfWidth-

1, y=0 . . . ccAlfHeight-1, is filtered as follows:

The luma location (xL,yL) corresponding to the current

chroma sample at chroma location (XCtbC+x, yCtbC+
y) is set equal to ((XCthC+x)*SubWidthC, (yCtbhC+y)
*SubHeightC)

10

15

20

25

30

40

45

55

44

The luma locations (h,, v,;,;) with i==1 . . . 1,

j=-1 .. .2 inside the array recPicture, are derived as
follows:

If pps_loop_filter_across_virtual_boundaries_dis-
abled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and xL.-Pps-
VirtualBoundariesPosX[n] is greater than or equal to
0 and less than 3 for any n=0 . . . pps_num_ver_vir-
tual_boundaries-1, the following applies:

b, . ~Clip3(PpsVirtualBoundariesPosX[#],

pic_width_in_luma_samples—1xL+i) (8-1229)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosX[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosX[n]-xL is greater than 0 and less than
4 for any n=0 . . . pps_num_ver_virtual_boundaries—1,
the following applies:

.., =Clip3(0,PpsVirtualBoundariesPosX[#]-1,xL+i) (8-1230)
Otherwise, the following applies:
h,.,=Clip3(0,pic_width_in_luma_samples—1,xL+7) (8-1231)

If pps_loop_filter_across_virtual_boundaries_disabled_
flag is equal to 1, and PpsVirtualBoundariesPosY[n]%
CtbSizeY is not equal to 0, and yL-PpsVirtualBound-
ariesPosY|[n] is greater than or equal to 0 and less than
3 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,,,~Clip3(PpsVirtualBoundariesPosY[#],pic_height_

in_luma_samples—1,yL+/) (8-1232)

Otherwise, if pps_loop_filter_across_virtual_boundaries_
disabled_flag is equal to 1, and PpsVirtualBoundaries-
PosY[n]% CtbSizeY is not equal to 0, and PpsVirtual-
BoundariesPosY[n]-yL is greater than 0 and less than
4 for any n=0 . . . pps_num_hor_virtual_boundaries-1,
the following applies:

v,,,=Clip3(0,PpsVirtualBoundariesPosY[n]-1,pL+) (8-1233)
erwise, the following applies:

Oth the foll g appl
v,.,7~Clip3(0,pic_height_in_luma_samples—1,pL+j) (8-1234)

The variables clipLeftPos, clipRightPos, clipTopPos and
clipBottomPos are derived by invoking the ALF
boundary position derivation process as specified in
clause 8.8.5.5 with (xCtb, yCtb) and (xL-xCtb, yL-
yCtb) as inputs.

The vertical sample position offsets yM1, yP1 and yP2 are
specified in Table 4-1. Specification of yP1 according
to the vertical luma sample position yL. and apply-
AlfLineBufBoundary

Condition yP1
(yL = = CtbSizeY - 4) && 0
(applyAlfLineBufBoundary = = 1)

(yL = = CtbSizeY - 5) && 0
(applyAlfLineBufBoundary = = 1)

Otherwise 1

US 11,539,946 B2

45
TABLE 4-2

46
TABLE y-yy

Specification of yP1 according to the vertical luma
sample position vL and applyAlfLineBufBoundary

Specification of xM1 and xP1 according to the horizontal
luma sample position XL, clipLeftPos and clipRightPos

Condition yP1 Condition xM1 xP1
(yL = = CtbSizeY - 4) && 1 xL = = clipLeftPos 0 0
(applyAlfLineBufBoundary = = 1) xL = = clipRightPos — 1 0 0
(yL = = CtbSizeY - 5) && 0 xL = = clipRightPos — 2 -1 1
(applyAlfLineBufBoundary = = 1) Otherwise -1 1
Otherwise 1 10
)) o FIG. 32 is a block diagram showing an example video
according to the vertical luma sample position yL, processing system 1900 in which various techniques dis-
ThChIIiL?ﬁPOSland ClllpnghtPOS. - d closed herein may be implemented. Various implementa-
¢ horizontal sample position offsets xM1 an X,Pl are 15 tions may include some or all of the components of the
specified in Table y-yyyy according to the horizontal - .
% . . system 1900. The system 1900 may include input 1902 for
luma sample position xL, clipLeftPos and clipRight-
Pos receiving video content. The video content may be received
- . . . in a raw or uncompressed format, e.g., 8 or 10 bit multi-
The variable curr is derived as follows: . .
component pixel values, or may be in a compressed or
curr=alfPicture J xCtbC+x,yCtbC-+y] (s-1286) 20 encoded format. The input 1902 may represent a network
The array of cross component filter coefficients f[j] is interface, a perlpheral. bus 1nte.rface, or a storage interface.
derived as follows with j=0 7. Examples of network 1n§erface include wired interfaces sgch
B as Ethernet, passive optical network (PON), etc. and wire-
A1=CoAlfCoeft]/] (8-1287) less interfaces such as W@-Fi or cellulgr interfaces.
))) 25 The system 1900 may include a coding component 1904
The variable sum is derived as follows: that may implement the various coding or encoding methods
o o described in the present document. The coding component
sum=flOF recPicturey [hy, vy an AL recPicturey (A, 1904 may reduce the average bitrate of video from the input
=1,V /[2]* recPicturey [, v,] +/[3] *recPicture, N
Foranpi,,]+(8-1289) 1902 to the output of the coding component 1904 to produce
30 a coded representation of the video. The coding techniques
AT recicturey [y ary o 415 recPictuses are there.fore sometimes called video compression or video
¥yt PHAOT*€CPICTE, [,y 1 Yy o T transcoding techmques. The output of the cod.lng component
#recPicture, [, v, 2] 1904 may be either stored, or transmitted via a communi-
cation connected, as represented by the component 1906.
sum=Clip3(—(1<<(BitDepth,—1)),(1<<(BitDepth,— 35 The stored or c.ommumgated bltstre.am (or coded) represen-
1))-1,5um) (8-1290) tation of the video received at the input 1902 may be used
by the component 1908 for generating pixel values or
sum=curr+(sum+64)>>(7+(BitDepth - BitDepth,)) (8-1290) displayable video thgt issenttoa display .mterface 1910. The
)) process of generating user-viewable video from the bit-
The modified filtered r.econstructed chroma picture 44 stream representation is sometimes called video decompres-
sample array ccAlfPicture[xCtbC+x][yCthC+y] is sion. Furthermore, while certain video processing operations
derived as follows: are referred to as “coding” operations or tools, it will be
: :) appreciated that the coding tools or operations are used at an
ccAlfPicture[xCtbC+x][yCtbC+y]=Clip3(0,(1<<Bit- d d dine decodine tool t that
Depth)-1sum) (8-1291) encoder and corresponding decoding tools or operations tha
45 reverse the results of the coding will be performed by a
decoder.
TABLE x-xx BExamples of a peripheral bus interface or a display
Soecification of vM1. vP1 and vP2 dine o i interface may include universal serial bus (USB) or high
pecification of yM1, yP1 and yP2 according to the . . . N
vertical luma sample position yL, clipTopPos and clipBottomPos definition multimedia 1nterfa.ce (HDMI) or Dlsplayport, apd
50 so on. Examples of storage interfaces include SATA (serial
Delete the following table: advanced technology attachment), PCI, IDE interface, and
Condition M1 JP1 P2 the like. The teghmques de?scnbed in thf: present document
may be embodied in various electronic devices such as
yL = = clipTopPos + 1 -1 1 1 mobile phones, laptops, smartphones or other devices that
yL = = clipTopPos 0 0 1 55 are capable of performing digital data processing and/or
yL = = clipBottomPos — 1 0 0 1 . .
. video display.
yL = = clipBottomPos — 2 -1 1 1))))
Otherwise 1 1 5 FIG. 33 is a block diagram of a video processing appa-
ratus 3600. The apparatus 3600 may be used to implement
Add the following table: one or more of the methods described herein. The apparatus
Condition M1 Pl P2 60 3600 may be .embodled in a.smartphone, tablet, computer,
Internet of Things (loT) receiver, and so on. The apparatus
yL = = clipTopPos + 1 -1 1 1 3600 may include one or more processors 3602, one or more
yL = = clipTopPos 0 0 0 memories 3604 and video processing hardware 3606. The
zi - zﬂgggggigg: ~ ; _? ? ? processor(s) 3602 may be configured to implement one or
Otherwise 1 1 5 65 more methods described in the present document. The

memory (memories) 3604 may be used for storing data and
code used for implementing the methods and techniques

US 11,539,946 B2

47

described herein. The video processing hardware 3606 may
be used to implement, in hardware circuitry, some tech-
niques described in the present document.

