1/63561 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 August 2001 (30.08.2001)

(10) International Publication Number

WO 01/63561 Al

(51) International Patent Classification’: GO06T 17/00

(21) International Application Number: PCT/US01/06345

(22) International Filing Date: 26 February 2001 (26.02.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/185,076 25 February 2000 (25.02.2000) US

(71) Applicant (for all designated States except US): THE
RESEARCH FOUNDATION OF STATE UNIVER-
SITY OF NEW YORK [US/US]; P.O. Box 9, Albany,
NY 12209-0009 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): KAUFMAN, Arie,
E. [US/US]; 94 Cedar Drive West, Plainview, NY 11803

(US). BITTER, Ingmar [US/US]; 1456 Stony Brook
Road, Stony Brook, NY 11790 (US). DACHILLE, Frank
[US/US]; 546 Terrace Road, Bayport, NY 11705 (US).
KREEGER, Kevin [US/US]; 115 Randall Avenue, Port
Jefferson, NY 11777 (US).

(74) Agents: BARON, Ronald, J. et al.; Hoffmann & Baron,
LLP, 6900 Jericho Turnpike, Syosset, NY 11791 (US).

(81) Designated States (national): AU, CA, JP, US.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: APPARATUS AND METHOD FOR VOLUME PROCESSING AND RENDERING

IMAGERY INPUT BUS

26

REAL-TIME REAL-TIME REAL-TIME
INPUT INPUT INPUT
0]\36 j\ss]\ae
N 3D 3D .. 3D
MEMORY MEMORY [\o4 MEMORY
4 [GEOMETRY INTPUTBUS | 24
[] 46
50— CUBE-5 CUBE-5 .| CuBES |__
UNIT [uNIT UNIT
T T \38 T ‘38
] | GEOMETRY OUTPUT BUS| 48
20 20 20
o MEMORY MEMORY MEMORY
% [40 ‘a0 40
[a]
a { BASEPLANE PIXEL BUS t <~
o
WARP WARP
UNIT UNIT
{ “a4 a4
FRAME BUFFER PIXEL BUS 34
TO FRAME BUFFER

(57) Abstract: An apparatus and method for real-time volume processing and universal three-dimensional rendering. The apparatus
includes a plurality of three-dimensional (3D) memory units (24); at least one pixel bus for providing global horizontal communica-
tion (34); a plurality of rendering pipelines; at least one geometry bus (46); and a control unit (38). The apparatus includes a block
processor having a circular ray integration pipeline for processing voxel data and ray data. Rays are generally processed in image
order thus permitting great flexibility (e.g., perspective projection, global illumination). The block processor includes a splatting
unit and a scattering unit. A method for casting shadows and performing global illumination in relation to light sources, which in-
cludes sweeping a two dimensional array of rays through the volume, can also be implemented with the apparatus. A method for
approximating a perspective projection includes using parallel projection.

WO 01/63561 PCT/US01/06345

10

15

20

25

30

APPARATUS AND METHOD FOR VOLUME PROCESSING AND RENDERING

STATEMENT OF GOVERNMENT RIGHTS
This invention was made with Government support under grant MIP9527694

awarded by the National Science Foundation and under grant N000149710402
awarded by the Office of Naval Research.

BACKGROUND OF THE INVENTION

This application claims priority to U.S. Provisional Patent Application Serial
No. 60/185,076, filed on February 25, 2000, which is incorporated herein by

reference.

Field of the Invention

The present invention relates generally to three-dimensional (3D) graphics and
volume visualization, and more particularly relates to an apparatus and method for

real time volume processing and universal three-dimensional rendering.

Description of the Prior Art

Computer rendering is the process of transforming complex information into a
format which is comprehensible to human thought, while maintaining the integrity
and accuracy of the information. Volumetric data, which consists of information
relating to three-dimensional phenomena, is one species of complex information that
can benefit from improved image rendering techniques. The process of presenting
volumetric data, from a given viewpoint, is commonly referred to as volume

rendering.

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Volume visualization is a vital technology in the interpretation of the great
amounts of volumetric data generated by acquisition devices (e.g., biomedical
scanners), by supercomputer simulations, or by synthesizing geometric models using
volume graphics techniques. Of particular importance for manipulation and display of
volumetric objects are the interactive change of projection and rendering parameters,
real-time display rates, and in many cases, the possibility to view changes of a
dynamic dataset over time, called four-dimensional (4D) visualization (i.e.,

spatial-temporal), as in the emerging integrated acquisition visualization systems.

A volumetric dataset is commonly represented as a 3D grid of volume
elements (voxels), often stored as a full 3D raster (i.e., volume buffer) of voxels.
Volume rendering is one of the most common techniques for visualizing the 3D scalar
field of a continuous object or phenomenon represented by voxels at the grid points of
the volume dataset, and can be accomplished using two primary methods: object-order
methods and image-order methods. Using an object-order approach, the contribution
of each voxel to the screen pixels is calculated, and the combined contribution yields
the final image. Using an image-order approach, sight rays are cast from screen pixels
through the volume dataset, and contributions of voxels along these sight rays are

used to evaluate the corresponding pixel values.

Over the past three decades graphics systems have evolved duofold: from
primarily two-dimensional (2D) to 3D and 4D (space and tifne), and from vector
graphics to raster graphics, where the vector has been replaced by the polygon as the
basic graphics primitive. This has led to the proliferation of polygon-based geometry
engines, optimized to display millions of triangles per second. In such systems,
however, triangle facets only approximate the shape of objects. Still, the 3D
polygon-based graphics market continues to boom, and has become one of the hottest

arenas of the personal computer (PC) industry.

In response to emerging demands placed on traditional graphics systems,

various techniques have been devised to handle and display discrete imagery in order

WO 01/63561 PCT/US01/06345

10

15

20

25

30

to enhance visual realism of the geometric model, as well as enhance or replace object
shape and structure. Among these techniques include 2D texture and photo mapping,
environment mapping, range images for image-based rendering, 2D mip-mapping,
video streams, 3D volumes, 3D mip-mapping, 4D light fields and lumigraphs, and
five-dimensional (5D) plenoptic functions. All these techniques require some sort of
dimensionality-based interpolation (bilinear, trilinear, quadrilinear, etc.) between

discrete pixels, texels, voxels, or n-oxels.

Special purpose computer architectures and methods for volume visualization
are known in the art. Traditional methods of volume visualization typically operate
by scanning through a volume dataset in a sequential manner in order to provide an
accurate representation of an object. For example, Cube-4, an architecture developed
by Dr. Arie Kaufman, Ingmar Bitter and Dr. Hanspeter Pfister, some of whom are also
named inventors in the present application, is a special purpose scalable volume
rendering architecture based on slice-parallel ray-casting. Cube-4 is capable of
delivering true real-time ray-casting of high resolution datasets (e.g., 1024° 16-bit
voxels at 30 Hertz frame rate). However, Cube-4.cannot deliver such real-time
performance for perspective projections. Presently, in known prior art rendering
systems, the use of perspective projections either increases the rendering time or
decreases the projected image quality. Additionally, prior architectures do not

provide the ability to combine volumes and geometries into a single image.

Referring now to Figure 1, a conventional volume visualization system 1 is
shown. As illustrated in Figure 1, the volume data is stored on a disk 2 and loaded
into memory 4 before rendering. A Central Processing Unit (CPU) 6 then computes
the volume rendered image from the data residing in memory 4. The final image is
written to a frame buffer 8, which is typically embedded on a graphics card, for

displaying on a monitor 9 or similar display device.

The present invention, therefore, is intended to provide a method and

apparatus which significantly enhances the capabilities of known methods and

WO 01/63561 PCT/US01/06345

10

15

20

25

30

apparatus to the extent that it can be considered a new generation of imaging data

processing.

Other and further objects will be made known to the artisan as a result of the
present disclosure, and it is intended to include all such objects which are realized as a

result of the disclosed invention.

SUMMARY OF THE INVENTION

The present invention is tantamount to a departure from the prior art because
of the all-encompassing new characteristics. An apparatus, in accordance with the
present invention, for real-time volume processing and universal three-dimensional
(3D) rendering includes one or more three-dimensional (3D) memory units; at least a
first pixel bus; one or more rendering pipelines; one or more geometry busses; and a
control unit. The apparatus is responsive to viewing and processing parameters which
define a viewpoint, and the apparatus generates a 3D volume projection image from

the viewpoint. The projected image includes a plurality of pixels.

The 3D memory units store a plurality of discrete voxels, each of the voxels
having a location and voxel data associated therewith. The voxels together form a
volume dataset, and the viewing and processing parameters define at least one face of
the volume dataset as the base plane of the volume dataset as well as first and last
processing slices of the volume dataset. The control unit initially designates the first
processing slice as a current slice of sample points, and controls sweeping through
subsequent slices of the volume dataset as current slices until the last processing slice

is reached.

Each of the plurality of rendering pipelines is vertically coupled to both a
corresponding one of the plurality of 3D memory units and the at least ﬁrét pixel bus,
and each of the rendering pipelines has global horizontal communication preferably
with at most its two nearest neighbors. The rendering pipelines receive voxel data

from the corresponding 3D memory units and generate a two-dimensional (2D) base

WO 01/63561 PCT/US01/06345

10

15

20

25

30

plane image aligned with a face of the volume dataset. The geometry I/O bus
provides global horizontal communication between the plurality of rendering
pipelines and a geometry engine, and the geometry I/O bus enables the rendering of

geometric and volumetric objects together in a single image.

The apparatus and methods of the present invention surpass existing 3D
volume visualization architectures and methods, not only in terms of enhanced
performance, image rendering quality, flexibility and simplicity, but in terms of the
ability to combine both volumes and surfaces (particularly translucent) in a single
image. The present invention provides flexible, high quality, true real-time volume
rendering from arbitrary viewing directions, control of rendering and projection
parameters, and mechanisms for visualizing internal and surface structures of high-
resolution datasets. It further supports a variety of volume rendering enhancements,
including accurate perspective projection, multi-resolution volumes, multiple
overlapping volumes, clipping, improved gradient calculation, depth cuing, haze,

super-sampling, anisotropic datasets and rendering of large volumes.

The present invention is more than a mere volume rendering machine; it is a
high-performance interpolation engine, and as such, it provides hardware support for
high-resolution volume rendering and acceleration of discrete imagery operations that
are highly dependent on interpolation, including 2D and 3D texture mapping (with
mip-mapping) and image-based rendering. Furthermore, the apparatus and methods
of the present invention, coupled with a geometry engine, combine volumetric and
geometric approaches, allowing users to efficiently model and render complex scenes
containing traditional geometric primitives (e.g., polygonal facets), images and

volumes together in a single image (defined as universal 3D rendering).

The apparatus of the present invention additionally provides enhanced system
flexibility by including various global and local feedback connections, which adds the

ability to reconfigure the pipeline stages to perform advanced imagery operations,

WO 01/63561 PCT/US01/06345

10

15

20

25

30

such as imaging warping and multi-resolution volume processing. Furthermore, the

present invention accomplishes these objectives in a cost-effective manner.

A preferred embodiment of the present invention is a method and apparatus for
performing approximate perspective volumetric ray casting of a three-dimensional
(3D) volume dataset. The apparatus of the invention is an approximating unit
configured with the teachings of the method of the invention. The invention can also
be practiced on a machine readable medium The method includes the steps of initially
selecting viewing and processing parameters which define a viewpoint and a view
direction. The length of the volume dataset is calculated between the location of the
nearest voxel to the viewpoint and the farthest voxel from the viewpoint. The length
is measured along either a line parallel to the view direction or an axis of the three-
dimensional volume dataset that is most parallel to the view direction. The volume
dataset is divided along the measured length into a plurality of slabs. Each of the
plurality of slabs has an orientation that is perpendicular to the measured length and
defines a plane having a position with respect to the viewpoint in three dimensional
space. A perspective projection is generated. Each of the plurality of slabs is rendered
by parallel projection onto a plurality of separate baseplane images. Each of the
plurality of images is textured through the perspective projection onto their respective
plane. The plurality of textured images are then blended together to form the final

image.

The processing can be performed sequentially for each of the plurality of slabs.
Alternatively, the processing can be performed starting with one of the plurality of
slabs having the farthest voxel from the viewpoint and ending with one of the
plurality of slabs having the nearest voxel, or vice versa. The can be diviced toslabs
have an equal thickness. Preferably the slabs are divide so that the position of each
respective plane of each of the plurality of slabs is situated at exponentially increasing
distances from the viewpoint along measured length. Preferably each successive slab
after the slab having the nearest voxel has a thickness along the measured length that

is twice the thickness of a preceding adjacent slab.

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In another preferred embodiment of the present invention is a method and
apparatus for mapping a three dimensional volume dataset in a linear memory array.
The volume dataset including a plurality of discrete voxels associated with a three
dimensional grid point position Pyyz = (x; y;) and the linear memory array having a
plurality of indices Oyyz. The apparatus of the invention is an addressing unit
configured with the teachings of the method of the invention. The invention can also
be practiced on a machine readable medium. The method includes converting integer
coordinates (x; y, z) of the grid point position of one of the plurality of discrete voxels
into a first bit pattern (...,X;, Xy, X, Xo3 -es V3> Yoy Y1s Voo -oos Z35 Z9y Z3» Zo)- An integer offset
for the discrete voxel is determined from a second bit pattern (..., zs, Vs, X3 2, ¥» X, 2, ¥,
X1, 25, Yo, Xo). The discrete voxel is mapped onto the linear array at the integer offset.
This process is repeated until each of the plurality of voxels are mapped. Preferably
the voxels are processed in linear storage order.

Another preferred embodiment of the invention is a block processor for
interfacing a ray bus and a plurality of three-dimensional (3D) memory units in a
volume processing unit. The volume processing unit generates a plurality of rays for
processing a volume dataset having a plurality of discrete voxels stored in a
distributed fashion in the plurality of three-dimensional (3D) memory units. Each of
the voxels have a location lying on a gridpoint in the volume dataset and have voxel -
data associated therewith. Each ray has a path and is a data structure having ray data
associated therewith. Each ray also has a sample location in the volume dataset with
respect to time associated with one or more voxels. The block processor having a
circular ray integration pipeline for processing the voxel data and the ray data to
represent an exchange of energy between the volume dataset and the ray data along
the path of each ray. The plurality of rays are processed simultaneously in a round-

robin fashion.

Preferably the block processor includes a queue sorter, at least one ray queue,
a prefetch and memory controller, an interleaved volume cache, a resampling unit, a

segmentation unit, a compositing unit, a shading unit, a scattering, and a splatting

WO 01/63561 PCT/US01/06345

10

15

20

25

30

unit. The queue sorter interfaces the plurality of rays over the ray busand separates
rays into a plurality of ray queues. The queue sorter assigns a scalar importance to
each of the plurality of rays queues for maintaining a sorted rank of importance for
each ray queues. The at least one ray queue is connected to the queue sorter and
receives the plurality of sorted rays, and controls the processing of each of the
plurality of sorted rays. The prefetch and memory controller is connected to the at
least one ray queue that has the highest scalar importance for receiving the plurality of
sorted rays and prefetches voxels to hide latency. The prefetch and memory controller
interfaces the memory units. The interleaved volume cache is connected to the
prefetch and memory controller for receiving the plurality of sorted rays and
prefetched voxels. The resampling unit is connected to the interleaved volume cache
for receiving the plurality of sorted rays and accepting one sample location along a ray
and a plurality of voxels that are nearest the sample location. The resampling unit
trilinearly interpolates density, tag, gradient and irradiance for the sample location to
generate sample data. The segmentation unit is connected to the resampling unit for
receiving the plurality of sorted rays and the sample data and classifying the material
type including color, opacity, and shading coefficients for the sample data. The
compositing unit is connected to the segmentation unit for receiving the plurality of
sorted rays and the sample data and updating the opacity and color of the ray based
upon the sample data. The shading unit is connected to the compositing unit for
receiving the plurality of sorted rays and the sample data. The scattering unit receives
the plurality of sorted rays and the sample data and redirects the ray direction based
upon the sample data and the material type of the data. The splatting unit is connected
to the scattering unit and receives the plurality of sorted rays and the sample data for
updating the voxel data and the ray data associated with the sample location. Either
the scattering unit or the splatting unit is directly connected to the shading unit and the

other is connected to the queue sorter.

- Preferably the splatting unit receives the ray data and the voxel data associated
with the sample location of the ray and copies the data. The voxel data is updated

based upon the copy of the ray data and the ray data is updated based upon the copy of

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the voxel data. Preferably the shading unit has a reflectance map for performing

shading.

A preferred embodiment of the invention is a method and apparatus for
scattering at least one ray passing through a three-dimensional (3D) volume dataset.
The apparatus of the invention is a scattering unit configured with the teachings of the
method of the invention. The volume dataset having a plurality of discrete voxels and
an estimated gradient. Each of the voxels having voxel data associated therewith.

The at least one ray having a direction, ray data associated therewith, and a sample
location in the volume dataset with respect to time associated with at least one voxel.
The voxel data associated with the sample location including a reflectivity in a range
between 0 and 1, a refractivity in a range between 0 and 1, a glossiness in a range
between 0 and 90. The method including the receiving and copying the ray data and
voxel data associated with the sample location. A first random number is selected in a
range between 0 and 1.. The ray direction is reflected about the estimated gradient in
the volume dataset at the sample location when the first random number is less than
the reflectivity at the sample location. A second random number is selected in a range
between 0 and 1. The ray direction is refracted based upon the refractivity of the
voxel data associated with the sample location and the estimated gradient in the
volume dataset at the sample location when the second random number is less than the
refractivity at the sample location. A random direction and a gaussian distributed
random angle are selected with the random angle being defined by the glossiness of
the voxel data multiplied by a third range between 0 and 1. The ray direction is
rotated in the random direction by the random angle based on the glossiness at the

sample location.

Another preferred embodiment of the invention is a queue sorter for
determining a processing order of a plurality of ray queues for a volume processing
system during processing. Each of the plurality of ray queues being assigned a dataset
including a queue number and a scalar importance. The queue sorter including a

pipelined insertion sorter having a comparison buffer and a selected buffer. The

WO 01/63561 PCT/US01/06345

10

15

20

25

30

comparison buffer having a first linear storage arrangement for storing at least one
dataset of one of said plurality of ray queues. The selected buffer having a second
linear storage arrangement for storing the dataset for each of said plurality of ray
queues. The pipelined insertion sorter receives a first dataset of one of said plurality
of ray queues at a rank of the first storage arrangement of the comparison buffer. The
scalar importance of the first dataset is compared with the scalar importance of a
second dataset in the selected buffer having the same rank to determine the dataset
having the higher scalar importance and the lower scalar importance. The dataset
having the higher scalar importance is assigned to the second dataset. The dataset
having the lower scalar importance is moved to the first dataset on the first linear
storage arrangement at a position located one below the rank of the second dataset.
The process is repeated during processing with the scalar importance of the active
queue set higher than the scalar importance of the remaining plurality of ray queues
and while removing an old dataset from the selected buffer when the first dataset has
the same quene number as the old dataset. Preferavbly the pipelined insertion sorter

sorts a plurality of datasets simultaneously.

Another preferred embodiment of the invention is a method for casting
shadows of a volume dataset in relation to point light sources located both inside and
outside, distant light sources located outside the volume dataset, and area light sources
inside the volume dataset. The volume dataset having a plurality of discrete voxels
stored in a distributed fashion in a plurality of three-dimensional (3D) memory units.
Each of the voxels having a location lying on a gridpoint in the volume dataset and
having voxel data associated therewith. The method includes computing sum of the
optical path length to all the point light sources for all of the voxels in the volume data
set. The sums of the optical path length values are stord in both a radiosity array and
an unshot radiosity array. A projection direction and a face of the volume dataset is
selected which is most perpendicular to the projection direction. The volume dataset
is divided along the projection direction into a plurality of slices which are parallel to
the face. The plurality of slices include a first slice Having at least one voxel

associated with the face. A two dimensional (2D) array of rays is initialized on the

10

WO 01/63561 PCT/US01/06345

10

15

20

25

30

selected face with any distant light source energy. Each of the rays has a path parallel
to the projection direction and ray data associated therewith. The first slice is
assigned as a current slice. The light energy is intergrated and distributed to voxels
along each path of each ray within the current slice. The process is repeated by
sequentially sweeping along the projection direction through each subsequent slice
until each of the plurality of slices is processed with each subsequent slice in turn

becoming the current slice.

Preferably the two dimensional array of rays are initialized by making a copy
of all the ray data and all voxel data on the current slice with the voxel data including
the reflectivity, opacity, radiosity, and unshot radiosity, the ray data representing light
energy. A current voxel is selected. An appropriate neighborhood of rays is
determined for the current voxel. The ray data at the current voxel is resampled. The
ray data is modulated by a factor zeta to distribute the energy. The current voxel data
is updated based on the resampled ray data. The data of the neighboring rays is
updated based on the current voxel data. The process is repeated for each voxel in the
current slice. The ray data is stored back into the neighboring rays and the voxel data

1s stored back into the volume dataset.

Another preferred embodiment of the invention is a a programmable
processing element for controlling the storage location of volume data and polygon
data. The data is distributed among blocks of a scheduling grid and is stored in a
memory hierarchy having a first tier, a second tier, and a third tier. The scheduling
grid has a plurality of rays casted there through and stored in ray queues. The
programmable processing element includes a dispatcher, a scheduler, and a buffer.
The dispatcher controls the volume data and the polygon data movement through the
memory hierarchy. The dispatcher is operatively coupled to the first, second and third
tiers. The scheduler determines the block processing order based upon the scheduling
grid and the plurality of ray queues. The buffer is connected between the dispatcher
and the scheduler for facilitating communication between the dispatcher and the

scheduler. Preferably the scheduler has a heuristic metric for determining the block

11

WO 01/63561 PCT/US01/06345

10

15

20

25

processing order.

These and other features and advantages of the present invention will become
apparent from the following detailed description of illustrative embodiments thereof,

which is to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a conventional volume visualization system.

Figure 2 is a conceptual block diagram illustrating a universal three-
dimensional rendering system formed in accordance with one embodiment of the

present invention.

Figure 3 is a simplified block diagram of the Cube-5 unit of Figure 2
illustrating a preferred implementation of the present invention.

Figure 4 is a functional block diagram depicting an overview of the universal
three-dimensional rendering architecture formed in accordance with one embodiment

of the present invention.

Figure 5 is a functional block diagram illustrating a unit rendering pipeline

formed in accordance with one embodiment of the present invention.

Figure 6A is a graphical representation showing how 32 bits of texel data is
stored for 2x2 neighborhood in a miniblock of 16-bit voxels, in accordance with a

preferred method of the present invention.

Figure 6B depicts a tabular comparison of voxel storage and texel storage for

the example of Figure 6A.

12

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 7 illustrates special parallel preserving scanlines in the source and
target images in accordance with a preferred forward image warping method of the

present invention.

Figure 8 is a graphical representation illustrating a method for determining the
parallel preserving scanline direction in accordance with the preferred forward image

warping method of the present invention.

Figure 9 is two-dimensional graphical representation of an example illustrating
pixel read templates in the source image for performing scanline processing, in
accordance with the preferred forward image warping method of the present

invention.

Figure 10 is two-dimensional graphical representation of the example of
Figure 9 illustrating a bilinear interpolation of samples for performing scanline
processing, in accordance with the preferred forward image warping method of the

present invention.

Figure 11 is two-dimensional graphical representation of a linear interpolation
on samples to obtain pixel values for performing target pixel correction, in accordance

with a preferred method of the present invention.

Figure 12 is a graphical representation illustrating the calculation of an
anisotropic filter footprint for performing antialiasing in accordance with a preferred

forward image warping method of the present invention.
Figure 13 is a graphical representation illustrating the splatting of source

pixels onto the target samples, in accordance with the preferred forward image

warping method of the present invention.

13

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 14 depicts an example of a y-slice shear for performing three-
dimensional rotation by two-dimensional slice shear decomposition, in accordance

with one method of the present invention.

Figure 15 depicts an example of an x-beam shear for performing three-
dimensional rotation by two-dimensional beam shear decomposition, in accordance

with another method of the present invention.

Figure 16 depicts an example of an x-slice-y-beam shear for performing three-
dimensional rotation by two-dimensional slice-beam shear decomposition, in

accordance with still another method of the present invention.

Figure 17 depicts an example of a three-dimensional x-beam shear for
performing three-dimensional rotation by three-dimensional beam shear

decomposition, in accordance with yet another method of the present invention.

Figure 18A illustrates a conventional undersampling method for performing

perspective projections.

Figure 18B illustrates a conventional oversampling method for performing

perspective projections.

Figure 19 illustrates an adaptive perspective ray-casting method for
performing perspective volumetric projections, in accordance with a preferred form of
the present invention, wherein a view frustum is divided into regions based on

exponentially increasing distance from a viewpoint.
Figure 20A is a graphical representation illustrating the splitting/merging of

rays at exponential region boundaries, in accordance with the preferred adaptive

perspective ray-casting method of the present invention.

14

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 20B is a graphical representation illustrating the effective filter weights
for ray segments A, B and C of the adaptive perspective ray-casting method example

of Figure 20A.

Figure 21 illustrates an example of the weights for a two-dimensional filter of

size £2 samples, in accordance with a preferred form of the present invention.

Figure 22 is a graphical representation illustrating an example of a of the
adaptive perspective ray-casting method of the present invention, wherein a 7° volume

is three voxel units from the viewpoint.

Figure 23 is a pseudo-code representation of a preferred method for
performing Exponential-Regions Perspective back-to-front projection of a volume, in

accordance with one form of the present invention.

Figure 24 illustrates an example of the Exponential-Regions Perspective ray

casting method of the present invention across two regions.

Figure 25 depicts an example of the preferred weights for performing a 3°
symmetric approximation of the x-component of a Sobel gradient filter, in accordance

with one embodiment of the present invention.

Figure 26 is a graphical representation illustrating a method for mixing
geometric objects and volumes in a single image in accordance with one form of the

present invention.

Figure 27 is a graphical representation of a method for clipping triangles to

thin slab boundaries in accordance with one form of the present invention.

Figure 28 is a graphical representation of a method for bucket sorting

translucent polygons in accordance with a preferred form of the present invention.

15

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 29 is a graphical representation of a method, in accordance with one
form of the present invention, for creating sheared viewing geometry by pre-warping

the polygon footprints.

Figure 30 is a graphical representation of a Cube-5 pipeline, formed in
accordance with one form of the present invention, illustrating an SRAM composite

buffer included therein.

Figure 31 is a graphical representation of a conventional graphics accelerator,
conceptually illustrating the interfaces between the texture memory, frame buffer and

geometry pipeline.

Figure 32 is a graphical representation illustrating one embodiment of the
present invention employing a duai-use DRAM frame buffer connecting a geometry

pipeline with the Cube-5 volume rendering pipeline of the present invention.

Figure 33 is a block diagram illustrating memory interfaces for each Cube-5
pipeline including a coxel FIFO queue, in accordance with one form of the present

invention.

Figure 34 is a graphical representation of a RGBa coxel layout onto eight
DRAM chips, formed in accordance with a preferred embodiment of the present

invention.

Figure 35 is a partial block diagram representation of an embedded DRAM
chip implementation of run-length encoding (RLE) frame buffer hardware, formed in

accordance with one form of the present invention.

Figure 36 is a pseudo-code representation showing processing occurring in the

RLE hardware of Figure 35, in accordance with one form of the present invention.

16

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 37 1s a graphical representation of a preferred embodiment of the
present invention illustrating a RLE frame buffer connecting a geometry pipeline to an

SRAM compositing buffer included in the Cube-5 pipeline.

Figure 38 illustrates a density profile of an oriented box filter taken along a
line from the center of a solid primitive outward, perpendicular to the surface, in

accordance with one form of the present invention.

Figure 39 illustrates a density profile of an oriented box filter taken along a
line perpendicular to a triangle surface primitive, in accordance with another form of

the present invention.

Figure 40 depicts a two-dimensional illustration of seven voxelization regions
for a triangle primitive, in accordance with a preferred embodiment of the present

invention.

Figure 41 is a pseudo-code repfesentation of a method for computing the

distance from a plane, in accordance with one form of the present invention.

Figure 42 is a block diagram representation illustrating an overview of a
hardware voxelization pipeline, formed in accordance with one embodiment of the

present invention.

Figure 43 1is a block diagram depicting a distance unit which incrementally
computes the distance of a current voxel from a desired plane, in accordance with one

form of the present invention.
Figure 44 is a top view graphical representation illustrating a preferred method

for performing image-based rendering in accordance with one form of the present

invention.

17

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 45 shows a two step volume rendering using the VolumePro board for

ray casting and a 3D graphics card for image warping.

Figure 46 shows a multipass perspective approximation using slabs aligned in

parallel to the image plane.

Figure 47 shows a multipass perspective approximation using slabs aligned

orthogonal to a volume axis.

Figure 48 shows the VolumePro board processing a large axis aligned

bounding box with cut planes.

Figure 49 illustrates that a thick cut plane falloff creates a fuzzy cut plane

transition versus a binary inside/outside decision which causes aliasing.

Figure 50, illustrates an algorithm for the image aligned method using the

VolumePro board.
Figure 51 shows an external overview of a colon used in experimentation.

Figure 52 shows a multiple-32 aligned bounding box for point X also works

for points B and C.

Figure 53 shows a portion of a colon with overlapping subvolume boxes

created with a greedy algorithm.

Figure 54 shows a block hardware design of a hierarchical memory

architecture with programmable processing elements.

Figure 55 shows a hybrid volume and polygon scene with a superimposed

scheduling grid.

18

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 56 shows the data flow through the Cube 5 system with a scheduler and

dispatcher communicating through a buffer.

Figure 56A shows a plurality of rays casting through a scheduling grid having

numbered cells.

Figure 56 B shows RAYS A and B casted through a scheduling grid
interacting with an object forming reflected rays with dashed lines representing light

rays cast towards light illuminating the scene.

Figure 56C shows the trees for RAYS A and B of Figure 56B.

Figure 56D shows a ray forest with &=2 for the top nodes of each tree for

considering which node will be processed.

Figure 56E shows the ray forest shown in Figure 56D after processing cell

number 8.

Figure 56F shows the ray forest shown in Figure 56E after processing cell

number 5.

Figure 57 illustrates a simple slab partition that cuts the volume into p axis

aligned slabs with one slab assigned to each processor for multiprocessing.

Figure 58 illustrates a repeating slab partition that cuts the volume into slabs of

n voxels thick and assigns slab i to processor i mod p for multiprocessing.
Figure 59 illustrates a skewed block slab partition that cuts the volume into
cubic blocks and assigns cubic block (i, j, k) to processor (i +j + k) mod p for

multiprocessing.

Figure 60 shows bit widths in a typical 32 byte ray packet.

19

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 61 shows an overview of a block processor showing a circular ray

integration pipeline fed by multiple queues.
Figuré 62 shows a typical voxel format;
Figure 63 shows the splitting of energy at a volume sample s;
Figure 64 shows an overview of the GI-Cube architecture;

Figure 65 shows a pipelined insertion sorter for selecting the most important

queue;

Figure 66 shows the volume memory cache design including the prefetch

architecture, RDRAM interface, and 8-way interleaved volume memory;
Figure 67 illustrates an algorithm for volumetric backprojection;

Figure 68 shows a ray buffer stepping through the volume one slice at a time,

wrapping around at the edges;
Figure 69 shows convergence of radiosity in a scene.

Figure 70 shows a section from (a) continuous and (b) binary object

reconstruction.
Figure 71 shows a setup of the opaque reconstruction virtual test rig.

Figure 72 illustrates a linear memory array that is used by both the traditional

linear volume layout and recursive blocking volume layout.

Figure 73 illustrates a linear volume layout.

20

WO 01/63561 PCT/US01/06345

5

10

15

20

25

30

Figure 74 illustrates a recursive blocking volume layout for a 256 cubed

volume.

Figure 75 illustrates a recursive blocking volume layout for a 4 cube volume

dataset with the index numbers shown on the face of the block.

Figure 76 illustrates the index layout for each slice in the block shown in

Figure 18.

Figure 77 illustrates a position to index lookup table.

Figure 78 illustrates an index to position lookup table.

Figure 79 is a conceptual block diagram illustrating a universal three-
dimensional rendering and processing of high-resolution datasets formed in

accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The apparatus and methods of the present invention are capable of processing
data and supporting real-time visualization of high resolution voxel-based data sets.
The present invention is a universal three-dimensional (3D) rendering system

delivering enhanced volume rendering in addition to the integration of imagery (e.g.,

‘volumes, textures and images) with geometry (e.g., polygons). The apparatus and

methods are designed for use as a voxel-based system as described in the issued
patents and pending applications of Dr. Arie Kaufman, a named inventor in this
application, including “Method of Converting Continuous Three-Dimensional
Geometrical Representations Into Discrete Three-Dimensional Voxel-Based
Representations Within a Three-Dimensional Voxel-Based System”, which issued on
August 6, 1991, as U.S. Patent No. 5,038,302; “Method of Converting Continuous
Three-Dimensional Geometrical Representations of Polygonal Objects Into Discrete

Three-Dimensional Voxel-Based Representations Thereof Within a Three-

21

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Dimensional Voxel-Based System”, which issued on January 22, 1991, as U.S. Patent
No. 4,987,554; “Method and Apparatus for Storing, Accessing, and Processing Voxel-
Based Data”, which issued on January 15, 1991, as U.S. Patent No. 4,985,856;
“Method of Converting Continuous Three-Dimensional Geometrical Representations
of Quadratic Objects Into Discrete Three-Dimensional Voxel-Based Representations
Thereof Within a Three-Dimensional Voxel-Based System”, which was filed on May
4, 1989, as U.S. Serial No. 07/347,593, which was abandoned in favor of U.S. Serial
No. 08/031,599, filed on March 15, 1993 as a continuation application of the <593
application; “Method and Apparatus for Generating Arbitrary Projections of Three-
Dimensional Voxel-Based Data”, which issued on March 31, 1992 as U.S. Patent No.
5,101,475; “Method and Apparatus for Real-Time Volume Rendering From An
Arbitrary Viewing Direction”, which was filed on July 26, 1993 as U.S. Serial No.
08/097,637; “Method and Apparatus For Generating Realistic Images Using a
Discrete Representation”, which was filed on March 20, 1992 as U.S. Serial No.
07/855,223; “Apparatus and Method for Parallel and Perspective Real-Time Volume
Visualization”, which issued on December 8, 1998 as U.S. Patent No. 5,847,711; and
Apparatus and Method for Real-Time Volume Processing and Universal 3D
Rendering which was filed on July 16, 1999 as U.S. Serial No. 09/354,876. The

entire disclosure of each of these references is incorporated herein by reference.

Figure 2 illustrates a conceptual view of a universal 3D rendering system 10
formed in accordance with one embodiment of the present invention. Applications 12
which display collections of renderable objects are preferably split by an Applications
Program Interface (API) 14 into appropriate imagery and geometry representations.
These representations are subsequently processed by an imagery unit 16 and a
geometry unit 18, respectively, which are illustrated generally as functional blocks.
The imagery unit 16 preferably includes a plurality of imagery pipelines and the
geometry unit 18 preferably includes a plurality of geometry pipelines (not shown) for
rendering the imagery and geometry representations, respectively. The rendered

outputs of the imagery unit 16 and the geometry unit 18 are subsequently combined in

22

WO 01/63561 PCT/US01/06345

10

15

20

25

30

a blending unit 20 to generate a single baseplane image. This baseplane image may

preferably be transformed by a warp unit 22 to a final projection plane for display.

Figure 3 illustrates one implementation of the Cube-5 volume visualization
system of the present invention. As shown in Figure 3, the system preferably includes
one or more three-dimensional memory units 24, with each 3D memory unit 24
vertically coupled to an input bus 26 and a corresponding Cube-5 chip 28. A plurality
of Cube-5 chips 28 are shown connected to a frame buffer pixel bus 34. Furthermore,
the system 10 of the present invention preferably interfaces to at least one
conventional geometry engine 30 and a host computer 32, both operatively coupled
between the input bus 26 and the frame buffer pixel bus 34 for communicating with

the Cube-5 apparatus of the present invention.