FIG. 35 is a block diagram that illustrates an example
video coding system 100 that may utilize the techniques of
this disclosure.

As shown in FIG. 35, video coding system 100 may
include a source device 110 and a destination device 120.
Source device 110 generates encoded video data which may
be referred to as a video encoding device. Destination device
120 may decode the encoded video data generated by source
device 110 which may be referred to as a video decoding
device.

Source device 110 may include a video source 112, a
video encoder 114, and an input/output (I/O) interface 116.

Video source 112 may include a source such as a video
capture device, an interface to receive video data from a
video content provider, and/or a computer graphics system
for generating video data, or a combination of such sources.
The video data may comprise one or more pictures. Video
encoder 114 encodes the video data from video source 112
to generate a bitstream. The bitstream may include a
sequence of bits that form a coded representation of the
video data. The bitstream may include coded pictures and
associated data. The coded picture is a coded representation
of a picture. The associated data may include sequence
parameter sets, picture parameter sets, and other syntax
structures. [/O interface 116 may include a modulator/
demodulator (modem) and/or a transmitter. The encoded
video data may be transmitted directly to destination device
120 via /O interface 116 through network 130a. The
encoded video data may also be stored onto a storage
medium/server 13056 for access by destination device 120.

Destination device 120 may include an I/O interface 126,
a video decoder 124, and a display device 122.

1/O interface 126 may include a receiver and/or a modem.
1/O interface 126 may acquire encoded video data from the
source device 110 or the storage medium/server 1305. Video
decoder 124 may decode the encoded video data. Display
device 122 may display the decoded video data to a user.
Display device 122 may be integrated with the destination
device 120, or may be external to destination device 120
which be configured to interface with an external display
device.

Video encoder 114 and video decoder 124 may operate
according to a video compression standard, such as the High
Efficiency Video Coding (HEVC) standard, Versatile Video
Coding (VVM) standard and other current and/or further
standards.

FIG. 36 is a block diagram illustrating an example of
video encoder 200, which may be video encoder 114 in the
system 100 illustrated in FIG. 35.

Video encoder 200 may be configured to perform any or
all of the techniques of this disclosure. In the example of
FIG. 36, video encoder 200 includes a plurality of functional
components. The techniques described in this disclosure
may be shared among the various components of video
encoder 200. In some examples, a processor may be con-
figured to perform any or all of the techniques described in
this disclosure.

The functional components of video encoder 200 may
include a partition unit 201, a predication unit 202 which
may include a mode select unit 203, a motion estimation unit
204, a motion compensation unit 205 and an intra prediction
unit 206, a residual generation unit 207, a transform unit
208, a quantization unit 209, an inverse quantization unit

40

45

50

55

48

210, an inverse transform unit 211, a reconstruction unit 212,
a buffer 213, and an entropy encoding unit 214.

In other examples, video encoder 200 may include more,
fewer, or different functional components. In an example,
predication unit 202 may include an intra block copy (IBC)
unit. The IBC unit may perform predication in an IBC mode
in which at least one reference picture is a picture where the
current video block is located.

Furthermore, some components, such as motion estima-
tion unit 204 and motion compensation unit 205 may be
highly integrated, but are represented in the example of FIG.
36 separately for purposes of explanation.

Partition unit 201 may partition a picture into one or more
video blocks. Video encoder 200 and video decoder 300 may
support various video block sizes.

Mode select unit 203 may select one of the coding modes,
intra or inter, e.g., based on error results, and provide the
resulting intra- or inter-coded block to a residual generation
unit 207 to generate residual block data and to a reconstruc-
tion unit 212 to reconstruct the encoded block for use as a
reference picture. In some example, Mode select unit 203
may select a combination of intra and inter predication
(CIIP) mode in which the predication is based on an inter
predication signal and an intra predication signal. Mode
select unit 203 may also select a resolution for a motion
vector (e.g., a sub-pixel or integer pixel precision) for the
block in the case of inter-predication.

To perform inter prediction on a current video block,
motion estimation unit 204 may generate motion informa-
tion for the current video block by comparing one or more
reference frames from buffer 213 to the current video block.
Motion compensation unit 205 may determine a predicted
video block for the current video block based on the motion
information and decoded samples of pictures from buffer
213 other than the picture associated with the current video
block.

Motion estimation unit 204 and motion compensation unit
205 may perform different operations for a current video
block, for example, depending on whether the current video
block is in an I slice, a P slice, or a B slice.

In some examples, motion estimation unit 204 may per-
form uni-directional prediction for the current video block,
and motion estimation unit 204 may search reference pic-
tures of list 0 or list 1 for a reference video block for the
current video block. Motion estimation unit 204 may then
generate a reference index that indicates the reference pic-
ture in list 0 or list 1 that contains the reference video block
and a motion vector that indicates a spatial displacement
between the current video block and the reference video
block. Motion estimation unit 204 may output the reference
index, a prediction direction indicator, and the motion vector
as the motion information of the current video block. Motion
compensation unit 205 may generate the predicted video
block of the current block based on the reference video block
indicated by the motion information of the current video
block.

In other examples, motion estimation unit 204 may per-
form bi-directional prediction for the current video block,
motion estimation unit 204 may search the reference pic-
tures in list 0 for a reference video block for the current
video block and may also search the reference pictures in list
1 for another reference video block for the current video
block. Motion estimation unit 204 may then generate refer-
ence indexes that indicate the reference pictures in list 0 and
list 1 containing the reference video blocks and motion
vectors that indicate spatial displacements between the ref-
erence video blocks and the current video block. Motion

US 11,539,946 B2

49

estimation unit 204 may output the reference indexes and the
motion vectors of the current video block as the motion
information of the current video block. Motion compensa-
tion unit 205 may generate the predicted video block of the
current video block based on the reference video blocks
indicated by the motion information of the current video
block.

In some examples, motion estimation unit 204 may output
a full set of motion information for decoding processing of
a decoder.

In some examples, motion estimation unit 204 may do not
output a full set of motion information for the current video.
Rather, motion estimation unit 204 may signal the motion
information of the current video block with reference to the
motion information of another video block. For example,
motion estimation unit 204 may determine that the motion
information of the current video block is sufficiently similar
to the motion information of a neighboring video block.

In one example, motion estimation unit 204 may indicate,
in a syntax structure associated with the current video block,
a value that indicates to the video decoder 300 that the
current video block has the same motion information as the
another video block.

In another example, motion estimation unit 204 may
identify, in a syntax structure associated with the current
video block, another video block and a motion vector
difference (MVD). The motion vector difference indicates a
difference between the motion vector of the current video
block and the motion vector of the indicated video block.
The video decoder 300 may use the motion vector of the
indicated video block and the motion vector difference to
determine the motion vector of the current video block.

As discussed above, video encoder 200 may predictively
signal the motion vector. Two examples of predictive sig-
naling techniques that may be implemented by video
encoder 200 include advanced motion vector predication
(AMVP) and merge mode signaling.

Intra prediction unit 206 may perform intra prediction on
the current video block. When intra prediction unit 206
performs intra prediction on the current video block, intra
prediction unit 206 may generate prediction data for the
current video block based on decoded samples of other
video blocks in the same picture. The prediction data for the
current video block may include a predicted video block and
various syntax elements.

Residual generation unit 207 may generate residual data
for the current video block by subtracting (e.g., indicated by
the minus sign) the predicted video block(s) of the current
video block from the current video block. The residual data
of the current video block may include residual video blocks
that correspond to different sample components of the
samples in the current video block.

In other examples, there may be no residual data for the
current video block for the current video block, for example
in a skip mode, and residual generation unit 207 may not
perform the subtracting operation.

Transform processing unit 208 may generate one or more
transform coefficient video blocks for the current video
block by applying one or more transforms to a residual video
block associated with the current video block.

After transform processing unit 208 generates a transform
coefficient video block associated with the current video
block, quantization unit 209 may quantize the transform
coefficient video block associated with the current video
block based on one or more quantization parameter (QP)
values associated with the current video block.

10

15

20

25

30

35

40

45

50

55

60

65

50

Inverse quantization unit 210 and inverse transform unit
211 may apply inverse quantization and inverse transforms
to the transform coefficient video block, respectively, to
reconstruct a residual video block from the transform coef-
ficient video block. Reconstruction unit 212 may add the
reconstructed residual video block to corresponding samples
from one or more predicted video blocks generated by the
predication unit 202 to produce a reconstructed video block
associated with the current block for storage in the buffer
213.

After reconstruction unit 212 reconstructs the video
block, loop filtering operation may be performed reduce
video blocking artifacts in the video block.

Entropy encoding unit 214 may receive data from other
functional components of the video encoder 200. When
entropy encoding unit 214 receives the data, entropy encod-
ing unit 214 may perform one or more entropy encoding
operations to generate entropy encoded data and output a
bitstream that includes the entropy encoded data.

FIG. 37 is a block diagram illustrating an example of
video decoder 300 which may be video decoder 114 in the
system 100 illustrated in FIG. 35.

The video decoder 300 may be configured to perform any
or all of the techniques of this disclosure. In the example of
FIG. 37, the video decoder 300 includes a plurality of
functional components. The techniques described in this
disclosure may be shared among the various components of
the video decoder 300. In some examples, a processor may
be configured to perform any or all of the techniques
described in this disclosure.

In the example of FIG. 37, video decoder 300 includes an
entropy decoding unit 301, a motion compensation unit 302,
an intra prediction unit 303, an inverse quantization unit
304, an inverse transformation unit 305, and a reconstruction
unit 306 and a buffer 307. Video decoder 300 may, in some
examples, perform a decoding pass generally reciprocal to
the encoding pass described with respect to video encoder
200 (FIG. 36).

Entropy decoding unit 301 may retrieve an encoded
bitstream. The encoded bitstream may include entropy
coded video data (e.g., encoded blocks of video data).
Entropy decoding unit 301 may decode the entropy coded
video data, and from the entropy decoded video data, motion
compensation unit 302 may determine motion information
including motion vectors, motion vector precision, reference
picture list indexes, and other motion information. Motion
compensation unit 302 may, for example, determine such
information by performing the AMVP and merge mode.

Motion compensation unit 302 may produce motion com-
pensated blocks, possibly performing interpolation based on
interpolation filters. Identifiers for interpolation filters to be
used with sub-pixel precision may be included in the syntax
elements.

Motion compensation unit 302 may use interpolation
filters as used by video encoder 20 during encoding of the
video block to calculate interpolated values for sub-integer
pixels of a reference block. Motion compensation unit 302
may determine the interpolation filters used by video
encoder 200 according to received syntax information and
use the interpolation filters to produce predictive blocks.

Motion compensation unit 302 may uses some of the
syntax information to determine sizes of blocks used to
encode frame(s) and/or slice(s) of the encoded video
sequence, partition information that describes how each
macroblock of a picture of the encoded video sequence is
partitioned, modes indicating how each partition is encoded,

US 11,539,946 B2

51

one or more reference frames (and reference frame lists) for
each inter-encoded block, and other information to decode
the encoded video sequence.

Intra prediction unit 303 may use intra prediction modes
for example received in the bitstream to form a prediction
block from spatially adjacent blocks. Inverse quantization
unit 303 inverse quantizes, i.e., de-quantizes, the quantized
video block coefficients provided in the bitstream and
decoded by entropy decoding unit 301. Inverse transform
unit 303 applies an inverse transform.

Reconstruction unit 306 may sum the residual blocks with
the corresponding prediction blocks generated by motion
compensation unit 202 or intra-prediction unit 303 to form
decoded blocks. If desired, a deblocking filter may also be
applied to filter the decoded blocks in order to remove
blockiness artifacts. The decoded video blocks are then
stored in buffer 307, which provides reference blocks for
subsequent motion compensation/intra predication and also
produces decoded video for presentation on a display
device.

Some embodiments may be described using the following
clause-based format. The first set of clauses show example
embodiments of techniques discussed in the previous section
(e.g., item 1 of Example of Embodiments).

1. A method of video processing (e.g., method 3400 of
FIG. 34), comprising: determining (3402), for a conversion
between a video unit of a video and a coded representation
of the video, based on a criterion, to use a cross-component
adaptive loop filter operation, wherein the cross-component
adaptive loop filter uses a mirrored padding technique for
unavailable luma samples; and performing (3404) the con-
version based on the determining. The present document
discloses various embodiments of a cross-component adap-
tive loop filter and its operation and mirrored padding
techniques, and also their relationship with a virtual buffer
boundary.

2. The method of clause 1, wherein the mirrored padding
technique is further used for deriving one or more corre-
sponding luma samples of the unavailable luma sample.

3. The method of clause 2, wherein the one or more
corresponding luma samples are determined based on a
distance of the one or more corresponding luma samples
from a representative luma sample or a distance of the
unavailable sample from the representative luma sample.

4. The method of clause 3, wherein the representative
luma sample corresponds to a position of a chroma sample
for which the cross-component adaptive loop filtering tech-
nique is used.

5. The method of clause 3, wherein a position of the
representative luma sample depends on a color format of the
video.

6. The method of any of clauses 3-4, wherein the distance
corresponds to a distance in a first direction between a pixel
line along a second direction containing the one or more
luma samples and a row containing the representative
sample.

7. The method of clause 6, wherein C represents a center
line along the second direction where the representative
luma sample is located, M represents a line along the second
direction where the unavailable sample is located and N
represents a line along the second direction in which the one
ore more luma samples are located, where C, M and N are
positive integers and M is not equal to N, then the mirrored
padding technique is applied based on a size and shape of the
cross-component adaptive loop filter.

8. The method of clause 1, wherein the cross-component
adaptive loop filter has a KxL filter shape, where K is an

10

15

20

25

30

35

40

45

50

55

60

65

52

even number and L is positive integer, and wherein the
mirrored padding technique comprises padding unavailable
samples located at a line along a second direction M or N
away from a virtual boundary of the cross-component adap-
tive loop filter are padded from the nearest sample line near
the virtual boundary.

9. The method of clause 3, wherein, in case that a virtual
boundary of the cross-component adaptive loop filter is
below in the second direction the representative luma
sample, then padding the unavailable samples using a near-
est line in the second direction above the virtual boundary.