Referring now to Figure 4, the apparatus of the present invention 10 includes a
plurality of 3D memory units 24 which are preferably connected to an imagery input
bus 26, providing global horizontal communication between the 3D memory units 24.

The volume dataset is commonly represented as a regular grid of volume elements, or
voxels, often stored as a full 3D raster (i.e., volume buffer). This volume dataset is
preferably distributed across the 3D memory units 24. With a skewed distribution, the
present invention allows conflict-free access to complete beams (i.e., rows) of voxels
parallel to any of the major axes, thereby reducing the memory-processor bandwidth
bottleneck. As illustrated in Figure 4, for streaming video or four-dimensional (4D)
volume data through the system 10, each 3D memory unit 24 is preferably connected
to a dedicated real-time input 36. By providing a dedicated connection to a real-time

input source, the memory-processor bandwidth bottleneck is further reduced.

The universal 3D rendering system 10 of the present invention further includes
a plurality of rendering pipelines, shown as functional blocks of Cube-5 units 38 in
Figure 4. Each rendering pipeline 38 is connected to a corresponding 3D memory
unit 24 and preferably has horizontal communication with at least preferably its two

nearest neighbors. The Cube-5 units 38 read from their dedicated 3D memory units

23

WO 01/63561 PCT/US01/06345

10

15

20

25

30

24 and produce a two-dimensional (2D) baseplane image. This baseplane image,
which contains a plurality of composited pixels generated by the Cube-5 units 38, is
preferably distributed across a plurality of two-dimensional (2D) memory units 40.
Each of the plurality of 2D memory units 40 is preferably connected to both a
corresponding Cube-5 pipeline unit 38 and a baseplane pixel bus 42 which provides

global horizontal communication between 2D memory units 40.

Preferably, the present invention includes a plurality of warp units 44
connected to the baseplane pixel bus 42. The warp units 44 assemble and transform
(i-e., warp) the baseplane image stored in the plurality of 2D memory units 40 onto a
user-defined image plane. Although the present invention contemplates using a single
warp unit 44 (e.g., in order to reduce the costs or overhead of the hardware), the use of

a plurality of warp units 44 is desirable to accelerate image transformations.

The output of each of the warp units 44 is preferably connected to a frame
buffer pixel bus 34 which provides global horizontal communication between warp
units 44. Reading the source pixels over the baseplane pixel bus 42 and writing the
final image pixels over the frame buffer pixel bus 34 preferably happens concurrently
in order to allow greater system throughput. Although not a preferred architecture, the
present invention also contemplates sequential reading and writing by the warp units
44. In this manner, only one pixel bus may be required, assuming the one pixel bus

offers sufficient bandwidth for real-time image transfer for a full screen image.

With continued reference to Figure 4, the present invention preferably includes
a geometry input bus 46 and a geometry output bus 48, although it is contemplated to
combine the two busses into a single geometry input/output bus of sufficient
bandwidth for real-time imaging. The geometry input and output busses 46 and 48
are preferably connected to the inputs and outputs of the Cube-5 units 38 respectively
and provide for the unique coupling of at least one geometry pipeline or engine (not
shown) to the present system 10. The architecture of the present invention, coupled

with a geometry engine via the geometry busses 46 and 48, supports the integration of

24

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Imagery, such as volumes and textures, with geometries, such as polygons and
surfaces. This mixing of geometric data with volumetric objects is a powerful feature

which is unique to the present invention.

Referring now to Figure 5, there is illustrated a block diagram depicting the
functional stages of one of the plurality of Cube-5 rendering pipelines (reference
number 38 in Figure 4), formed in accordance with one embodiment of the present
invention. As shown in Figure 5, each rendering pipeline 52 preferably includes four
types of processing units: a trilinear interpolation unit (77iLin) 54, a gradient
estimation unit (Gradient) 56, a shading unit (Shader) 58 and a compositing unit
(Compos) 60. Each of these rendering pipeline stages is described in detail in the
prior issued patents and pending applications of Arie Kaufman relating to prior Cube
volume visualization architectures (listed above) and are therefore only briefly

discussed herein below.

As discussed above in reference to the 3D memory units 24, the volume
dataset is stored as a regular grid of voxels distributed across the 3D memory units 24
in a skewed fashion, with each Cube-5 unit 38 connected to a corresponding 3D
memory unit 24 (see Figure 4). Voxels of the same skewed beam are preferably
fetched and processed in parallel, distributed across all Cube-5 units 38. Consecutive
slices of the volume dataset parallel to a predefined baseplane (i.e., parallel to a face
of the volume dataset which is most perpendicular to a predefined view direction) are
preferably traversed in scanline order. Referring again to Figure 5, an address
generation and control unit 62 preferably generates the addresses for access into the
3D memory unit 24. The address generation and control unit 62 additionally
designates a first processing slice as the current processing slice and controls
sweeping through subsequent slices of the volume dataset until the final slice has been

processed.

The trilinear interpolation unit 54 computes a new slice of interpolated sample

values between two processing slices. It is contemplated by the present invention that

25

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the trilinear interpolation function may alternatively be performed as a sequence of

linear or bilinear interpolations.

The gradient estimation unit 56 preferably computes central difference
gradients using volume data from multiple slices of the volume dataset. Utilizing the
central difference gradients generated by the gradient estimation unit 56, sample
points of the current processing slice are subsequently shaded by the shading unit 58.
The shading unit 58 preferably uses the samples and gradients as indices into one or
more look-up tables (LUTS), preferably residing in each shading unit 58, which store
material color and intensity information. The material color table is dataset-type
dependent, while the color intensity table is based on a local illumination model, as
known by those skilled in the art. In simple terms, the multiplication of color and
intensity yields a pixel color for each sample which is used in the compositing unit 60

to composite such color with the previously accumulated pixels along each sight ray.

With reference again to Figure 4, data for computing the next sample along a
continuous sight ray may reside on a neighboring Cube-5 unit 38. In this case, the
nearest-neighbor connections between Cube-5 units 38 are preferably used to transfer
the necessary data to the appropriate Cube-5 unit 38, which will continue to process
that particular sight ray. When compositing has been completed, the composited
pixels (i.e., baseplane pixels) are preferably stored in the corresponding 2D memory
unit 40 connected to the Cube-5 unit pipeline 38. The baseplane pixels, which form
the baseplane image, are subsequently read from the 2D memory units 40, via the
baseplane pixel bus 42, and assembled by the warp units 44. The warp units 44

additionally transform the baseplane image to the final projection plane image.

Referring to Figure 5, the delay of data required for the trilinear interpolation
unit 54 and gradient estimation unit 56 is preferably achieved by inserting one or more
first-in-first-out (FIFO) units 64 into the pipeline data path prior to being processed by
the trilinear interpolation 54 and the gradient estimation 56 units. The FIFO unit(s) 64

may be implemented as, for example, random access memory (RAM), preferably

26

WO 01/63561 PCT/US01/06345

10

15

20

25

30

embedded on the Cube-5 chip. The introduction of a predetermined delay may be
particularly important when simultaneously processing beams of multiple slices of the

volume dataset, thereby requiring more computation time between slices.

A compositing buffer (Compos Buffer) 74 operatively coupled to a bilinear
interpolation unit (BiLin) 72 essentially provides a one slice FIFO. The bilinear
interpolation unit 72 preferably interpolates to obtain values between voxels as needed
for texture mapping. For volume rendering, BiLin 72 preferably uses only weights of
0.0 or 1.0 which selects one of the corner voxels of the volume dataset (determined by
Select x and Select y). It just moves the ray data, if the ray crosses pipelines. Just a
mux [?] for x and y would be enough for volume rendering, but bilinear interpolation

is preferred because of texture mapping.

The Cube-5 architecture preferably supports re-ordering of the pipeline stages
and a number of multipass rendering and processing operations, which require
feedback connections between various stages of the Cube-5 rendering pipelines 52
and the 3D memory units 24. For example, correct rendering of overlapping
volumetric objects preferably requires at least two passes through the Cube-5 pipeline
52, where the first pass re-samples the volumetric objects to align them with each
other and the second pass renders the volumetric objects in interleaved order. As
shown in Figure 5, a multiple volumes feedback path 66 is preferably provided,
operatively connecting the output of the compositing unit 60 to the corresponding 3D
memory unit 24, which allows the re-sampled volumes to be written back into the 3D
memory unit 24 after re-sampling, classification and shading. The final rendering

pass works on RGBa volumes.

Similarly, each Cube-5 rendering pipeline 52 preferably includes an image-
based rendering feedback path 68 connected between the warp unit 44 and the 3D
memory unit 24. The image-based rendering feedback line 68 preferably provides a
feedback path for writing the intermediate warped images to the 3D memory unit 24.

This may be particularly useful for accelerating certain image-based rendering

27

WO 01/63561 PCT/US01/06345

10

15

20

25

30

operations requiring multiple warp passes. The architecture of the present invention
further contemplates feedback connections between the 3D memory unit 24 and
various other Cube-5 rendering pipeline stages, or between the individual pipeline
stages themselves. Image rendering speed may be substantially increased by
including feedback paths which provide direct and immediate access to the
computational results of individual pipeline stages, without having to wait for the

results to traverse through the entire Cube-5 rendering pipeline 52.

In a preferred embodiment of the present invention, the Cube-5 system
includes connections which bypass selective stages of the rendering pipeline, that, for
example, may not be required for certain imaging operations. By bypassing these
unused pipeline stages, such imaging operations can be accelerated. As illustrated in
Figure 5, a texture map bypass 70 is preferably included in each Cube-5 rendering
pipeline 52. This texture map bypass connection 70 substantially speeds up mip-
mapping, for instance, which consists of storing multiple levels-of-detail (LOD) of the
image to be processed, by bypassing the shading unit 58 and compositing unit 60 and
directly presenting the results from the trilinear interpolation unit 54 and gradient
estimation unit 56 to the bilinear interpolation unit 72. In this way, the architecture of
the present invention can preferably be considered not only as an array of pipelines for
performing volume rendering, but as a collection of hardware resources which can be
selectively configured to perform a variety of imaging operations. For example, when
the Cube-5 system of the present invention is performing volume rendering,
essentially all of the hardware resources are required, while texture mapping generally

requires only memory, some buffering and the interpolation units.

Another unique and important aspect of the present invention which will now
be discussed is the ability of the Cube-5 architecture to preferably interface with at
least one conventional geometry engine 76 to support mixing of geometric data and
volumetric objects in a single image. This is preferably accomplished by providing at

least one geometry bus, as discussed above, to interface with the geometry engine 76.

28

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Preferably, the Cube-5 architecture of the present invention is adapted to re-
use pipeline components (e.g., interpolation unit, etc.), wherever possible, to
accelerate a variety of rendering algorithms using multiple configurations, in
particular, rendering scenes of multiple volumetric and polygonal objects, texture
mapping, and image-based rendering. Among other important advantages, reusing
pipeline components reduces hardware costs. The Cube-5 architecture also supports
various unique methods and algorithms for enhancing volume rendering and
acceleration of other imaging operations. Some of these methods and algorithms will

be discussed individually in greater detail below.

In a preferred embodiment of the Cube-5 system, formed in accordance with
the present invention, volume datasets are stored in blocks, thereby taking advantage
of spatial locality. Instead of linear blocking (e.g., Voxelator API), hierarchical
blocks are used which are preferably stored in a distributed arrangement, skewed
across multiple 3D memory units. For example, using current Mitsubishi Electric 16-
bit, 125 megahertz synchronous dynamic random access memory (SDRAM) to
implement the 3D memory, each block can contain 8° 16-bit voxels requiring 1024

bytes or two SDRAM pages.

Each block is preferably organized as a collection of 2>-voxel miniblocks
residing in the same 3D memory unit. The banks inside the SDRAM can preferably
be accessed in a pipelined fashion such that the current burst transfer essentially
completely hides the setup of the subsequent burst transfer. If the view-dependent
processing order of the voxels in a miniblock does not coincide with their storage
order, then the eight miniblock voxels are preferably reordered on the Cube-5 chip.
Hence, a single copy of the volume dataset on the SDRAM is sufficient. Therefore,
hierarchical blocking allows random access to miniblocks at essentially full burst
mode speed, essentially full (100%) bandwidth utilization, view-independent data

storage and balanced workload.

29

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Blocking not only optimizes the memory interface, but has an additional
advantage of reducing the inter-chip communication bandwidth (i.e., between Cube-5
hardware units), since only the voxels on the block perimeters need to be exchanged
between neighboring chips processing neighboring blocks. While processing a
b*-voxel block in O(b’) time, only the O(*) voxels on the block boundary need to be
communicated between chips processing neighboring blocks, where b is the size of a
block edge and each block has bxbxb (i.e., b°) voxels. Therefore, inter-chip
communication needs O(1/b) less bandwidth than with a non-blocking solution. The
size of the block edge b can be in the range of about 4 < b < 64, although a block edge
size of eight (8) is preferred.

Block look-up tables (LUT) are preferably utilized to store the pointers to all
blocks comprising the current volume. This approach provides an easy method to
restrict the active volume while zooming into a selected region of interest of a large
volume. It also allows rendering of arbitrarily shaped sub-volumes (at block-sized
granularity). Additionally, scenes containing many small volumes can be rendered
very efficiently, as all volumes can reside anywhere among the 3D memory units, and
only the look-up tables must be reloaded for each volume, rather than the 3D memory

units.

One method of performing perspective projection and/or Level-of-Detail
(LOD) relies on two-fold super-sampling in the x and y directions. Accordingly, a
four-times (4x) replication of the interpolation units for trilinear interpolation, as well
as the gradient estimation units for gradient computation, is preferably employed. As
a result, the datapath between the SDRAM and the Cube-5 pipelines is essentially
unchanged. However, the bandwidth between Cube-5 pipelines is quadrupled, as is
the on-chip throughput and buffers, primarily because each sample of the normal
mode is replaced by up to four samples (i.e., 2x in the x direction and 2x in the y

direction).

30

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Handling anisotropic datasets and super-sampling preferably require a

modification of opacity .. The combined functionis &' = 1 - (I-a)™, with
super-sampling factor £ representing the number of samples per voxel cell, and d
representing the distance which a sight ray travels (i.e., the length of the path of the
sight ray) through each voxel cell. Preferably, a look-up table (LUT) is employed, for

fast look-up of o' during rendering.

With continued reference to Figure 5, the perspective rendering of volumetric
data with close to uniform sampling of the underlying volume dataset requires re-
scaling of the compositing buffer 74 with filtering between levels. Level-of-detail
(LOD) perspective rendering requires re-alignment of the compositing buffer 74
between levels. Both of these processes, which incorporate global communication not
available in the pipelines 52 , are preferably performed by the warp unit(s) 44.
Although the compositing buffer 74 is already accessible to the warps units 44, it is
preferred that a feedback line 43 be used to write the filtered values back into the
compositing buffer 74.

A hardware warp unit is generally necessary to obtain final full screen images
in real time (i.e., a 30 Hertz frame rate). As shown in Figure 5, the baseplane image,
generated by the compositing units 60 of the Cube-5 rendering pipelines 52, is
preferably buffered in the 2D memory units 40. To lower the memory bandwidth
from the 2D memory units 40 to the warp unit 44, each pixel of the baseplane image is
preferably accessed only once. To perform a linear interpolation between samples of
the current and the previous scanline, another FIFO unit, sized to hold at least one
scanline, is required to store the previous scanline samples. The interpolation weights

for each grid pixel are preferably pre-calculated on a host machine.

In order to perform the accurate mixing of volumes and geometry, for opaque
geometric objects, the Z-buffer image is preferably written to the compositing buffer
60. The compositing unit 60 must perform a z-comparison prior to blending each new

sample. Additionally, for translucent geometric slices, the geometry engine 76

31

WO 01/63561 PCT/US01/06345

10

15

20

25

30

preferably utilizes the geometry input bus (reference number 46 in Figure 4) of the
present invention to insert each slab of RGBa values into the data stream so that each

slab is interleaved with the volumetric data slices.

For texture mapping, Figure 6 shows, by way of example, how 32 bits of texel

data are preferably stored for a 2x2 neighborhood in a miniblock of 16-bit voxels in
the 3D memory unit, in accordance with the present invention. Therefore, a four-texel
neighborhood of 32-bit texels is preferably read during each memory burst read.
Without data duplication, the Cube-5 system preferably performs, on average, 2.25
data burst reads to access the appropriate texel neighborhood, since some texture

coordinates may lie between stored miniblocks.

With reference again to Figure 5, in accordance with one form of the present
invention, one way to implement image-based rendering in hardware is to utilize the
memory control unit 78, preferably included in each Cube-5 pipeline 52, to read the
appropriate source pixels based on the contributing region for each pipeline. The
interpolation units (e.g., 54 and 72) in that pipeline 52 will then preferably perform
the four-dimensional (4D) interpolations needed for light field rendering or
lumigraph. As an alternative implementation, the warp unit 44 may be utilized to
perform this function. The source pixels contributing to the current vic;w are read and
assembled into the 2D memory units 40, preferably through a connection line 41,
followed by the warp transformation. Preferably, four assembled source images are
processed in four consecutive warp passes. The final combination of the four
intermediate warped images is performed in the Cube-5 pipeline 52. As described
previously above, the image-based rendering feedback line 68 provides feedback for
writing the intermediate warped images to the 3D memory 24. For either approach,

the 3D memory units 24 provide local storage for a large database of images.

It is to be appreciated that the apparatus of the present invention described
herein above (and referred to as Cube-5) may considerably accelerate conventional

volume processing methods, beyond the universal rendering already described.

32

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Additionally, the Cube-5 apparatus of the present invention may be used in
conjunction with a number of unique algorithms adapted for enhancing the
performance of and/or providing enhanced features for real-time volume processing,
therefore making the overall Cube-5 system superior to existing volume rendering
architectures, such as Cube-4. Some of these unique algorithms, including those for
performing image warping, three-dimensional transformations, perspective
projections, handling large volumes, high quality rendering, clipping, depth cueing,

super-sampling and anisotropic datasets, are discussed in detail below.

In accordance with one form of the present invention, a method for performing
image warping is presented which, among other advantages, speeds perspective
warping and provides improved image quality. Image warping is preferably the final
stage of the Cube-5 volume rendering pipeline. In simple terms, image warping
primarily relates to the geometric transformation between two images, namely, a
source image and a target image. The geometric transformation defines the
relationship between source pixels and target pixels. Efficiency and high quality are
equally critical issues in such applications. In the apparatus of the present invention,
the warp unit preferably performs the image transformation function. Consequently,
applications employing a warp unit benefit from the image warping method of the

present invention.

Distinguished by the data flow of the transformation, image warping methods
are generally classified as either forward warping or backward warping. In forward
warping, the source pixels are processed in scanline order and the results are projected
onto the target image. In backward warping, the target pixels in raster order are
inversely mapped to the source image and sampled accordingly. Most known prior art

warping algorithms employ backward warping.

Compared with affine transformations (i.e., translation, rotation, scaling,
shearing, etc.), a perspective transformation is considered to be more expensive and

challenging. For perspective projection, an expensive division is needed when

33

WO 01/63561 PCT/US01/06345

10

15

20

25

30

calculating the sample location in the baseplane image for a pixel in the projection
plane. Conventional perspective warping is typically at least three-fold slower than
parallel warping, when implemented by a CPU. Accordingly, some prior art
approaches have decomposed the perspective transformation into several simpler
transformations requiring multiple passes. One primary problem inherent in multi-
pass transformation algorithms, however, is that the combination of two one-
dimensional (1D) filtering operations is not as flexible as true two-dimensional (2D)
filtering. Furthermore, conventional multi-pass approaches introduce additional

filtering operations which degrade image quality.

The present invention preferably employs a unique single-pass forward
warping method which can be implemented with substantially the same efficiency as
affine transformations. Costly divisions, which were traditionally performed for every
pixel, are reduced to only twice per scanline according to the present invention. Thus,
by reducing the number of division operations, the present invention provides an
alternative perspective warping method which is superior to known prior art methods,

at least, for example, in terms of speed and the efficient hardware implementation. A

- preferred method for perspective warping, in accordance with the present invention,

will now be discussed.

Preferably, the present invention uses a scanline approach to perform
perspective warping. Rather than scanning in normal raster scanline order, however,
the algorithm of the present invention is processed in a special scanline direction in
the source image. As illustrated in Figures 7 and 8, this special scanline direction 92
(Figure 8) preferably has the property that parallel scanlines 84 in the source image 80
appear as parallel scanlines 86 in the target image 82, and that equi-distant sample
points 88 along a source scanline 84 remain as equi-distant sample points 90 in the
target scanline 86. Some advantages of this unique approach include a reduced
complexity of perspective-correct image warping (i.e., by eliminating the division per
pixel and replacing it with two divisions per scanline), accurate antialiasing by

incorporating anisotropic filtering, correction of flaws in Gouraud shading caused by

34

WO 01/63561 PCT/US01/06345

10

15

20

25

30

bilinear interpolation and optimization of the memory bandwidth by reading each

source pixel exactly once.

The intuition of the special scanline direction is derived from projection
geometry, as shown in Figure 8. Referring to Figure 8, the source image 80 is
preferably placed on a three-dimensional (3D) surface and the target image 82 is
placed on a screen. As in typical texture mapping, to obtain the pixel on screen, a
sight ray (or rays) 94 is cast from a viewpoint (or eye point) 96 to 3D space and
intersected with the screen 82 and 3D surface 80. The intersection points are the
sample points 98. When the scan direction 92 in screen space is parallel to the 3D
planar surface, the scanlines in both images are parallel to each other, and equi-distant
sample points 98 along the scanline remain equi-distant in the 3D surface plane. This
parallel-preserving (PP) scanline direction exists and is unique for a given perspective
transformation. It is to be appreciated that for parallel projections, any scan direction
preserves this parallelism on both images, and thus a raster scanline direction may be

preferably used due to its simplicity. .

Referring again to Figure 7, parallel-preserving (PP) scanlines 84 and 86 are
shown in both the source 80 and target 82 images respectively. Once the parallelism
property is achieved, pixel access becomes regular, and spatial coherency can be
utilized in both images. Additionally, the PP scanline enables the application of a
pure incremental algorithm without division to each scanline for calculating the
projection of source samples 88. One division is still needed, however, for the two

endpoints of every scanline due to the non-linear projection.

With continued reference to Figure 7, as the source image 80 is scanned in the
PP scanline direction rather than the raster direction, sample points 90 on the target
scanline 86 may not necessarily coincide with the target pixels 91. However, the
sample points 90 can be aligned on the x grid lines 89 of the target image 82, thus the
sample points 90 are only off the y grid lines 87 (they are equi-distant along the

scanline). For a more efficient but lower quality implementation, placing the sample

35

WO 01/63561 PCT/US01/06345

10

15

20

25

value in the nearest-neighbor target pixel is a reasonable approximation, as a half
pixel is the maximum error. However, when higher quality is preferred, the present
invention may perform pixel correction and effective antialiasing, to be described

herein below.

In general, a reduction in the number of divisions from O(#*) to O(n) is
obtained by the algorithm of the present invention (where # is the linear resolution).
For the present algorithm, preferably only two additions are needed to calculate each
sample point, while conventional raster scanline algorithms generally require three
additions, one division and two multiplications per pixel. A preferred method for
performing forward image warping, in accordance with the present invention, is

described in detail herein below.

The forward warping algorithm of the present invention is preferably
performed in two stages: (1) calculating the special parallel-preserving (PP) scanline
direction, and (2) forward mapping the source image to the target image along the

special PP scanlines, incrementally within each scanline.

As discussed briefly above, the parallel-preserving (PP) scanline is the
intersection line between the three-dimensional (3D) planar surface and the screen
(i.e., target image). However, in a two-dimensional (2D) problem, the PP scanline
must be calculated based on a 2D matrix. Generally, a perspective transformation can

be presented as

u x a d g x
vIi=EM|yl|=|b e hi||y

1 z c f 11|17
where (1, v) is the coordinate of the source pixel, (x, y) is the coordinate of the target
pixel, and M is the perspective transformation matrix. The (u, v) coordinate can be

expressed in terms of (¥, y) as

36

WO 01/63561 PCT/US01/06345

10

15

20

ax+dy+g
(u,v)=F(x,y)=C
bx+ey+h
where
c=_ 1
(cx+ fy+1)

A line in the target image can be expressed as y =/kx + B, where slope k&
denotes a line direction and B denotes a line intercept. To calculate slope & for the PP
scanline, two parallel lines are preferably defined having identical slope & and
intercepts B of 0 and 1, represented by point pairs of (0, 0), (1, k) and (0, 1), (1, £+ 1),
respectively. The coordinates of these points in the source image are then calculated.
Since perspective transformation preserves straight lines, these two lines will remain
as straight lines in the source image and their slopes can be calculated from two point

pairs. Assuming that the slopes of the two mapped lines are essentially equal, an

equation in k is preferably obtained. Solving this equation for % results in

_bf-ec
af -dc

ki

The corresponding slope k£”in the source image is then

As can be noted from the above equation, when £'=- < , the denominator of the
homogenous coordinates becomes a constant value of Bf + 1, where B is the intercept

in y=kx+B.

The second stage of the preferred forward warping method of the present

invention involves scanline processing and is illustrated in Figures 9 and 10 by way of

37

WO 01/63561 PCT/US01/06345

10

15

20

25

30

example. Referring now to Figure 9, the preferred algorithm sweeps the scanlines 84
(e.g., scanlines S7 - S4) through the source image 80. As discussed above, the
scanlines 84 have the slope £ The samples 88 along each scanline 84 are preferably
incrementally calculated. First, for each scanline 84, the projection of the endpoints
from the target image onto the source image is calculated. Then, based on the number
of sample points on the scanline, increments are calculated in both the x and the y

directions.

Considering a traditional bilinear interpolation of samples in the source image,
every sample essentially requires the contribution of four surrounding source pixels.
If pixels are read every time for every sample, each pixel ought to be read four times.
This leads to a memory bandwidth of four times the target image size. However,
since all scanlines are in parallel, samples on neighboring scanlines usually share
contributing source pixels. Consequently, in accordance with the method of the
present invention, pixels that have been previously read are preferably buffered so that

common pixels are read from the buffer rather than from the source image itself.

With reference to Figure 7, pixels are preferably read in a fixed pattern, called
the pixel read template 100, calculated based on the Bresenham line algorithm (as
appreciated by those skilled in the art). The binary digits shown at the bottom of
Figure 7 represent one way of encoding the read template 100. The present invention,
however, contemplates other encoding schemes, as appreciated by those skilled in the
art. As illustrated in Figure 7, this code indicates the increase in the positive v
direction; a "0" represents no increase and a "1" denotes an increase by one unit, while
u is always increased by one unit. For the example of Figure 7, the u axis may
preferably be referred to as the primary processing axis. It is preferred that the
template 100 always start from the left-most pixel and moves in the vertical direction
(i.e., increasing v direction) so that all pixels are read and placed into the buffer for
subsequent use in the sampling. It can be seen from Figure 7 that in order to provide
pixels for sampling on any scanline between the two dotted lines, four pixel templates

are preferably required, even though for a specific scanline, only three pixel templates

38

WO 01/63561 PCT/US01/06345

10

15

20

25

30

might seem sufficient (e.g., only templates 2, 3 and 4 are necessary to process the

current scanline S§2). Therefore, the buffer size is preferably four scanlines.

Referring now to Figure 10A, there is illustrated the addressing of samples in
the buffer. Whenever the template code value is 1, the sample decreases by one unit
in thé v direction. The thick zigzag line 104 represents the output scanline in the
buffer. When the sample falls within the shaded region 106, in which the pixels in the
buffer are sheared, care should be taken to read the correct pixels for sampling.

Figure 10B illustrates a preferred procedure for bilinearly interpolating one of the

samples, s, in this region.

The contents of the buffer are preferably updated based on the scanline
position. For example, referring to Figure 9, templates 1, 2, 3 and 4 are preferably in
the buffer when processing scanline S1. For scanline S2, the buffer preferably
remains the same. For scanline §3, template 5 is preferably read into the buffer and
template 1 is discarded. For scanline S4, template 6 preferably replaces template 2,

and so on.

As mentioned above, one of the features of the unique forward image warping
method of the present invention is the correction of flaws in Gouraud shading.
Gouraud shading is a popular intensity interpolation algorithm used to shade the
surfaces of geometric objects. Given color only at the vertices, Gouraud shading
bilinearly interpolates the intensities for the entire rasterization of a geometry in a
raster scanline order. The flaws of the Gouraud shading approach are known in the art
and have been the subject of such articles as, for example, Digital Image Warping, by
G. Wolberg, IEEE Computer Society Press, 1990.

One of the problems associated with the Gouraud approach is that diagonal
lines (as an example) are not linearly mapped for perspective projections. When a

diagonal line is perspectively projected onto a screen in 3D screen space, Gouraud

39

WO 01/63561 PCT/US01/06345

10

15

20

25

30

shading converts this diagonal line into a curve, which violates the property of

preserving lines in perspective transformation.

The image warping method of the present invention corrects the perspective
distortion in Gouraud shading. The perspective distortion is present because the linear
interpolation along a raster in screen space is generally non-linear when transformed
into geometrical coordinates. Using the special scan direction of the present
invention, however, linearity is preserved by the mapping. Thus, interpolation is
linear in both image and geometrical space, thereby fixing the distortion of Gouraud
shading. It is to be appreciated that interpolation along the edges is still non-linear,
and therefore the scanline endpoints must be transformed into geometrical space for

correct interpolation.

The forward mapping algorithm of the present invention, with nearest-
neighbor approximation, preferably generates a target image that is essentially
indistinguishable from an image generated using traditional methods. However, when
a higher image quality is desired, the method of the present invention can preferably
calculate the pixel value at exact grid points. A simple target pixel correction scheme

may preferably be introduced to perform this correction.

With reference now to Figure 11, assuming the sample points 90 in the target
image 82 are aligned on integer x coordinates, in order to obtain the pixel value at the
exact pixel grid locations 91, a linear interpolation of the two samples immediately
above and below each pixel is preferably performed. Performing this linear
interpolation simply as a second pass may increase the cost, since the samples must be
read over again. Instead, as each sample is generated, a preferred method of the
present invention spreads the contribution of each sample to the corresponding upper

and lower pixels with no intermediate buffering.

As illustrated by the example of Figure 11, samples 112 located on the thicker
inclined scanline 108 contribute to the shaded pixels neighboring them (lighter

40

WO 01/63561 PCT/US01/06345

10

15

20

25

30

shading above the scanline, darker shading below the scanline). The arrows indicate
that each sample 112 preferably contributes to two pixels. It is preferred that a pixel
not be written out until both contributions are collected. Thus, a one scanline buffer is

preferably included for storing the intermediate pixel values.

To write out pixels correctly and efficiently, a pixel write pattern, called a
pixel write template 110, is preferably pre-calculated. Unlike the pixel read template
(e.g., reference number 100 in Figure 9), the pixel write template 110 is preferably
calculated by truncating the y coordinate value of samples along a scanline. The
template 110 is preferably encoded as a series of integer y steps and fractional
distances dy from the true scanline 86. The weights used for the final linear
interpolation are dy and 1 - dy for the upper and lower pixels, respectively. Since all
scanlines are preferably one unit apart in the vertical direction (i.e., y direction), the

template is calculated only once per projection.

The forward image warping method of the present invention can further
improve on image quality by antialiasing. Using the parallel-preserving (PP) scanline,

a higher quality, less expensive method of antialiasing may be achieved.

Referring again to Figure 7, the sample points on the upper scanlines of the
source image are sparser than on the lower scanlines, resulting in a transition from
under-sampling to normal sampling. Thus, an appropriate resampling filter may
preferably be used to avoid aliasing on the upper scanlines. Isotropic filtering results
in clearly incorrect and blurry images. The need for anisotropic filters has been

addressed in such articles as Survey of Texture Mapping, by P. S. Heckbert, IEEE

Computer Graphics and Applications, 6(11):56-67, November 1986, and more
recently in Texram: Smart Memory for Texturing, by A. Schilling, et al., IEEE
Computer Graphics and Applications, 16(3):32-41, May 1996.

It is known by those skilled in the art, that each filter is defined by its footprint

* and profile. Taking a target sample as a circle, its projection in the source image is its

41

WO 01/63561 PCT/US01/06345

footprint. As illustrated in Figure 12, this footprint 114 should generally be neither
circular (i.e., isotropic) nor square-shaped (i.e., as in mip-mapping), but conic in
shape. The profile of the filter decides the weights of the contributing pixels within
the footprint. Although a sinc filter is optimal, a gaussian filter is easier to implement
5 and is preferred because of its finite footprint and good low-pass characteristics. The
perspective warping algorithm of the present invention offers more accuracy in

calculating the anisotropic footprint, producing higher image quality at a lower cost.

Using conventional methods for calculating the anisotropic footprint, the main
10 axes of the ellipse must be calculated for every pixel. Although approximations have
been proposed, this remains an expensive computation, and no known incremental
method is available. To obtain the major axes of the ellipse using these prior art
methods, the Jacobian must be calculated. Using the image warping method of the
present invention, however, calculation of the Jacobian may be eliminated.
15
In order to gain insight into a preferred method for calculating the anisotropic
footprint in accordance with the present invention, the properties of the Jacobian will
first be analyzed. The generalized backward mapping from an xy target image into a

uv source image was previously defined above as

20
u ax+dy+g
=F(x,y)=C
% bx+ey+h
25 where
c=__ 1
(ex+ fy+1)

The Jacobian J for the generalized transformation is a non-linear function of x and y,

42

WO 01/63561 PCT/US01/06345

10

15

20

25

, yaf -cd)+a-gec x(af -cd)-d+ gf
y(bf -ce)+b-hc x(bf -ce)-e+hf

J=C

In conventional antialiasing approaches, the Jacobian is used to determine the
footprint of each pixel in the source image and is necessary for anisotropic filtering.
The differences between screen pixels in xy raster space are projected into the source
image by computing the directional derivatives in the [1, 0] and [0, 1] directions.

These derivatives in source image space are called »/ and r2, and are defined as

1 { y(af—cd)+a-gcJ
r= JI:]=Cz
y(bf -ce)+b-hc

and

0 x(af -cd)-d + gf
r2= J{ j,=C2|: :!
x(bf -ce)-e+hf

These vectors, 7 and r2, define the bounding box of an ellipse that
approximates the footprint 114. Typically, these vectors 116 and 118 are calculated
for every pixel, when needed, for conventional methods of anisotropic filtering (e.g.,
elliptical weighted average (EWA), footprint assembly). This requires one more
division per pixel for calculating C. In accordance with the present invention, a more

accurate method for determining the footprint is presented, as described herein below.

Because the Jacobian is a linear approximation of the non-linear mapping, it is
more accurate, and therefore preferable, to compute the footprint by taking the
distances to neighboring samples in source image space. Since the projections of
neighboring samples are already computed, this method of the present invention

requires no additional division.

43

WO 01/63561 PCT/US01/06345

10

15

20

25

The parallel-preserving (PP) scan direction provides for greater coherency and
no division to compute the Jacobian. For each pixel in the PP scanning order, the
footprint is preferably defined by 7" and »2". The directional derivative ;' in

direction [1, k] along the PP scanline is

1 af -cd
rr =VpgF =J li]= c’
k bf -ce

and since y=kx+B, C= 1s constant for every PP scanline, and thus 77" is

(Bf +1)
constant for every PP scanline. The method of the present invention exploits this fact
in order to preferably increment the source image coordinates along a scanline, with

no divisions. The value of the directional derivative ' in the y direction [0, 1] is

r2 = Vg F =,
It is to be appreciated that »»' varies linearly along the scanline since it is a function of

x, and thus it can be incremented along the scanline. The special scan direction makes
it possible to compute the source image coordinates and pixel footprints simply and -

efficiently.

After efficiently computing all the footprint and source pixel coordinate
information, correct anisotropic filtering can be performed using a standard method
known by those skilled in the art, such as, for example, Greene and Heckbert’s
elliptical weighted average (EWA) or Shilling et al.’s footprint assembly. These

conventional algorithms are described, for example, in the text Creating Raster

Omnimax Images from Multiple Perspective Views Using the Elliptical Weighted

Average Filter, by N. Greene and P. S. Heckbert, IEEE Computer Graphics and
Applications, 6(6):21-27, June 1986. However, these conventional filtering
approaches are not preferred since, as pointed out previously, even the elliptical
footprint approximation is inaccurate. Furthermore, such prior art methods result in
redundant sampling (i.e., accessing each source pixel multiple times). For instance,
for a circular filter region with a footprint radius of 1.0 source pixel, each source pixel

is sampled an average of & times. By using the forward mapping technique of the

44

WO 01/63561 PCT/US01/06345

10

15

20

25

30

present invention, redundant memory access can be essentially eliminated, thus
lowering the memory bandwidth by a factor of w. Preferably, the present invention
provides a forward mapping technique in which all source pixels are read once in
pixel read template order and subsequently splatted onto the target image with a filter
kernel.

As illustrated in Figure 13, each source pixel 124 has a Ax 120 and a Ay 122
relative to each of its nearest-neighbor target samples 126. The Ax can be preferably
computed incrementally since all samples along a scanline are equi-distant. The
special scan direction essentially guarantees that the Ay is constant along each
scanline. Although the raster grid locations deviate from the true scanline 128, the
actual distances can be estimated preferably by adding a small correction which may
be stored in the pixel read template 130 and is preferably uniform among scanlines.
The filter kernel is preferably pre-computed once and stored in a lookup table (LUT).
Subsequently, the contribution of each source pixel 124 is preferably indexed by its
Ax and Ay into the lookup table (LUT) for the four (or more) nearest-neighbor target
samples 126. The number of target samples 126 depends upon the footprint of the
filter used, and it may preferably vary from four to 16 samples. Using this method,
each source pixel 124 is preferably read exactly once from memory, then four (or
more) times modulated by a lookup table entry and accumulated in the target pixel. In
this manner, the final pixel value is the weighted average of the nearby source pixels
124. This weighted average requires a division by the sum of the filter weights to

normalize each final pixel intensity.

In addition to image warping, which can be broadly defined as a geometric
transformation between two images (e.g., a source image and a target image), three-
dimensional (3D) volume transformation plays a key role in volume rendering,
volume modeling and registration of multiple volumes. Among all affine
transformations, rotation generally consumes the most computation time and is
considered the most complicated. Accordingly, in providing a universal 3D rendering
architecture in accordance with the present invention, several unique methods for

performing arbitrary 3D volume rotation are presented, as described in detail herein

45

WO 01/63561 PCT/US01/06345

10

15

20

25

30

below. Although the universal 3D rendering hardware of the present invention may
be used Without the 3D volume rotation methods described herein, these methods, or
algorithms, are preferably implemented in conjunction with the apparatus of the
present invention to provide enhanced speed and features and are adapted to most

efficiently utilize the apparatus of the present invention.

Prior to describing the unique methods for performing 3D volume rotation, it
is important to first provide some basic definitions of the terms used. As appreciated
by those skilled in the art, relative to the rows and columns of an image, a beam in a
volume may be defined as a row of voxels along one major coordinate axis (e.g., an x-
beam is a row of voxels in the x direction). A slice of a volume is a plane of voxels
which is perpendicular to a major axis (e.g., an x-slice is defined as a plane

perpendicular to the x axis).

Prior art methods for performing volume transformations typically utilize
multiple-pass algorithms, which are usually direct extensions of the multiple-pass
algorithms used for image transformations. Various methods for performing 3D
rotation have been proposed, generally involving a decompesition of the 3D
transformation into multiple two-dimensional (2D) or one-dimensional (1D)
transformations. These prior art methods have been the subject of articles, including
Volume Rendering, by R. A. Drebin et al., Computer Graphics (SIGGRAPH ‘88
Proceedings), Vol. 22, pp 65-74, August 1988, Three-Pass Affine Transformations for

Volume Rendering, by P. Hanrahan, Computer Graphics (San Diego Workshop on
Volume Visualization), Vol. 24, pp 71-78, November 1990 and Fast Rotation of

Volume Data on Parallel Architectures, by P. Schroder and J. B. Salem, Visualization

‘91, pp. 50-57, 1991, all of which are incorporated herein by reference. However,
these known 3D transformation methods typically result in a lower quality rotation

and/or slower processing speed.

One of the properties which make three-dimensional (3D) rotation so difficult

* 1s that 3D rotations inherently require global communication and could cause memory

46

WO 01/63561 PCT/US01/06345

10

15

20

contention while writing data back to the distributed memory modules. However, as
shear transformation capitalizes on nearest neighbor connections, it lends itself to an
extremely feasible multi-pipelined hardware implementation, as provided by the
unique architecture of the present invention. The present invention further provides
novel methods for performing arbitrary 3D rotation, essentially by decomposing the

3D rotations into sequences of different types of shear transformations.

Using a conventional decomposition approach, since a 2D rotation can be
decomposed into three one-dimensional (1D) shears, a direct extension to 3D rotation
would require nine 1D shears. However, in accordance with the present invention,
four preferred methods of shear decomposition of an arbitrary 3D volume rotation are
presented, as described in detail herein below. These methods include a four-pass 2D
slice shear, a four-pass 2D beam shear, a three-pass beam-slice shear and a two-pass
3D beam shear decomposition. By not introducing a scale operation, the algorithms
of the present invention avoid complications in sampling, filtering and the associated

image degradations.
It is to be appreciated by one skilled in the art that a 3D rotation matrix can be

expressed as the concatenation of three major axis rotations, Rx(), Ry(6), Rz(a),

where

47

WO 01/63561 PCT/US01/06345

10

15

1 0 0
R.=| 0 cos¢ sing
0

-sing cos¢

cosf@ 0 -siné
R,= 0 0 0

sind 0 cosé

cosaa sina 0
R.=| -sina cosa 0
0 0 1

The order in which this concatenation is performed results in different 3D rotation
matrices. There are six permutations of the 3D rotation matrix in total. By way of
illustration, the underlying 3D rotation matrix was chosen as R3p = Rx(¢)Ry(6) Rz (),

where

cosé cosax cosésina -sinf
Rip=| singsinfcosa-cosgsinag singsinfsina +cosgcosa singcosd

cosgsinf cosa +singsineg cosgsinfsine -singcosa cos@dcosd

The above 3D rotation matrix (R3p) is used for all the decompositions which
follow. One of the primary differences between the unique methods of the present
invention and othér conventional approaches is that in the present invention, the
decomposition is applied directly to a 3D rotation matrix, rather than to multiple 2D
rotation sequences, to obtain shear sequences. It is to be appreciated that, for any of

the shear operations performed in accordance with the present invention, barrel

43

WO 01/63561 PCT/US01/06345

shifters may be used as a preferred hardware implementation, although other means,

such as logarithmic shifters or the like, are similarly contemplated.

As shown in Figure 14, a method for performing two-dimensional (2D) slice
5 shear rotation, in accordance with one embodiment of the present invention,
preferably involves a decomposition of the 3D rotation into a sequence of 2D slice
shears. In a 2D slice shéar, a volume slice (i.e., a plane of voxels along a major
projection axis and parallel to any two axes) is merely shifted within its plane. A slice
may be arbitrarily taken along any major projection axis. For example, Figure 14
10 illustrates a y-slice shear. A 2D y-slice shear is preferably expressed as:

x=x+aey

z=2z + bey

A 2D y-slice shear may preferably be written as S(xz, y, (@, b)), interpreted as a
shear along the y axis by an amount a 132 in the x-direction and an amount » 134 in
15 the z-direction. Although both a and b are preferably constants, it is further
contemplated that a and b can represent functions as well. A 2D x-slice shear, S(yz, x,
(c, d)), and a 2D z-slice shear, S(xy, z, (e, f)), are similarly defined. With reference to
Figure 14, the volume represented by the solid lines 136 is the shear result of the
volume defined by the dotted lines 138.
20
Intuitively, consecutive shears along the same axis produce a conforming

shear. For example:

S(xz, y,(a,b))® S(xz, y,(a’,b’))

1 0 0 1 0 0
= I ble|la 1 b
0 0 1 0 0 1

1 0 0

=|lata 1 b+b’

0 0 1

49

WO 01/63561 PCT/US01/06345

In order to build the general 3D matrix from 2D shear matrices, shear products
may be restricted to products of different shears: S(yz, x, (¢, d)), S(xz, y, (@, b)) and
S(xy, z, (e, f)). However, the product matrix of these three shear matrices will still not
be in the general form due to a constant 1 in the present matrix. Accordingly, another

5 shear matrix is preferably concatenated, where this final shear is the same slice shear

as the first one. This results in the following six permutations of shear sequences:

S(xz, y,(a,b)) S(xy, z, (e,) S(vz %, (¢, d)) S(xz, y, (& b))
S(xz, y.(a,b)) ® S(vz,x,(c,d)) » S(xy, 7, (¢,)) * S(xz, , (&, 1))
S(x.2,(e, /) ® S(xz,y,(a, b)) ® S(vz, x,(c, d)) S(xy, 2,(i, J))
S(x, 2, (e,) * S(vz, %, (c, d)) » S(xz, y, (a,b)) » S(xy, 2, (3,)
S(vz,x,(c, d)) ® S(xz, ,(a,b) ® S(xy, z, (e, J)) S(yz, x, (m, 1))

SOz, x,(c,d)) 8 S(xy, z,(e. f))®S(xz, y,(a,b))® S(yz, x,(m, n))

10 For each of the shear sequences, the product matrix of the consecutive shear
matrices is preferably computed and set equal to the underlying 3D rotation matrix.

For example, for the first shear sequence given above (i.e., S(xz, y, (a, b)) S(xy, z, (e,

D) Sz, x, (c, d) S(xz, y, (8 1)):

R3D = Rx(¢) Ry(g) Rz(a) =
15 S(xz,y,(a,b)) ® S(xy,z,(e, f)) ®
S(vz,x,(c,d)) » S(xz, y, (g, 1))
The above matrix equation implies nine trigonometric equations with eight

variables, namely, a, b, ¢, d, ¢, f, g and h. In solving these nine equations for the eight

variables, a - £, the following results are obtained:

50

WO 01/63561 PCT/US01/06345

_ sin@sina (cos@-cosp) + sing(cosa -cosb)
(cos@) sine sin ¢

_cosgcost - I
sin ¢ cos@

b:

c= cos@sinc

d= -singsinf cosa + cos@sing - cos@sina

sin ¢ cos@

_ singcosf + cosgsinfsina - sing cosa

cos@sina
f= -sih¢cos€

cosfcosa - 1

cos@sina

cos@cosa - 1

h= -
cosfd sinax
In a similar manner, the shear matrices for the remaining five slice shear
sequences given above may be obtained. In fact, the slice shear sequence with the
5 solution given above has the simplest expression and is preferably termed the

dominant sequence.

Referring now to Figure 15, a method for performing three-dimensional (3D)
rotation by a two-dimensional (2D) beam shear decomposition will now be described.
10 First, a beam shear may be defined as a beam that is merely shifted in its major
direction without any change of the other two coordinates. For example, a 2D x-beam
shear is preferably expressed as:

x=x+taey +bez

15 A 2D x-beam shear may preferably be written as S(x, yz, (¢, d)), interpreted as

a shear along the x axis by an amount a in the x-direction and an amount b in the z-

51

WO 01/63561 PCT/US01/06345

10

15

20

direction. A 2D y-beam shear, S(¥, xz, (a, b)), and a 2D z-beam shear, S(z, xy, (e, 1)),
are similarly defined. Figure 15 illustrates an x-beam shear, wherein the volume

represented by the dotted lines 146 is sheared to the volume position represented by

the solid lines 144.

A two-dimensional (2D) beam shear is advantageous over a 2D slice shear,
and 1s therefore preferred, since a beam is shifted without changing the other two
coordinates. Thus, the resampling for each pass of the 2D beam shear approach is
simpler, as only a linear interpolation is required. In contrast, a 2D slice shear

approach requires a bilinear interpolation which is more complex.

Similar to the 2D slice shear decomposition, in order to build the general 3D
matrix from 2D beam shear matﬁx decompositions, shear products may be restricted
to products of different shears: S(x, yz, (¢, d), SO, xz, (a, b)), S(z, xy, (e. f)). However,
the product matrix of these three shear matrices will still not be in the general form
due to a constant 1 in the matrix. Accordingly, as in the slice shear method, another
shear matrix is preferably concatenated, where this final shear is the same beam shear

as the first one. This results in the following six permutations of shear sequences:

S(y, xz,(a,b)) S(z, xy, (e, f)) S(x, yz,(c, d)) S, xz,(g, b))
S(y, xz,(a,0)) S(x, yz,(c, d)) S(z, xy, (e, J)) S(v, z,(2, 1))
S(z xy,(e,) S, xz,(a, b)) S(x, yz,(c, d)) S(z, %y, (i, j))
S(z xy, (e,) S(x, yz, (¢, &) S(v, xz,(a, b)) S(z, %, (i,)
S(x, yz,(c,d)) S(v, xz,(a, b)) S(z, xy, (e, J)) S(x, yz, (m,n))

S(x, yz,(c,d) S(z, xy, (e,)) S(v, x2,(a, b)) S(x, yz, (m, 1))

For each of the above shear sequences, the product matrix of the consecutive

shear matrices is preferably computed and set equal to the underlying 3D rotation

52

WO 01/63561 PCT/US01/06345

matrix. For example, for the first shear sequence given above (i.e., S(¥, xz, (a, b)) S(z,
xy, (e, f)) S(x, yz, (c, d)) S(, xz, (g, h)):
Rp= R:(¢)R,(0)R.(x)=

S(y, Xz, (a, b)) b S(Z’ XY, (e’ ﬁ)

* S(x, yz (c, d)) » S(, xz,(g.)
The above matrix equation implies nine trigonometric equations with eight

5 variables, namely, a, b, ¢, d, e, f, g and h. In solving these nine equations for the eight

variables, a - A, the following results are obtained:

_ sinf@sina (cosg-cosd) + sing (cosd -cosa)

singsina (cos@)’

cosgcosf - 1
sin ¢ cosé

b=

¢c= -cos@sina

cosfsina + singsiné cosa - cosgsine
sin ¢ cos @

_ cos¢gsin@sina - sing cosa + sing cosé
cosfsinex

f = singcosd

_ cos@cosc - 1

cosfsinx

h= singsind (cosf - cosa) + sina (cos¢ - cosd)

singsina (cosf)’
In a similar manner, the shear matrices for the remaining five beam shear

sequences given above may be obtained. The beam shear sequence with the solution

10 given above is preferably termed the dominant sequence.

53

WO 01/63561 PCT/US01/06345

10

15

20

25

With reference now to Figure 16, a method for performing three-dimensional
(3D) rotation by two-dimensional (2D) beam-slice shear decomposition in accordance
with the present invention will be described. A 2D beam-slice shear may preferably
be defined as a beam that is shifted within a plane. For example, a 2D x-beam-y-slice
shear is preferably expressed as:

X=Xx+taey + gez

z=2z + bey
A 2D x-beam-y-slice shear may preferably be written as S((x, yz, (a, 2), (z, ¥,

b)), interpreted as a shear along the x axis by an amount «a in the y-direction and an
amount g in the z-direction, combined with a shear along the z axis by an amount b in
the y-direction, where a, g and b are preferably constants. In essence, a beam-slice
shear is a combination of a beam shear and a slice shear. Figure 16 illustrates an x-
beam-y-slice shear, S((x, yz, (a, g)), (z, ¥, b)), wherein the volume represented by the

dotted lines 156 is sheared to the volume position represented by the solid lines 154.

To build the general 3D matrix from a 2D shear matrix decomposition, shear
products may be restricted to products of different shears: y-beam-x-slice shear S((y,
xz, (¢, h)), (z, x, d)), x-beam-y-slice shear S((x, yz, (a, g)), (2, ¥, b)), and y-beam shear

SO, xz, (I, f)). As in the case of the slice shear and beam shear approaches, it is to be

* appreciated that there are also six permutations of beam-slice shear sequences.

For each of the shear sequences, the product matrix of the consecutive shear
matrices is preferably computed and set equal to the underlying 3D rotation matrix.

For example, for the first beam-slice shear sequence given above (i.e., S((¥, xz, (c, h)),
@ x, d) S(x, yz, (@,), (2,3, B) SB, xz, (L, H)):
R3D = -Rx (¢) Ry (6) Rz (a) =

S(0, xz,(c, b)), (z,x,d) ® S(x, yz,(a, @), (2, 3, b))

. S()/, Xz, (i: ﬂ)

54

WO 01/63561 PCT/US01/06345

The above matrix equation implies nine trigonometric equations with eight
variables, namely, a, b, ¢, d, f; g, h and I. In solving these nine equations for the eight
variables, the following results are obtained:

a= singsinf cosa - cosgsing
b= sing cosd

_ sing(cosé - cosar) + sinfsina (cosg - cosb)
sing (cosé)’ sina

sing cosa - cosgsinésina - sing coséd
cosdsing

d=

singsin@(cosd - cosar) + sina(cosg - cosd)
sing (cosd)’sina

f=

cos@sing + singsiné cosa - cosgsina
sin ¢ cos @

P cos¢g cosf - 1
sin ¢ cos @

cos@cosa - 1

cosésina
5 It is to be appreciated that the shear matrices for the remaining five shear

sequences may be obtained in a similar manner.

Figure 17 illustrates a fourth method for performing an arbitrary three-
dimensional (3D) rotation using 3D beam shear decompositions, according to the
10 present invention. By further examination of the product matrix of the consecutive
shear matrices used in the beam-slice shear decomposition method described above
(e, S(0, %z, (c,), (z x, d) -S((x, yz, (a,), (z ¥, b)) -SO, xz, (1, f))), the first pair
and the last pair of 2D shears can be merged since there is a common beam in each

pair. For example, x beam is a common beam of the y-slice and z-slice shears of the

55

WO 01/63561 PCT/US01/06345

10

15

20

first pair. Therefore, the number of shears can be reduced to two by introducing a

new definition of a 3D beam shear.

Figure 17 illustrates a 3D x-beam shear, which is equal to the concatenation of
two consecutive 2D slice shears S(xz, y, (a, b)) S(xy, z, (e, f)). It is to be appreciated
that there are two other 3D beam shears, namely, a 3D z-beam shear, represented as
SOz, x, (¢, d)) S(xz, y, (a, b)), and a 3D y-beam shear, represented as S(yz, x, (c, d))
S(xy, z, (e, f)). Every 3D beam shear preferably involves only one major beam. With
reference to Figure 17, the marked x beam 158 (dark shaded beam) is preferably
translated to a new 3D location following the arrows. The lighter shaded beam 158'
indicates the intermediate position if the shear decomposition is interpreted as two

consecutive 2D slice shears.

The three 3D beam shears may preferably be denoted as SH), , SHsp, and.
SH s, - Now, using the method of the present invention described herein, an arbitrary
3D rotation can be decomposed into only two consecutive 3D beam shears. The
dominant decomposition sequence may be obtained directly from the 2D slice shear

s€quence as:

Rsp= SH3p, ® SHsp,
where

SH sp,= S(xz,3,(a,b)) ® S(xy, z,(e,))

1 0 0
=|atbe I+bf b
e f 1

SHsp, = S(v2,%,(c,d)) ® S(xz, , (8,)

I+cg ¢ d+ch
g 1 h
0 0 1

i

56

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Using the 3D beam shear decomposition approach of the present invention
described herein, an arbitrary 3D rotation preferably involves only two major beam
transformations, whereas conventional decomposition approaches require three (e.g.,
Hanrahan’s decomposition). In accordance with the 3D beam shear method of the
present invention, the first pass involves only x beams and the second pass involves
only z beams. By the end of the first shear pass, all voxels of a beam preferably have
the same offsets. As there are N” beams for an N’ volume, there are only N” different
offset values. Accordingly, the offset values for N” beams can be stored at the end of

the first pass, while storing the voxels to their nearest neighbor integral positions.

When multiple pass algorithms are used, the resampling techniques chosen are
key to achieving high quality. Intuitively, resampling is necessary for each pass
because a continuous shear transformation may move voxels off the grid points. One
problem inherent with multiple resampling, however, is the quick degradation of the
volume quality if consecutive rotations are applied to a volume. It is therefore

desirable to sample the volume only once.

Accordingly, a preferred method of the present invention achieves one pass
resampling of a volume. In essence, the method of the present invention involves
precomputing a sampled volume and then using only zero-order (i.e., nearest
neighbor) interpolation in each shear pass, thereby distinguishing from known prior
art methods which require global communication (e.g., Wittenbrink and Somani’s

permutation warping).

Given an original volume (source volume) and the desired rotated volume
(target volume), the method of the present invention preferably first builds up a one-
to-one correspondence between a source voxel and a target voxel. This one-to-one

mapping is guaranteed by the multi-pass shear decomposition of the present invention

57

WO 01/63561 PCT/US01/06345

10

15

20

25

30

because each shear is a one-to-one transformation using zero-order interpolation. The
concatenation of a sequence of one-to-one mapping remains one-to-one. Once this
one-to-one correspondence is built up, the method of the present invention preferably
calculates for each source voxel its corresponding target voxel and stores it in the
source voxel position. During this procedure, no global communication is required;
the resampling is performed by interpolation on the local voxels. The sampling
position of each target voxel is preferably computed using a backward transformation

of rotation.

After obtaining the values for all target voxels, the method of the present
invention preferably shuffles them to their destinations in target volume. Intuitively,
this would involve global communication. However, global communication is
expensive to perform for parallel implementation. Therefore, the method according to
present invention preferably uses multiple shears with a nearest neighbor placement
scheme to achieve this voxel shuffling. Since shear is a regular, non-conflict
transformation, each pass can be performed more efficiently than if global
communication was utilized. Using the 3D beam shear decomposition method of the
present invention described herein, only a minimum of two passes of regular local
communication are necessary to achieve virtually the same effect as global

communication.

It is to be appreciated that care should be taken to avoid the overlapping of
beams in 3D beam shear. Consider, for example, the 3D x beam shear equation given
above. While each x beam is preserved (i.e., an x beam remains rigid after a 3D x
beam shear), several x beams may overlap with each other. To maintain the required
one-to-one mapping, recall that a 3D beam shear is the concatenation of two 2D slice
shears, as discussed above. A 2D slice shear maintains one-to-one mapping when
using zero-order interpolation. Therefore, as a solution, the method of the present
invention preferably calculates the destination coordinates using the same order as
that of two consecutive 2D slice shears, but communication is preferably only

performed once. For a 3D x beam shear, while the x coordinate is calculated directly

58

WO 01/63561 PCT/US01/06345

10

15

20

25

30

using the 3D shear matrix (described above), the y and z coordinates of each beam are

preferably calculated as

Z'= round(z + bey)

y'= round(y + feZ)

where round(w) is a function of rounding w to the nearest integer. Coordinates (3 z")
determine the integral coordinates of the whole beam for the nearest neighbor storage.

In this manner, no overlap occurs.

In accordance with another form of the present invention, several unique
methods for performing enhanced volume processing will be discussed in detail

herein below.

Perspective projections present inherent challenges, particularly when
performing ray casting. For parallel projections, sight rays that are cast through a
volume dataset maintain a constant sampling rate on the underlying volume data. It is
straightforward to set this sampling rate to create an output image of the required
quality. For perspective projections, however, the rays do not maintain such a
continuous and uniform sampling rate. Instead, the rays diverge as they traverse the
volume from front to back. This creates an uneven sampling of the underlying

volume, as shown in Figures 18A and 18B.

Referring now to Figures 18A and 18B, conventional ray casting algorithms
generally handle ray divergence from perspective projections by one of two methods.
The first method is undersampling (Figure 18A), in which rays 160 are cast, from a
predefined viewpoint 162, so that the sampling rate at the front of the volume 164 is
appropriate for the desired image quality. However, because of the perspective ray
divergence, the underlying volume dataset is undersampled. This may result in severe
aliasing by creating “holes” in the rear of the volume 166 where regions of voxels
remain unsampled. The second method is oversampling (Figure 18B), in which rays

160 are cast from a predefined viewpoint 162 so that the sampling rate at the rear of

59

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the volume dataset 166 is appropriate-for the desired image quality. This approach
avoids the aliasing of the first method; however, the volume may be radically
oversampled in the front 164. The inefficient oversampling in the front of the volume
164 dramatically increases the runtime of this method. The rays 160 can be cast with
a sampling rate between undersampling and oversampling. This results in a tradeoff

between the image quality of oversampling and the rendering speed of undersampling.

Many prior imaging architectures do not even attempt to perform perspective
projections. Other architectures have dealt with perspective projections by casting
diverging sight rays from a predefined viewpoint, which produce images with
temporal aliasing and either do not achieve true real-time frame rates (i.e., 30 Hertz)

or are much more complex than the slice-order method of the present invention.

A ray-splitting method applies the concept of adaptive super-sampling in order
to maintain a uniform ray density. In this approach, a ray is split into two child rays
when neighboring rays diverge beyond some predetermined threshold. Recently, a
method was proposed which divides the viewing frustum into regions based on
distance from the viewpoint, such that the ray density in each region is near the
underlying volume resolution. Afterwards, such method projects each region onto
sub-images and composites them into the frame buffer using texture mapping
hardware. In effect, the technique casts continuous rays through a region, then at
specified boundaries, splits them into a new set of continuous rays. This, however,

creates a potential undesired discontinuity between regions.

A method for performing perspective projections of uniform regular datasets,
termed ER-Perspective (exponential regions perspective), in accordance with one
form of the present invention, preferably adaptively samples the underlying volume,
whereby the above-described problems, inherent in conventional volume rendering
systems and methods, are essentially eliminated. The ER-Perspective algorithm
combines the desirable properties of both undersampling and oversampling, providing

extremely good anti-aliasing properties associated with oversampling methods, while

60

WO 01/63561 PCT/US01/06345

10

15

20

25

30

providing runtimes on the order of undersampling methods. Furthermore, this
algorithm preferably creates at least one sample for every visible voxel in the volume
dataset. ER-Perspective gains a runtime advantage over previous work by utilizing
slice-order voxel access, while maintaining equal or better image quality in

comparison to known perspective projection methods.

Figure 19 is a 2D top view illustration of the ER-Perspective algorithm, in
accordance with the present invention. As shown in Figure 19, the ER-~Perspective
algorithm preferably works by dividing a view frustum 168 into a plurality of regions

based on exponentially increasing distances along a major projection axis (e.g., z-axis)

~ from a predefined viewpoint 172. Preferably, continuous sight rays 174 are cast from

the viewpoint 172 from back-to-front (or front-to-back) through the volume dataset
and the rays 174 are merged (or split) once they become too close (or too far) from
each other. Since the operation of the ER-Perspective algorithm is similar for back-
to-front compared with front-to-back ray casting, the remaining discussion of the ER-
Perspective algorithm will be limited to the more intuitive case of back-to-front ray

casting with merging. The differences are pointed out where they are significant.

The ER-Perspective algorithm preferably uses region boundaries 170, which
define the exponential regions, to mark the locations where the sight rays 174 are
preferably merged. By defining the regions and merging all rays 174 at the
boundaries 170, the algorithm provides a regular pattern of ray merging that is
dependent on the global geometry rather than local neighborhood conditions. Figure
20A more clearly illustrates the merging of sight rays at region boundaries 170 for
contribution to baseplane pixel B, in particular. With reference to Figure 20A, an odd
number of rays 174 are preferably merged such that the resulting ray 174' is
essentially an exact continuation of the previous center ray, thus eliminating potential
discontinuities present at the region boundaries 170. This is one important advantage

of the method of the present invention over known prior approaches. Furthermore,

this algorithm can be qualified by characterizing the filtering achieved when

adaptively sampling the volume.

61

WO 01/63561 PCT/US01/06345

10

15

20

25

30

An example of a preferred filtering scheme is shown in Figure 20B. Referring
to Figure 20B, a Bartlett window (i.e., linear interpolation, triangle filter) is preferably
employed. Cascading efficient local Bartlett windows at each region boundary 170 is
essentially the equivalent of resampling the rays 174 with a single large Bartlett filter
for each baseplane pixel (see Figure 20A). A graphical representation of the preferred
filter weights 175 is shown for contribution to the baseplane pixels (e.g., pixels A, B,
O).

The base sampling rate of the algorithm can be set to a predefined value
according to a desired image quality. The base sampling rate is the minimum ray
density compared to the underlying volume resolution. Although the ER-Perspective
method of the present invention supports virtually any sampling rate, a sampling rate
of at least one ray per voxel is preferred. The algorithm has the advantage of keeping
the ray density between one to two times the base sampling rate. This guarantees that

no voxels are missed in the rear of the volume dataset and places an upper bound on

the total amount of work performed at two times (2x) supersampling.

Since the present invention utilizes slice-order processing, the volume dataset
is projected onto a baseplane of the volume which is most perpendicular to the view
direction. The baseplane image is then warped onto the final image plane in a
conventional manner (e.g., in the same manner as in shear-warp or the prior Cube-4

architecture).

The ER-Perspective method of the present invention is ideally suited for
implementation on the Cube-5 architecture described above. Specifically, this
algorithm preferably only requires nearest neighbor communication between
processing elements. While processing a row of voxels on a one-dimensional array of
processing elements, the algorithm only requires processing elements to communicate
with their immediate left and right neighbors. The Cube-5 rendering pipelines

similarly support nearest neighbor communication.

62

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The ER-Perspective algorithm of the present invention preferably employs
slice-order processing along one of the three major axes. Consequently, the regions in
the ER-perspective algorithm are defined as slabs of slices along a major projection
axis. In a preferred embodiment of the ER-perspective method according to the
present invention, the volume dataset is projected along slices perpendicular to the
z-axis. So as not to limit the methods of the present invention to projections along the
z-axis only, it is to be appreciated that the coordinate system may be flipped and the
geometry rotated. The algorithm proceeds, as illustrated in Figure 7, by measuring the
distance along the z-axis, from the viewpoint 86 to the front of the volume dataset 80,
is determined (e,). Subsequently, a first region 92 is created to consist of as many
z-slices as this distance. Each successive region after the first region 92 is preferably

twice as deep as the one before it.

‘When combined with high quality supersampling, the first region is exactly as
large as needed to have one ray per voxel at the end of the region when shooting one
ray per pixel of the final image. Thus, supersampling higher than 2x might be needed

in the front of the volume to render high quality close up views.

As illustrated in the example of Figure 19, if the viewpoint 172 is three voxel
units from the front of the volume (i.e., the z = 3 region boundary), for example, then
the first region 176 is preferably three voxel units thick, the next region is six voxel
units thick, and so on. In general, the I-th region is preferably e, - 27 slices thick, .
where e; is the distance from the viewpoint 172 to the front of the volume (see Figure
19). Forcing the regions to be thus defined produces the desired effect that any two
perspective rays 174 cast through any of the regions are twice as far apart at the rear
boundary (i.e., the z = 24 boundary) as they are at the front boundary (i.e., thez=3
boundary). This is shown in Figure 19 as the distance between the two rays 174
grows from one unit to two units across the first region 176, then to four units, and
finally to eight units at the rear of the last region. Additionally, since the region

boundaries 170 are dependent on the global geometry, the efficiency of the ray casting

63

WO 01/63561 PCT/US01/06345

10

15

20

25

30

algorithm is maximized by providing a mechanism for keeping the ray density
between one and two times the underlying volume resolution in each dimension. It
also creates a regular topology so that the filtering of the data can be controlled as

perspective rays are cast.

Having regions with boundaries at exponential distances produces a ray
density twice as high at the front as at the back of the region. Therefore, a mechanism
must preferably be provided to adjust the ray density when crossing a region
boundary. Since each ray preferably starts on a voxel coordinate at the rear of a
region, at the front of the region every second ray in each dimension will preferably
coincide directly with a voxel coordinate. The remaining rays preferably intersect the
region boundary halfway between two voxel positions. To down-sample the ray
density with this deterministic ray pattern, a two-dimensional (2D) Bartlett filter (also
known as tent or triangle filter) is preferably employed, with an extent of +1 voxel
unit in each dimension. Because the ray density at the front of each region is twice
the voxel density, this 3x3 voxel neighborhood is intersected by 5x5 rays. Referring
now to Figure 21, since the edges 178 each have a weight of zero, only the 3x3
neighboring rays 180 are used for applying the filter to down-sample the ray density.
This effectively merges neighboring rays. A Bartlett filter is preferred over a simple
box filter for the added quality it produces in the final image. For the case of
front-to-back processing, rays are split instead of merged. Here a bilinear
interpolation of the rays is performed to generate the new rays which begin between
the other rays. It should be mentioned that a Bartlett filter of size 1 is the inverse of

a bilinear interpolation operation.

Figure 22 shows a 2D example of how sight rays 186 travel through a 7°
volume 192 when the viewpoint 196 is three voxel units in front of the volume (i.e.,
from the baseplane 198). Notice that the sampling rate remains between 7 and 14 per
slice, and that it increases as the rays 186 travel through the regions from back to
front. The number of ray density resampling stages for an N’ volume is limited by

log2N, since that is the maximum number of regions in an N’ volume. The last re-

64

WO 01/63561 PCT/US01/06345

10

15

20

25

30

sampling step shown on the baseplane 198 is preferably performed when the final

image warp takes place.

As illustrated in Figure 22, the rear of the volume dataset 182 does not
necessarily always coincide with a region boundary 184. However, since it is
preferred that the rays 186 be on exact voxel coordinates 188 at all of the region
boundaries 184, the rays 186 preferably originate on the grid coordinates 190 at the
rear of the last region enclosing the volume dataset 192 (shaded area). Therefore, the
voxel coordinates and the ray sample locations 194 may not be congruent at the rear
of the volume 182. This not only provides the mentioned boundary conditions, but
aids with temporal anti-aliasing when the viewpoint 196 is moved in smaller than
voxel unit distances, because the rays 186 will continue to originate from the same

positions relative to the voxels.

Figure 23 depicts a preferred method for performing ER-Perspective
back-to-front projection of a volume, in accordance with one form of the present
invention, although other embodiments of the ER-Perspective method are
contemplated. As described above, first, the distance from the eye or viewpoint to the
baseplane is preferably determined (in voxel units). Using this viewpoint position,
exponential region boundaries are created. Next, enough regions are preferably
established to completely encompass the volume dataset. To perform the volume
rendering, the algorithm loops through each region from the back to the front,
computing normal ray casting, but in a slice-order fashion, and stores the partially
computed rays in a compositing buffer. Between regions (i.e., at the region
boundaries), ray density re-sampling of the compositing buffer is preferably
preformed, as described previously. The baseplane image is then warped onto the

final image plane for display.

With adaptive ray density perspective methods known in the prior art, it is
generally difficult to determine the filtering function achieved when rays are merged

using irregular patterns. However, since the ER-Perspective method of the present

65

WO 01/63561 PCT/US01/06345

10

15

20

25

30

invention preferably uses regular boundaries for the filtering operations and exact ray
placement within the boundaries, it is easier to compute the effective filter achieved
by the cascading of local Bartlett filters. This is an important advantage of the
ER-Perspective algorithm of the present invention. Additionally, the boundaries and
filter of the present invention have preferably been chosen to overcome the poor
image quality usually associated with conventional successive filtering of discrete

data.