10. The method of clause 3, wherein, in case that an
unavailable sample is located in row M, wherein M is an
integer less than C, wherein C is an integer indicative of a
center line along the second direction of the representative
luma sample, then a sample located in line N in the second
direction is determined to be the corresponding samples
when d(C,M)=d(N,C)-offset, wherein offset is an integer
value, or d(C,M)<d(N,C), where d() is a distance function.

The following clauses show example embodiments of
techniques discussed in the previous section (e.g., item 2).

11. The method of any of clauses 1-10, wherein the first
direction is a vertical direction and the second direction is a
horizontal direction.

12. The method of any of clauses 1-10, wherein the first
direction is a horizonal direction and the second direction is
a vertical direction.

13. The method of any of clauses 11-12, wherein an
orientation of the first direction and the second direction
depends on an orientation of a boundary of the virtual buffer.

The following clauses show example embodiments of
techniques discussed in the previous section (e.g., item 3).

14. The method of any of clauses 1-13, wherein the video
unit comprises a video picture, a video subpicture, a video
slice, a video tile or a 360-degree boundary of video.

15. The method of any of clauses 1-14, wherein the
performing the conversion comprising encoding the video to
generate the coded representation.

16. The method of any of clauses 1-14, wherein the
performing the conversion comprises parsing and decoding
the coded representation to generate the video.

In the above-disclosed clauses, the orientation may be
horizontal or vertical and correspondingly the first direction
and the second direction may be vertical or horizontal
directions referred to by pixel columns and pixel rows.

17. A video decoding apparatus comprising a processor
configured to implement a method recited in one or more of
clauses 1 to 16.

18. A video encoding apparatus comprising a processor
configured to implement a method recited in one or more of
clauses 1 to 16.

19. A computer program product having computer code
stored thereon, the code, when executed by a processor,
causes the processor to implement a method recited in any
of claims 1 to 16.

20. A method, apparatus or system described in the
present document.

The second set of clauses show example embodiments of
techniques discussed in the previous sections (e.g., items 1-3
of Examples of Embodiments).

1. A method of video processing (e.g., method 3810 of
FIG. 38A), comprising: determining 3812 for a conversion
between a video unit of a video and a bitstream represen-
tation of the video, whether to enable a mirrored padding
process for padding an unavailable luma sample during an
application of a loop filtering tool to the video unit; and
performing 3814 the conversion based on the determining.

US 11,539,946 B2

53

2. The method of clause 1, wherein the loop filtering tool
includes a cross-component adaptive loop filtering (CC-
ALF) tool.

3. The method of clause 1, wherein the loop filtering tool
includes an adaptive loop filtering (ALF) tool.

4. The method of clause 1, wherein the mirrored padding
process includes padding a second sample that is a corre-
sponding sample of a first sample in a filter support region
in the loop filtering tool even when the second sample is
available, and wherein the first sample is unavailable and to
be padded.

5. The method of clause 1, wherein the mirrored padding
process is further used for deriving the unavailable luma
sample and one or more corresponding luma samples to the
unavailable luma sample.

6. The method of clause 5, wherein a corresponding luma
sample is determined based on a distance of the correspond-
ing luma sample from a representative luma sample and/or
a distance of the unavailable sample from the representative
luma sample.

7. The method of clause 6, wherein the representative
luma sample is defined as a collocated luma sample of a
chroma sample to be filtered.

8. The method of clause 7, wherein a position of the
collocated luma sample of the chroma sample depends on a
color format of the video.

9. The method of clause 8, wherein the collocated luma
sample of the chroma sample located at (x,y) is defined as
one located at (2x,2y) in the color format being 4:2:0.

10. The method of clause 8, wherein the collocated luma
sample of the chroma sample located at (x,y) is defined as
one located at (2x,y) in the color format being 4:2:2.

11. The method of clause 8, wherein the collocated luma
sample of the chroma sample located at (x,y) is defined as
one located at (x,y) in the color format being 4:4:4.

12. The method of clause 6, wherein the distance refers to
a distance along a first direction between a first row con-
taining the corresponding luma sample and a second row
containing the representative luma sample.

13. The method of clause 6, wherein the distance is
calculated as a difference along a first direction between a
pixel line along a second direction containing the corre-
sponding luma sample and a row containing the represen-
tative luma sample.

14. The method of clause 13, wherein C represents a
center line along the second direction where the represen-
tative luma sample is located, M represents a line along the
second direction where the unavailable sample is located
and N represents a line along the second direction in which
the corresponding luma sample is located, where C, M and
N are positive integers and M is not equal to N.

15. The method of clause 5, wherein the one or more
corresponding luma samples to be padded in the mirrored
padding process are based on a number of rows of samples
utilized by a shape of a filter used by the CC-ALF tool.

16. The method of clause 5, wherein the unavailable luma
sample is located at row M and samples located at row N are
determined as the one or more corresponding luma samples
to be padded, and wherein d(C,M)=d(N,C), whereby d(x,y)
denotes a distance between row x and row y, and M, C, N
are positive integers.

17. The method of clause 6, wherein the mirrored padding
process corresponds to one used during an application of an
adaptive loop filtering (ALF) tool in a case that 1) a center
luma sample is selected as the representative luma sample
and 2) the CC-ALF tool has a KxL filter shape, whereby K
is odd number and L is a positive integer.

10

15

20

25

30

35

40

45

55

60

65

54

18. The method of clause 6, wherein, in a case that the
CC-ALF tool has a KxL filter shape and the unavailable
luma sample is located at row M above or row N below from
a virtual boundary, the mirrored padding process includes
padding the one or more corresponding luma samples
located at row N or M away from the virtual boundary from
a nearest sample row above the row N or below the row M,
whereby K is odd number and, L., M, N are positive integers.

19. The method of clause 18, wherein the unavailable
luma sample is padded using a nearest row below the virtual
boundary in a case that the virtual boundary is above the
representative luma sample and wherein the one or more
corresponding luma samples are padded using a nearest row
above a row containing the one or more corresponding luma
samples in a case that the virtual boundary is above the
representative luma sample.

20. The method of clause 18, wherein the unavailable
luma sample is padded using a nearest row above the virtual
boundary in a case that the virtual boundary is below the
representative luma sample and wherein the one or more
corresponding luma samples are padded using a nearest row
below a row containing the one or more corresponding luma
samples in a case that the virtual boundary is below the
representative luma sample.

21. The method of clause 19 or 20, wherein K=2, y[.=0,
yP1=1, and the virtual boundary is equal to CtbSizeY-4,
whereby yL. and yP1 are y-coordinates of two sample rows
and CtbSizeY represents a size of coding tree unit (CTU).

22. The method of clause 21, wherein, in a case that yLL
is equal to CtbSizeY-4 and a row above yL is unavailable, a
sample (x, yP1) in a row at yP1 is padded using a sample (x,
yL) in a row at yL.

23. The method of clause 19 or 20, wherein K=4, yM1=-
1, yL=0, yP1=1, yP2=2, and the virtual boundary is equal to
CtbSizeY-4, whereby yM1, yL,, yP1, yP2 are y-coordinates
of four sample rows and CtbSizeY represents a size of
coding tree unit (CTU).

24. The method of clause 23, wherein, in a case that yL
is equal to CtbSizeY-3 and a row above yM1 is unavailable,
a sample (x, yP2) in a row at yP2 is padded using a sample
(x, yP1) in a row at yP1.

25. The method of clause 23, wherein, in a case that yL
is equal to CtbSizeY-4 and a row above yM1 is unavailable,
a sample (X, yM1) in a row at yM1 is padded using a sample
(X, yL) in a row at yL. and samples (x, yP2) and (x, yP1) in
rows at yP2 and yP1 are padded using a sample (x, yL.) in
the row at yL.

26. The method of clause 19 or 20, wherein K=6, yM2=—
2, yM1=-1, yL=0, yP1=1, yP2=2, yP3=3 and the virtual
boundary is equal to CtbSizeY-4, whereby yM2, yM1, yL,,
yP1, yP2, yP3 are y-coordinates of six sample rows and
CtbSizeY represents a size of coding tree unit (CTU).

27. The method of clause 26, wherein, in a case that yL
is equal to CtbSizeY -2 and a row above yM2 is unavailable,
a sample (x, yP3) in a row at yP3 is padded using a sample
(x, yP2) in a row at yP2.

28. The method of clause 26, wherein, in a case that yL
is equal to CtbSizeY-3 and a row above yM2 and a row at
yM2 are unavailable, a sample (x, yM2) in a row at yM2 is
padded using a sample (X, yM1) in a row at yM1 and
samples (X, yP3) and (x, yP2) in rows at yP3 and yP2 are
padded using a sample (x, yP1) in a row at yP1.

29. The method of clause 26, wherein, in a case that yL
is equal to CtbSizeY-4 and a row above yM2, a row at yM2
and a row at yM1 are unavailable, samples (x, yM2) and (x,
yM1) in rows at yM2 and yM1 are padded using a sample

US 11,539,946 B2

55

(x, yL) at a row at yL. and samples (%, yP3), (x, yP2), and (x,
yP1) in rows yP3, yP2, and yP1 are padded using a sample
(%, yL) in the row at yL.

30. The method of clause 21, wherein in a case that yL is
equal to CtbSizeY-5 and a row at yP1 is unavailable, a
sample (x, yP1) in a row at yP1 is padded using a sample (x,
yL) in a row at yL.

31. The method of clause 23, wherein, in a case that yL.
is equal to CtbSizeY-6 and a row at yP2 is unavailable, a
sample (x, yP2) in a row at yP2 is padded using a sample (x,
yP1) in a row at yP1.

32. The method of clause 23, wherein, in a case that yL.
is equal to CtbSizeY-5 and rows at yP2 and yP1 are
unavailable, a sample (x, yP1) in a row at yP1 and a sample
(X, yP2) in a row at yP2 are padded using a sample (x, yL)
in a row at yL. and a sample (x, yM1) in a row at yM1 is
padded using a sample (x, yL.) in a row at yL.

33. The method of clause 26, wherein, in a case that yL.
is equal to CtbSizeY-7 and a row at yP3 is unavailable, a
sample (x, yP3) in the row at yP3 is padded using a sample
(X, yP2) in a row at yP2.

34. The method of clause 26, wherein, in a case that yL.
is equal to CtbSizeY-6 and a row at yP3 and a row at yP2 are
unavailable, a sample (x, yP3) in the row at yP3 and a
sample (X, yP2) in the row at yP2 are padded using a sample
(%, yP1) in a row at yP1 and a sample (x, yM2) is padded
using a sample (x, yM1) in a row at yM1.

35. The method of clause 26, wherein, in a case that yL.
is equal to CtbSizeY-5 and rows at yP3, yP2, and yP1 are
unavailable, a sample (X, yP3) in a row at yP3, a sample (x,
yP2) in a row at yP2, and a sample (X, yP1) in a row at yP1
are padded using a sample (X, yL) in a row at y[and a
sample (x, yM2) in a row at yM2 and a sample (X, yM1) in
a row at yM1 are padded using a sample (x, yL) in the row
at yL.

36. The method of clause 5, wherein the unavailable luma
sample is located at row M and samples located at row N are
determined as the one or more corresponding luma samples
to be padded, and wherein d(C,M)=d(N,C)-offset or d(C,
M)<d(N,C), whereby d(x,y) denotes a distance between row
x and row y, offset is an integer, and M, C, N are positive
integers.

37. The method of clause 5, wherein the unavailable luma
sample is located at row M and samples located at row N are
determined as the one or more corresponding luma samples
to be padded, and wherein d(M,C)=d(C,N)-offset or d(C,
M)<d(N,C), whereby d(x,y) denotes a distance between row
x and row y, offset is an integer, and M, C, N are positive
integers.

38. The method of clause 36 or 37, wherein the offset is
equal to 1.

39. The method of clause 36, wherein, in a case that the
unavailable luma sample is located at row M above or row
N below from a virtual boundary, the mirrored padding
process includes padding the one or more corresponding
luma samples located at row N below the virtual boundary
or row M above the virtual boundary from a nearest sample
row above the row N or below the row M, whereby M and
N are positive integers.

40. The method of clause 39, wherein the unavailable
luma sample is padded using a nearest row above the virtual
boundary in a case that the virtual boundary is below the
representative luma sample and wherein the one or more
corresponding luma samples are padded using a nearest row
below a row containing the one or more corresponding luma
samples.

10

15

20

25

30

35

40

45

50

55

60

65

56

41. The method of clause 39, wherein the unavailable
luma sample is padded using a nearest row below the virtual
boundary in a case that the virtual boundary is above the
representative luma sample and wherein the one or more
corresponding samples are padded using a nearest row
above a row containing the one or more corresponding luma
samples.

42. The method of clause 40 or 41, wherein K=2, y[.=0,
yP1=1, and the virtual boundary is equal to CtbSizeY-4,
whereby yL. and yP1 are y-coordinates of two sample rows
and CtbSizeY represents a size of coding tree unit (CTU).

43. The method of clause 42, wherein, in a case that yLL
is equal to CtbSizeY-5 and a row at yP1 is unavailable, a
sample (x, yP1) in a row at yP1 is padded using a sample (x,
yL) in a row at yL.

44. The method of clause 40 or 41, wherein K=4, yM1=—
1, yL=0, yP1=1, yP2=2, and the virtual boundary is equal to
CtbSizeY-4, whereby yM1, yL,, yP1, yP2 are y-coordinates
of four sample rows and CtbSizeY represents a size of
coding tree unit (CTU).

45. The method of clause 44, wherein, in a case that yL
is equal to CtbSizeY-4 and a row above yM1 and a row at
yM1 are unavailable, a sample (x, yM1) in a row at yM1 is
padded using a sample (x, yL.) in a row at yL. and a sample
(x, yP2) in a row at yP2 is padded using a sample (x, yP1)
in a row at yP1.

46. The method of clause 44, wherein in a case that that
yL is equal to CtbSizeY-6 and a row at yP2 is unavailable,
a sample (X, yP2) in the row at yP2 is padded using a sample
(x, yP1) in a row at yP1.

47. The method of clause 44, wherein, in a case that yLL
is equal to CtbSizeY-5 and rows at yP2 and yP1 are
unavailable, a sample (x, yP2) at row yP2 are padded using
a sample (x, yL) in a row at yL. and a sample (x, yM1) in a
row at yM1 is padded using a sample (X, yL.) in the row at
yL.

48. The method of clause 40 or 41, wherein K=6, yM2=—
2, yM1=-1, yL=0, yP1=1, yP2=2, yP3=3 and the virtual
boundary is equal to CtbSizeY-4, whereby yM2, yM1, yL,,
yP1, yP2, yP3 are y-coordinates of six sample rows and
CtbSizeY represents a size of coding tree unit (CTU).

49. The method of clause 48, wherein, in a case that yLL
is equal to CtbSizeY-3 and a row above yM2 and a row at
yM2 are unavailable, a sample (x, yM2) in a row at yM2 is
padded using a sample (x, yM1) in a row at yM1 and a
sample (x, yP3) in a row at yP3 is padded using a sample (x,
yP2) in a row at yP2.

50. The method of clause 48, wherein, in a case that yL.
is equal to CtbSizeY-4 and a row above yM2, a row at yM2
and a row at yM1 are unavailable, samples (x, yM2) and (x,
yM1) in rows at yM2 and yM1 are padded using a sample
(x, yL) in a row at yL. and samples (x, yP3) and (x, yP2) in
rows yP3 and yP2 are padded using a sample (x, yP1) in a
row at yP1.