Consider, for example, the case of a perspective projection of a volume seven
slices deep with the viewpoint two voxel units in front of the volume, as depicted in
Figure 24. Using the ER-Perspective method of the present invention, the rays 200
that are cast through a region are one voxel unit apart at the rear of the region.
However, when the rays reach a region boundary 202 they are preferably filtered
using local Bartlett filters. The Bartlett filters (simplified to 1-dimension) contain the
following weights for a kernel of size 2xn+1, normalized so that the output has the

same scalar range as the input:

1 2 n-1 n-1 2 1
_Z’ _2’ LA | 2 2 2)"',——-—2—’—_2’
non n n n non

For two-dimensional images at region boundaries, the present invention preferably

n
—5» 0

0’

employs a two-dimensional Bartlett filter by convolving two one-dimensional Bartlett
filters in the two principal directions. The ER-Perspective algorithm preferébly
always resamples the rays to have half of the original density. Using a filter of size +2
rays (n=2) creates a filter kernel of 5x5, or just the following five weights for one

dimension:
0121,
4 4 4

By way of example, as illustrated in Figure 24, consider the contribution of
samples a, b, ¢, d and e to the partially composited ray which changes from region 2

to region 1 at location o,

66

WO 01/63561 PCT/US01/06345

10

15

20

25

o=Lp+Zcrly
4 4 4

Likewise, the partial rays at locations p and ¢ are computed as:

12 1
=._d+___e—|—.._
p=gdv eyt
1.2 1
= frlotip
=778

The equations for partial rays » and have been omitted since they have a weight of
zero in the final filter for pixel A. Continuing the ER-Perspective algorithm, the
resampled partial rays n, o, p, ¢ and r are preferably cast through region 1 where they

are again filtered by a local Bartlett filter. The normalized contribution of n, o, p, ¢

and r to pixel A will be:
1 2 1
A=—o+—p+—
FAVEE
Substituting in the values for o, p and g results in:
1 4

16 16 16 16 16 16 16
It is to be appreciated that this formula contains the same weights (i.e., coefficients) as
a Bartlett filter with a kernel size of nine values (n =4). This can be repeated for pixel
B with the same filter weights. For front-to-back processing, a similar analysis can be
used to demonstrate the performance of the algorithm and the result of successive

applications of the bilinear interpolation.

Each sample of a slice preferably contributes the same amount to the final
image as any other sample in the same region (assuming all other operations on
samples, such as color mapping and compositing, are equal). For example, the value
that sample e contributes to pixel A with an effective weight of 1/4 after the cascading
of the local Bartlett filters. Likewise, sample / contributes to pixel B with an effective
weight of 1/4. Sample f contributes to pixel A with a weight of 3/16 and to pixel B
with a weight of 1/16 for a total of 1/4. This can be repeated for samples g and 4.

The samples to the left of sample e and to the right of sample 7 partially contribute to
pixels left of pixel A and right of pixel B, respectively, such that the sum of their

67

WO 01/63561 PCT/US01/06345

10

15

20

25

contributions to the final image is also 1/4. In fact, every sample that is in this region
has the same weight. The weight is 1/4 because this region is the second region in the
volume. For the first region in the volume, every sample preferably has a weight of
¥%. This is qualifiable by realizing that there are two rays per final image pixel in this
region. There are four rays per final image pixel in the second region, etc.
Consequently, the weight which determines the contribution of each sample towards

image pixels

the final image is the ratio -,
samples in this slice

Since the ER-Perspective method of the present invention performs a
slice-order processing, the total amount of computation may be analyzed by
calculating the amount of work performed on each slice. Assuming that the work
done on each sample is the same, the count of the number of samples processed can be
used as a comparison of the workloads. For example, in the oversampling method
(see Figure 18B), the number of samples on the rear slice of a volume which ends
exactly on a region boundary is N°. On the front slice, the sample count depends on
the geometry of the viewpoint. In particular, using similar triangles and defining e, as

the distance from the viewpoint to the front of the volume, the number of samples

taken is
2
(N ‘+N -ezJ
€z
This can be generalized for any slice s through the volume dataset to
N°+ Nee, ’
e.t s

Thus, the total count of samples processed by the oversampling method is

fesze)

s=0 ez + s

Similarly, the undersampling method (see Figure 18A) can be shown to perform the

following amount of work:

68

WO 01/63561 PCT/US01/06345

10

15

20

25

i)

§=0 ez+ N

For the ER-Perspective algorithm of the present invention, the analysis is more
. . _— N+e, .
complicated. Depending on the viewing geometry, log| ——= |- I regions are
€z

created. It has been shown previously that each of these regions preferably contains
ey - 2 slices. Again, using the geometric principle of similar triangles, the

ER-Pérspective algorithm of the present invention processes the following number of

samples:
log Nte -7 reg ’
gt
reg=0 $=0 €z __ Zreg “éz
This formula has an upper bound of
N
Y (2N)
5=0
and a lower bound of
N
2N
s=0

Examining the equation for the total count of samples processed by the
oversampling method (given herein above), it can be seen that the oversampling
approach could perform O(N*) work on the front slice when the viewpoint is very
close to the volume. The oversampling run times grow rapidly as the viewpoint is
moved closer to the front of the volume. Examining the undersampling equation
above, it can be seen that as the viewpoint approaches the front of the volume, the
numerator approaches zero. The amount of work performed on the rear slice also
approaches zero. The run times of the undersampling method decrease as the

viewpoint becomes closer to the volume.

Regardless of the viewpoint geometry, the amount of work performed by the
ER-Perspective algorithm of the present invention is bounded by o(N?) and w(4N?) per

slice. Some advantages of this approach are that the upper bound on the run time of

69

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the algorithm is linear with the number of voxels and is independent of the view
position, and a lower bound on the image quality achieved is also independent of the
view position. Thus, a user can set the base sampling rate for the desired image
quality and be sure that the sampling rate is sufficient throughout the volume for that

desired image quality.

In contrast, a conventional oversampling approach provides a lower bound on
the image quality yet the runtime of the algorithm may become much greater than that
of the ER-Perspective method of the present invention. A conventional undersampling
method provides an upper bound on the runtime for rendering, but the image quality

may become much worse than the ER-Perspective approach.

Referring again to Figure 23, a preferred back-to-front ER-Perspective ray-
casting algorithm, in accordance with the present invention, is illustrated. The
algorithm of Figure 23 is shqwn as a pseudo-code representation and assumes a Z-
major axis projection. The ER-Perspective algorithm of the present invention does
not suffer from the traditional pitfalls when performing perspective projections on
uniform regular grids. This unique approach runs faster than oversampling methods
and produces better quality images than undersampling methods. Employing a
Bartlett filter for ray merging provides an image quality improvement over a
conventional box filter. The ER-Perspective algorithm is qualified by characterizing

the effective filtering on the input data.

In accordance with another form of the present invention, a method is
presented for rendering a large volume, wherein the volume dataset exceeds the
physical single-pass capacity of the Cube-5 apparatus of the present invention. The
preferred method subdivides the volume dataset into a plurality of cuboid bricks.
Traversing the bricks in a predefined order preferably enables initialization of the
compositing buffer of the Cube-5 apparatus with a baseplane image of a previous
brick before rendering it, whereby ray path and compositing are logically extended

throughout the entire volume. Information regarding the boundary between bricks is

70

WO 01/63561 PCT/US01/06345

10

15

20

25

30

preferably re-read to insure correct sampling. Using this approach, the maximum

volume size is limited only by the available intermediate baseplane storage.

In areas of the dataset where, during perspective projection, multiple voxels
contribute to the same image pixel, images of equivalent quality may preferably be
rendered using a level-of-detail (LOD) tree, which may be generated, for example, by
combining voxels of increasing neighborhood size in a pre-processing step. While
perspectively rendering a single large volume utilizing LOD, preferably only a small
portion of the volume, substantially close to the viewpoint, must be read in its highest
detail. The more distant portions of the volume, with respect to the viewpoint, may
then be rendered from lower resolution versions of the data. Thus the frame rate
and/or dataset size is preferably increased. Since each region in the perspective
algorithm of the present invention (previously described) will now be at a different
LOD, there is no longer need to filter the rays between regions, but merely to
redistribute them. Preferably, only one region of each LOD tree level is processed;

thus, only those regions must be paged into memory.

The level-of-detail (LOD) method of the present invention may also be used
for rendering scenes comprised of multiple objects at differing distances from the
viewpoint. For such cases, a starting LOD is preferably selected that delivers a
baseplane image of about the same size as the screen space image, thereby relating

rendering time to image resolution and not to object size (i.e., scale independence).

Although back-to-front rendering is similarly contemplated by and within the
scope of the present invention, the unique LOD method will be described herein in a
front-to-back rendering context. Rendering front-to-back, it is preferable to start with
a slab of the most detailed representation of the volume to be rendered. In a preferred
method of the present invention, the thickness of the volume slab is chosen so that
projected voxel distances in front and back of the slab differ by a factor of two, similar
to perspective projections according to the present invention, as previously described

herein. After rendering a slab, the current compositing buffer image is preferably

71

WO 01/63561 PCT/US01/06345

10

15

20

25

30

scaled by a factor of 0.5 in the warp unit. This initializes the compositing buffer for
the rendering of the next slab of half the resolution. Preferably, only one slab of each
LOD actually flows through the rendering pipelines; thus, for large volumes, only

those slabs must be paged into the on-board 3D memory.

It is to be appreciated that the apparatus of the present invention can also be
employed to speed up off-line computations, such as generation of level-of-detail
(LOD) and filtering of datasets. To generate LODs, the trilinear interpolation unit
(TriLin) of the present invention preferably sets all its weights to 0.5. Once new
samples become available, they are preferably subsampled and compacted into a new
volume, which is the next coarser LOD. To filter a dataset, the trilinear interpolation
unit again uses only 0.5 weights; this time, however, data is fed back to the beginning
of the rendering pipeline without compaction. Each additional pass creates a new
filtered volume with a filter kernel having one more voxel extent in every major axis

direction.

For higher quality image rendering, the apparatus and methods of the present
invention preferably provide the flexibility to utilize a full hardware implementation,
multi-pass algorithms, and/or a combination of the two, depending on the desired
tradeoffs. The full hardware implementations and multi-pass methods preferably
provide more accurate computations in two primary functional areas: filtering and

interpolation.

The Cube-4 architecture, a predecessor of the present invention (Cube-5),
utilizes a central difference gradient filter with only two sample points to estimate
each of the x, y and z gradients at a particular location. A larger 3D filter can deliver a
more accurate gradient estimate, such as a Sobel filter (which is a 3* filter with
weights derived from the inverse of the Manhattan distance from the center point). A
straightforward hardware implementation of a 3° filter, however, requires 27

multipliers and 26 adders.

72

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The apparatus of the present invention presents an alternative to this expensive
prior art approach by using symmetric convolution filters. The convolution filters can
be efficiently implemented with only three multipliers and six adders, at a significant
cost savings. Replication of hardware per gradient component can preferably be
avoided by applying a three-pass algorithm instead. As an example, Figure 25
illustrates a symmetric approximation of the x-component of the Sobel gradient filter.

Within each stage, the weights are preferably applied to the nearest neighbors before
summation. With reference to Figure 25, if each stage operates on the output of a
previous stage instead of on the raw data, the weights presented in Figure 25 will
effectively produce the 3* symmetric approximation of the Sobel gradient filter (right
side of Figure 25). Changing the x-weights to {1 w 1} will produce an approximation

of a Gaussian filter instead.

The present invention contemplates higher quality rendering modes in which
no additional hardware is needed, but in which the frame rate is lowered. One such
example is to achieve larger neighborhood contributions to the gradient estimation by
utilizing level-of-detail (LOD) information. If the central difference gradient is
computed on data of the next coarser LOD, it is effectively the equivalent of
employing a 6x4x2 filter, with 6 being the extent in the direction of the current
gradient component. Since the apparatus of the present invention (i.e., Cube-5
architecture) is able to hold mip-mapped LOD representations of the data, this filter is
preferably achieved with essentially no increase in hardware, beyond the simple

central difference solution.

Another higher quality multi-pass rendering mode provided by the present
invention, for which no additional hardware is required, is an approximation of tri-
cubic interpolation, which has beneficial applications in the medical field as well as
other fields. This mode enables more accurate resampling and iso-position
calculation. For this, the present invention preferably decomposes a piecewise 4°-
voxel filter into a series of linear interpolations and extrapolations which is symmetric

in every dimension, thereby allowing efficient reuse of intermediate results.

73

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In performing higher quality rendering, it is to be appreciated that there are
certain tradeoffs between using additional hardware for providing more accurate and
flexible gradient estimation within the Cube-5 pipeline, as opposed to employing
multiple pass algorithms. Generally, using a multiple pass algorithm requires changes
in the Address Generation and Control unit (see Figure 5) of the present invention to
momentarily stall the pipeline for computational purposes, while the hardware
approach requires additional application specific integrated circuit (ASIC) logic and

additional connections to support larger neighborhoods.

With respect to enhanced volume rendering capabilities, a preferred
embodiment of the present invention supports clipping by arbitrary planes. The
distance from each plane may preferably be incrementally computed using only
registers and one adder per plane. In addition to conventional clipping planes which
define only the positive direction as visible, the apparatus of the present invention
preferably supports extracting an arbitrarily thick slice from the dataset for oblique
multi-planar reformatting (MPR) by invalidating all samples lying outside a

predetermined offset.

Axis-aligned cutting planes are preferably implemented by restricting the '
volume traversal to the cuboid of interest. Alternatively, the present invention
contemplates restricting this traversal to exclude a simple cuboid from the volume

(e.g., visualizing all but one octant of a volume).

In addition to clipping, the present invention further contemplates depth
cueing, which modulates the color of objects to simulate, for example, atmospheric
attenuation of light through a translucent medium. This phenomenon, as appreciated
by those skilled in the art, is termed fog or haze when the medium also contributes
some color (e.g., white or gray). To implement this feature in accordance with the
present invention, normally clear regions are preferably replaced with a semi-

transparent color (e.g., black for depth cueing, white for fog) by modifying the

74

WO 01/63561 PCT/US01/06345

10

15

20

25

30

transfer function. Each final pixel is preferably further attenuated to account for the
distance from the viewpoint to the surface of the volume, preferably implemented as a

part of warping.

The apparatus of the present invention additionally supports rendering of
super-sampled images with a preferred default super-sampling rate of two in the x and
y directions, although other sampling rates are contemplated. To improve image
quality further, the sampling rate along each ray can also be increased. Neither
approach requires re-reading voxels from the 3D memory. The apparatus of the
present invention preferably changes the volume traversal order so that voxels already
residing in the buffers will be read out repeatedly. Each time they are reused, new
weights are preferably utilized in the trilinear interpolation units (TriLin) of the

present invention to reflect the new resampling position.

In a preferred embodiment for supersampling in the present invention, central
difference gradients are computed between neighbors one distance unit apart to ensure
sufficient precision. These gradients are preferably computed by taking the difference
first and interpolating afterwards or, alternatively, by interpolating first and then
taking the difference between neighbors % positions apart (assuming & times
oversampling), and preferably not immediate neighbors. A classification stage must
consider the new inters ample distances when computing a new o "value. Therefore,
during super-sampling, the volume will preferably be traversed in an interleaved
pattern within each slice. This essentially ensures that a translucent material (gel)

keeps its accumulated opacity (RGBa value) independent of the sampling rate. Thus,

for example, for an oversampling factor of £ in the z-direction, modified a “values are

preferably used, where: a'= 1 - (I-«)”k.

Anisotropic datasets have different distances between samples along different
axes. Thus, the gradient computation and the final two-dimensional (2D) image warp
preferably require axis-dependent scaling factors. In addition, the direction in which

the sight rays are being cast through the volume dataset preferably require adjustment

75

WO 01/63561 PCT/US01/06345

10

15

20

25

30

to account for the implicit volume scaling, which occurs when storing anisotropic data

in an isotropic grid. The a’value is preferably adjusted according to the

direction-dependent distance d which a sight ray travels through a voxel cell. The

corrected a’is a'= 1-(1-a)°, with the direction-dependent distance d preferably

being in the range /1, v/3].

In addition to the methods for enhancing volume rendering capabilities
described herein above, the present invention further provides several unique methods
for universal three-dimensional (3D) rendering, including mixing polygons and
volumes, voxelization of polygons, rendering multiple overlapping volumes,
performing texture mapping and accelerating image-based rendering. These methods

are described in greater detail herein below.

An important aspect of the present invention is its unique ability to correctly
mix geometric objects (i.e., polygons) and volumes in a single image. The apparatus

of the present invention (i.e., Cube-5) preferably leverages conventional geometry

. hardware to render opaque and translucent polygons together with the Cube-5 volume

rendering pipeline.

In a preferred method according to the present invention, to render a scene
containing volumes and opaque polygons, all opaque polygons are first projected onto
a Z-buffer coincident with a predefined baseplane and having sufficient resolution to
match the volume sample distance. Using the Z-buffer, a determination is preferably
made as to which slices of the volume are in front of the polygons for each pixel of
the baseplane image. The compositing buffer is then preferably pre-loaded (i.e.,
initialized) with this projected RGBaZ (i.e., Z-buffer) image, representing the color
and depth image of the polygons. Subsequently, the volume is rendered with z-
comparison enabled in the compositing buffer. The depth values of the opaque
polygons are checked to keep volume samples which are hidden by opaque polygons
from contributing to the final image. Ultimately, the opaque polygons occlude the

volume behind, and the volume in front correctly composites over the polygons.

76

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In other words, the compositing buffer is pre-loaded with the z-buffer image
{C5, Z;}, in accordance with the preferred method of the present invention, where C,
represents the value of the geometry sample and Z, represents the depth of the
geometry sample from a predetermined viewpoint. During back-to-front compositing,
the resulting output pixel in the compositing buffer, Cpy,z, Will preferably be equal to
the geometry sample value, C,, when the volume sample is behind the geometry (i.e.,
when the depth of the sample, Zj, is greater than the geometry depth, Z,). Similarly,
during front-to-back compositing, the samples are preferably composited using the
Porter-Duff over operator, as appreciated by those skilled in the art. A more detailed
discussion of the Porter-Duff a compositing rules are described, for example, in the
text Compositing Digital Images, by T. Porter and T. Duff, Computer Graphics
(SIGGRAPH 84), vol. 18, no. 3, pp. 253-259, July 1984, which is incorporated herein

by reference. Therefore, the resulting output pixel in the compositing buffer, Cpyz,
will preferably be equal to the volume sample value, Cg, over the geometry sample
value, C;, when the volume sample is in front of the geometry (i.e., when the depth of

the volume sample, Z, is less than the geometry depth, Z,).

Translucent polygons pose a more complicated situation, since all fragments
(both translucent polygon pixels and volume samples) must be drawn in topologically
depth-sorted order. This is required because compositing translucent fragments with
the over operator is not commutative. Therefore, polygons must be re-depth-sorted
whenever the scene or viewing geometry changes. Additionally, the sorting must be

topologically correct, including the handling of depth cycles.

Although there are proposed architectures which use an A-buffer to provide
some hardware sorting support, implementing an A-buffer in hardware allows only
limited depth complexity (i.e., number of overlapping polygons per pixel) in a single
pass and is costly. A discussion of a conventional A-buffer algorithm may be found,
for example, in the text The A-Buffer, an Antialiased Hidden Surface Method, by L.
Carpenter, Computer Graphics (SSIGGRAPH 84), vol. 18, no. 3, pages 103-108, July
1984.

77

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In a preferred method, the present invention adapts polygon rendering to slice
order ray casting, and synchronizes the overall rendering process on a volume slice-
by-slice basis, rather than a polygon-by-polygon or pixel-by-pixel basis. The Cube-5
apparatus preferably utilizes the geometry pipeline and conventional graphics
hardware to render geometric objects in thin slabs that are interleaved or dove-tailed

between slices of volume samples 212, as illustrated in Figure 26.

With reference now to Figure 26, each slice of the volume is preferably
sampled in planes perpendicular to the volume storage axes. The planes are drawn in
depth order (e.g., using near and far clipping planes) from farthest from the eye or
viewpoint 214 to nearest to the eye. Therefore, to mix translucent polygons with
volumetric data, thin slabs of the polygons 210 are preferably rendered and
composited in between the slices of volume samples 212. It is to be appreciated that
the slabs 210 represent all of the translucent objects which lay between two
consecutive slices of the volume sample planes. The boundaries of the slabs are
preferably defined such that the union of all rendered slabs 210 neither misses nor
duplicates any region (e.g., (], (], ..., (], as shown in Figure 26). The data from the
volume slices and the translucent polygonal slabs 210 are dove-tailed together in an
alternating fashion. In this manner, the correct depth ordering of all contributing
entities is preserved and use of the over operator to composite them creates correct

colors in the final image pixels.

In accordance with a preferred method of the present invention, the opaque
polygons are drawn first with Z-buffering. Before drawing any volume slices, the
translucent polygons which lie behind the volume extent are preferably drawn over
the opaque polygons using any conventional translucent polygon rendering algorithm
(e.g., painters). Likewise, translucent polygons which lie in front of the volume are
preferably drawn after the mixing portion of the algorithm. Polygons which lie depth-

wise within the volume boundary, but to the top/bottom/side of the volume, are

78

WO 01/63561 PCT/US01/06345

10

15

20

25

30

preferably drawn in slice order as if the volume slices were planes that extend to

infinity cutting the translucent polygons.

OpenGL may be used to directly render the thin slabs of translucent polygonal
objects. The polygons are preferably shaded using the Gouraud shading model
included in OpenGL. A naive approach would be to render the complete set of
translucent polygons for every slab and set the hither and yon clipping planes to cut
the current thin slab of data. However, for an 73 volume, there could be up to # thin
slabs that must be rendered. Since a typical scene contains very few polygons which
span all of the thin slabs, the present invention contemplates an alternative approach
which would involve clipping the polygons to the slab boundaries and only rendering
the portions of the polygons within each slab. This would substantially reduce the
processing load on the polygon pipeline. However, it would require the application to

clip every polygon against the two planes of each thin slab which contains that
polygon.

As illustrated in Figure 27, it is contemplated that the present invention may
take advantage of the fact that the two clipping planes 216, 218 are parallel to keep
only the portions of the polygons which lie between the planes. While this creates
fewer polygons than clipping against each plane separately, it still can increase the
triangle count dramatically. The first case occurs when a triangle 220 intersects the
thin slab, but no vertices are within the slab boundaries 216, 218. When this occurs,
one vertex must be on one side of the slab and the other two vertices on the other side
of the slab, thus creating a trapezoid which is decomposed into two triangles. Next,
consider when one vertex of a triangle is within the slab. In one situation, a triangle
222 intersects the slab such that the remaining two vertices lay on the same side of the
current slab, creating only one triangle. In a second situation, a triangle 224 intersects
the slab such that the remaining two vertices lay on opposite sides of the current slab.
This is a worst case situation, since it produces a pentagon, or three triangles. The
final case occurs when a triangle 226 intersects the slab such that two vertices lie

within the same slab and, once again, a trapezoid is created resulting in two triangles.

79

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In a preferred embodiment of the present invention, a bucket sorting method is
applied to the translucent polygons. Whenever the viewing geometry changes, the
placement of volume sample planes change their relative positions to the geometry.
Therefore, the present invention preferably creates a bucket for each thin slab between
two volume sample planes. All of the translucent polygons in a scene are preferably
traversed and each of the polygons is placed in a bucket for each of the slabs it
intersects. For example, as shown in Figure 28, triangle T1 is placed in all six buckets
since it spans all six slabs S1-S6. Triangle T2 is placed in buckets corresponding to
slabs S2 and S3, and likewise for the remaining triangles. For the example shown in
Figure 28, bucketing the four triangles T1 - T4 would result in twelve triangles being
sent to the graphics pipeline. As a comparison, if the triangles were being clipped to

the slab boundaries, twenty triangles would be sent to the graphics pipeline.

An alternative to bucketing is to create an active triangle list similar to the
active edge list utilized in scan converting polygons. The triangles may be placed in
the active list at the first slice they intersect and removed from the list when they no
longer intersect any slices. A data structure is preferably pre-computed which
indicates which slice each triangle first encountered. This preprocessing is essentially
the same as for bucketing, with the exception that bucketing does not have to check

for triangle removal for each slice.

One advantage of the method of the present invention is that for applications
which choose to trade off image quality in order to maintain a predetermined frame
rate, the number of polygons drawn decreases as the number of slices drawn for the
volume decreases. This occurs because the interslice size increases as the number of
volume slices decreases. The rendering rate achieved is substantially proportional to
the number of polygons drawn and the number of volume samples drawn (which is
proportional to the number of volume slices drawn). The image quality degradation
resulting from this tradeoff affects only the volume data, similar to taking fewer

samples in any volume rendering algorithm.

80

WO 01/63561 PCT/US01/06345

10

15

20

25

30

When mixing translucent geometries and volumes, there exist at least three
options for handling two or more translucent polygons being drawn to the same pixel
within one thin slab. In the first option, the polygons could be drawn in regular
processing order with the over operator. While this method may produce the incorrect
color, the amount of color error is limited because the polygons are still sorted by

bucketing them into thin slabs.

Another method for handling two or more translucent polygons is to draw thin
slabs of translucent polygons between two volume sample slices as on-the-fly
voxelization. In conventional voxelization methods, when a surface is 3D scan
converted into a 3D volume grid, the resolution of the grid is commonly chosen such
that the size of a single voxel represents the smallest area that can be discerned by the
human eye when it is rendered. In the X and Y dimensions, the polygons are drawn to
screen resolution. In the Z dimension, it is assumed that the volume is being rendered
with enough slices such that each volume sample also represents the smallest area that
can be discerned by the human eye. Therefore, each pixel bounded by two volume

slices in the Z dimension also represents this small area.

In view of the foregoing, a method, performed in accordance with one
embodiment of the present invention, may be viewed as computing on-the-fly
voxelization by utilizing 3D graphics hardware. Voxelization methods combine
polygons into a single voxel by using one of two preferred methods. The first method
is to take the max of each color channel. The second method is to take the weighted-
max as
_(CpDpit CraDp2)

(—Dp] + DpZ)
where Cp is the color of a first polygon (polygon 1), Dy is the density of polygon 1,

Cy

and Cy, is the color assigned to the voxel. Many OpenGL implementations, for
example, allow max blending with glBlendEquationext(gl_max_ext). Assuming that

the density is equal to the alpha value (e.g., linear ramp transfer function for volume

81

WO 01/63561 PCT/US01/06345

10

15

20

25

30

rendering), then the colors may preferably be weighted by their alpha values before
blending by using a g/BlendFunc (gl_src_alpha, gi_one). However, OpenGL is not
able to compute the complete previous equation since it cannot divide by the sum of

the alpha values after accumulating them.

The third method of drawing two or more translucent polygons to the same
pixel within one thin slab may also be considered the most accurate approach. By
utilizing one of the previously described methods of the present invention to perform
depth sorting, such as BSP tree, proper ordering of all translucent polygons within
each slab is maintained. Depth cycles are preferably handled by the BSP algorithm by
splitting polygons which span a plane used in the partitioning, and eventually one of

the polygons in the cycle is used as the partitioning plane.

As previously discussed, an important feature of the present Cube-5 invention
is the unique ability to couple at least one gebmetry pipeline or engine to the Cube-5
system. In accordance with the present invention, two preferred methods of
connecting one or more geometry pipelines to the claimed Cube-5 system on PC-class
machines is provided, as described herein below. Both methods allow the unique

mixing of opaque and/or translucent polygons with volumetric data.

It is to be appreciated that the opaque polygons are preferably rendered such
that, after projection through the volume dataset, warping creates the correct footprint
on the final image. Furthermore, the Z-depth values are preferably aligned along the

processing axis, so that a volume slice index may be used for the Z-depth check.

In accordance with one embodiment of the present invention, a preferred
method begins by determining a major viewing axis for the current viewing direction.
As illustrated in Figure 29, a transformation is preferably applied to the geometry 228
so that the major viewing axis 230 is along, for example, the Z-axis. Next, the view
or eye point 232 is moved to be along this direction, preferably by rotating the vector

between the look-at point 234 and the eye point 232 by a predefined angle o around

82

WO 01/63561 PCT/US01/06345

10

15

20

25

the X-axis and an angle B around the Y-axis. Preferably, a and f are always in a range
between -45 and +45 degrees, otherwise a different baseplane would be chosen. A Z-
slice shear transformation along X and Y (also known as a “X and Y according to Z”

shear) is preferably subsequently applied to the viewing matrix as follows:

/ 0 tana 0

0 I tamf 0

0 0 1 0
L0 0 0 1

With this geometry, when the opaque polygons are drawn, the polygon
footprints are “prewarped” so that the warping operation at the end of Cube-5
rendering' creates correct polygons in the final image. Additionally, the Z-depths
computed are preferably proportional to the distances along the processing axis. It is

possible (e.g., if all opaque geometry fits within the volume extents) to set the hither

* and yon clipping planes to the edges of the volume and, if the precision of the depth

buffer is the same, the depths computed are exactly the volume slice indexes for depth
checking. Otherwise, a simple scaling must be applied when the computed depths are
utilized by the volume rendering system. Light positions should be considered when
using this method, however, as the shearing may not move the lights to the correct

location.

The thin slices of translucent polygons preferably align geometrically with
their 3D positions in space. Preferably, the eye point is first aligned as previously
described. Next, in order to keep the objects from projecting all the way to the final
image plane, the geometry is preferably translated such that the center of the current
thin slab is at the Z=0 plane prior to shearing. Clipping planes allow only the current
thin slab to be rendered and the projection plane is set to be within the two volume
slices which border that region with, for example, glOrtho (giFrustum for

Perspective).

83

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Important to comprehending the present invention is to understand the
organization of frame buffer design and composting buffer design. As illustrated in
Figure 30, the Cube-5 volume rendering pipeline 236 of the present invention
preferably utilizes a tightly coupled on-chip SRAM buffer 238, termed a composting
buffer, to hold the partially composited rays as a volume is processed in slice order.
This architecture exploits the regular processing sequence inherent in slice order
rendering. Specifically, each slice of the volume 240 is preferably processed in the
same order as the previous, left-most voxel to right-most voxel of each row, and
bottom-most row to top-most row of each slice (possibly with some skewing). In this
way, the SRAM composting buffer 238 becomes a simple FIFO queue having a
length equal to the size of a slice. The SRAM queue is preferably 32 bits wide to hold
8-bit fixed point RGBa values (called coxels). Each pipeline 236 preferably reads a
coxel from the front of the queue and writes a coxel to the rear of the queue for each

clock cycle.

In contrast, with reference now to Figufe 31, conventional PC-class geometry
pipelines 242 utilize an external DRAM frame buffer 244, which stores the RGBa
color values and Z-depth values for each pixel. This frame buffer 244 must support
random access, since polygon rendering does not enjoy the regular access ordering
inherent in slice-order volume rendering. Normal polygon rendering produces
triangles on a screen of average between 10 and 50 pixels. Therefore, the DRAM

memory is organized to maximize access to areas of the screen of this size.

As shown in Figure 31, when the 3D texture mapping method of the present
invention is implemented on geometry pipelines 242, volume slices 246 perpendicular
to the screen are texture mapped through the volume. The per-vertex geometry
calculations for the volume slices 246 are easily achievable with any level graphics
hardware. However, the requirement to support random access to both the texture
memory 248 and frame buffer 244 limits the performance of this approach to the fill
rate achievable with a DRAM frame buffer.

84

WO 01/63561 PCT/US01/06345

10

20

25

30

Very high end surface graphics systems typically utilize massive parallelism in
the fragment processing section 250 of the polygon pipeline. This, coupled with a
highly distributed frame buffer, allow increased fill rate performance.

In Figure 32 there is shown one embodiment for connecting a geometry
pipeline 242 to the Cube-5 volume rendering system 252, according to the present
invention. As illustrated in Figure 32, the SRAM composting buffer is preferably
removed from inside the Cube-5 pipeline 252 and replaced with an external DRAM
frame buffer 254. Rather than organizing the DRAM frame buffer 254 as in
conventional polygon engines, the memory in the frame buffer of the present
invention is preferably organized so that it is specifically optimized for volume
rendering. The frame buffer 254 is also preferably accessible from a 3D graphics

pipeline 242 to allow mixing of polygonal data 256 with volumes.

With continued reference to Figure 32, the dual use frame buffer 254
preferably connects the two pipelines 242, 252. In a preferred method, to render a
scene with both opaque and translucent polygons and also volume data, the geometry
pipeline 242 first renders all opaque polygons with Z-depth. The volume slices,
stored in volume memory 258, and thin slabs of translucent polygons are then
rendered in an alternating (e.g., dovetailing) fashion - volume slices by the Cube-5
pipeline 252 and translucent polygons by the graphics pipeline 242 (opaque polygons
may also be rendered with the same dovetailing algorithm, but with increased demand

on the graphics pipeline).

Z-depth checking is preferably utilized to insure correct hidden object removal
and blending is set in both pipelines to correctly composite the samples and
fragments. The geometry engine 242 preferably performs the final baseplane warp

required by the Cube-5 system of the present invention.

The design of the DRAM buffer 254 is critical to achieve, for example, the

503 Million samples per second required for 30Hz rendering of 256> volume datasets.

85

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Therefore, it is helpful to first create a DRAM buffer for the Cube-5 rendering
pipeline itself, before discussing connecting the rendering pipeline to a graphics
pipeline. The volume rendering system of the present invention is preferably
comprised of multiple Cube-5 pipelines. In each rendering pipeline, at every clock
cycle, a coxel (composting buffer element consisting of RGBa) is read from the
SRAM composite buffer FIFO and blended with an appropriate composting equation.

The new coxel is then placed at the rear of the FIFO. In a preferred embodiment, the
structure of a coxel is changed to contain 32 bits of color, 8 for each RGBa and 32
bits of Z-depth information, 24 + 8-bit stencil. This configuration is required to
handle Z-depth checking in the composting stage. Assuming that opaque polygon
rendering is completed before any volume rendering begins, the 32 bits of Z-
depth/stencil information is read, but not re-written. Therefore, for every clock cycle,

each Cube-5 pipeline needs to read 8 bytes of coxel data and write back 4 bytes.

Preferably, the rendering pipeline of the present invention utilizes memory
chips with a word size of 16 bits. Using this configuration, four words must be read
by each pipeline every cycle and two words must be written. To do this would require
six 16-bit memory interfaces per pipeline. An emerging technology in synchronous
DRAM (SDRAM) chips, which the present invention may avail itself, is known as
double data rate (DDR), which reads/writes data at both the rising and falling edges of
the clock. Using DDR SDRAMSs, the present invention can utilize two 16-bit memory
interfaces for reading 64 bits of data per clock and one 16-bit memory interface for

writing 32 bits per clock, for a total of three 16-bit memory interfaces per pipeline.

With reference now to Figure 33, since a read and write must be performed
every clock cycle in order to keep the pipeline full, the present invention preferably
reads from one set of frame buffer chipé (e.g., set A) 260 and writes to another set
(e.g., set B) 262. The Cube-5 system contemplates reading from set A 260 and
writing to set B 262 for a complete slice of the volume, and then swapping for the
next slice. With this approach, however, each frame buffer chip set would have to be

large enough to hold the complete frame buffer. Furthermore, the polygon engine

86

WO 01/63561 PCT/US01/06345

10

15

20

25

30

would have to be instructed as to which set is the current set. Therefore, in a preferred
embodiment, the present invention alternates reading and writing between set A 260
and set B 262 within a frame and buffers the processed coxels from the read set until
it becomes the write set. Since every memory access must be a burst, each burst
actually lasts four clock cycles and reads/writes four coxels (i.e., eight words) with
16-bit DDR DRAM chips. The Cube-5 system preferably cycles through all 4 banks
to keep the memory bandwidth saturated before writing the new RBGa values back.
For this reason, there is preferably a 16-coxel FIFO queue 264 (four coxels for each of

four banks) that the newly composited RBGa portions of the coxels are stored in.