51. The method of clause 48, wherein, in a case that yL.
is equal to CtbSizeY-7 and a row at yP3 is unavailable, a
sample (x, yP3) in the row at yP3 is padded using a sample
(X, yP2) in a row at yP2 and a sample (x, yM2) in a row at
yM2 is padded using a sample (x, yM1) in a row at yM1.

52. The method of clause 48, wherein, in a case that yL.
is equal to CtbSizeY-6 and a row at yP3 and a row at yP2 are
unavailable, a sample (x, yP3) in the row at yP3 and a
sample (X, yP2) in the row at yP2 are padded using a sample
(x, yP1) in a row at yP1 and a sample (x, yM2) in a row at
yM2 and a sample (x, yM1) in a row at yM1 are padded
using a sample (x, yL.) in a row at yL.

US 11,539,946 B2

57

53. The method of clause 48, wherein, in a case that yL.
is equal to CtbSizeY-5 and rows at yP3, yP2, and yP1 are
unavailable, a sample (X, yP3) in a row at yP3, a sample (x,
yP2) in a row at yP2, and a sample (X, yP1) in a row at yP1
are padded using a sample (X, yL) in a row at y[and a
sample (x, yM2) in a row at yM2 and a sample (X, yM1) in
a row at yM1 are padded using a sample (x, yL) in the row
at yL.

54. The method of clause 1, wherein a result of the
determining is included in the bitstream representation at a
sequence level, a picture level, a slice level, or a tile group
level.

55. The method of any of previous clauses, wherein the
first direction is a vertical direction and the second direction
is a horizontal direction.

56. The method of any of previous clauses, wherein the
first direction is a horizonal direction and the second direc-
tion is a vertical direction.

57. The method of clause 55 or 56, wherein an orientation
of the first direction and the second direction depends on an
orientation of a boundary of a virtual buffer.

58. A method of video processing (e.g., method 3820 of
FIG. 38B), comprising: determining 3822, for a conversion
between a video unit of a video and a bitstream represen-
tation of the video, whether to apply a repetitive padding
process and/or a mirrored padding process for padding a
sample located at a virtual boundary based on coded infor-
mation of the video unit; and performing 3824 the conver-
sion based on the determining.

59. The method of clause 58, wherein the coded infor-
mation includes a size of the video unit that is a coding tree
unit (CTU) or coding tree block (CTB).

60. The method of clause 59, wherein the mirrored
padding process is applied in a case that the CTU or CTB
size is greater than or equal to T, whereby T is a positive
integer.

61. The method of clause 59, wherein the repetitive
padding process is applied in a case that the CTU or CTB
size is smaller than or equal to T, whereby T is a positive
integer.

62. The method of any of previous clauses, wherein the
video unit comprises a picture, a subpicture, a slice, a tile or
a 360-degree boundary of the video.

63. The method of any of previous clauses, wherein in the
CC-ALF tool, sample values of the video unit of a video
component are predicted from sample values of the video
unit of another video component.

64. The method of any of clauses 1 to 63, wherein the
conversion includes encoding the video into the bitstream
representation.

65. The method of any of clauses 1 to 63, wherein the
conversion includes decoding the video from the bitstream
representation.

66. A video processing apparatus comprising a processor
configured to implement a method recited in any one or
more of clauses 1 to 65.

67. A computer readable medium storing program code
that, when executed, causes a processor to implement a
method recited in any one or more of clauses 1 to 65.

68. A computer readable medium that stores a coded
representation or a Dbitstream representation generated
according to any of the above described methods.

In the present document, the term “video processing” may
refer to video encoding, video decoding, video compression
or video decompression. For example, video compression
algorithms may be applied during conversion from pixel
representation of a video to a corresponding bitstream

15

20

25

40

45

50

55

58

representation or vice versa. The bitstream representation of
a current video block may, for example, correspond to bits
that are either co-located or spread in different places within
the bitstream, as is defined by the syntax. For example, a
macroblock may be encoded in terms of transformed and
coded error residual values and also using bits in headers and
other fields in the bitstream.

The disclosed and other solutions, examples, embodi-
ments, modules and the functional operations described in
this document can be implemented in digital electronic
circuitry, or in computer software, firmware, or hardware,
including the structures disclosed in this document and their
structural equivalents, or in combinations of one or more of
them. The disclosed and other embodiments can be imple-
mented as one or more computer program products, i.e., one
or more modules of computer program instructions encoded
on a computer readable medium for execution by, or to
control the operation of, data processing apparatus. The
computer readable medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a memory
device, a composition of matter effecting a machine-read-
able propagated signal, or a combination of one or more
them. The term “data processing apparatus” encompasses all
apparatus, devices, and machines for processing data,
including by way of example a programmable processor, a
computer, or multiple processors or computers. The appa-
ratus can include, in addition to hardware, code that creates
an execution environment for the computer program in
question, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating
system, or a combination of one or more of them. A
propagated signal is an artificially generated signal, e.g., a
machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or
interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily
correspond to a file in a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code).

A computer program can be deployed to be executed on
one computer or on multiple computers that are located at
one site or distributed across multiple sites and intercon-
nected by a communication network.

The processes and logic flows described in this document
can be performed by one or more programmable processors
executing one or more computer programs to perform func-
tions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, byway of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random-access memory or both. The essential elements of a
computer are a processor for performing instructions and

US 11,539,946 B2

59

one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to receive data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices.
Computer readable media suitable for storing computer
program instructions and data include all forms of non-
volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these
should not be construed as limitations on the scope of any
subject matter or of what may be claimed, but rather as
descriptions of features that may be specific to particular
embodiments of particular techniques.
Certain features that are described in this patent document
in the context of separate embodiments can also be imple-
mented in combination in a single embodiment. Conversely,
various features that are described in the context of a single
embodiment can also be implemented in multiple embodi-
ments separately or in any suitable subcombination. More-
over, although features may be described above as acting in
certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.
Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results.
Moreover, the separation of various system components
in the embodiments described in this patent document
should not be understood as requiring such separation in all
embodiments.
Only a few implementations and examples are described
and other implementations, enhancements and variations
can be made based on what is described and illustrated in
this patent document.
The invention claimed is:
1. A method of processing video data, comprising:
determining, for a conversion between a video unit of a
video and a bitstream of the video, that a mirrored
padding process for padding an unavailable luma
sample which is unavailable due to a virtual boundary
is used during an application of a cross-component
adaptive loop filtering (CC-ALF) tool to the video unit,
in a case that the virtual boundary is applied to the
video unit; and
performing the conversion based on the determining,
wherein the mirrored padding process includes padding a
corresponding sample of the unavailable luma sample
and considering the corresponding sample as unavail-
able even when the corresponding sample is available
for the virtual boundary, whereby the corresponding
sample is located in a filter support region in the
CC-ALF tool, and

wherein the unavailable luma sample is denoted as
located at row M in the video unit and the correspond-
ing sample to be padded is denoted as located at row N
in the video unit, and wherein d (C,M)=d (N,C),

10

15

20

25

30

40

45

50

55

60

65

60

whereby d (x,y) denotes a distance between row x and
row y, wherein C represents a row where a represen-
tative luma sample is located in the video unit, where
C, M and N are integers and M is not equal to N, and
wherein the representative luma sample is a collocated
luma sample of a chroma sample to be filtered in the
video unit.

2. The method of claim 1, wherein a position of the
collocated luma sample of the chroma sample depends on a
color format of the video.

3. The method of claim 2, wherein the collocated luma
sample of the chroma sample located at (x,y) is defined as
one located at (2x,2y) if the color format is 4:2:0, or one
located at (2x,y) if the color format is 4:2:2, or one located
at (x,y) if the color format is 4:4:4.

4. The method of claim 1, wherein the CC-ALF tool has
a KxL filter shape, whereby K=4 and 1.=3; yM1, yL, yP1,
yP2 are y-coordinates of four sample rows in the KxL filter
shape, whereby yM1=-1, yL=0, yP1=1, yP2=2, the repre-
sentative luma sample is in the row yL.=0; and the virtual
boundary is located at a row CtbSizeY-4 in the video unit,
whereby CtbSizeY represents a size of the video unit which
is a coding tree unit (CTU).

5. The method of claim 4, wherein the unavailable luma
sample is padded using a nearest available row below the
virtual boundary in a case that the virtual boundary is above
the representative luma sample and wherein the correspond-
ing sample is padded using a nearest available row above a
row containing the corresponding sample.

6. The method of claim 5, wherein, in a case that yL is
equal to CtbSizeY-3 and a row above yM1 is unavailable,
a corresponding sample (x, yP2) in a row at yP2 is padded
using a sample (x, yP1) in a row at yP1.

7. The method of claim 5, wherein, in a case that yL is
equal to CtbSizeY-4 and a row above yM1 and a row at
yM1 are unavailable, a unavailable luma sample (x, yM1) in
a row at yM1 is padded using a sample (x, yL.) in a row at
yL, a corresponding sample (x, yP1) in a row at yP1 is
padded using a sample (x, yL) in a row at yL, and a
corresponding sample (x, yP2) in a row at yP2 is padded
using a sample (x, yL.) in a row at yL.

8. The method of claim 4, wherein the unavailable luma
sample is padded using a nearest available row above the
virtual boundary in a case that the virtual boundary is below
the representative luma sample and wherein the correspond-
ing sample is padded using a nearest available row below a
row containing the corresponding sample.

9. The method of claim 8, wherein in a case that yL is
equal to CtbSizeY-6 and a row at yP2 is unavailable, the
unavailable luma sample (x, yP2) in the row at yP2 is padded
using a sample (x, yP1) in a row at yP1.

10. The method of claim 8, wherein, in a case that yL is
equal to CtbSizeY-5 and rows at yP2 and yP1 are unavail-
able, a unavailable luma sample (x, yP2) at a row yP2 is
padded using a sample (x, yL.) in a row at yL., a unavailable
luma sample (x, yP1) at a row yP1 is padded using the
sample (X, yL) in the row at yL, and a corresponding sample
(x, yM1) in a row at yM1 is padded using the sample (x, yL)
in the row at yL.

11. The method of claim 1, wherein the conversion
comprising includes encoding the video into the bitstream.

12. The method of claim 1, wherein the conversion
includes decoding the video from the bitstream.

13. An apparatus for processing video data comprising a
processor and a non-transitory memory with instructions
thereon, wherein the instructions upon execution by the
processor, cause the processor to:

US 11,539,946 B2

61

determine, for a conversion between a video unit of a
video and a bitstream of the video, that a mirrored
padding process for padding an unavailable luma
sample which is unavailable due to a virtual boundary
is used during an application of a cross-component
adaptive loop filtering (CC-ALF) tool to the video unit,
in a case that the virtual boundary is applied to the
video unit; and

perform the conversion based on the determination,

wherein the mirrored padding process includes padding a
corresponding sample of the unavailable luma sample
and considering the corresponding sample as unavail-
able even when the corresponding sample is available
for the virtual boundary, whereby the corresponding
sample is located in a filter support region in the
CC-ALF tool, and

wherein the unavailable luma sample is denoted as
located at row M in the video unit and the correspond-
ing sample to be padded is denoted as located at row N
in the video unit, and wherein d (C,M)=d (N,C),
whereby d (x,y) denotes a distance between row x and
row y, wherein C represents a row where a represen-
tative luma sample is located in the video unit, where
C, M and N are integers and M is not equal to N, and
wherein the representative luma sample is a collocated
luma sample of a chroma sample to be filtered in the
video unit.

14. The apparatus of claim 13, wherein a position of the
collocated luma sample of the chroma sample depends on a
color format of the video;

wherein the collocated luma sample of the chroma sample
located at (x,y) is defined as one located at (2x,2y) if the
color format is 4:2:0, or one located at (2x,y) if the color
format is 4:2:2, or one located at (x,y) if the color
format is 4:4:4.

15. The apparatus of claim 13, wherein the CC-ALF tool
has a KxL filter shape, whereby K=4 and 1.=3; yM1, yL,
yP1, yP2 are y-coordinates of four sample rows in the KxL,
filter shape, whereby yM1=-1, yL=0, yP1=1, yP2=2, the
representative luma sample is in the row yL=0; and the
virtual boundary is located at a row CtbSizeY -4 in the video
unit, whereby CtbSizeY represents a size of the video unit
which is a coding tree unit (CTU);

wherein the unavailable luma sample is padded using a
nearest available row below the virtual boundary in a
case that the virtual boundary is above the representa-
tive luma sample and wherein the corresponding
sample is padded using a nearest available row above
a row containing the corresponding sample, wherein, in
a case that yL is equal to CtbSizeY-3 and a row above
yM1 is unavailable, a corresponding sample (x, yP2) in
arow at yP2 is padded using a sample (x, yP1) in a row
at yP1; or wherein, in a case that yL. is equal to
CtbSizeY-4 and a row above yM1 and a row at yM1
are unavailable, a unavailable luma sample (x, yM1) in
arow at yM1 is padded using a sample (x, yL.) in a row
at yL, a corresponding sample (x, yP1) in a row at yP1
is padded using a sample (x, yL) in a row at yL, and a
corresponding sample (X, yP2) in a row at yP2 is
padded using a sample (x, yL) in a row at yL; or

wherein the unavailable luma sample is padded using a
nearest available row above the virtual boundary in a
case that the virtual boundary is below the representa-
tive luma sample and wherein the corresponding
sample is padded using a nearest available row below
a row containing the corresponding sample, wherein in
a case that yL is equal to CtbSizeY-6 and a row at yP2

10

15

20

25

30

35

40

45

50

55

60

65

62

is unavailable, the unavailable luma sample (x, yP2) in
the row at yP2 is padded using a sample (x, yP1) in a
row at yP1; or wherein, in a case that yL is equal to
CtbSizeY-5 and rows at yP2 and yP1 are unavailable,
a unavailable luma sample (x, yP2) at a row yP2 is
padded using a sample (X, yL) in a row at yL, a
unavailable luma sample (x, yP1) at a row yP1 is
padded using the sample (x, yL) in the row at yL, and
a corresponding sample (x, yM1) in a row at yM1 is
padded using the sample (X, yL) in the row at yL.
16. A non-transitory computer-readable storage medium
storing instructions that cause a processor to:
determine, for a conversion between a video unit of a
video and a bitstream of the video, that a mirrored
padding process for padding an unavailable luma
sample which is unavailable due to a virtual boundary
is used during an application of a cross-component
adaptive loop filtering (CC-ALF) tool to the video unit,
in a case that the virtual boundary is applied to the
video unit; and
perform the conversion based on the determination,
wherein the mirrored padding process includes padding a
corresponding sample of the unavailable luma sample
and considering the corresponding sample as unavail-
able even when the corresponding sample is available
for the virtual boundary, whereby the corresponding
sample is located in a filter support region in the
CC-ALF tool, and

wherein the unavailable luma sample is denoted as
located at row M in the video unit and the correspond-
ing sample to be padded is denoted as located at row N
in the video unit, and wherein d (C,M)=d (N,C),
whereby d (x,y) denotes a distance between row x and
row y, wherein C represents a row where a represen-
tative luma sample is located in the video unit, where
C, M and N are integers and M is not equal to N, and
wherein the representative luma sample is a collocated
luma sample of a chroma sample to be filtered in the
video unit.