There are many different possible configurations for the number of pipelines
etc. in the Cube-5 volume rendering system of the present invention. An example for
a case of four parallel pipelines creating 12 total memory interfaces will now be
discussed with reference to Figure 33. As shown in Figure 33, each pipeline contains
one read interface 266 to the Z-depth/stencil portion 268 of the frame buffer and two
read/write interfaces 270 and 272 to set A 260 and set B 262, respectively, of the
RGBo. portion of the frame buffer. To render a 256 volume at 30Hz, each of the four
pipelines process 125 million voxels per second. Therefore, a 133 MHZ clock is
utilized for the chip and the SDRAM. The mapping of the frame buffer pixels onto
the memory chips is critical to the performance. It must match exactly the processing
order of the Cube-5 pipelines and the parallel access by four pipelines substantially
simultaneously. It is assumed that the skewed memory access of the Cube-5
architecture is “un-skewed” so that the volume samples are in order from left to right
across each scanline in groups of four, since it is easier to follow in the explanations.
The design can be extended to skewed memory, although the geometry pipeline and

screen refresh system must be aware of the additional skewing,

Figure 34 shows a preferred layout of the RGBa portion of the coxels in the
frame buffer. For a given scanline 274, there is a group of pixels which reside in set
A 276 followed by a group of pixels which reside in set B 278, repeated across the
entire scanline 274. The length of each set is 64 pixels due to the fact that each set

87

WO 01/63561 PCT/US01/06345

10

20

25

30

must contain pixels which are read from four different banks inside each chip, and
each bank consists of four RGBa values from four parallel chips/pipelines. Thus the
pixel data in the frame buffer is interleaved across eight chips; In fine detail, it is

really interleaved across only four chips. This provides an interface which reads

4 pipelines x (1 RGBa chip + 1 depth chip) x 16 bits
x 133MHz x 2 data rate = 34 Gbits = 4.15Gbytes

of data per second. This surpasses the required

256> x 30Hz x 8 bytes = 3.75Gbytes per second
where eight bytes are organized as four bytes RGBa. + four bytes Z-depth/stencil.
Additionally, the frame buffer sub-system is capable of writing

4 pipelines x 1 RGBa chip x 16 bits x 133MHz
x 2 data rate = 17Gbits = 2.1Gbytes

once again handling the

256° x 30Hz x 4 bytes = 1.8Gbytes per second

required for real time 30Hz rendering of 256 volumes.

This extra bandwidth is not siting idle. The screen must be refreshed from the

data in the frame buffer. If we assume a 1280 x 1024 screen resolution with 60Hz
refresh rate and that all four RGBa bytes are read from the frame buffer (since our

burst mode access retrieves them anyway), then

1280 x 1024 x 60Hz x 4 bytes = 300Mbytes

88

WO 01/63561 PCT/US01/06345

10

15

20

25

30

are read from the frame buffer per second. Only the RGBa portion of the frame buffer
is required for refresh. Therefore, the refresh data is read from eight chips. It is
sufficient to perform ten data burst reads/writes (depending on set A or set B) to each
chip followed by one read of data for refresh. This distribution of memory accesses
provides the refresh hardware with a consistent (although bursty) stream of data. The
Cube-5 pipelines also contain a small percentage of excess cycles, and thus will not
lose the ability to achieve 30Hz 256° rendering when the memory sub-system is

temporarily stalled for refresh.

An alternative approach to connecting a graphics pipeline to the Cube-5
volume rendering pipeline, in accordance with a preferred embodiment of the present
invention, will now be described. This preferred connection approach keeps both the
graphics pipeline and the volume rendering pipeline working at all times and merges
the data in the SRAM compositing buffer inside the Cube-5 chip. At any given time,
the volume rendering pipeline is composting the current volume slice with the
previous thin slab of polygon data over the compositing buffer and the graphics

pipeline is rendering the next thin slab of translucent polygons.

The method described herein still utilizes the unique approach of dovetailing
volume slices and thin slabs of translucent polygonal data, as previously described
herein above. In a first step, all opaque polygons are projected onto a Z-buffer
coincident with the baseplane (e.g., the volume face most parallel to the screen).

Next, the projected RGBoZ image is loaded into the composting buffer of the volume
rendering pipeline. Subsequently, the volume is rendered with a Z-comparison
enabled in the composting stage. The thin slabs of translucent polygons are preferably
rendered by the geometry pipeline, and their corresponding RGBa. data is sent to the
volume pipeline of the present invention to be blended into the SRAM composting

buffer within the volume pipeline.

Preferably, the composting stage of the volume rendering accelerator is

modified to composite two layers (one volume and one translucent polygon) per step,

89

WO 01/63561 PCT/US01/06345

10

15

20

25

thus not delaying the volume rendering process. This requires the addition of some
extra logic. The straightforward formula for performing a double composition of a
volume sample v over a translucent pixel fragment p over the old coxel ¢ would

require four additions and four multiplies in five stages:

C,=C0, +[C,e, + C (1 -a)](l~a)

However, employing simple math allows the double composition to be calculated
with four additions and two multiples in six stages with the following formula (some

of the calculations are re-used):

C,=(C.+(C,-CHa)+[C,~(C +(C, - Crx)le,

As appreciated by one skilled in the art, the hardware designer would choose the
option more desirable for a given implementation (i.e., less logic and more stages, or

fewer stages and more logic).

Consider the amount of data transferred for a 256° volume. There are
preferably 255 slabs plus one buffer in front of the volume and one buffer behind the
volume. Each of these 257 slabs contains 256KB (256 pixels of RGBa) of data. This
equates to 64MB being read from the frame buffer and transferred between the two
sub-systems each frame. To achieve a 30Hz frame rate would require a bandwidth of
1.9GB per second. While this much data could be transferred with sufficiently wide
channels, it must also be read from the frame buffer. It would be virtually impossible
to read this much data without changing the organization of the current DRAM frame

buffers. Additionally, the frame buffer must be cleared 257 times per frame.

To solve this bandwidth challenge, the present invention preferably uses run-
length encoding (RLE) of the blank pixels. With this method, each scanline is
encoded separately and a “run-of-zeros” is encoded as four zeros (RGBa) followed by
the length of the run. Since typically only a small percentage of the polygons in a

scene are translucent, the translucent polygon slabs will be relatively sparse. Run-

90

WO 01/63561 PCT/US01/06345

10

15

20

25

30

length-encoding just the blank pixels in these thin slabs results in over 99% reduction
in the required bandwidth. Preferably, the method of the present invention utilizes

RLE on 2D images of sparse translucent polygons to save on bandwidth.

Using this preferred method requires adding hardware to the Cube-5 system of
the present invention. Specifically, additional hardware may be included in the
volume rendering pipeline that can decode the RLE input stream and create RGBa
fragments. However, since these fragments are utilized by the volume pipeline in a
regular order, it is preferable to decode the input stream using a double buffer to
synchronize the two pipelines. Every clock cycle, a value is output from the decoding
hardware. If the volume rendering machine has multiple pipelines (as most current
designs do) the decoding hardware is preferably replicated for each pipeline so that
they can keep up with pixel demand.

Likewise, RLE hardware at the originating end connected to the geometry
pipeline may encode the data in real-time before sending it to the volume pipeline.
However, 1.9GB per second access to the frame buffer would still be required to read
all the thin slabs of translucent polygons and clear the frame buffer 257 times per
frame. Therefore, a separate frame buffer is preferably employed which stores the
data directly in RLE format. Since the thin slabs of translucent data are very sparse,
more time is spent clearing and reading than is spent rasterizing. An RLE buffer,
while generally not optimal for rasterization, is well suited for both clearing and
reading the data. For example, to clear an RLE frame buffer requires merely storing a
single run of zeros (in five bytes) for each scanline, instead of writing an entire 256°

frame buffer.

To minimize the impact on the current geometry pipelines, the RLE frame
buffer is preferably implemented using the emerging technology of embedded DRAM
and connecting it in parallel to the normal frame buffer. This differs from
conventional encoding algorithms which typically assume that the data was given in

physical order. Triangle rasterization, however, does not guarantee any ordering of

91

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the fragments. Therefore, the apparatus of the present invention must be able to

randomly insert an RGBa value into an RLE scanline of data.

Figure 35 illustrates a diagram of an RLE insert, formed in accordance with
the present invention. For each fragment, the encoded scanline is copied from one
buffer to another, inserting the new RGBa value. Every clock cycle, a single flit (i.e.,
either an RGBua pixel or run-of-zeros) is processed. The entire scanline is preferably
processed flit by flit. With reference to Figure 35, an input buffer (“in Buffer’’) 280
holds the current encoded scanline and an output buffer (“out Buffer”) 282 holds the
newly encoded scanline with the new RGBa fragment inserted. The choice of what to
insert at each cycle is preferably performed by a 5-byte multiplexor 284. The
apparatus of the present invention preferably includes pointers, namely “inPtr” 286
and “outPtr” 288, which point to the current flit of both the in buffer 280 and out
buffer 282, respectively. The logic on the right side of Figure 35 calculates how much
has been processed (“Total”’) 290 and two of the control points (“ctrl 1" and “ctrl 3").

The other mux control point (“ctrl_2") is calculated by ‘OR’-ing together all of the
RGBa values (the flag for run-of-zeros). “xPos™ is defined as the x position of the
fragment. Preferably, a lookup table is implemented of where the current buffer is
located in memory for each y value. Thus, the buffer can be moved while inserting
new pixels and the table is simply updated. This preferred method is illustrated in the
RLE_AddFragment pseudo-code routine of Figure 36. With continued reference to
Figure 36, the RLE_AddPixelToScanline function demonstrates the processing that

occurs in the hardware embodiment of the present invention shown in Figure 35.

By utilizing an embedded DRAM the present invention takes advantage of the
extremely high bandwidth available when processing occurs on the memory chip.
The processing is simple enough to be implemented in the DRAM manufacturing
process. For example, for a 1280 x 1024 frame buffer, the maximum amount of
memory required is 50Mbits. This fits onto eDRAM dies with room for over 3

million gates for the encoding hardware.

92

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Figure 37 is a preferred block diagram illustrating how a polygon pipeline 242
and volume pipeline 252 are connected through the RLE frame buffer 292, which is
preferably double-buffered to allow rendering during transmission of data. The
auxiliary frame buffer is preferably connected at the same place as the existing one by
simply duplicating the fragments, thus not affecting the remainder of the geometry
pipeline 242. The volume pipeline 252 also preferably utilizes double buffering to
allow receiving of data while blending the previous slab. It is to be appreciated that,
using the system of the present invention, volume rendering does not conflict with
polygon rendering. Since the volume pipeline 252 always accesses its memory in a
repeatable ordered fashion, it achieves the sample fill rate into the frame buffer at a
sufficient rate to achieve 30Hz volume rendering. The system of the present invention
utilizes the graphics pipeline 242 to render the opaque polygons before rendering the
volume, stored in volume memory 258. This can normally be accomplished
concurrently with the rendering of the volume for the previous frame. Even if the
polygon engine must render translucent polygons mixed in with the volume, there is
usually enough time to render the opaque polygons before the volume finishes due to

the small number of translucent polygons in normal scenes.

In accordance with a preferred embodiment of the present invention, a method
is provided to incrementally voxelize triangles into a volumetric dataset with pre-
filtering, thereby generating an accurate multivalued voxelization. Multivalued
voxelization allows direct volume rendering with intermixed geometry, accurate
multiresolution representations, and efficient antialiasing. Prior voxelization methods
either computed only a binary voxelization or inefficiently computed a multivalued
voxelization. The method, in accordance with the present invention, preferably
develops incremental equations to quickly determine which filter function to compute
for each voxel value. This preferred method, which is described in greater detail

herein below, requires eight additions per voxel of the triangle bounding box.

To avoid image aliasing the present invention preferably employs pre-filtering,

in which scalar-valued voxels are used to represent the percentage of spatial

93

WO 01/63561 PCT/US01/06345

10

15

20

25

30

occupancy of a voxel, an extension of the two-dimensional line anti-aliasing method
conventionally known (Filtering Edges for Grayscale Displays, by S. Gupta and R. F.
Sproull, Computer Graphics (SIGGRAPH 81), vol. 15, no. 3, pp. 1-5, Aug. 1981). It

has also been shown that the optimal volume sampling filter for central difference
gradient estimation is a one-dimensional oriented box filter perpendicular to the
surface. The method of the present invention preferably utilizes this filter which is a

simple linear function of the distance from the triangle.

Conventional graphics hardware only rasterizes points, lines, and triangles,
with higher order primitives expressed as combinations of these basic primitives.
Therefore, it is preferable to voxelize only triangles because all other primitives can
be expressed in terms of triangles. Polygon meshes, spline surfaces, spheres,
cylinders, and others can be subdivided into triangles for voxelization. Points and
lines are special cases of triangles and can similarly be voxelized by the present
algorithm. To voxelize solid objects, the boundary of the object is preferably
voxelized as a set of triangles. The interior of the object is then filled using a

volumetric filing procedure.

As appreciated by those skilled in the art, edge functions are linear expressions
that maintain a distance from an edge by efficient incremental arithmetic. The
methods of the present invention extend this concept into three dimensions and apply

antialiasing during the scan conversion of volumetric triangles.

In essence, the general idea of the triangle voxelization method of the present
invention is to voxelize a triangle by scanning a bounding box of the triangle in raster
order. For each voxel in the bounding box, a filter equation is preferably evaluated
and the result is stored in memory. The value of the equation is a linear function of
the distance from the triangle. The result is preferably stored using a fuzzy algebraic

union operator, namely, the max operator.

94

WO 01/63561 PCT/US01/06345

10

15

20

25

30

With reference now to Figure 38, there is shown a density profile of an
oriented box filter along a line 294 from the center of a solid primitive 296 outward,
perpendicular to the surface 298. The width of the filter is defined as W. The
inclusion of a voxel in the fuzzy set varies between zero and one, inclusive,
determined by the value of the oriented box filter. The surface 298 of the primitive
296 1s assumed to lie on the 0.5 density isosurface. Therefore, when voxelizing a
solid primitive 296, as in Figure 38, the density profile varies from one inside the
primitive to zero outside the primitive, and varies smoothly at the edge. For a surface
primitive, such as the triangle 300 shown in Figure 39, the density is preferably one
on the surface and drops off linearly to zero at distance W from the surface. Although
the present invention similarly contemplates the voxelization of solids, the

voxelization of surfaces will be described herein.

With continued reference to Figure 39, it has been determined that the

optimum value for filter width W is 243 voxel units (see e.g., Object Voxelization by

Filtering, by M. Sramek and A. Kaufiman, 1998 Volume Visualization Symposium, pp.
111-118, IEEE, Oct. 1998). For shading, the normal is preferably estimated by

computing the central difference gradient at the 0.5 isosurface. Because the overall

width of the central difference filter is at most 2+/3 units, a correct gradient is found

on the 0.5 density isosurface. The thickness of the triangle 300 may be defined as T.
Normally, T’ can be zero, unless thick surfaces are desired. By thresholding at 0.5
density, a 6-tunnel-free set of voxels is generated when #>1. This property is useful

for volumetric filling (e.g., in order to generate solid objects).

All voxels with non-zero values for a triangle are preferably within a bounding
box which is S=W+T/2 voxel units larger in all directions than a tight bounding box.
Therefore, the first step of the present method preferably determines a tight bound for
the triangle 300, then inflates it in all directions by S voxel units and rounds outward
to the nearest voxels.

As illustrated in Figure 40, the area surrounding a triangle defined by vertices

CJ, C2 and C3 may be divided into seven regions (e.g., R1 through R7) which must

95

WO 01/63561 PCT/US01/06345

10

15

20

25

be treated separately. In a preferred method of the present invention, each candidate
voxel is tested for inclusion within the seven regions, then filtered with a different
equation for each region. In the interior region R1of the triangle, the value of the
oriented box filter is simply proportional to the distance from the plane of the triang]e.
In regions along the edges of the triangle, R2, R3, R4, the value of the filter is
preferably proportional to the distance from the edge of the triangle. In regions at the
corners of the triangle, RS, R6, R7, the value of the filter is preferably proportional to

the distance from the corner of the triangle.

With continued reference to Figure 40, the regions R1 - R7 are preferably
distinguished by their distance from seven planes. The first plane a is preferably
coplanar with the triangle and its normal vector a points outward from the page. The
next three planes b, ¢, and d preferaﬁly have normal vectors b, ¢, and d respectively
and pass through the corner vertices C; , C2, and C3 of the triangle, respectively. The
final three planes e, f, and g are preferably perpendicular to the triangle and parallel to

. the edges; their respective normal vectors, e, f, and g, lie in the plane of the triangle

and point inward so that a positive distance from all three planes defines region R1.
All of the plane coefficients are normalized so that the length of the normal is one,
except for normal vectors b, ¢, and d which are normalized so that their length is
equal to the inverse of their respective edge lengths. In that manner, the computed

distance from the plane varies from zero to one along the valid length of the edge.

For any planar surface, the distance of any point from the surface can be

computed using the plane equation coefficients:

Ax+By+Cz+D

Dist =

which simplifies to

96

WO 01/63561 PCT/US01/06345

10

15

20

Dist= Ax+By+Cz+D

when the coefficients are pre-normalized. This computation can be made incremental
so that when stepping along any vector, the distance only changes by a constant. For
example, if the distance from a plane is Dist at position [x, y, z], then stepping one unit

distance in the X direction changes the distance to

D'ist=A(x+1)+By+Cz+D
=Ax+By+Cz+D+ A4

= Dist+ A4

In general, stepping along any vector r = [ry, ry, 1z,], the distance from the plane

D'ist=Dist +r® [4,B,C]

changes by

where © indicates the dot product. While scanning the bounding box of the triangle,
the distance from the plane of the triangle can be computed incrementally with just a
single addition per voxel. This method, performed in accordance with the present
invention, for computing the distance from a plane is illustrated by the preferred

pseudo-code routine shown in Figure 41.

The Y-step is more complicated than the X-step because it not only steps one
unit in the Y direction, but it also steps back multiple units in the X direction.
Consider, as an analogy, the operation of a typewriter which glides back to the left
margin of the paper and advances the line with one push of the return key. Similarly,
the Z-step combines stepping back in both the X and ¥ directions and stepping
forward one unit in the Z direction. This simple pre-processing step ensures efficient
stepping throughout the entire volume. If numerical approximation issues arise, then
it is possible to store the distance value at the start of each inner loop and restore it at

the end, thereby minimizing numerical creep due to roundoff error in the inner loops.

97

WO 01/63561 PCT/US01/06345

10

15

20

For multivalued voxelization, seven plane distances are required. Therefore,
seven additions are required per voxel to compute the plane distances. Other
computations per voxel may include incrementing the loop index, comparisons to
determine the appropriate region and, if necessary, computations to determine the

density.

Referring again to Figure 40, in region R1 the density value of a voxel is
preferably computed with the box filter oriented perpendicular to plane a. Given a

distance DistA from plane a, the density value V is computed using:

| Distd |- T/2
w

V=]-

In region R2, the density is preferably computed using the distance from planes a and

\DistA>+ DistB* - T/2
W

V=]-

Similarly, region R3 uses planes a and ¢, and region R4 uses planes a and d. Region

RS uses the Pythagorean distance from the corner point Cj:

o -2y P r(ci-2) -T2
w

Similarly, regions R6 and R7 use corner points C7 and C3, respectively.
At the shared edge of adjacent triangles, it is preferable to avoid

discontinuities or cracks. Fortunately, the oriented box filter guarantees accurate

filtering of the edges for any polyhedra, provided the union of the voxelized surfaces

98

WO 01/63561 PCT/US01/06345

10

15

20

25

30

is correctly computed. The union operator can be defined over multivalued density
values V{(x) with V , z=max(V ,(x),V z(x)). Other Boolean operators are available.
However, the max operator preserves the correct oriented box filter value at shared

edges, and is therefore preferred.

The implication of using max in the method of the present invention is that the
current voxel value must be read from memory, then possibly modified and written
back into memory. Therefore, a maximum of two memory cycles are required per

voxel.

The efficiency of the algorithm of the present invention may be further
increased by limiting the amount of unnecessary computation because the bounding
box often contains a higher percentage of voxels unaffected by the triangle than
affected by it. The bounding box can be made tighter by recursively subdividing the

triangle when edge lengths exceed a predetermined constant.

To visualize intermixed polygons and volumes, the polygons are preferably
voxelized into the target volume and rendered in a single pass. If the polygons move
with respect to the volume, then voxelization should occur into a copy of the original
volume so as not to corrupt the data. The multivalued voxelized polygon voxels may
be tagged to distinguish them from volume data. In this manner, polygons can be

colored and shaded separately from other data.

The preferred triangle voxelization algorithm described above is efficiently
implemented in the distributed pipelines of the Cube-5 volume rendering system of
the present invention. This algorithm adds just a small amount of hardware to the
existing pipelines and performs accurate multivalued voxelization at interactive rates.

One important advantage of the claimed Cube-5 volume rendering algorithm is‘that
the volume data is accessed coherently in a deterministic order. This feature allows

orderly scanning of a bounding box for this algorithm.

99

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In Figure 42, a preferred embodiment of the overall voxelization pipeline is
shown, in accordance with the present invention. If on-the-fly voxelization is
important, the system of the present invention may preferably include separate
pipelines for volume rendering and voxelization. If voxelization can occur in a
separate pass, then these volume rendering and voxelization pipelines may be
combined, with the voxelization pipeline re-using most of the hardware from the
volume rendering pipeline. The setup for each triangle preferably occurs on the host
system, in a similar manner as setup is performed on the host system for 2D

rasterization.

With reference to Figure 42, in the first hardware stage 302 of the pipeline,
the distances from the seven planes are preferably computed. Seven simple distance
units are allocated with four registers for each of the seven planes. Preferably, one
register holds the current distance from the plane and the other three registers hold the
increments for the X-, Y-, and Z-steps. Figure 43 shows a distance computation unit
310 for one of the seven planes, formed in accordance with a preferred embodiment of
the present invention. This distance computation unit 310 may be included as part of
the distance calculation stage 302 of the pipeline (see Figure 42). The other six units
can be essentially identical in design, but hold different values. During each clock
cycle of voxelization, the pipeline preferably steps in either the X, ¥, or Z direction
(i.e., performs an X-Step 312, Y-Step 314, or Z-Step 316), thereby updating the
current distance according to the direction of movement. The hardware for looping
through the volume is already present in the volume rendering pipeline and is

therefore re-used here to scan the bounding box of the triangle.

After the seven plane distances are calculated, the resulting values preferably
flow down the pipeline. As shown in Figure 42, the next pipeline stage 304 then
preferably determines in which region the current voxel resides. In a preferred
embodiment of the region selection stage 304, only seven comparators are needed to
determine the outcome of the truth table, due to the mutual exclusion of some cases.

For instance, in Figure 40, from the negative (lower) side of plane b, it is not

100

WO 01/63561 PCT/US01/06345

10

15

20

25

30

necessary to test the distances from plane for g, depending on the value of the

distance from plane e.

With continued reference to Figure 42, after the region has been determined,
the next pipeline stage 306 computes the filter function. The filter calculation stage
306 of the pipeline is preferably only activated if the current voxel is within S voxel
units of the triangle. Otherwise, the current voxel is essentially unaffected by the
triangle and different regions require different calculations, ranging from a simple
linear expression to a complex Pythagorean distance evaluation. Since hardware
ideally must handle all cases equally well, it is preferred that such hardware be able to
perform a square root approximation by means of a limited resolution look up table
(LUT). However, the range of inputs and outputs is small, and therefore the size of
the required LUT will be small. Furthermore, the Cube-5 hardware of the present
invention has several LUTs available for volume rendering which can be re-used for

voxelization. Instead of providing three separate units to compute the expression

V =1-(+/Dist -T/2)/W , it is more efficient to roll all the calculations into one LUT.
In this case, the input is Dist2, defined over [0,12], and the output is the density value
¥V in the range [0,1].

Due to the mutual exclusion of the seven regions, it is sufficient to provide
hardware for only the most complex filter calculation. With reference to Figure 40,
the most complex calculation is the corner distance computation of regions RS, R6,
and R7 which, in a preferred embodiment, requires five adders and three multipliers,
in addition to the square root LUT previously mentioned. The line distance
computations in regions R2, R3, and R4 are simipler, requiring only one adder, two
multipliers and the square root LUT. Region R1 requires a single multiply to obtain

the distance squared, which is the required input to the LUT.

Referring again to Figure 42, the final stage 308 of the pipeline preferably
computes the max operation using the current voxel value and the computed density

estimate. In a preferred embodiment of the present invention, the max operator is

101

WO 01/63561 PCT/US01/06345

10

15

20

25

30

simply a comparator attached to a multiplexor such that the greater of the two values
is written back to memory. Since most voxels in the bounding box are not close
enough to the triangle to be affected by it, memory bandwidth will be saved by only
reading the necessary voxels. Further bandwidth savings may be achieved by only
writing back to memory those voxels that change the current voxel value. Since there
is some latency between requesting and receiving word from memory, the voxel is
preferably fetched as soon as possible in the pipeline and the results queued until the
memory is received. The final stage 308 is write-back to memory, which can be

buffered without worry of dependencies.

The present invention thus far has been described outside the context of
skewing, which complicates the traversal. However, the present invention
contemplates building skewing into the Y- and Z-step distance update values.
Skewing also adds more complexities to the Cube-5 hardware of the present
invention. Specifically, when a left-most voxel moves one unit in the ¥ direction,
placing it outside of the bounding box, the pipeline actually takes p - 1 steps in the X’
direction to keep the voxel within the bounding box. Similarly, when the left-most
voxel moves one step in the Z direction, it also moves one step in the negative X
direction, which is handled in the same way as before. Therefore, the apparatus of the
present invention is preferably adapted to perform skewing by adding fourteen (14)
more registers and corresponding logic to determine when the pipeline is currently

processing the left-most voxel.

Pre-filtering, which may be performed in combination with the voxelization
methods of the present invention, can be used to optimally generate a series of
volumes of different resolutions. This technique is useful for rendering images of
different sizes; the size of the volume is preferably chosen to correspond to the size of
the final image. In this manner, aliasing is avoided at all image resolutions and no
unnecessary work is performed rendering parts of a scene not visible at the image

scale.

102

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Pre-filtering can additionally be used to model motion blur. For example, as
an object sweeps past a camera, it sweeps out a complex volume during the time the
shutter is open, causing motion blur. To accurately render motion blur, conventional
rendering techniques render multiple images and blend them into a single image.
However, this approach is very slow. With pre-filtering, the present invention
performs the sweeping operation once, during voxelization, so that motion blur can be
rendered in the same time as regular volume rendering. This method works well,
particularly for certain cases where the motion is constant (e.g., the same direction
and/or rotation). For example, consider a helicopter blade which spins at a constant

speed during flight. For example, to voxelize the blade spinning at the rate of 5Hz for
an animation frame rate of 30Hz, the blade sweeps out an arc of 555(2%)each frame.

Thus, at the outer edge of the blade, the density value is much lower and the blade
appears more transparent than in the center, where it sweeps out a smaller volume and
appears more solid. The volume rendering transfer function may be set so that the
lower density values appear less opaque and higher density values appear more

opaque.

When multiple volumetric objects overlap, the projected image of the volumes
becomes quite complex. Consider, for example, a scene where smoke rises up
through a cloud. Clearly, the two volumetric objects cannot be rendered separately
with the images combined in the final frame. Therefore, in a preferred method,
performed in accordance with one form of the present invention, multiple objects are

combined into one object for a final rendering pass to create the resulting image.

When two or more objects occupy the same space, the colors from each object
are preferably modulated together at each sample location along a projected sight ray.
Therefore, it is preferred that each object be classified and shaded prior to being
combined, followed by color modulation. If, alternatively, voxel data were combined
first, a new transfer function would be required for each possible combination. This

latter approach is therefore not preferred.

103

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In accordance with one form of the present invention, a preferred method for
mixing multiple overlapping volumes resamples all but the first object in the
z-dimension of the first object so that slices of each object become interlaced. This
includes a classification, a shading and a transformation which aligns all objects.
Object transformations include translation and scaling, preferably performed by the
apparatus of the present invention using nearest neighbor connections, and rotation,
which is preferably performed using the rotation methods of the present invention

previously described herein above.

For scenes containing objects which will not change position or orientation
with respect to each other, the present invention contemplates optimizations such as
high-level scene graph compilation that can preferably be employed. For instance,
static objects are preferably combined once and stored for subsequent rendering, while
non-static objects are re-combined each time they are moved with respect to the other

objects.

Texture mapping is a widely used technique to simulate high-quality image
effects, such as surface details, and even lighting and shadows. In general terms,
texture mapping involves mapping a two-dimensional (2D) image onto a three-
dimensional (3D) surface. Texture mapping occurs while geometric objects are
rasterized onto the screen. The (¥, ¥) pixel coordinates are preferably mapped into (z,
v) texture coordinates and an RGBa value is returned as the color value to use for that

pixel on the screen.

There are basically two processes involved in texture mapping: a mapping
from (x, y) coordinates to (#, v) coordinates, and a look-up into the image of what
RGBa value corresponds to a given (u, v) coordinate. The mapping from (x, y) to (»,
v) coordinates preferably involves simple matrix multiplication, as appreciated by
those skilled in the art. However, the look-up into the image of the (%, v) coordinate

to return an RGBa value is complex. The very large scale integration (VLSI)

104

WO 01/63561 PCT/US01/06345

10

15

20

25

30

hardware requirements for the texture lookup commonly consume large portions of
today's graphics boards, at a significant cost. This is primarily due to the fact that (u,
v) coordinates rarely map directly to a discrete image coordinate, called a texel.
Therefore, the neighboring RGBa. values are preferably linearly interpolated to

produce the RGBa value at the exact (#, v) coordinate.

Two-dimensional (2D) interpolations are generally sufficient if the pixel does
not cover more than one texel. However, if the mapping produces pixel coverages
greater than one texel, artifacts are introduced into the image using the 2D
interpolation method. To avoid costly texel combining operations, a technique termed
Mip-Mapping may be utilized by conventional graphics pipelines. Mip-Mapping
basically consists of storing multiple levels-of-detail (LOD) of an image. Then, when
an (x, y) pixel is mapped to a (u, v) texel, the appropriate Mip-Map level texels are
chosen so that the pixel is smaller than the texels. A more accurate method is to look-
up the four neighborhood texels from both the higher level and lower level of detail
texel images and then perform a trilinear interpolation on all eight texels to compute

the appropriate RGBa value for the pixel.

Texture mapping hardware from conventional graphics pipelines has been
used to accelerate volume rendering and has been the subject of such texts as

RealityEngine Graphics, by K. Akeley, Computer Graphics (SIGGRAPH 93), 27:109-

116, Aug. 1993, and Accelerated Volume Rendering and Tomographic

Reconstruction Using Texture Mapping Hardware, by B. Cabral, N. Cam and J.

Foran, Symposium on Volume Visualization, pp. 91-98, Oct. 1994. This conventional
approach, however, neither achieves the cost-performance nor supports the various
functionalities (e.g., shading) of the present invention. Furthermore, using known
prior art methods, texture mapping is unscalable without data replication, often
employs two-dimensional (2D) rather than three-dimensional (3D) interpolation,
downloads datasets slowly, and/or does not support real-time four-dimensional (4D)

input.

105

WO 01/63561 PCT/US01/06345

10

15

20

25

30

In accordance with a preferred form of the present invention, described
previously herein above, the Cube-5 apparatus is combined with a conventional
geometry engine via the geometry input/output bus 46, 48 (see Figure 4). Preferably,
the rendering pipeline(s) of the present invention are utilized to perform the texture
look-up function, while the geometry engine is used for mapping (x, y) pixel
coordinates to (u, v) texture coordinates. In simple terms, once combined with the
Cube-5 apparatus, the responsibility of the geometry engine is essentially to rasterize
triangles, while the apparatus of the present invention preferably provides the high
performance interpolation engine for texture mapping. To perform texture look-ups
on the apparatus of the present invention, texel data is preferably loaded into 3D
memory included within the Cube-5 unit(s). Figures 6A and 6B illustrate an example
of how 32 bits of texel data for a 2x2 neighborhood are preferably arranged in a 2°

subcube of 16-bit voxels.

Another important advantage of the present invention is the ability to enhance
image-based rendering. In general, image-based rendering methods render complex
scenes from arbitrary viewpoints based on a finite set of images of that scene. Two
similar image-based rendering methods, known by those skilled in the art, which use
four-dimensional (4D) interpolation without requiring the depth information of the
source images are light field rendering and Lumigraph. The high-performance
interpolétion engine of the present invention may be used to accelerate these two

techniques.

Figure 44 shows that in light field rendering, the scene is modeled by uv 322
and sz 320 planes. Every uv grid point preferably defines a viewpoint and has an
associated sz image. For every pixel of the projection plane 324, a sight ray 326 is
preferably cast into the uv plane 322. The four sz images corresponding to the uv grid
points surrounding the intersection of the sight ray with the uv plane contribute to that
ray. The contributions are preferably calculated by casting a sight ray into each s¢
image through its uv grid point. These rays hit between st image pixels and, therefore,

a bi-linear interpolation must be performed for each st image. One final bi-linear

106

WO 01/63561 PCT/US01/06345

10

15

20

25

30

interpolation between the four rays yields the final projection plane pixel color.
Obtaining every pixel of the projection plane 324, therefore, requires four bi-linear
interpolations in sz planes 320 and one bilinear interpolation in the uv plane 322,
resulting in a total of five bi-linear interpolations. These five bi-linear interpolations

are substantially equivalent to one 4D interpolation, or 15 linear interpolations.

Performing lookups for each projection plane ray usually causes random
access into the sz images. Therefore, in accordance with a preferred method of the
present invention, st images are accessed in object order, which is more appropriately
adapted for use with the apparatus of the present invention since the Cube-5 apparatus
allows reading of each st image pixel only once. With continued reference to Figure
44, for each quadrilateral 328 in the uv plane (e.g., abcd), its projections on the four st
planes (e.g., corresponding to abed) preferably determine which four tile regions 330
contribute to the final image. All st tile regions 330 are then preferably assembled
into four images and are perspectively projected onto the projection plane 324. The
final image is subsequently formed by bilinear interpolation among the four projected
images. Interpolation weights are preferably determined by the intersection bétween

the original ray and the uv plane 322.

A method and apparatus for generating an approximate perspective projection
using a parallel projection will now be described. Many applications for volume
rendering require perspective projections to generate usable images. Generally a
perspective projection is required when the viewpoint is located close to or inside the
object being rendered. For example, in the colonscopy application, the user navigates
throﬁgh a virtual colon. The rendering of an interior view of a pipe-like structure
requires perspective projection.

Currently the Cube 5 and Cube-4 architectures discussed above can generate
true perspective projections. However, Cube-4 cannot deliver the perspective
projections in real-time. The "Cube-4" architecture is decribed in United States Patent
No. 5,847,711 to Kaufman et al. and has already been incorporated herein by

reference. Some of the teachings of the Cube-4 architecture have been incorporated

107

WO 01/63561 PCT/US01/06345

10

15

20

25

30

into a volume rendering PC board developed by Mitsubishi Electric known as
VolumePro. A complete description of the VolumePro board is found in The
VolumePro Real-Time Ray Casting System, by H. Pfister et al., Computer Graphics
(SIGGRAPH 99), pages 251-260, Aug. 1999, which is incorporated herein by

reference. A limitation of the VolumePro board is that perspective projections can not
be generated. Since the method and apparatus for generating an approximate
perspective projection using a parallel projection can be supported by VolumePro a

brief description of VolumePro is provided below.

VolumePro is the first real-time volume rendering accelerator for consumer
PCs. The ray casting algorithm is implemented in a slice-order method in accordance
with the teachings of the Cube-4 technology. Since, trilinear interpolation, gradient
estimation, classification, and per-sample Phong illumination are computed in
hardware, high quality images are guaranteed. The VolumePro ray casting algorithm
provides predictable memory access patterns to maximize memory bandwidth
efficiency to standard SDRAM devices. In this design, the parallel rays 400 are cast
through the volume 402 along the view direction 404 onto a baseplane 406 which is
subsequently warped onto the final image. Referring now to Figure 45, the process
takes advantagé of the texture mapping on conventional 3D graphics cards to perform

the final warp into the image 408.

Performing volume rendering on a PC with the VolumePro hardware has
advantages over existing methods even beyond the cost of a PC versus a high end
workstation. First, since hardware acceleration is used, it is much faster than software
methods. Secondly, because the board computes per sample illumination, the images
are higher quality than 3D texture map based solutions. Unfortunately as noted above,
the VolumePro board does not quite meet the stringent requirements for some
applications. Since the board is only capable of parallel projections and not
perspective projections, projections of “'tubes" result in “"donuts” being displayed in
the final image. In addition, medical datasets -- typically 512x512x(100-400) -- are

too large for the board to render in real time. Fortunately, in endoscopic views of

108

WO 01/63561 PCT/US01/06345

10

15

20

25

30

tubular structures large portions of the dataset are obscured. This feature can be used

to cull the dataset down to a size which the VolumePro board can handle.

Referring now to Figures 46 and 47, the method of generating an approximate
perspective projection using a parallel projection generally includes dividing the
volume 402 into a plurality of slabs 410. Each slab 410 is a connected set of volume
slices along the major viewing direction and is ray cast separately using a parallel
projection. The slab images are then texture mapped onto the screen with perspective
projection thus providing a perspective impression to the viewer. The rendering and
texturing of each slab can be done either sequentially or nonsequentially. In
sequential processing, an initial slab is rendered and then textured onto the screen.
The remaining slabs are then also rendered and textured onto the screen. In
nonsequential processing, all of the slabs are initially rendered prior to the texturing.
After all of the slabs are rendered, texturing is performed for each slab. In both
sequentially or nonsequentially processing, the order of the processing is not critical.
However, preferably the slabs are processed either back to front or front to back to
maintain a logical order. The preferred embodiments of the invention will now be

described in connection with the commercially available VolumePro board.

In using VolumePro to implement the method of tﬁe invention, as noted above
initially multiple "thin slabs" 410 of the dataset are rendered into separate baseplane
images. Each slab 410 represents a portion of the volume data and is created with
parallel projections along the view direction. These images are then composited
together by texturing them onto planes 412 placed in 3D space at their respective slab
positions and utilize a perspective projection 414 on the 3D graphics card. The slabs
410 can be aligned either parallel to the final image plane as shown in Figure 46, or

orthogonal to one of the three volume axes as shown in Figure 47.

The portion of the subvolume which contributes to the current baseplane
image is preferably limited by one of two methods with the VolumePro board. The

first method involves utilizing the thick cut plane feature and the second utilizes

109

WO 01/63561 PCT/US01/06345

10

15

20

25

30

active subvolumes. The thick cut planes can be positioned and oriented at arbitrary
places, while active subvolumes are genrally required to be axis aligned and aligned at
multiple-32 boundaries (integer positions which are perfectly divisible by 32).
Cutplane rendering is implemented on the VolumePro board by simply adjusting the
"alpha" value of a sample just before the compositing stage in the pipeline. Referring
now to Figure 48, all the voxels 416 in the entire volume are processed including a
portion located outside the thick cut plane. Cutplane rendering is preferrred for
image-aligned slabs 410 as shown in Figure 46. Utilizing the thick cut plane feature
of VolumePro is preferred because aliasing can be reduced by setting a falloff on the
edges of the cutplane. This feature specifies a width to the transition between full and
zero opacity creating a fuzzy cutplane instead of binary as shown in Figure 49. When
the slabs 410 are aligned orthogonal to one of the three volume axes, the active
subvolume method can provide faster rendering due to the fact that it actually limits
the voxels that are processed by the board. Since the slabs 410 must also be a
multiple of 32 voxels thick to use the active subvolume method, thick cutplanes are
also normally used to further limit the contributing portion of the dataset to the

desired thickness.

Referring now to Figure 50, an algorithm for the image aligned method is
shown for use with the VolumePro board. Steps 1 through 5 initialize the cutplane
parameters. Steps 7 through 8 start the VolumePro card for the current slab. Step 9
waits for the first render call to finish and step 10 transfers the baseplane image to the
3D graphics card. Steps 11through 12 place the baseplane image at its position in 3D
space and projects/texture-warps it to the screen (blending occurs on the hardware).
Step 13 adjusts the cutplane position. The loop in steps 6 through 14 repeats through
the entire view space which is the volume dataset intersected with the view frustum. If
axis aligned cutting planes are utilized, the computation of the cutplane equation in
step 4 changes to determining the baseplane most parallel to the image plane and the
transformation of the baseplane in 3D space in step 11 changes to transform by both

the cutplane position and orientation instead of just depth.

110

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The individual slabs can be deﬁned by simply spacing them out evenly over
the volume so that each slab has substantially the same slab thickness as illustrated in
Step 2 of Figure 50. As discussed above with respect to the ER-Perspective method,
it was shown that rays diverge as an exponential function of the distance from the
camera. This finding can be used to adapt the number of rays to remain close to the
underlying voxel density, defining regions that were twice as thick as the previous
region towards the camera. Preferably the slab thicknesses are similarly defined to
minimize the artifacts in the image, without creating too many passes for the

algorithm.

Since the method of generating an approximate perspective projection is a
multi-pass algorithm the rendering is slowed down. Therefore, it is often worth the
extra effort to perform tight bounding box culling on the portion of the dataset which
contributes to the image. In all culling algorithms (including polygon and other
volume methods) there is a computation price paid to calculate the portion of the data
which must be processed. The tradeoff between the amount of time spent each frame
performing culling operations and the rendering speed increase that the culling
produces is used to determine if culling is worthwhile. Since the multipass perspective
method incurs a high rendering cost per volume sample, culling algorithms generally
payoff to a higher degree. Culling algorithms are mostly application specific, and
therefore should be analyzed in a per solution basis. A representative example of a

culling algorithm for endoscopic views of medical CT scans is presented below.

Virtual colonoscopy is a non-invasive procedure for mass-screening of
patients for small polyps which are the precursors of colo-rectal cancer. In general,
this procedure consists of three steps. First, the patient's colon is cleansed (either
physically, or electronically) and inflated with air in a way similar to that of optical
colonoscopy. Second, while the patient is holding his or her breath, a helical CT scan
of the patient's abdomen is taken, capturing a sequence of 2D slices which covers the
entire range of the colon. The colon is then viewed either by automatic planned

navigation or interactive navigation. While the discussion below focusses on virtual

111

WO 01/63561 PCT/US01/06345

10

15

20

25

30

colonoscopy, various other endoscopic procedures are possible using the method to
view tubular organs in the human body. For example, Bronchial tubes, the esophagus,

arteries, stomach, and the like can all be examined endoscopically on a low cost PC.

Typical virtual colonoscopy datasets are 512x512x400. A normal VolumePro
parallel projection rendering of this dataset would result in only 5 frames per second.
While this is close to interactive frame rates, the multipass perspective algorithm
lowers this below 1 frame per second and would result in an unusable system. As
noted above, culling portions of the dataset which do not contribute to the final image
should be considered for each application. Referring now to Figure 51, since virtual
colonoscopy creates images of twisted tubular structures, only a small portion of the
dataset is required for the given camera position because the colon quickly turns
outside the view frustum. The portions of the colon that are deeper within the view
frustum (higher in the picture) are invisible since the colon wall is rendered as opaque.
This feature is used to cull off these portions and render only a small subset of the

volume to contain all the visible data from the current viewpoint.

Since the caching and queuing on the VolumePro board requires cuboid
shaped volumes of multiple-32 boundaries, a cuboid like this is created of all visible
voxels for each viewpoint. An apparent method for this would be to prepocess the
volume and store, for each possible camera position the visible subvolume. Then
when rendering, just lookup and utilize the correct subvolume. For colonoscopy, the
camera can move anywhere within the colon dataset. If subvolumes for all voxels
within the colon were stored, the subvolume could be used by looking up the "nearest”
voxel determined from the current camera location. Unfortunately, there are 2-3
million voxels within a typical colon. This would create a large table to lookup the
correct subvolume. Additionally, due to the topology of the colon, many voxels
(especially those close to each other) utilize the exact same subvolume. Consider the
case shown in Figure 52. Due to the twisted nature of the colon 422, only the shaded
portion 418 is visible from point X. However, when the multiple-32 bounding box

420 is placed around this region, it extends past the boundaries of the shaded region

112

WO 01/63561 PCT/US01/06345

10

15

20

25

30

418. For this reason, other portions of the colon 422 would utilize the same multiple-
32 bounding box 420. For example, both points B and C have visible regions
completely enclosed by the same bounding box 420. The lines shown in Figure 52,
alpha and beta, are the lines where the visibility changes. This occurs because, for
points past these lines (e.g., A or D), the visible region extends past the current
bounding box. All viewpoints within the large area between the two dashed lines

utilize the same multiple-32 subvolume.

Referring now to Figure 53, the subvolumes and regions are created in a pre-
processing step by walking through the colon 422 from one end to the other and using
a greedy algorithm. The first subvolume which includes all visible voxels from the
end of the colon 422 is initially created. The colon 422 is then walked through
searching for the first point where we can "see" outside the current multiple-32
subvolume. At this point, a new one is created which encompasses all voxels visible
from the new viewpoint. The colon is then walked again. This is repeated the entire
way through the colon. When switching from one subvolume to the next, this
algorithm always results in overlap as shown in the example bounding boxes in
Figure 53. While this does not create the minimum number of subvolumes, the
number created is easily manageable. For example, for the colon in Figure 51, 49
subvolumes were created with this method. The size of the subvolume rendered is
drastically reduced, with the average being two mega-voxels, or the same order of
magnitude as 128, Of course the subvolumes are not all exactly cubic (example
subvolumes include 160X192X96 or 160X128X128 or 128 X 96 X 96). The

rendering speed depends on the total count of voxels.

This algorithm provides a good tradeoff between computational effort per
frame and resulting rendering speedup. To compute which subvolume to use, a search
of an array with 49 distances is performed. A binary search on this array completes
essentially instantly. The resulting cull operation reduces the number of voxels to
consider from 94 Meg to approx 2 Meg. The pre-processing step using the greedy

algorithm to create the subvolumes does not effect the rendering rates. Therefore, a

113

WO 01/63561 PCT/US01/06345

10

15

20

25

30

97.8% reduction in the amount of data needed to be accessed is achieved during
rendering with a preprocessing step combined with an essentially unmeasurable
computation step during rendering. Since the multipass algorithm accesses each voxel
multiple times, the rendering performance increase produced by this culling operation

is even more magnified.

The apparatus of the invention is an approximating unit configured with the
teachings of the method of the invention. The addressing unit can be, for example,
any suitable computer, processor (e.g., digital signal processor, microprocessor, etc.),
microcontroller, or circuit designed to be incorporated into a volume rendering

system.

Referring now to Figure 54, a ray tracing architecture in accordance with the
present invention is now described. This is a modified embodiment of the Cube 5
architecture designed to work within the structure of a hierarchical memory with
programmable processing units 500 attached to the lowest level of the memory. The

processing paradigm has been used before and is described in Rendering Complex

Scenes with Memory-Coherent Ray Tracing, by M. Pharr et al., Computer Graphics
SIGGRAPH 97, pages 101-108, Aug. 1997. In the ray tracing architecture in

accordance with the present invention, the scheduling of the processing is refined and

applied in a different manner to graphics problems.

A memory hierarchy is used to support flexible volume rendering and large
volumes. The memory hierarchy is a cascade of memories with increasing bandwidth
and decreasing size toward the Cube 5 units. The data is organized in hierarchical

blocks (cuboid subvolumes) as described in EM-Cube: An Architecture for Low-Cost

Real- Time Volume Rendering, by R. Oborne et al., Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics hardware, pages 131-138, Aug.

1997. The hierarchical blocks allow transfers between levels appropriate for the
bandwidth and latency for those levels. Normal volume data is read-only and thus can

be discarded upon replacement in the lower levels of the memory. However, some

114

WO 01/63561 PCT/US01/06345

10

15

20

25

30

blocks including: ray data, reconstruction volume data, and global illumination voxel

data are read-write and thus need to be written back up the hierarchy.

Referring again to Figure 54, a block diagram of a preferred embodiment of
the implementation of the memory hierarchy with programmable processing element
is shown interfacing the system. A single board 502 is connected to the system bus
504. The board 502 preferably contains one or more chips having at least one
processing unit 500 and DRAM memory 508, at least one programmable processing
element 501, and a set of standard memory devices 506. The chips are preferably
embedded-DRAM (eDRAM) chips and the standard memory devices 506 are
preferably SDRAM. The eDRAM chips contain one or more processing units 500 as
well as DRAM 508 memory organized in one or more banks. The programmable
processing element 501 can also be an eDRAM chip. Preferably a memory controller
510 1s provided to interface the level of memory which are external to the DRAM
memory 508. Preferably the processing units 500 have a very high bandwidth to the

local memory inside the chip.

The ray tracing architecture takes advantage of the high bandwidth to quickly
process the data currently loaded in the eDRAM device. Normal datasets will not fit
within the memory 508 within the eDRAM chips. The SDRAM memories 506 are
utilized to store the data until the processing units 500 within the eDRAM are ready to
utilize it. Large datasets will not fit within a plurality of SDRAM devices that can fit
onto one card. The main memory 512 of the system is utilized to store the data until
the board is ready to work on it. This is a three tiered memory hierarchy that

optimizes the locality of reference.

The memory hierarchy enables sufficient rendering of large datasets which are
much larger then Level 1 of the Cube 5 memory hierarchy--the double slice voxel
FIFO 64 shown in Figure 5. Space leaping and early ray termination can be employed
to take advantage of the condition that the entire dataset generally does not contribute

to the final image due to empty or opaque data regions These and interframe

115

WO 01/63561 PCT/US01/06345

10

15

20

25

30

coherence allow the working set of blocks to remain resident in the lower hierarchy
levels, providing higher bandwidth while accessing the data. Local connections
between spatially coherent cells allow high-bandwidth communication of ray
information instead of the usual up-over-down communication that occurs within the

memory hierarchy.

The processing in the ray tracing architecture does not follow a strict sequence
as found in prior art volume rendering accelerators. Instead, the work to be performed
is grouped into 3D blocks. The 3D blocks are then processed (e.g. rays cast or traced,
or segmentation performed) according to an order where the block which will provide

the most results while being the closest to the eDRAM memory 508 is processed next.

Referring now to Figure 55, a 2D top-down view of a typical 3D scene to be
rendered is shown divided into cells 514 by a scheduling grid 516. All volume 518
and polygonal 520 data are distributed among the scheduling grid cells 514 which
they intersect. Rays 522 are cast into the scheduling grid 516 and stored in queues

524.

Referring now to Figure 56, the processing element 501 of the ray tracing
architecture includes a scheduler 526 and dispatcher 528 that communicates between a
buffer (FIFO) 530. The scheduler 526 and dispatcher 528 have knowledge of the
scheduling grid 516 and the associated list of ray queues 524. The scheduler 526
determines which blocks to process and in which order. The scheduler 526 selects the
best block based on the current state of ray queues 524 and the current state of the
memories according to a heuristic metric. The scheduler 526 stores a list of blocks to
process in the FIFO buffer 530. The dispatcher 528 transfers blocks to individual
processing units 500 and controls the movement of sampled and geometry data among
the three levels of the memory hierarchy--Level 1 (¢tDRAM) 512, Level 2 (SDRAM)
506, and Level 3 (main) 508. In this way, it is assured that the correct data are

available when a processing unit 500 begins to process a block.

116

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The cells 514 are scheduled for processing in an order the minimize the total
processing timebased on the status of the rays 522 and ray queues 524. Further, the
scheduler 526 considers that data distribution throughout the memory hierarchy as

well as the contribution of each cell 514 toward completion of the processing.

Traditionally, scheduling can be performed in one of two ways, either
geometrically, for deterministic processing such as raycasting, or heuristically for
non-deterministic algorithms such as ray tracing. Examples, of heuristic methods are
greedy algorithms such as scheduling the next cell with the most work, or statistical
probability methods such as ratios of ray-queue length to count of non-transparent

objects as described in Rendering Complex Scenes with Memory-Coherent Ray

Tracing, by M. Pharr et al., Computer Graphics SIGGRAPH 97, pages 101-108, Aug.
1997.

Prior attempts have been made to design an algorithm which utilizes inter-
frame coherence to schedule more efficiently. A dependent graph for each frame
showing which cells send rays to which other cells was built. For the next frame, the
graph built from the previous frame to guide the new cell processing order was
utilized. Unfortunately, for ray tracing the dependency graph becomes “locally
complete”. This means that any cell depends on every single one of its neighbors, and
is thus connected to every neighbor. Since rays cannot jump over cells, each cell is
connected only to its neighbors, but is connected to all of its neighbors. This is what
“locally complete” means. The graph is not “complete” because that means every
node is connected to every other node. In addition, the “locally complete™ graph is
not much use for aiding in the scheduling of cells since a selection cannot be made as
to which cell should be scheduled before it’s neighbors. The dependency graph does
not contain the information needed to schedule cells because there is no order to the

dependency relations.

Referring now to Figures 56A through 56F, a method known as ray forest for

scheduling cells based on inter-frame ordered dependency relations is now described.

117

WO 01/63561 PCT/US01/06345

10

15

20

25

30

A ray forest 540 is a group of trees, one tree 542 for each ray 522, which represents
ordered information about how rays propagate through the scheduling grid 516. Since
rays 522 in aray tracing application span multiple child rays, the data structure
associated with each ray 522 is a tree 542 where each node 544 represents a ray 522
traversing from one cell 514 to another, and leaves represent cells where rays
terminate and place their contribution into the resulting image. There are three

different actions that could occur when a ray 522 is processed in a cell 514:

1. The ray passes through the cell touching no objects. In this case, the

node has one input and one output (i.e. the node is locally a “twig”).

2. The ray hits an object an spawns a child shadow ray 550, a plurality of
reflected rays 548 (if the surface is reflective) and a plurality of child
transmitted rays (if the surface is not totally opaque). In this case the

node has one input and multiple outputs, one for each child ray.

3. The ray terminates either by hitting an object or exiting the world at

this cell. In this case, the node is a leaf of the tree.

In the ray forest method, each scheduling grid cell appears in multiple nodes,
and a single cell can occur in the same tree multiple times. For example, consider the
case where a ray bounces back and forth between two reflective objects in alternating
cells. Referring now to Figures 56B and 56C, RAY "A" enters cell number 8 and
traverses through cell number 5 to interact with an object 546. A first reflected ray
548 bounces back through cell number 5 into cell number 8 and out through cell
number 7. A second reflected ray 550 bounces back through cell number 5 and out
through cell number 7 towards a light 552 illuminating the scene. The tree 542
labeled RAY "A" in Figure C has a data structure representing the path of RAY "A."
RAY "B" also illustrates these concepts in Figures 56B and 56C.

Referring now to Figures 56D through 56F, to utilize the ray forest method to

118

WO 01/63561 PCT/US01/06345

10

15

20

25

30

schedule calls, the top £ nodes of all ray trees are considered. Heuristic algorithms
such as the greedy or statistical methods mentioned above determine the next cell to
process. When a cell is processed, all the rays waiting to enter that cell are processed.
The trees which represent these rays are “popped”. This means that the top node is
taken off these trees. If the node is a “twig”, the tree remains the same, if the node
has multiple children, each child “branch” becomes a new tree in the forest

representing all the new rays which were spawned.

Since &k nodes at the top of each tree are looked at, “future” information is
acquired about what cells will soon be processed and an attempt to not remove them
from the lower levels of the memory hierarchy right before they are about to be
processed is made. The number of levels £ that are considered, is a tradeoff on

accuracy of the scheduling and runtime of the scheduling portion of the algorithm.

The forest of trees will only represent what actually happens to rays in the new
frame if no rendering parameters (viewpoint, transfer function, lights, etc,) change
since ray forest information from the previous frame is used. Although this is not the
normal case, the change from one frame to the next is generally considered to be
minimal. Inter frame coherence takes advantage of these minimal changes to estimate
the best scheduling for the next frame. However, since there is some change, the ray
forest must be able to deal with the rays not acting exactly like they did the previous

frame.

Texture mapping is widely used technique to stimulate high-quality image
effects, such as surface details, lighting and shadows. The memory requirements for

texturing consume large portions of today’s graphics boards and their cost.

The cost-performance of polygon engines is improved by supplying the texture
mapping functionality within the hierarchical memory architecture. In this combined
architecture, the polygon engine’s only responsibility is to rasterize triangles, while

Cube 5 will perform the texture lookups. Rays are initialized with the data from the

119

WO 01/63561 PCT/US01/06345

10

15

20

25

30

rasterized polygonal image. This would include the (u,,v) texture coordinates and a
texture index. In this way deferred texturing can be accomplished so that only visible

pixels are texture mapped reducing the texture image accesses.

Another advantage of the programmable processing units 500 to perform the
texturing operations are that higher-quality anti-aliased texture methods (such as
EWA) can be performed when such quality is desired. Deferred texturing lowers the
cost of utilizing such higher quality methods. Additionally, the system coherently
accesses texture images through the memory hierarchy. Further, programmable
deferred shading (such as Renderman shaders or procedural textures) is possible by

storing the required parameters during rasterization.

The system also supports ray tracing mixture of polygons and multiple
volumes using the scheduling grid cells to reorder the processing to memory coherent
chunks. Applications which do not require the image quality produced by ray tracing
polygons, can utilize polygon rasterization hardware. External polygon rasterization is
used to allow much larger polygon datasets to be rendered at much faster frame rates.
The projected RGBoZ image is used to initialize the ray endpoints. Subsequently, the
volume is rendered terminating the rays at the proper depth. This leverages existing
geometry hardware to correctly render, in real-time, opaque polygons in harmony with

volume rendering,.

An architecture known as GI-Cube and methods for accelerating volumetric
global illumination and standard direct volume rendering will now be described. The
GI-Cube architecture shown in Figure 64 can accelerate a variety of algorithms

including:
e basic volume rendering with Phong shading and local illumination,

e volume rendering with global illumination including shadow

casting, reflections, glossy scattering, and radiosity, and

120

WO 01/63561 PCT/US01/06345

10

15

20

25

30

e generalized volumetric ray tracing acceleration support for various
algorithms including hyper-texture, photon maps, polygonal global
illumination, tomographic reconstruction, bidirectional path
tracing, volumetric textures, and BSDF evaluation.

A complete description of the GI-Cube architecture and methods is found in GI-Cube:
An Architecture for Volumetric Global Illumination and Rendering, by F. Dachille
and A. Kaufman, Proceedings of the SIGGRAPH / Eurographics Workshop on

Graphics Hardware, pages 119-128, Aug. 2000, which is incorporated herein by
reference. The implementation of the above algorithms will be described next

followed by a description of the architecture.

In its most basic form GI-Cube is a standard volume rendering accelerator that
produces images of comparable quality to Cube-4 and VolumePro. The GI-Cube
architecture is part of Cube-5 architecture discussed above. The basic pipeline of GI-
Cube takes volume samples along a ray using trilinear sampling of the density and
gradient, performs some per-sample shading operation, and composites the shaded
sample onto the ray. GI-Cube radically departs from the aforementioned architectures
by generally processing rays in image order thus permitting great flexibility (e.g.,
perspective projection, global illumination). Preferably the processing order is not
strictly an image order, but a hybrid order. That is, groups of rays are spatially
partitioned into blocks, then blocks are processed one or several in parallel at a time.
Rays are passed between blocks (and sometimes processors) at boundaries. Ata
coarse level, the processing is image order. That is, individual rays can be submitted
at any time during the computation. At a medium level, the processing is object order
and all the rays within a block are processed together. At a fine level the processing is
image order and samples are taken along each ray in round robin fashion using a

cache to exploit coherence among rays.

A N? volume dataset is organized into cubic blocks of size n® prior to
rendering. The data may be stored on disk blocked or else assembled into blocks on

the fly. In the examples discussed herein N=256 and n=32. The blocks are distributed

121

WO 01/63561 PCT/US01/06345

10

15

20

25

30

among p multiple processors according to a function. For the best load balance, N is
related to pn by some integer. Three possible distributions are illustrated in Figures
57, 58, and 59. Referring now to Figure 57, the first option uses a simple slab
partition to cut the volume into p axis aligned slabs 600 with one slab assigned to each
processor for multiprocessing which minimizes inter-processor communication at the
expense of load balancing. Referring now to Figure 58, the second option uses a
repeating slab partition to cut the volume into slabs 600 of n voxels thick and assigns
slab i to processor i mod p for multiprocessing which increases inter-processor
communication but improves load balance. However, certain viewing directions such
as the image plane oriented parallel to the slabs do not balance well. Referring now to
Figure 59, the third option uses a skewed block slab partition that cuts the volume into
cubic blocks 602 and assigns cubic block (i, j, k) to processor (i +j + k) mod p for
multiprocessing has the best load balance but the most inter-processor
communication. Rays may pass between blocks three processors away, while the first
two options always communicate locally. None of these schemes is necessary in the

Uniprocessor case.

To render an image, a set of image rays is generated on the interface to the GI-
Cube board (described below) and clipped with the volume extents. Each ray is a data
structure containing some, all, or more of the following: the («, v) image coordinate,
contribution to the image, starting point, direction, color, opacity, lifetime, generation,
interaction value, and type. A typical ray data structure is illustrated in Figure 60, this
one comprising 32 bytes, although other arrangements and sizes are possible.
Preferably rays are created by treating the intersection coordinates as texture
coordinates and utilizing an incremental texture mapping scan conversion approach.
The volume intersection coordinates can be generated by scan converting the six faces
of the volume. Cut planes are implemented using one additional polygon scan
conversion per plane. Rays are then bucketed into queues representing the volume

blocks. Some portion of the queues is loaded onto the fixed size hardware queues.

122

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Bach hardware processor (pipeline) 604 selects a queue which contributes

most toward completion. Two options include:
1. Selecting the queue with the most rays; and

2. Selecting the queue with the most contribution to the image, which can

be measured by summing the individual contribution of the rays in the queue.

Each pipeline 604 processes all the rays in its active queue simultaneously in a round-

robin fashion as shown in Figure 61.

Preferably a volume cache 606 large enough to hold an entire block is used to
capitalize on spatial coherence among rays. To trilinearly sample (i.e., perform a
linear interpolation in three dimensions) the first ray, eight neighboring voxels need to
be fetched into the cache. The direct mapped, eight-way interleaved volume cache 606
provides the ability to read out an entire trilinear neighborhood of voxels in each
cycle. If the next ray is spatially coherent, it generally can share some (perhaps four)
of the fetched voxels depending on the inter-ray spacing. Assuming a ray and
sampling density of one ray sample per voxel, then processing the entire block
generates only (n + 1)* cache misses although the total bandwidth for trilinear
interpolation is eight times that amount. The supersampling along the ray increases
coherence and the second ray sample in a trilinear neighborhood has a 100% hit ratio.

While there are some stalls (i.e., pauses waiting for the cache to fill) at the start of
processing a block, the number of voxels requested from the main volume memory
never exceeds the block size. The volume cache 606 is configured to hold one extra
slice of voxels in each dimension to account for the overlap of the trilinear

neighborhood.

In addition to containing 12 bits of density, the voxels contain gradient
information, a tag field for segmentation, and irradiance data which is unused for

standard volume rendering as illustrated in Figure 62. The gradient is pre-computed

123

WO 01/63561 PCT/US01/06345

10

15

20

25

30

and quantized into discrete angular bins similar too the Vizard II PCI board described

in VIZARD II: A PCI Card for Real-Time Volume Rendering, by M. Meissner et al.,

In Proceedings of the Siggraph/Eurographics Workshop on Graphics Hardware,
pages 61--67, Aug. 1998. However, certain datasets could yield improved results with
vector quantization. The eight neighboring voxels are read from the volume cache
606, decoded, and interpolated. The density, three gradient components, and possibly
three color components are trilinearly interpolated, and the tag field is zero-order

interpolated (i.e., nearest neighbor).

The final sample is passed down the pipeline 604 for shading and compositing.
If no color information is supplied, a transfer function is used to convert the density
into color and opacity. Otherwise the transfer function only supplies the opacity. The
material tag is used to provide additional dimensionality (e.g., useful coexistence of
sampled and scanned datasets often requires separate tailored opacity transfer
functions). The inter-sample distance 4 is multiplied by a random number r selected
between 1/2 and 1 to provide jittering as a compromise between noise and aliasing.

The opacity is modulated accordingly: o’ = 1- (1 -a)4r.

Local shading is preferably performed by utilizing a reflectance map. While
this technique is limited to distant light sources only, the results are adequate for most
visualizations. The pipeline 604 next performs compositing using the over operator
and stores the result back into the ray data structure which travels down the pipeline
604. All the while, new rays have been accepted into the top of the pipeline 604
resulting in the production of one new ray sample (on different rays) with each

hardware cycle, neglecting any stalls due to cache misses.

The ray is next advanced by distance dr. The new start position determines
the appropriate queue for the ray. First, the appropriate processor 604 is selected. If
the ray now belongs to a neighboring processor 604 (see Figures 61 and 64), the ray
data structure is queued for horizontal communication to the appropriate neighboring

processor 604. If the ray has exited the volume or reached full opacity, it is queued

124

WO 01/63561 PCT/US01/06345

10

15

20

25

30

for vertical communication with the board interface. If the ray remains in the same
processor 604, it is further scrutinized to determine the appropriate block for

subsequent queuing.

As rays are received by the board interlaced, they are assembled into a
composite image. Sub-pixel sampling can be used to improve the quality of the
image. In this case, sub-pixel coordinates are stored in the generated rays and the
composite image is accumulated by appropriate filtering. Once complete, the final

image is transferred to main memory for display on the frame buffer.

Space leaping and early ray termination accelerate rendering of most datasets.
Early ray termination is employed to halt processing when the ray reaches some
opacity threshold. An empty flag is associated with each block because some blocks
may contain no visible data. A special part of the pipeline 604 computes the nearest
edge intersection of each ray. Based on the ray direction, axial distances to the
pertinent three block faces are computed. The actual distance of the intersection is
computed by dividing by the appropriate component of the ray direction. If the empty
flag is set, the ray is advanced by the minimum of the three distances, but at least dr.
Note that some blocks may be rendered invisible by the current transfer function
although they contain nonzero data. The driver software monitors to detect this
condition and set empty flags as necessary which can be done asynchronously after

editing the transfer function.

A method of volume rendering with volumetric global illumination will now
be described in accordance with the present invention. A number of changes are
required to the above algorithm to implement volumetric global illumination. First,
rays must be generalized to be either lighting rays or rendering rays. The primary
difference between them is that lighting rays distribute energy along the ray while
rendering rays accumulate energy. In the present invention, energy is distributed
trilinearly (splatted) to the irradiance field of voxels along the ray. Second, a two-pass
(bidirectional) methodology is adopted in which energy is distributed from the light

125

WO 01/63561 PCT/US01/06345

10

15

20

25

30

sources in the first pass, and irradiance energy is gathered toward the eye point in the
second pass. Third, scattering of rays are permitted within the volume (e.g.,

reflections, caustics).

In the first pass of global illumination, light energy is allocated among a
number of rays and then traced through the scene. Instead of generating a ray from a
point light source to each of the A” voxels, rays are only fired to the face voxels of the
volume while allowing these rays to automatically sample the interior voxels. Up to
6kN? rays sample the surface of the volume, where £ is a super-sampling factor. A
point-to-finite-area form factor based on the distance to the light source is used to

compute the energy of the light source E, distributed among the surface voxel rays:

Ey=Ejcost
knr?

If the light source is outside the volume, rays are only generated when cos 6> 0,
where @ is the angle between the inward volume surface normal and the light source
direction at the finite area v corresponding to a voxel on the volume face. The £ rays
per voxel are distributed across the exterior voxel surface using a quasi-random

scheme.

Area light sources are handled slightly differently. For each of the surface
voxels, k random points on the area light source surface are selected. The energy is
determined using the above equation multiplied by cos ¢, where ¢ is the angle
between the inward volume surface normal direction and the light source normal at
the random point on the light source. These lighting rays are queued on blocks and

scheduled in the first pass just like rendering rays.

As the lighting rays travel through the volume they deposit energy to voxels

along the ray. The reduction in radiance along a differential distance dx is given by

126

WO 01/63561 PCT/US01/06345

10

15

20

25

30

K(x)dx where k() is the coefficient of extinction at point x and x, is the sum of the
coefficients of absorption k, and scattering .. i,(x) is determined by K,0/(x), where K
is a constant defined per material tag, and therefore x,(x) = (1 - K))a'(x). At each
sample point along the ray, the energy E, stored 614 in the density field of the ray data
structure is split into scattered energy E,= E, K.0'(x) 608, absorbed energy E,=E_ (1 -
K)o'(x) 610, and the transmitted final ray energy E', = E, (1- o'(x)) 612 as shown in
Eigure 63. Part of the ray energy is eventually stored in the volume data as a view

independent estimate of the irradiance.

Two modes of global illumination are available, low albedo and high albedo.
In the low albedo mode, optically thin objects (e.g., light fog) are lighted with a small
number of light rays (actually bundles of rays). In the high albedo mode many rays
are used to stochastically sample the complex transport space of high albedo objects.
In low albedo mode, light bundles distribute part of their energy at all samples with
nonzero opacity, similar to the absorption suppression method of Pattanaik et al.,

which is described in Computation of global illumination in a participating medium

by Monte Carlo simulation, by Pattanaik et al., The Journal of Visualization and

Computer Animation, 4(3):133-152 July-Sept.1993. In this mode, the exiting bundle
energy is E;' and the absorbed energy E, is trilinearly distributed (splatted) to the
irradiance fields of the eight neighboring voxels. The ray direction is only scattered
when the accumulated ray opacity computed incrementally with a4 1 - (1 —a,) (1-
a'(x)) reaches some uniform random value which is constant per ray and is stored in
the “interaction” field of the ray format. In this way, the light bundle energy is

continuously distributed to the voxels along the way.

In high albedo mode, scattering is an important source of illumination so many
light rays are necessary to sufficiently sample the illumination transport equations. In
this mode, rays model photons which carry an indivisible amount of energy which
may scatter (bounce) at many difference locations before finally being absorbed. As
such, they only deliver their energy once during a photon capture event (absorption).

As in low albedo mode, rays interact with the medium when the accumulated opacity

127

WO 01/63561 PCT/US01/06345

10

15

20

25

30

reaches the interaction value. However, rays either scatter or absorb depending on the
scattering albedo «/x, and a uniform random value. If scattering is selected, the ray
direction is modified based on the material's BRDF and the accumulated opacity is set
to zero. The ray then continues in a new direction having gained a generation.
Whenever the photon is absorbed, the full energy E; is splatted to the irradiance fields
of the neighboring eight voxels. The two methods attempt to achieve the same
distribution of energy in two different ways which are tuned to the characteristics of
the medium. With a large number of photons, the law of large numbers succeeds in
generating a continuous distribution of illumination. The high albedo mode can also
be used for shooting a large number of rendering rays. In this case, color is not

accumulated continuously along the ray, but only when the ray is absorbed.

Both lighting rays and rendering rays scatter according to the phase function or
bidirectional scattering function (BSDF) of the material. The tag of each voxel
determines the material type. Among other things, materials define the color, the
scattering constant, and the BSDF. The specification of the BSDF is flexible. Certain
BSDFs are easily specified in hardware (e.g., isotropic scattering) and others (e.g.,
Fresnel, refraction, point sampled automobile paint) are more suitable for software
implementation. Complex BSDFs are trapped by the hardware and redirected to
software for further processing. The hardware supports specular reflection, dull
reflection, dull scattering, isotropic scattering, and ideal diffuse reflection. All other
BSDFs intercept the ray processing in hardware and pass it to the software for
processing. After the software scatters the ray, it re-queues the ray on the appropriate
hardware queue for further processing. Note that both lighting and rendering rays can

be scattered.

Rays no longer travel in coherent groups as in orthographic volume rendering
because of the apparent randomness introduced by perspective projection, the global
illumination lighting method, and scattering. The block reordering and scheduling

algorithm automatically attempts to maximize coherence among computations.

128

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Referring now to Figure 64, the architecture of the GI-Cube will now be
described. The architecture is designed to render 256° volumes in real time (30 Hz)
using a single PCI board 616. Global illumination and other algorithms are
accelerated to interactive rates, depending on the desired quality of results. The
flexibility of the generalized ray tracing approach and the pipelined hardware makes
this all possible.

The board 616 is composed of three major components. The first component
is a digital signal processor (DSP) 618 which acts as an interface to the board and a
controller of the individual processors. It handles loading the dataset, generating
lighting and viewing rays, controlling the operation and I/O of the processors,
assembling the final image, and reporting the results back to the host over the PCI
interface 620. It is directly connected to an SDRAM 622 for scratch memory storage
and the frame buffer.