17. The non-transitory computer-readable storage
medium of claim 16, wherein a position of the collocated
luma sample of the chroma sample depends on a color
format of the video;

wherein the collocated luma sample of the chroma sample

located at (x,y) is defined as one located at (2x,2y) if the
color format is 4:2:0, or one located at (2x,y) if the color
format is 4:2:2, or one located at (x,y) if the color
format is 4:4:4.

18. The non-transitory computer-readable storage
medium of claim 16, wherein the CC-ALF tool has a KxL
filter shape, whereby K=4 and [.=3; yM1, yL, yP1, yP2 are
y-coordinates of four sample rows in the KL filter shape,
whereby yM1=-1, yL=0, yP1=1, yP2=2, the representative
luma sample is in the row y[.=0; and the virtual boundary is
located at a row CtbSizeY-4 in the video unit, whereby
CtbSizeY represents a size of the video unit which is a
coding tree unit (CTU);

wherein the unavailable luma sample is padded using a

nearest available row below the virtual boundary in a
case that the virtual boundary is above the representa-
tive luma sample and wherein the corresponding
sample is padded using a nearest available row above
arow containing the corresponding sample, wherein, in
a case that yL is equal to CtbSizeY-3 and a row above
yM1 is unavailable, a corresponding sample (x, yP2) in
arow at yP2 is padded using a sample (x, yP1) in a row
at yP1; or wherein, in a case that yL. is equal to

US 11,539,946 B2
63 64

CtbSizeY-4 and a row above yM1 and a row at yM1 20. The non-transitory computer-readable recording
are unavailable, a unavailable luma sample (x, yM1) in medium of claim 19, wherein a position of the collocated
arow at yM1 is padded using a sample (x, yL) in a row luma sample of the chroma sample depends on a color
at yL, a corresponding sample (x, yP1) in a row at yP1 format of the video;

is padded using a sample (x, yL) ina row at yL, and.a 5 wherein the collocated luma sample of the chroma sample
corresponding sample (x, yP2) in a row at yP2 is located at (x,y) is defined as one located at (2x,2y) if the

padded using a sample (x, yL) in a row at yL; or ’ .
wherein the unavailable luma sample is padded using a color format is 4:2:0, or one located at (2x,y) if the color
format is 4:2:2, or one located at (x,y) if the color

t availabl bove the virtual boundary i
nearest available row above the virtual boundary in a format s 4:4:4;

case that the virtual boundary is below the representa- wherein the CC-ALF tool has a KL filter shape, whereby

tive luma sample and wherein the corresponding - o .
sample is padded using a nearest available row below K=4 and L=3; yle yL, yP1, yP2 are y-coordinates of
four sample rows in the KxL filter shape, whereby

a row containing the corresponding sample, wherein in > - - > .

a case that yL is equal to CtbSizeY-6 and a row at yP2 ylel—}, YL;I?, yPlflI:y(I)’272é ttlllle regl:lselzrétatlvg luma
- Jable. th dable 1 1 P2)i sample is in the row y[.=0; and the virtual boundary is
is unavailable, the unavailable luma sample (x, yP2) in. 5 located at a row CtbSizeY -4 in the video unit, whereby

the row at yP2 is padded using a sample (x, yP1) in a s
row at yP1; or wherein, in a case that yL is equal to CtbSlzeY represents a size of the video unit which is a
coding tree unit (CTU);

CtbSizeY-5 and t yP2 and yP1 ilabl
1ze arc rows at yre anc y_ o ate thavatiasre. wherein the unavailable luma sample is padded using a

a unavailable luma sample (x, yP2) at a row yP2 is . . .
padded using a sample (x, yL) in a row at yL. a nearest available row below the virtual boundary in a
unavailable luma sample (’X yP1) at a row yPls is 20 case that the virtual boundary is above the representa-
padded using the sample (x, yL) in the row at yL, and tive luma sample an d wherein th? corresponding
a corresponding sample (x, YM1) in a row at yM1 is sample is padded using a nearest available row above
dded usine th 1 ’ 1) in th . arow containing the corresponding sample, wherein, in
padded using the sample (x, yL) in the row at y a case that yL is equal to CtbSizeY -3 and a row above

19. A non-transitory computer-readable recording
medium storing a bitstream of a video which is generated by yMlis mavgllable, a con.‘espondmg sample (X’. yP2) in
arow at yP2 is padded using a sample (x, yP1) in a row

thod perfi d b id i t
a metioc periotingd by @ VIGeo processiig apparatts. at yP1; or wherein, in a case that yL. is equal to

wherein the method comprises: .
determining that a mirrored padding process for padding CtbSIZGY.—4 and a row gbove yMI and a row at yMl
are unavailable, a unavailable luma sample (x, yM1) in

an unavailable luma sample which is unavailable due to

30 . . :
a virtual boundary is gsed during an application of a Z:?EV 2: zol\r/[rislgopril(;li(rlsgd;:;%ea (iaI;lBIB (1)1(1’ ZIrJo)vlvnai ;OPV;
cross-component adaptive loop filtering (CC-ALF) tool s a(,i ded using a sample (x L)’in a row at vL. and a
to a video unit of a video, in a case that the virtual p & & lp(,gZ) . }; ,P2 .
boundary i lied to the vid it and corresponding sample (X, y in a row at yP2 is

gengrlllrtlinghlesz ?)Ii)tit;f:amoba:egloﬁotlimdétil:inimng padded using a sample (x, yL) in a row at yL; or

, 35

wherein the mirrored padding process includes padding a thé:;gsih:\]:ﬁ:gleigi: ;Egi?e St?l?%frtﬁalp iiii%;;lrﬁ 2
corresponding sample of the unavailable luma sample . .
and considering the correspond.ing sample as ungvail- tciilsee tlllllarfl etlhezsa\lrlrglizl Zzléniihryerlefiﬁelt%\z t?gégg;zfé;ﬁé
able even when the corresponding sample is available sample is padded using a nearest available row below
for the virtual boundary, whereby the corresponding ,, e . L
sample is located in a filter support region in the :ZZZZ:Ctﬁga;ﬁl?sgetélsa?tgecsg)osrileg? Zagln%k;’ rvglvllegfg
CC-ALF tool, and ;) . - .

wherein the unavailable luma sample is denoted as 1lslunava11ab1§,2the urzia(;/a(ilab.le fuma sanllple (X,PylPZ.) m
located at row M in the video unit and the correspond- the ro:v a; ly 15 111) adced using a Satﬁlli eIEX? yPD) 11nta
: : row a ; or wherein, in a case tha is equal to
g ilamplzto be padde((iils dﬁ:noted (eils éocate;dst EIO\IW I;I 43 CtbSize}g(g and rows a; yP2 and yP1 ar};: unave(llilable
in the video unit, and wherein C,M)= ,O), iy D
whereby d (x,y) denotes a distance between row x and a gréa\éallable fuma sarlnple (X’LyP.2) at a row yPLZ 18
row y, wherein C represents a row where a represen- EEaVZilaElsén%u;asasgfl ele()?x y I)’ ll)n a? arorév?t }II) 1’ i2
tative luma sample is located in the video unit, where dded using the i) ,Ly i th }I: d
C, M and N are integers and M is not equal to N, and padded using the sample (x, yL) in the row at yL, an

wherein the representative luma sample is a collocated
luma sample of a chroma sample to be filtered in the
video unit.

a corresponding sample (x, yM1) in a row at yM1 is
padded using the sample (X, yL) in the row at yL.

#* #* #* #* #*