The second component is a set of hardware pipelines 604 called block
processors as shown in Figure 64. Each block processor 604 follows the general
layout of Figure 61. Each pipeline 604 is designed to take one sample along a ray in

each hardware cycle, barring stalls due to cache misses.

The block processors 604 includes a queue sorter 624 to maintain and sort a
group of fixed size hardware ray queues 626. As new rays are accepted from either
the DSP 618 or neighbor processors 604, they must be bucketed into queues 626
depending on the starting point of the ray. Simple addition, shift, and modulo
operations are sufficient to select the appropriate queue 626. Given a ray start
position (x,,z), block size of 32, volume size of 256, and the simple slab volume
distribution scheme of Figure 57, the internal queue number ¢ is determined using C

shift notation by:

x' =(x>>5)mod 2

y' =y>>35

129

WO 01/63561 PCT/US01/06345

10

15

20

25

30

z'=z>>5

q =@'<<6)+('<<3)+z

Due to the simplicity of queue selection and the potential bottleneck, the bucketing

operation is over-clocked by a factor of two.

Embedded DRAM (eDRAM) is used to maintain ray data in the queues 626
since the data access is highly regular, the amount of storage is large, and the required
bandwidth is high. A fixed number and size of ray queues 626 simplifies the
bookkeeping allowing constant time access to active and sorted queues 626 in every
cycle. For our reference design with 256° voxels, blocks of 323, and four processors
604, each processor has 128 queues. With each queue 626 having a length of 256 rays
and width of 32 bytes, the total eDRAM memory on a four processor ASIC is 4MB.
Because the sorting operation is over-clocked, up to two rays need to be written into
queues 626 at the same time. For that reason, each queue 626 is implemented as a
separate eEDRAM so multiple queues 626 can be written simultaneously, unless of
course both rays belong in the same queue 626 . At the same time, the active ray

queue supplies new rays to the pipeline 604 at the rate of one ray per cycle.

One issue which arises with fixed sized ray queues is exhausting available
space. This can happen when rays converge at a point (near a light source, near the
camera, or with focused caustics). When this occurs, overflow rays are returned to the
DSP 618 over the ray bus 628. This does not generally hamper throughput since
overflow occur when there is too much work in the ray queue 626. The only

detriment is the consumption of resources on the DSP 618.

Another responsibility of the processors is to determine the active ray queue.
Each ray queue 626 is assigned a scalar importance based on one of the following
criteria: 1. The queue with the most rays; and 2. The queue with the most
contribution to the image. Each of these criteria can be incrementally maintained by

simply adding any incoming ray importance and subtracting any outgoing ray

130

WO 01/63561 PCT/US01/06345

10

15

20

235

30

importance. A pipelined insertion sorter 630 as shown in Figure 65 is used to sort

these importances in hardware. Alternatively a priority heap could also be used.

The pipelined insertion sorter 630 having a comparison buffer 632 and a
selected buffer 634. Both buffers 632, 634 having linear storage arrangement for
storing queue numbers and importance. The pipelined insertion sorter 630 inserts
each modified importance at the top and allows it to filter down through the ranks
incrementally. When a modified queue appears at the top, it immediately wipes out
its old location in the ranks. That way, only one copy ever appears in the list. Each
rank contains two items: the selected and the comparison. Items from above are
always first placed in the comparison buffer 632. Then at each cycle, the two buffers
632, 634 are compared and the larger is moved to the selected buffer 634. The
smaller is moved to the comparison buffer 632 of the next lower rank. The active
queue is always processed until it is emptied, so it must remain at the top rank until it
becomes zero. Therefore, the importance of the active queue is set higher than the
scalar importance of the remaining ray queues. Preferably the importance of the
active queue is set at infinity. When the active queue empties, all lower ranks are
simultaneously moved up one rank. The queue number of the active queue is used to

control a multiplexer which selects the active queue output.

Referring again to Figure 64, the GI-Cube architecture preferably uses
RAMBUS memory (RDRAM) 636. The memory is generally the key component of
any volume rendering architecture since that is the usual bottleneck. The GI-Cube
architecture generally requires parallel, distributed memory and high bandwidth
memories. Parallel, distributed memory permits size and bandwidth scalability by the
simple addition of identical components. The disadvantage of distributed memory is
the difficulty of sharing data for dynamic load balancing, which is not attempted in
this architecture. The RAMBUS memory (RDRAM) 636 is used because of its high
sustained bandwidth for random accesses. Alternatively, the double data rate (DDR)

DRAMs could also be used. At 800 MHz, one RDRAM can supply 1.6 GB/s

131

WO 01/63561 PCT/US01/06345

10

15

20

25

30

bandwidth. In the GI-Cube architecture, standard volume rendering at the design
point requires an average of 2.8 GB/s and global illumination 4.6 GB/s. The
invention could also be implemented by sharing one RDRAM 636 between every two
processors to reduce costs. The sharing would result in a noticeable degradation in

performance because of the sharing increases the latency of cache misses.

Referring now to Figure 66, a portion of the processor (pipeline) 604 having a
prefetch and memory controller 635 and the interleaved volume cache 606 is shown.
The prefetch and memory controller 635 preferably include an address decoder 637, a
cache tags 639 and a miss scheduler 638. The interleaved volume cache 606preferably
include an eight-way interleaved volume memory 645 and an eight gradient LUT 646.
RDRAMs 636 can deliver four voxels to the pipeline 604, which runs at about 100
MHz because RDRAMs currently operate at 800 MHz and supply 18 bits (1/2 a
voxel) every cycle. To hide latency, voxels are prefetched earlier in the pipeline 604
as shown in Figure 66. Afier address decoding with an address decoder 637, the eight
tags associated with the trilinear neighborhood are checked by a cache tags 639. Up
to eight misses are queued by the miss scheduler 638 for serial RDRAM access. The
Rambus ASIC cell (RAC) 640 streams voxel read/write operations to and from the
RDRAM 636. Retrieved voxels are received into a queue which feeds the volume

cache 606.

Each of the eight banks is able to read or write one voxel per clock cycle. Up
to four voxels are retrieved each cycle from the over-clocked RDRAM 636. As long
as there are no bank contentions, all are written to their respective banks during the
cycle. Referring again to Figure 66, the newly retrieved voxels are routed around the
cache 606 through a bypass 642 that also writes them directly to the resampling unit
644 to perform the trilinear interpolation using the newly retrieved voxels. To ensure
that all the voxels have reached the cache 606, a simple counter is used that stalls each

ray until the specified number of voxels have been retrieved into the cache 606.

132

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Before interpolation, the gradient index of each of the eight voxels must be
decoded into three components. Preferably the 11-bit gradient index is cached and
eight identical gradient look-up tables (LUTSs) 646 are then used to decode the eight
indices in parallel. It would cost over 50% more storage to cache the actual gradient

components (3 x 10 bits per index).

The fourth major component of the processors 604 is the pipeline itself as
shown in Figure 61. The resampling unit 644 can be considered the top of the
pipeline. The resampling unit 644 accepts one sample location along a ray and the
eight nearest voxels. The resampling unit 644 trilinearly interpolates the density,
gradient, and irradiance using seven linear interpolators per channel. The tag is
nearest-neighbor sampled. The sample data is passed to the segmentation unit 648
which looks up the color, opacity, and shading coefficients (total of 36+16+32=84
bits) in a density+tag indexed SRAM LUT.

The segmented and classified sample is passed to the compositing unit 649
which randomly jitters the sample location along the ray. The sample location and
image destination bits are mangled to select a random factor from an SRAM LUT
representing uniformly random numbers between 1/2 and 1. The sample opacity is
then modulated, using another LUT to assist in computing the power function. The

opacity of the ray is then updated by using the compositing equation.

If the ray is a lighting ray, the amount of energy lost to the surrounding voxels
is computed as described above. If any energy should be deposited, the amount is
forwarded to the miss scheduler 638 of the volume cache 606 in order to be added to
the nearest eight voxels using the weights interpolated in the resampling unit 644.
This reduces the available bandwidth and can lead to stalls, especially in low albedo
mode. When a sample borders other blocks, up to seven other blocks may contain
copies of the voxels because the voxels on one edge are shared. To maintain
consistency among different copies, the energy is packaged up and queued on the

neighboring blocks.

133

WO 01/63561 PCT/US01/06345

10

15

20

25

30

A special flag in the ray is used to mark them as irradiance carriers. When the
volume cache 606 detects an irradiance carrier, it retrieves the current irradiance for
each voxel from the cache 606, adds to them the trilinearly interpolated energy, and
writes them back to the cache 606 and memory. The main additions required to
accommodate this read/modify/write behavior are a datapath from the pipeline to the
volume cache 606, a datapath from the pipeline to the dispatcher, and a recirculation

from the data cache to the miss scheduler 638 to write the voxels.

If the ray is a rendering ray and global illumination is turned off, a shading
unit 650 shades the sample. Preferably the shading unit 650 includes a reflectance
map for shading the sample.. The resolution of the reflectance map is 1282 for each of
the six faces, but discretization artifacts are minimized by using bilinear interpolation.

For globally illuminated rendering rays, illumination is computed based on the
BSDEF. The diffuse component is estimated by using the sampled irradiance. The
specular component is resolved only if the ray is scattered and happens to hit the light
source, which is only feasible for area light sources. To evaluate the specular
component of the Phong lighting model would require casting a ray to each light
source, multiplying the number of rays and flooding the fixed length ray queues.
Alternatively, the reflectance map can be loaded with the specular component of the
point light sources (rather than the usual black) and the result summed into the sample

color.

The shading unit 650 is followed by the spatting unit 651and the scattering
unit 652. The splatting unit 651 updates the voxel data and ray data associated with a
sample location. The order of the spatting unit 651and the scattering unit 652 on the

pipeline between the queue sorter 624 and the shading unit 650 is not critical.

The final stage of the pipeline includes a scattering unit 652 that scatters the
ray based on the BSDF. If the BSDF of the sample's material is too complex for the

hardware to compute, a flag is set in the ray data structure and the ray is directed to

134

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the ray sorter to be forwarded to the DSP for further processing. In the DSP, a user-
specified routine computes the new ray direction and the ray is sent back to the
processors via the bus. Simple BSDF's are evaluated in hardware. For example,
isotropic scattering is computed by selecting a direction J from a random direction
LUT. The random index is selected by again mangling the ray position and

destination bits. Glossy scattering is performed using:

D'=D+p5
| D+po |

where D is the original direction and f some fraction controlling the glossiness.
Glossy reflections are simulated by reflecting the original ray direction about the
sample normal followed by glossy scattering. Careful selection of 8 permits

simulation of perfectly sharp to diffuse materials.

Referring now to Figure 64, the layout of the board 616 is much simplified by
grouping all the processors 604 into a single ASIC. The rest of the board is composed
of a DSP 618, some SDRAM 622 for the frame buffer, and preferably at least two
RDRAM:s 636 for volume memory. With this chip count, a single PCI board
implementation is entirely feasible. Of course, additional RDRAMSs 636 can be easily
daisy chained to meet increased memory needs. The host is freed by the board of
most rendering responsibilities. Besides modeling, manipulation, and final display,
the host is largely available for other processing. The exception is when other
algorithms are performed which rely on the host for most of the algorithmic work,

while the board acts as a coprocessor.

The DSP 618 carries the bulk of the rendering management responsibilities.
Prior to rendering, the DSP 618 coordinates loading the volume data and LUT onto
the ASIC. During rendering, the DSP 618 continually generates new rays according

to the viewing parameters and assembles the processed rays into an image in the

135

WO 01/63561 PCT/US01/06345

10

15

20

25

30

attached SDRAM 622. At the end of rendering a frame, it transmits the image back to
the host's main memory for display. The processors 604 require minimal control
coordination during the actual rendering as they autonomously process and return

rays. Preferably the ASIC pipeline is implemented in silicon.

The bandwidth of the PCI interface (132 MB/s) to the board 616 can become a
bottleneck in some cases. For usual volume rendering and global illumination at 30
Hz, it is possible to transmit 5122 images at 36 bits per pixel (8-8-8-12 rgbo)) without
saturating the bus. However, other algorithms such as volumetric texturing, which
require the full participation of the host, may flood the interface. In particular, if all
the rays are generated on the host, transferred over the PCI bus 620, and returned over
the bus 620, flooding may occur. In this mode, the frame rate or resolution might be
reduced, unless the AGP interface which provides four times the bandwidth is used

instead.

The pipelines are controlled through simple logic connections. There is no
need to coordinate shared activity among the processors 604 over the bus. Therefore,
the ray bus 628 can be physically implemented as two unidirectional connections.
The DSP 618 to the processors 604 is just a broadcast connection, while the
processors 604 to the DSP 618 is a many-to-one connection. The latter can be

implemented as a binary tree of merging nodes.

The size of a ray packet is 32 bytes. The width of the bus can accommodate
this size since it is on-chip. The bus frequency matches the processor 604 frequency
(100 MHz) so each processor 604 receives one new ray every p cycles. As p grows
beyond four, this can become a limitation, particularly during the start-up period when
the queues 626 are first filled. To overcome this, ray differentials can be used to
compress a sequence of rays into a smaller data structure. Just as the host instructs the
DSP 618 to generate all the rays for a specific viewpoint, the DSP 618 can instruct the
processors 604 to extrapolate a number of rays given the differential (e.g., in direction

and destination).

136

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The communication between processors 604 is also in the form of ray packets
of 32 bytes. Since this communication is local and presumably on-chip, it is easily
implemented. Testing with a software simulator has shown that processors 604
communicate with each other only 2 to 4 out of 100 cycles. Therefore, each ray packet
can be broken into several smaller parts and transmitted over a narrower bus at the
same speed. However, partitioning the volume with repeating slabs increases the
communication to about 7% and block skewing about 20%. Block skewing resulted
in a bisection bandwidth of about 12 MB/s, while simple slabs had about 1 MB/s or
less. Tests show that the memory interface is used 37.5% of the time during rendering
and 92% of the time during the lighting pass of global illumination. The increased
utilization is due to the irradiance splatting operation which requires a read-modify-

write cycle.

A method for performing efficient volumetric backprojection will now be
described. The method is useful in global illumination where the method is used to
transport illumination through the scene, starting from the light sources and
propagating outward. In addition, the method is useful in reconstruction such as
computed tomography. The method can be implemented on the Cube-5 architecture
or on a modified Cube-4 architecture as described in Volumetric Backprojection, by

Frank Dachille IX, Klaus Mueller, and Arie Kaufman, Volume Visualization

Symposium 2000, pp. 109-117, October 2000, which is incorporated herein by
reference. The method will be now described in connection with a new algorithm for
volumetric global illumination based on a sequence of backprojection iterations, and

computed tomography as a basis for reconstruction.

In local illumination, the global distribution of light energy is ignored and
shading calculations are performed assuming full visibility of all light sources. While
this is useful as a first approximation, the incorporation of global light visibility
information (shadows, one instance of global illumination) adds a great deal of

intuitive information to the image. This low albedo lighting simulation has the ability

137

WO 01/63561 PCT/US01/06345

10

15

20

25

30

to cast soft shadows by volume density objects. Generous improvements in realism
are achieved by incorporating a high albedo lighting

simulation.

We wish to solve the illumination transport equation for the general case of
global illumination needs to be solved. The incident illumination 7 (y,w) in direction

o at any voxel y can be described as
10v0) =y i floo. 0010y, 0)dway

where I"is the set of all directions, V is the set of all voxels v, and flow, ') is the phase
function in directions @ and w'. This means that the illumination at any voxel is
dependent upon the illumination at every other voxel. Generally in practice, this
integral-equation is solved by finite repeated projection of energy among voxels. This

leads to a finite energy transport path, which is generally sufficient for visual fidelity.

To implement the method some of the same assumptions for standard radiosity
are made. In particular, the voxels are generally assumed to behave as diffuse
surfaces when a gradient exists. When there is no gradient (as in the case of
homogeneous fog) then the voxel scatters light in all directions isotropically. The
computation is organized not per pixel or per voxel, but per direction. Organizing per

direction capitalizes on coherence by utilizing slice-by-slice computation.

The volumetric scene is first analyzed to determine the initial distribution of
lighting energy. Preferably the direct illumination (typically the major contributor to
overall intensity) is computed directly. For directional light sources a single sweep
similar to Ray tracing volume densities, by J. Kajiya and B. Von Hwerzen, Computer

graphics (SIGGRAPH '84 Proceedings), volume 18, pages 165-174, July 1984, along

one major axis is sufficient to propagate the light energy to all the voxels. For point
light sources both inside and outside the volume, the light intensity is backprojected

outward from the light source to every voxel using a slice-based approach. However,

138

WO 01/63561 PCT/US01/06345

10

15

20

25

30

it has been determined that in practice it is far simpler to shoot one or more rays
toward each of the N? exterior voxels of the volume and account for the inverse-square

intensity falloff of each ray.

Besides the volume density array p(s), s € R?, aradiosity array I;(s) and an
unshot radiosity array [;,(s) is maintained. A transfer function converts each sample
volume density p; into an opacity a; and color C;. For many datasets, a simple linear
ramp from zero opacity at density p, to full opacity at pp, is sufficient. For CT
datasets, it has been determined that it is useful to set p, at about 20% density and pp,
to full density to eliminate noise. For voxelized datasets, the full dynamic range was
used. In experimentation, only a single wavelength of light with objects of a constant
intensity were used. In any case, a transfer function should be chosen for the
illumination transport which elucidates the features of interest, the same as in direct
volume rendering. As a matter of implementation, the single density value could be
replaced with pre-classified RGBa values to support pre-segmented volumes (e.g., the

visible human dataset).

In the initial sweep of direct illumination, light energy is transported in
proportion to the optical path length to the light source. The radiosity deposited into

each voxel along a path from the light source to s is
I(s) = eSe()dt

where «x(s) is the extinction coefficient at s. The extinction coefficient describes the
reduction in intensity of a light beam as it passes through a differential volume
element. The integral is computed incrementally along the path using standard
compositing to accumulate opacity along the ray. As energy is depleted from each ray
it is deposited into both the radiosity array - and the unshot radiosity array I,
modulated by the reflectivity A of the volume sample. Reflectivity dictates the
percentage of light that is reflected out of the reduced light ray intensity. The

extinction coefficient and reﬂectivity are both determined by a transfer function based

139

WO 01/63561 PCT/US01/06345

10

15

20

25

30

on the local volume density. Note that trilinear or better interpolation should be
utilized for both sampling the density p and depositing the energy into the radiosity Z,.

and unshot radiosity I, arrays.

A different approach is utilized for area light sources. The computation of the
direct illumination contribution of an area light source requires integrating across the
entire area for each visible voxel. The integration is postponed until the next step by
summing the energy directly into the radiosity and unshot radiosity I, arrays because
this is nearly as difficult as calculating the indirect illumination. If all light sources
are area light sources, then the indirect passes are processed next as the initial pass can
be avoided. However, the smaller the area light sources, the longer it will take to
reach equilibrium. Therefore, smaller area light sources can sometimes be more

efficiently computed as a small set of point lights.

In the second pass, the integration of the illumination contribution of all voxels
to all other voxels is performed by a finite number of iterations. In each iteration, a
random direction ¢ for the backprojection is selected. Note that the convergence
could be improved by selecting directions using a quasi-random (e.g.,) sequence of
directions rather than a uniform random sequence. An preferred method is to select

points distributed on a sphere as directions.

In each iteration, slices perpendicular to the major axis nearest to the random
direction o are processed. Starting with the first slice, a ray front in the form of a 2D
buffer is initialized. This buffer is used to transport energy along the rays defined by
the elements and o. At each slice, the rays simultaneously accumulate and deposit
energy from the neighboring voxels. The differential equation describing the transfer

of energy I in a ray in direction o over a differential length ds is:

dI L(s)o(s,0) if[vplea<o0,
— = L(s) — x(s)I(s) if| vpleo=0,

140

WO 01/63561 PCT/US01/06345

10

15

20

25

30

ds x($)X(s) o(s,0) if| vpl+a>o0,

where o(s, ¢) is a function describing the tendency of a volume sample to emit or
receive energy in the given direction. Fortunately, this equation is easily solved by
finite differences, although it could equally well be solved by a finite element method.

The gradient-based energy transfer equation is described next.

In a very high resolution lighting simulation, it would be possible to purely
absorb and emit light isotropically by each voxel. This is akin to using
microgeometry to determine the reflectance behavior of surfaces. But it is much more
efficient to compile statistics on surface reflectances and use a bidirectional
reflectance distribution function (BRDF) instead to model the gross effects of the
microgeometry. In the absence of surfaces (where there is a zero gradient), a simple
isotropic absorption-emission model is used. But at surface boundaries, the energy
transfer is allowed to only occur in one direction. The ray energy is only allowed to
be deposited onto the surface if the ray is approaching the surface. Conversely,
unshot radiosity is only allowed to augment the ray energy if the ray is leaving the
surface. Additionally, surfaces are modeled as ideal diffuse reflectors, and therefore

the angle of incidence is taken into account using the dot product. This distinction

- between isotropic and diffuse reflectors is automatic, in contrast to Sobierajski's

method of explicitly storing two coefficients per voxel as described in Global
[llumination Models for Volume Rendering, by L. Sobierajski, Ph.D. thesis, Stony
Brook, NY, Aug. 1994.

{is used to distribute energy over several iterations. By only emitting part of
the voxel radiosity in each iteration, the energy is distributed to a larger variety of
voxels, leading to faster convergence. The complete algorithm for a single
backprojection is given in Figure 67. In the implementation in accordance with the
invention, the ray buffer contains a slice-sized array of rays which are resampled for

interaction with each voxel. Because of the bidirectional transference of energy

141

WO 01/63561 PCT/US01/06345

10

15

20

25

30

between the rays and the volume, at least one of the participants must be resampled so
that the exchange can take place at a specific location in space. Preferably the ray
buffer is resampled because it is 2D requiring only bilinear interpolation instead of

trilinear interpolation of the volume, or both.

In the procedure, energy exchange is computed one slice at a time, then the ray
array is shifted along the ray direction to the next slice as indicated in Figure 68. Parts
of the ray buffer which move outside the volume are wrapped around to the other side

and re-initialized. A modulo operation efficiently computes the wrap-around.

Clearly, the final distribution of energy will be strongly correlated to the
initial chosen direction. If a certain voxel density gradient happens to be in the same
direction as the initial direction o, then all of the unshot energy will be shot in the
initial iteration. Two techniques are used together to reduce this effect. First, a small
value of { helps to spread out the contribution over more voxels. Second, the process
is repeated many times and the result is averaged. To repeat this without using
additional buffers, the total amount of energy added to the system is retained and used
to normalize the individual voxel radiosity during rendering. This permits incremental
refinement of the solution to include in increasing variety of directional sampling over

time.

If desired the solution can be terminated early to display intermediate results
because the iterative approach provides a progressive refinement. In a progressive
refinement, the intermediate stages are visualized by estimating the distribution of
energy throughout the scene. In order to avoid placing radiosity in the interior of
solid objects the unshot radiosity is preferably not simply split equally among all the
voxels. Preferably this is accomplished by proportioning the energy according to the
product of density and gradient. In this way, empty voxels, which conventionally

have zero density, and solid interiors, which usually have no gradient, are avoided.

142

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The iterations are continued until convergence. Convergence is defined by the
voxel-wise root-mean-square (RMS) difference between radiosity estimates Ai
iterations apart being below some threshold 6. The RMS difference is computed by
the Pythagorean sum of squared differences between corresponding voxels, assuming
the original volume is in the range [0,1]. Of course, termination can be accelerated by
accepting a greater error tolerance and vice versa, leading to an adjustable time-

quality tradeoff.

Selecting Ai > 20 is used to avoid local minima in the search process.
Referring now to Figure 69, the logarithmic rate of convergence with =20 and 6=0.1
is demonstrated. When convergence is achieved, there is usually unshot radiosity in
the scene from the last several iterations. The radiosity added in each iteration has a
half-life which is data dependent. The unshot radiosity can be (1) ignored and
removed from the sum of unshot radiosities, (2) distributed among the other voxels of
the scene, or (3) distributed more appropriately by iterating further until some
proportion € of the total energy is dissipated. The latter is the most appropriate

technique, but this choice has little effect on the final distribution after convergence.

A modified version of direct volume rendering is used to render using the
radiosity-density representation. Instead of shading each sample along the ray by
summing the illumination by each of the light sources, the pre-computed radiosity is
used which contains the influence of both the direct and indirect light sources. The

image rendering equation from point s, in direction o is then:

I(so,0)= I: £ () I (s)e ~l e @ g

It has been determined that the inclusion of cos(6) factor in the integral similar
too Lambert's law enhances the image contrast, emphasizes the gradient, and
improves the overall appearance. 4 is the angle between the viewing ray and the
volume gradient. It is computed using the dot product Vp(s) ¢ o clamped to the range
[0,1]. In the absence of a volume gradient a value of 1 is used in place of the dot

product, for this indicates a homogenous region that emits isotropically.

143

WO 01/63561 PCT/US01/06345

10

15

20

25

30

A number of methods have been proposed to reconstruct the 3D shape of
objects from photographic images. Kutulakos and Seitz use a technique called space
carving to generate a binary representation of the objects on a discrete volume grid,

which is described in A theory of shape by space carving, by K. Kutulakos and S.

Seitz, Technical Report 692, Computer Science Dept., University of Rochester,

Rochester, NY, May 1998. It works by backprojecting the object's silhouette edges
that can be detected in the images. Seitz proposed a method described in

Photorealistic scene reconstruction by voxel coloring, by S. Seitz and C. Dyer,

International Journal of Computer Vision, 25(3), November 1999, termed voxel
coloring that works its way through the scene from front to back in layers and picks
the probable color for each voxel based upon the acquired images. Both methods
make a binary decision on what color and occupancy a voxel should have, which can
lead to aliasing. A new approach to reconstructing a volumetric object from its

backprojections is now described below.

The following observations are noted as being important criteria to
reconstructing a volumetric object from its backprojections:
e the degree of certainty about a voxel is preferably encoded into the
opacity;
o preferably the voxels are treated as point samples of a continuous field;
e preferably only interior voxels should be labeled as fully occupied;
e preferably the voxels on the surface should be partially occupied and
indicated by partial opacity;
o preferably the final voxel opacity should be a weighted average of the
estimations given by the projections; and
e Due to the low-pass filtering inherent in image acquisition, all
reconstructed objects will exhibit antialiasing.
For example, Figure 70 shows a section of reconstructed voxels from a hoop using

continuous and binary occupancy decisions.

144

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Reconstructing a volumetric object from its backprojections is a common
procedure in the medical field. Computed tomography (CT) is routinely employed to
recover a patient's interior from X-ray projections that were taken around a circular
orbit around the patient. The most commonly used CT method is Filtered
Backprojection (FBP), where the projections are first filtered with a high-pass filter,
and then backprojected onto the volume. The high-pass filtering is necessary to avoid
blurring of the reconstructed object, and the backprojection can be thought of as a
simple spreading of the filtered projection image across the volume grid. The theory
behind FBP requires the projection images to be spaced at equidistant orientations
around the patient. The quality of the reconstruction suffers considerably when this
prerequisite is not fulfilled, and also when the number of projections is small (that is
why 500 and more projections are taken by medical scanners). In these scenarios,
iterative techniques, such as the Simultaneous Algebraic Reconstruction Technique
(SART), are more adequate. In SART, the volume is reconstructed by a sequence of
projections and backprojections. The technique iteratively (1) projects an image from
the volume currently being reconstructed, (2) compares it to the actual X-ray image
acquired from the scanner, (3) corrects the reconstructed volume using
backprojection, and (4) repeats the process until convergence.

To implement SART, a sequence of x-ray images is selected; convergence is
faster if successive images are projected in approximately orthogonal directions. A
relaxation factor A€[0,1] is selected to mix each voxel with its correction. For each
image in the sequence, the existing volume (initially empty) is projected from the
same viewpoint as the x-ray image. The true image is subtracted from the
approximate image and the result scaled by A. This difference image corresponds to
the correction which would fix the volume according to that viewpoint. Rays traverse
the volume and deposit the correction value (either positive or negative) to the
voxels along the ray. As the process is repeated, the volume converges to the original

sampled volume.

CT can reconstruct three-dimensional object features of very little contrast

(less than 0.5%) and with high resolution (less than 1mm), but tomographic

145

WO 01/63561 PCT/US01/06345

10

15

20

25

30

reconstruction is primarily used in the context of imaging with X-ray energies which
are confined to hospitals and shielded industrial sites. Apart from the fact that X-rays
are difficult to generate, health considerations prohibit the use of X-ray technology to
scan real objects in the office, home, or laboratory, for subsequent incorporation on
graphics scenes. The question is, can we use the high-fidelity properties of CT
methods to reconstruct objects imaged with harmless visible light and so recover low-

contrast and very detailed object features.

Since all CT methods including SART assume all objects can be perfectly
penetrated by the X-ray beam, obscuration is not a problem. But, using visible
wavelengths of light means that some parts of the scene may be obscured in some or
all of the images. For that reason, the estimated volume usually never approaches the
real volume because the interior is indeterminate. The same problem arises with
reconstruction from saturated x-ray images. Furthermore, some parts of the scene
may be indeterminate due to specular highlights (e.g., a mirror) or complete

shadowing.

Referring now to Figure 71, a virtual test setup is shown. A scene of random
translucent triangles are voxelized into a reference volume. Then a virtual light
source 720, camera 722, and backdrop 724 are positioned in the scene. The volume
725 is rotated on a virtual turntable 726 to acquire a non-uniform sequence of
projections with both a white 728 and a black 730 backdrop and controllable ambient
and diffuse shading. A reconstruction volume containing both color and opacity is
initialized to empty. Then a number of iterations are used to converge the

reconstruction volume.

In each iteration, a random source projection is selected and virtually imaged.
Although the opacity can be obtained with volume rendering, it is unavailable with
standard image capture. Using two images, one with a white backdrop 728 and one
with black 730, the opacity can be computed afterward with a straightforward

derivation involving the compositing operator. Given a pixel of a photograph of the

146

WO 01/63561 PCT/US01/06345

10

15

20

25

30

object over a white background C;;,and over a black background Cp, can be expressed

in terms of the object color C,, the object opacity a,,, and the compositing equations
Cw = Coup+ 1(1 —ap)
Ch = Cooo+ 0(1 —ap)

and solving for object opacity a, results in get

Co=Cpap+1-09

Op
ao=Cp+1-Cp

A corresponding projection is made from the reconstructed volume assuming some
ambient and diffuse shading coefficients. The source opacity and color are compared
to the reconstructed opacity and color and correction values are generated for each
pixel, modulated by A as in SART. The correction opacity and color are
backprojected through the volume and applied to the voxels along each ray. All

processing was performed using a simple and efficient slice-based technique.

Advanced methods for volumetric global illustration that can be accelerated by
a ray tracing architecture such as GI-Cube will now be described. These methods
depart from previous techniques by processing more efficiently. Instead of iterative
slice-based techniques for global illumination, the methods process a number of rays

in direct proportion to the light intensity in every part of the scene

A stochastic solution method for the transport equation will now be described.

147

WO 01/63561 PCT/US01/06345

10

15

20

25

30

There is a well-known connection between visual importance and radiance. Bi-
directional methods are the most promising tool for discovering the Markov chain
transport paths that connect the light source(s) with the viewpoint. The first step in
the new method, is to sample these transport paths in order to gain a statistical insight
into the important modes of transport. Therefore, bi-directional methods are used to
generate a sample list of complete paths from the light sources to the eye. Sufficient
sampling is performed to collect information to make use of importance sampling
techniques which is generally less than the amount required for generating an image.
This is a stochastic method which can take advantage of anisotropic multiple
scattering. The method can discover specular to diffuse transport paths efficiently

since it is bi-directional.

The second step is to classify the list of transport paths. The voxels are
aggregated into clusters of some manageable size. Preferably the transport paths are
classified according to the location of interaction points. For example, a path that
made two bounces at voxel clusters V; and ¥V between the light source and the eye

would be classified under LV,VE, using the notation described in Adaptive radiosity

textures for bidirectional ray tracing, by P. Heckbert, Computer Graphics
(SIGGRAPH 90 Proceedings), Volume 24, pages 145-154, Aug. 1990, which is

incorporated herein by reference. The most significant transport paths are almost
always the shortest which include those by direct illumination and single scattering.
These transport paths will also generally occur with the greatest frequency. After all
the paths are classified, they are sorted by frequency within the group.

The next step is to process each set of paths, from the most frequent to the
least. Preferably an accounting is made for all the significant sources of illumination.
Radiosity methods account for every possible diffuse transport path in a breadth-first
manner. In the present invention, the illumination transport paths are processed in a
depth-first manner. The most significant source is identified by starting with the most
frequent. This is similar too the process of progressive refinement, except that we
only concentrate on the most significant transport path. To process a set of paths, the

amount of energy transported from the light to the eye over each image pixel is

148

WO 01/63561 PCT/US01/06345

10

15

20

25

30

analytically determined. A variety of variance reduction techniques known in the art
can be used. Suitable examples are described in The rendering equation; by J. Kajiya,
Computer Graphics (SIGGRAPH '86 Proceedings), Volume 20, pages 143-150, Aug.
1986, and more recently in Robust Monte Carlo Methods for Light Transport
Simulation, by E. Veach, Ph.D. thesis, Stanford CA, Dec.1997, both of which are

incorporated herein by reference. This technique can be compared to metropolis light
transport ("MLT"), described in Metropolis light transport, by E. Veach and L.
Guibas, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages

65-76, Aug. 1997, the method processes a transport path while sampling variations on
the path by mutating the interaction points. In MLT, there is a great deal of variance
over the image because the mutations are not continual over the image. In the present
invention, this is changed by deterministically varying the interaction point over the

image.

With a volumetric scene representation, a handful of elements, each of equal
size and shape, are first constructed. Next bi-directional path tracing is performed to
discover the statistically significant sources of light transport. Preferably the bi-
directional path tracing is performed while taking into account possibly specular and
diffuse BSDFs at every voxel. Note that a hardware accelerated and global
illumination method is ideal for computing the random walks through the volumetric
scene. The typical bi-directional path tracing method can be simplified since only
important transport paths are being gathered. Random suffixes of light paths are
connected to random prefixes of eye paths, as in standard bi-directional path tracing.
However, light paths of equal weight and eye paths of equal weight are generated.
That is, all light paths have approximately equal probability and the same for eye
paths. In this way, paths can be randomly selected to join to form complete light
transport paths. Direct illumination will be treated separately as a special case.
Therefore, light paths of length two (2) or greater are randomly joined with eye paths
of length two (2) or greater. That means that all eye paths have one vertex at the light
source and at least one vertex of interaction with the medium. The same applies to the

eye paths. Note that if either path has three vertices, the light source or the eye point

149

WO 01/63561 PCT/US01/06345

10

15

20

25

30

can be chosen as a fourth vertex. This yields indirect illumination.

To generate the complete light transport paths, we select two random paths
and attempt to connect them via a shadow ray. This shadow ray is the integration of
opacity between the path endpoints. It can be easily computed by the processing
engines of this invention. Hundreds of these shadow rays can be computed

simultaneously using the intelligent ray scheduling of this invention.

The present invention uses the optical depth, which is a continuous measure of
the visibility between two locations. This is the same computation that is used to

connect paths in Rendering participating media with bidirectional path tracing, by E.

Lafortune and Y. Willems, Proceedings of the 7th Euorgraphics Workshop on
Rendering, pages 91-101, June 1996. Since the shadow direction is arbitrarily
selected and not according to the BSDF, then the contribution of the transport path
must be weighed by this weight. The paths are classified after a sufficient number of

complete paths are generated.

The paths are classified by identifying each of the interaction points along the
path according to the selected clusters. Therefore, each path can be classified as
interacting with a short list of clusters. Paths that share the same list of clusters are
grouped together into bins. The bins are then sorted by weight of contribution to the
final image. In this way, the most full bin represents the general path along Which
most of the indirect illumination statistically occurs. By processing the bins in the
order of most full to least full, a progressive method is provided that quickly

converges to an approximate, importance sampled solution.

A k-d volume subdivision is used to process the complete transport path. For
example, the element is first subdivided in half in one of the major axis directions (x,y,
and z)and a sample is randomly taken in the unsampled half. The next time the
element is subdivided, the two sub-elements are subdivided in a different major axis

direction and two samples are randomly taken in the unsampled halves. The next time

150

WO 01/63561 PCT/US01/06345

10

15

20

25

30

the element is subdivided, the four sub-elements are subdivided in the remaining
major axis direction and four samples are randomly taken in the unsampled halves.
The element nearest to the eye is always subdivided completely, i.e., each voxel is
computed separately. The other elements are subdivided until there is no visible
change in the final image. If there are two or more clusters before the final visible
cluster, then the choice of which cluster to subdivide can be randomized in the same
way as the randomized subdivision method presented in The rendering equation, by J.
Kajiya, Computer Graphics (SIGGRAPH '86 Proceedings), Volume 20, pages 143-
150, Aug. 1986.

After each subdivision step, the accumulated sub-image due to the current
transport path is divided by two since the number of samples will double with the new
subdivision. An optical depth is retained between each pair of sub-elements which
corresponds to the percentage of energy that is transmitted between the two. The
optical depth does not need to be recomputed when an element outside the pair is
subdivided. The optical depth is actually never recomputed, but always re-used down
one level in the subdivision, and one additional optical depth is computed for the

newly subdivided element.

Further re-use can be accommodated at the expense of a little exira storage.
After one transport path has been completely computed, a segment of another
transport path may coincide with the path. The overlapping segment can be re-used,
although this implies the re-used segment must be subdivided at the same level as the
previous for the similar segment. This strategy amounts to a lazy evaluation of the
complete set of O(rn°) form factors in the context of radiosity. However, this method
is view dependent and therefore not as restricted as radiosity due to the allowance for

arbitrary BSDFs.

One problem so far is the computation of highly specular surfaces. A highly
specular surface only contributes significantly in one single direction for any incident

direction. Therefore, computing the contribution of one highly specular sub-element

151

WO 01/63561 PCT/US01/06345

10

15

20

25

30

for all of the sub-elements further down in the transport path is prone to aliasing. One
solution to this problem is to handle highly specular surfaces separately, creating a
single transport path through a sub-element rather than the typical branching that

occurs.

It is well known that path tracing is a more effective method than distribution
ray tracing for the simple fact that more time is spent tracing important primary rays
than an exponential number of secondary rays. For that reason, it is more efficient to
sample the transport path by using path tracing rather than bushy ray tracing.
Fortunately, the paths that determined the transport path originally can be re-used for

the integration of the illumination on the last element.

Therefore, the modified algorithm is as follows:

1. Emit photons from the light source(s) into the volumetric scene
according to the goiniometric distribution. All particle paths have an approximately
equal probability of existence. Compute the paths of the particles using the intelligent

scheduling and processing of the proposed invention.

2. Emit importons (importance particles) from the viewpoint according to
the visibility distribution. All importons have an equal probability of contributing to
the image. Compute the paths of the particles using the intelligent scheduling and

processing of the proposed invention.

3. Randomly connect photons paths with importon paths to generate
complete light transport paths of length at lease 4 (including the light source and
viewpoint). Weight the composite paths by the product of the optical depth, and the
BSDFs of the two connected endpoints. Generate random connections between paths
on the general purpose CPU. Each random connection of paths generates a new ray

computation for the invention to process.

152

WO 01/63561 PCT/US01/06345

10

15

20

25

30

4. Subdivide the volume into a handful of volume clusters of equal size.
Classify and group the paths according to the interactions within the clusters. For
example if two paths both interact with clusters 7 and 15 before reaching the

viewpoint, then group the two paths together into a bin.

5. Sort the bins from largest contribution to the smallest contribution and
process the bins in that order. This leads to a progressive refinement solution to

indirect illumination.

6. Process each bin by selecting some proportion of the transport paths
and computing analytically the contribution to each voxel of the last cluster, and
finally the contribution to the final image. The number of sub-paths computed for
each transport path should be proportional to the statistical contﬁbution of the
transport path (as estimated in step 5).

7. Continue processing paths until there is no further change to the final

image.

Step 6 can be expanded to explain the details further. At the interaction point
just before the final cluster, the original transport sub-paths in the bin correspond to a
photon hit within the cluster. These photon hits can be used to estimate the indirect
illumination within the final cluster. Some proportion of these photon hits is selected
to compute the indirect illumination. The proportion may be smaller than the original
statistical evaluation or it may be larger (requiring additional photon paths to be
traced). If additional paths are required, these could be generated by a rejection
method - rejecting those paths that do not traverse the desired cluster path. However,
this is slow. Another method is to select random voxels in each new cluster and
compute the probability of transport along this path. This differs from the original
method of generating equal weight (probability) particle paths. However, we already
modified the probabilities during the matching procedure, so this is of no

consequence.

153

WO 01/63561 PCT/US01/06345

10

15

20

25

30

When a set of photon hit points are identified, process each hit point using a
three-point transport equation. First, convert the incoming energy at the hit point into
an outgoing energy in the direction of the first voxel in the final cluster. Then
compute the optical depth (using the invention to integrate the opacity along the ray)
between the hit point and the first voxel and modify the weight by this quantity.
Continue by using the BSDF at the first voxel to convert the energy into an energy in
the direction of the viewpoint. Again, modify the weight by the optical depth with
respect to the viewpoint. Finally, contribute the final weighted energy to the image.

This procedure can be improved a bit by reordering the computation. In a
slightly more efficient way, some of the quantities can be computed incrementally.
With a little more up-front cost in determining the proper set of rays, the final cluster
can be ray casted ray-by-ray. For each ray, the optical depth is determined
incrementally as in the usual ray casting method. Then, at each voxel, not all the hit
points and determining the contribution from each, using the BSDFs at each

interaction point and the optical depth between them.

A recursive blocking method and apparatus for storing and traversing a 3D
volume data will now be described. To understand the advantages of the recursive
blocking method, the traditional method of storing and traversing a 3D volume data

will be briefly described.

Volume rendering 3D scalar volumes are stored as linear arrays as shown in
Figure 72. Referring now to Figure 73, in the traditional linear volume layout all the
voxels of one x-axis-aligned scan-line are first stored. The data is then stored scan-
line by scan-line until one slice (xy-plane) is filled. Finally the data is stored slice by
slice along the z-axis. With this approach the preferred traversal order is in storage
order - scan line by scan line. In order to apply a Gaup filter with radius 2 voxels, the
data has to be convolved with a 5° filter. This forces scan lines from 5 consecutive

slices to be brought up the memory hierarchy to the CPU. For a typical 256 volume,

154

WO 01/63561 PCT/US01/06345

10

15

20

25

30

each 256 slice of 8 bit scalar data has a space requirement of 2°+ 2°B = 64KB. Thus,
for all data touched by the filter during processing of one slice 5 - 64KB in the source
and 64KB in the destination volume are needed. These 384KB are well beyond Level
1 cache sizes and even larger than many Level 2 caches on older PCs. Therefore,
when the next slice is filtered the voxels which have been transferred to the cache for
reading during processing of the previous slice are no longer there and need to be re-
fetched. In addition, since cache sizes as well as volume sizes are usually powers of
two (2), caches having a capacity less than or equal to one slice scan lines with the
same offset from a slice beginning also map to the same cache line. Thus for a 5°
filter and the destination volume to reside in the cache collision-free, the cache would
have to be six way associative. As Level 1 caches are mostly two-way associative,

voxel data is constantly being replaced, even during processing of just one scan line.

Referring now to Figure 74 a recursive blocking volume layout is shown for a
256° volume. The recursive blocking method stores and traverses the 3D volume data
such that the cache access hit ratio is near optimal. Generally a voxel with 3D
position Py is stored at array offset Oy . The 3D position Py,z = (x; y; 2) is in
integers and has the bit pattern (...,x;, X5, X1, Xo5 ey Va5 Vas Vis Vo s Za» Zo» Z15 Zo) While
Oxyz has the bit pattern (..., z;, y3, X3, 2, ¥, X, 21, Y1, %, Z, Yo, o). The 3D volume data is
stored in a flat array of generally the same size as that which is used for the traditional
linear volume layout, but the order in which the voxels are stored is different. In the
recursive blocking method, the 3D volume data is recursively subdivided into
preferably eight (8) octant blocks until the second lowest level it reaches is 2* voxel
blocks and finally a single voxel. The memory array indices of each block have the
index of the voxel as shown in the exploded view of the front lower left corner in
Figure 74. The conversion between offset O,,. to 3D position P, , are preferably done
through bit manipulations. Alternatively they can be achieved through the use of
lookup tables. To go from position to offset one can add the independent (separable)
x, ¥, and z offsets which can be stored in a lookup table of 256 entries when
processing a 256> volume. This table requires 4 - 2568 = 1XB which is less than 10%

of even the smallest (16K) Level 1 caches. The reverse conversion through lookup

155

WO 01/63561 PCT/US01/06345

10

15

20

25

30

tables breaks the bit representation of the offset in groups that tan become the indices
into position lookup tables whose entries need to be added to yield the 3D position.
The data traversal is preferably done in linear storage order. Although the data layout
is logically recursive, bit manipulations and lookup table computations are preferred
fast and direct methods. A complete example of the recursive blocking of a volume
will now be explained with reference to a 4° volume.

Referring now to Figure 75, a recursive blocking volume layout is shown for a
256° volume. The memory array indices of each block have the index of the voxel as
shown on the faces of the volume in Figure 75. The memory array indices of each
interior block have the index of the voxel as shown for the respective slices as shown
in Figure 76. Using the above equation where Pxyz=(0x; y; 2) = (3,1,1) and x, y, and z
are in integers, the bit pattern (...,Xs, X,, Xy, Xo3 --» V35 V25 V1 Vo3 o> Z35 225 Z15 Z) = (
...0011; ...0001; ...0001) while Oxy; has the bit pattern (..., zs, ¥, X3 2, ¥, X5, 2, Y1, %1, Z,
Yo,%,) = (...000000001111) which equals 15 in integers. Referring now to Figure 77,
the lookup table for converting a 3D position to an offset is shown and includes
separate offsets for each axis. The Index can be determined by the following
equation:

Index = LUTx[x] + LUTy[y] + LUTz[z]

For Pyyz = (x; y; z) = (3,1,1), the Index = LUTx[3] + LUTy[1] + LUTz[1] =9 +2 + 4
= 15. For converting from the offset to the 3D position, the lookup tables in Figure 78
are used to perform bit manipulations. The Lookup table for the index to position
conversion breaks the bits of the index into groups. For each group there is a table
which has x, y, and z positions as entries. Given an index it is broken into its bit
groups and each corresponding table entry is added to yield the final x, y, and z
position. The Py, = (x; y; z) can be determined by the following equation:

Pxyz = (x; y; z) =LUT5-3[B] + LUT2-0[A]
where A equals the integer value of the first three (3) places of the Index bit group and
B equals the integer value of the second three (3) places of the Index bit group. For
example, where the Index = 15 integer = 001111 binary, A= 111 binary = 7 integer
and B= 001 binary = 1 integer. For index=15, Pxy, = (x; y; z) = LUT5-3[1] + LUT2-
0[7]= (2,0,0) + (1,1,1) =(3,1,1).

156

WO 01/63561 PCT/US01/06345

10

15

20

25

30

The apparatus of the invention is an addressing unit configured with the
method of the invention. The addressing unit can be, for example, any suitable
computer, processor (e.g., digital signal processor, microprocessor, etc.),
microcontroller, or circuit designed to be incorporated into a volume rendering

system.

The present invention is designed for the use of hierarchical memory. All data
paths are built to optimize the latency/bandwidth/cost tradeoffs. With the recursive
blocking data layout and traversal, the time spent in the memory hierarchy levels close
to the processing units is maximized. In the example of the 5° Gaup filter, all 125
voxels covered by the filter and even a complete 3D neighborhood of 16> voxels is
laid out cache-line collision free and requires only 4KB cache space. Multiples of
these neighborhoods fit easily onto each processing element. Thus, while traversing
the current neighborhood, we can page in the next neighborhood to be touched by the
algorithm.

Referring now to Figure 79, a volume processing architecture known as
EUREKA which employs a conventional polygon geometry pipeline, tightly coupled
to an imagery pipeline will be described. The EUREKA architecture is similar too the
Cube-5 architecture shown in Figure 2 but now includes a geometry unit 18 for
processing additional objects other than volumes as desribed belo. The EUREKA
architecture uses a three-level dynamic memory hierarchy similar to the Cube 5
architecture described above and holds volumes, partial computation and rendering
results, surface objects, 2D or 3D textures (possibly mip-mapped), and images for
image-based rendering. The EUREKA architecture includes a programmable
processing element with embedded Level 1 memory. When arranged in parallel, the
EUREKA units read data from their dedicated Level 2 memory modules, possibly
exchange some data with their neighbors, process them and write back the results.
The final ray value is collected through a data bus, which forwards it to the blending
and warping units. A key feature of EUREKA is its ability to scale up the addition of

identical pipelines and memory. The only bus on the system provides image order

157

WO 01/63561 PCT/US01/06345

10

15

20

bandwidth and simple control information. Global ray communication required for
rendering is achieved through fixed, local communication within and between

pipelines.

The memory hierarchy is a cascade of memories with increasing bandwidth
and decreasing size toward the PEs. The data is organized in blocks (cuboid
subvolumes) allowing transfers of blocks between levels. Blocks move through the
hierarchy as needed and are aligned with the scheduling grid at Level 1. Connections
between neighboring EUREKA units allow high-bandwidth communication of ray
information between spatially coherent cells instead of the usual up-over-down

communication.

Normal volume data is read-only and thus can be discarded upon replacement
in the lower levels of the memory. However, some blocks (e.g., ray data,
reconstructed volume data, and global illumination data) are read-write and thus are
written back up the hierarchy. EUREKA also lends itself to rendering of real-time 4D

data by using a set of parallel I/O ports connected to the Level 2 memories.

The EUREKA memory hierarchy enables efficient handling/rendering of large
datasets including those which are much larger than Level 1. Often, the entire dataset
does not contribute to the final image due to empty or opaque data regions. We take
advantage of this by employing space leaping and early ray termination. These
interframe coherence allow the working set of blocks to remain resident in lower

hierarchy levels.

158

WO 01/63561 PCT/US01/06345

10

15

20

25

A prefered embodiment of the EUREKA architecture includes standard a
DRAM (e.g., SDRAM, RDRAM) to implement Level 2 memory. For example,
50GB of bandwidth can be suppplied using Rambus devices operating at 800 MHz
and wide 512 bit datapath on the board. We can expect 100% bandwidth utilization
of these DRAM devices because block transfers will always be larger than minimali
burst lengths. Level 1 memory includes on-chip memory adjacent to the PEs. The
prefered embodiment of the EUREKA architecture preferably includes embedded
DRAM (eDRAM) for providing very dense storage.

The prefered embodiment of the EUREKA architecture includes an an

application programming interface (AP) for allowing applications to access and use

of the EUREKA hardware. Preferably the programming interface will also include a
software development kit (SDK). Both the API and SDK are be compatible with
OpenGL and Direct3D. VolVis, a comprehensive volume visualization software that
provides a solid foundation for the API. Besides the meta-objects discussed above
(polygon, voxel, image, and point), other commonly-used graphical objects include
free-form parametric curves/surfaces, curves/surfaces defined by algebraic functions,
free-form sculptured solids, subdivision solids CSG-based shapes, and deformable
models for time-varying phenomena. The EUREKA architecture can can adaptively
sample aforementioned objects in an effective way and accurately convert them at the

programming interface level.

EUREKA processes a set of arbitrarily positioned and oriented generalized
rays one sample at a time in a round-robin fashion. To achieve spatial coherence, a
set of rays are grouped together based on a regular 3D spatial partitioning. The
group of rays are then processed one grid cell at a time or in parallel on multiple
processing elements (PEs) similar too ray tracing of large geometric scenes. The
rays consist of a data structure containing a start point, a direction, a partially
composited color and opacity, and a final image destination. That is, each ray
contains all the information necessary to continue processing without auxiliary

information which can support arbitrary projections (e.g., perspective, fish-eye).

159

WO 01/63561 PCT/US01/06345

10

15

20

25

Image rays are cast into the scheduling grid and each is stored in a queue associated
with the intersected grid cell. The cells are scheduled for processing in an order
that minimizes the total processing time. Scheduling heuristics are defined based on
the status of the rays and ray queues. Further, the scheduler considers the data
distribution throughout the memory hierarchy as well as the contribution of each

cell toward completion of the image.

For ray casting, the scheduling algorithm takes advantage of the fact that the
viewing and lighting rays all travel outward from the originating point. Ray tracing a
cell is performed with a deep pipeline for resampling, classification, shading,
compositing, and ray scattering. Usually there are more rays in the ray queue than

pipeline stages, thus enabling full pipeline utilization.

The EUREKA architecture uses ray-directed rendering to efficiently combine
into a common framework the following major rendering and processing paradigms:
volume rendering, volumetric ray tracing with global illumination, mixing volumes
with translucent polygons, texture mapping, image-based rendering, point-based

rendering, tomographic reconstruction, and volume processing.

In Volumetric Global Illumination the EUREKA architecture uses a two pass
approach. In the first pass, we generate an irradiance volume, a discretized
approximation of the received light energy at each point in the volume. Furthermore,
we permit scattering at every sample with directions based on an indexed bidirectional
scattering distribution function (BSDF). In the second pass, we visualize the volume
by shooting view rays and integrating the pre-computed irradiance at each voxel. In
both viewing and rendering passes, rays are possibly scattered at every sample leading
to a bi-directional method that automatically generates soft shadows, caustics, sub-

surface scattering, and radiosity through multiple scattering.

In mixing polygons with volumes, we place them in buckets for each
scheduling grid cell rather than between volume slices. When a PE is scheduled to
render a cell, it receives both the volume data and polygons. The rays which are

processed for that cell are, first, intersected with the polygons. The closest

160

WO 01/63561 PCT/US01/06345

10

15

20

25

30

intersection point is stored in the ray and the ray is cast through the volume data,
stopping at the polygon intersection point. Scattering (transmission or reflection) is
computed and the secondary rays are similarly processed. EUREKA rasterizes
polygons in the geometry pipeline to allow large polygon datasets to be rendered at
high frame rates. The projected RGBaZ image is used to initialize the ray endpoints.
Subsequently, the volume is rendered terminating the rays at the proper depth. This
leverages existing geometry hardware to correctly render, in real-time, opaque
polygons in harmony with volume rendering. Translucent polygons must be rendered
in sorted order to yield correct results. The recursive ray tracing algorithm

automatically handles any number of multiple translucent polygons.

Texture mapping is a widely-used technique to simulate high-quality image
effects, such as surface details, lighting and shadows. The polygon engines are
supplied texture mapping functionality with the imagery pipeline of EUREKA. The
geometry pipeline’s only responsibility will be to rasterize triangles, while the
imagery pipeline will perform the texture lookups. One advantage of the
programmable PEs performing the texturing operations is that higher-quality anti-
aliased texture methods such as EWA can be used when desired. Deferred texturing

lowers the cost of utilizing such higher quality methods.

Image-based techniques use images as rendering primitives. Rendering then
becomes a resampling process, which can be efficiently implemented using a general-
purpose CPU possibly with the assistance of texture-mapping hardware. Preferably
EUREKA supports image-based rendering techniques with programmable PEs,

blending, and warping units.

Points are represented as a smooth, radially symmetric 3D basis kernel
function that can be pre-integrated into a 2D table, also called the footprint. Points
can be located at arbitrary positions and can be represented as a multi-resolution
hierarchy. EUREKA’s ray-directed rendering approach will render points using the
ray-based point-array traversal scheme of Mueller and Yagel . In that approach, rays
traverse the points in volume space, computing the footprint table indices by simple

differencing equations. The needed coefficients can be stored with the ray.

161

WO 01/63561 PCT/US01/06345

10

15

20

25

30

Tomographic reconstruction is a technique used to recover 3D volumes from a
set of 2D projection images. These images can originate from an X-ray scanner as
well as a photographic camera. Tomographic reconstruction consists of a series of
volumetric backprojections, possibly intermixed with a series of froward projections
when an iterative reconstruction algorithm is chosen. Both forward and backward
projection can be efficiently implemented in EUREKA. The ray-directed approach
enables the modeling of ray scattering and attenuation, which is crucial for high-
fidelity reconstruction of volumes from functional modalities, such as SPECT and
PET. Especially the functional modalities will benefit greatly from the tremendous
speed of EUREKA which can reduce these reconstruction times by two orders of
magnitude.

Volume processing includes segmentation, feature extraction, manipulation
(e.g., transformation, deformation, sculpting, multi-volume or multi-field registration

through warping, volumetric CSG, physics based modeling, FEM) and other non-

~ rendering tasks which are performed on volumes. Many volume processing

applications produce a new volume dataset which must be subsequently rendered.
EUREKA’s PEs will enable interactive processing, with sub-second feedback for

combined processing and rendering.

In summary EUREKA is the first programmable scalable architecture that
supports real-time, high-quality volume rendering and processing of high-resolution
datasets. Furthermore, EUREKA is not just a volume rendering machine, it supports
other graphics operations efficiently, such as rendering of surfaces (e.g., polygons),
texture mapping, image-based rendering, point-based rendering, mixed rendering,
volumetric ray tracing, tomographic reconstruction, and segmentation. It combines
the efficiency of polygonal rendering, the expressive power of volume visualization,
the photorealism of image-based methods and the simplicity of point-based rendering,

in a single framework.

Although illustrative embodiments of the present invention have been

described herein with reference to the accompanying drawings, it is to be understood

162

WO 01/63561 PCT/US01/06345

that the invention is not limited to those precise embodiments, and that various other
changes and modifications may be effected therein by one skilled in the art without

departing from the scope or spirit of the present invention.

163

WO 01/63561 PCT/US01/06345

10

15

20

25

30

WHAT IS CLAIMED IS:

1. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset, the volume dataset comprising a plurality of
discrete voxels stored in a distributed fashion in a plurality of three-dimensional (3D)
memory units, each of the voxels having a location lying on a gridpoint in the volume
dataset and having voxel data associated‘therewith, the method comprising the steps
of:

(a) selecting viewing and processing parameters which define:

a viewpoint; and
a view direction;

(b) calculating a length of the volume dataset between the location of the
nearest voxel to the viewpoint and the farthest voxel from the viewpoint, the length
being measured along one of:

1) a line parallel to the view direction; and
(i) an axis of the three-dimensional volume dataset that is most
parallel to the view direction;

(©) dividing the volume dataset along the measured length into a plurality
of slabs, each of the plurality of slabs having an orientation that is perpendicular to the
measured length and defines a plane having a position with respect to the viewpoint in
three dimensional space;

(d) generating a perspective projection;

(e) rendering each of the plurality of slabs by parallel projection onto a
plurality of separate baseplane images;

® texturing each of the plurality of images through the perspective
projection onto their respective plane; and

(g) blending the plurality of textured images together to form the final

image.
2. A method for performing approximate perspective volumetric ray casting of a

164

WO 01/63561 PCT/US01/06345

10

15

20

25

30

three-dimensional (3D) volume dataset as defined by Claim 1, further comprising

performing the following step prior to step (a): culling the volume dataset.

3. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 1, wherein steps (€)

through (g) are performed sequentially for each of the plurality of slabs.

4, A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 3, wherein steps (d)
through (g) are performed starting with one of the plurality of slabs having the farthest
voxel from the viewpoint and ending with one of the plurality of slabs having the

nearest voxel.

5. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 3, wherein steps (d)
through (g) are performed starting with one of the plurality of slabs having the nearest
voxel from the viewpoint-and ending with one of the plurality of slabs having the

farthest voxel.

6. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 1, wherein each of the

plurality of slabs have an equal thickness.

7. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 1, wherein the position of
each respective plane of each of the plurality of slabs is situated at exponentially

increasing distances from the viewpoint along measured length.

8. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 7, wherein each

successive slab after the slab having the nearest voxel has a thickness along the

165

WO 01/63561 PCT/US01/06345

10

15

20

25

30

measured length that is twice the thickness of a preceding adjacent slab.

9. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 1, wherein step (e) is
completed for all of the plurality of slabs prior to performing steps (f) and (g).

10. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 9, wherein steps (f) and
(g) are performed starting with one of the plurality of slabs having the farthest voxel
from the viewpoint and ending with one of the plurality of slabs having the nearest

voxel.

11. A method for performing approximate perspective volumetric ray casting of a
three-dimensional (3D) volume dataset as defined by Claim 9, wherein steps (f) and
(g) are performed starting with one of the plurality of slabs having the nearest voxel
from the viewpoint and ending with one of the plurality of slabs having the farthest

voxel.

12. An apparatus for performing approximate perspective volumetric ray casting

of a three-dimensional (3D) volume dataset, the volume dataset comprising a plurality

of discrete voxels stored in a distributed fashion in a plurality of three-dimensional

(3D) memory units, each of the voxels having a location lying on a gridpoint in the

volume dataset and having voxel data associated therewith, the apparatus comprising:
an approximating unit, the approximating unit being configured to:

(a) select viewing and processing parameters which define:

a viewpoint; and
a view direction;

(b) calculate a length of the volume dataset between the location of the
nearest voxel to the viewpoint and the farthest voxel from the viewpoint, the length
being measured along one of:

) a line parallel to the view direction; and
(i) an axis of the three-dimensional volume dataset that is most

parallel to the view direction;

166

WO 01/63561 PCT/US01/06345

10

15

20

25

30

(© divide the volume dataset along the measured length into a plurality of
slabs, each of the plurality of slabs having an orientation that is perpendicular to the
measured length and defines a plane having a position with respect to the viewpoint in
three dimensional space;

(d) generate a perspective projection;

(e) render each of the plurality of slabs by parallel projection onto a
plurality of separate baseplane images;

63) texture each of the plurality of images through the perspective
projection onto their respective plane; and |

(g) blend the plurality of textured images together to form the final image.

13. An article of manufacture for performing approximate perspective volumetric
ray casting of a three-dimensional (3D) volume dataset, the volume dataset
comprising a plurality of discrete voxels stored in a distributed fashion in a plurality
of three-dimensional (3D) memory units, each of the voxels having a location lying on
a gridpoint in the volume dataset and having voxel data associated therewith, the
article comprising:

a machine readable medium containing one or more programs which when
executed implement the steps of:

(a) selecting viewing and processing parameters which define:

a viewpoint; and
a view direction;

(b) calculating a length of the volume dataset between the location of the
nearest voxel to the viewpoint and the farthest voxel from the viewpoint, the length
being measured along one of:

@) a line parallel to the view direction; and
(i) an axis of the three-dimensional volume datéset that is most

parallel to the view direction;

(©) dividing the volume dataset along the measured length into a plurality

of slabs, each of the plurality of slabs having an orientation that is perpendicular to the

167

WO 01/63561 PCT/US01/06345

10

15

20

25

30

measured length and defines a plane having a position with respect to the viewpoint in
three dimensional space;

(d) generating a perspective projection;

(e) rendering each of the plurality of slabs by parallel projection onto a
plurality of separate baseplane images;

® texturing each of the plurality of images through the perspective
projection onto their respective plane; and

(2) blending the plurality of textured images together to form the final

image.

14. A method of mapping a three dimensional volume dataset in a linear memory
array, said volume dataset comprising a plurality of discrete voxels associated with a
three dimensional grid point position Pyyz = (x; y; z), said linear memory array having
a plurality of indices Oyyz, the method comprising the steps of:

(@ converting integer coordinates (x; y, z) of the grid point position of one
of the plurality of discrete voxels into a first bit pattern (...,%,, X,, X1, Xo3 «-» V35 Y25 V1> Voi
vees Z35 Z3y Z15 Zo)

(b) determining an integer offset for the one of the plurality of discrete
voxels of step (a) from a second bit pattern (..., zs, y3, X3 2, ¥, X, Z, ¥, X1 Z, Vo %,); and

(©) mapping the one of the plurality of discrete voxels of step (a) onto the
linear array at the integer offset; and

(d) repeating steps (a) through (c) for each of the plurality of discrete

voxels.

15. A method of mapping a three dimensional volume dataset as defined by Claim

14, wherein steps (a) through (c) are processed in linear storage order.

16. A recursive blocking apparatus for a real-time volume rendering system
having a linear memory array for the mapping of a three dimensional volume dataset,
said volume dataset comprising a plurality of discrete voxels associated with a three

dimensional grid point position Pxyz = (x; y; z), the linear memory array having a

168

WO 01/63561 PCT/US01/06345

10

15

20

25

30

plurality of indices Oyyz, the recursive blocking apparatus comprising:

an addressing unit, the addressing unit being configured to:

(a) convert integer coordinates (x; y; z) of the grid point position of one of
the plurality of discrete voxels into a first bit pattern (...,x;, X, X1, X3 <o Vas Vas Vis Vob +ovs
Zsy 29y 215 Zo)s

(b) determine an integer offset for the one of the plurality of discrete
voxels of step (a) from a second bit pattern (..., z;, y3, X3 2, ¥, X, 2, Y1 %, Z, Yo, %,); and

(c) map the one of the plurality of discrete voxels of step (a) onto the
linear array at the integer offset; and

(d repeat steps (a) through (c) for each of the plurality of discrete voxels.
17. An article of manufacture for mapping a three dimensional volume dataset in a
linear memory array, said volume dataset comprising a plurality of discrete voxels
associated with a three dimensional grid point position Pyy; = (x; y; z), said linear
memory array having a plurality of indices Oy, the article comprising:

a machine readable medium containing one or more programs which when
executed implement the steps of:

(a) converting integer coordinates (x; y; z) of the grid point position of one
of the plurality of discrete voxels into a first bit pattern (...,xs, Xy, X1, Xy} -e> Y35 Y2 V1> Vo3
wees Z35 Zoy 215 Z0)5

(b) determining an integer offset for the one of the plurality of discrete
voxels of step (a) from a second bit pattern (..., zs, y3, X3 2, ¥, X, 2, ¥, X, 2o Vo, X,); and

(c) mapping the one of the plurality of discrete voxels of step (a) onto the
linear array at the integer offset; and

(d) repeating steps (a) through (c) for each of the plurality of discrete

voxels.

18. An apparatus for splatting at least one ray passing through a three-dimensional
(3D) volume dataset, the volume dataset having a plurality of discrete voxels, each of
the voxels having voxel data associated therewith, the at least one ray having ray data
associated therewith and a position in the volume dataset with respect to time
associated with one or more voxels, the apparatus comprising:

a splatting unit configured to:

169

WO 01/63561 PCT/US01/06345

10

15

20

25

30

receive the voxel data and the ray data associated with the_: position of
the ray; |

copy the voxel data and the ray data;

update the voxel data based upon the copy of the ray data; and

update the ray data based upon the copy of the voxel data.

19. A method of splatting at least one ray passing through a three-dimensional
(3D) volume dataset, the volume dataset having a plurality of discrete voxels, each of
the voxels having voxel data associated therewith, the at least one ray having ray data
associated therewith and a position in the volume dataset with respect to time
associated with one or more voxels, the method comprising the steps of:

(@) receiving the voxel data and the ray data associated with the position of
the ray;

(b) copying the voxel data and the ray data;

(©) updating the voxel data based upon the copy of the ray data; and

(5)) updating the ray data based upon the copy of the voxel data.

20. A queue sorter for determining a processing order of a plurality of ray queues
for a volume processing system during processing, each of the plurality of ray queues
being assigned a dataset including a queue number and a scalar importance, the queue
sorter comprising:
a pipelined insertion sorter having:
a comparison buffer having a first linear storage arrangement for
storing at least one dataset of one of said plurality of ray queues; and
a selected buffer having a second linear storage arrangement for storing
the dataset for each of said plurality of ray queues,
the pipelined insertion sorter being configured to:
(@) receive a first dataset of one of said plurality of ray queues at a rank of
the first storage arrangement of the comparison buffer;
(b) compare the scalar importance of the first dataset with the scalar

importance of a second dataset in the selected buffer having the same rank to

170

WO 01/63561 PCT/US01/06345

10

15

20

25

30

determine the dataset having the higher scalar importance and the lower scalar
importance;

(©) assign the dataset having the higher scalar importance to the second
dataset; ﬁ

(d) move the dataset having the lower scalar importance to the first dataset
on the first linear storage arrangement at a position located one below the rank of the
second dataset; and

(e repeat (a) through (d) during processing with the scalar importance of
the active queue being set higher than the scalar importance of the remaining plurality
of ray queues and removing an old dataset from the selected buffer when the first

dataset has the same queue number as the old dataset.

21. A queue sorter as defined in Claim 20, wherein the pipelined insertion sorter

performs (b) through (d) for a plurality of datasets simultaneously.

22. A method of determining a processing order of a plurality of ray queues for a
volume processing system during processing, each of the plurality of ray queues being
assigned a dataset including a queue number and a scalar importance, the method
comprising the steps of:

(2 providing an insertion sorter having:

a comparison buffer having a first linear storage arrangement
for storing at least one dataset of one of said plurality of ray queues;
and

a selected buffer having a second linear storage arrangement for
storing the dataset for each of said plurality of ray queues;

(b) receiving a first dataset of one of said plurality of ray queues at a rank
of the first storage arrangement of the comparison buffer;

(©) comparing the scalar importance of the first dataset with the scalar
importance of a second dataset in the selected buffer having the same rank to
determine the dataset having the higher scalar importance and the lower scalar

importance;

171

WO 01/63561 PCT/US01/06345

10

15

20

25

30

(d) assigning the dataset having the higher scalar importance to the second
dataset;

(e) moving the dataset having the lower scalar importance to the first
dataset on the first linear storage arrangement at a position located one below the rank
of the second dataset; and

§3)] repeating steps (b) through (e) during processing with the scalar
importance of the active queue being set higher than the scalar importance of the
remaining plurality of ray queues and removing an old dataset from the selected buffer

when the first dataset has the same queue number as the old dataset.

23. A block processor for interfacing a ray bus and a plurality of three-
dimensional (3D) memory units in a volume processing unit, the volume processing
unit generating a plurality of rays for processing a volume dataset having a plurality of
discrete voxels stored in a distributed fashion in the plurality of three-dimensional
(3D) memory units, each of the voxels having a location lying on a gridpoint in the
volume dataset and having voxel data associated therewith, each of the plurality of
rays having a path and being a data structure having ray data associated therewith and
a sample location in the volume dataset with respect to time associated with one or
more voxels, the block processor comprising;

a circular ray integration pipeline for processing the voxel data and the ray
data to represent an exchange of energy between the volume dataset and the ray data
along the path of each ray, the plurality of rays being processed simultaneously in a

round-robin fashion.

24. A block processor as defined in Claim 23, wherein the circular ray integration

pipeline comprises:

a queue sorter for interfacing the plurality of rays over the ray bus, the queue
sorter separating the plurality of rays into a plurality of ray queues and assigning a
scalar importance to each of the plurality of rays queues for maintaining a sorted rank

of importance for each of the plurality of rays queues;

172

WO 01/63561 PCT/US01/06345

10

15

20

25

30

at least one ray queue being connected to the queue sorter for receiving the
plurality of sorted rays, the at least one ray queue controlling the processing of each of

the plurality of sorted rays one at a time;

a prefetch and memory controller being connected to the at least one ray queue
having the highest scalar importance for receiving the plurality of sorted rays and
prefetching voxels to hide latency, the prefetch and memory controller interfacing the

memory units;

an interleaved volume cache being connected to the prefetch and memory

controller for receiving the plurality of sorted rays and prefetched voxels

a resampling unit being connected to the interleaved volume cache for
receiving the plurality of sorted rays and accepting one sample location along a ray
and a plurality of voxels that are nearest the sample location, the resampling unit
trilinearly interpolating density, tag, gradient and irradiance for the sample location to

generate sample data;

a segmentation unit being connected to the resampling unit for receiving the
plurality of sorted rays and the sample data and classifying the material type including

color, opacity, and shading coefficients for the sample data
a compositing unit being connected to the segmentation unit for receiving the

plurality of sorted rays and the sample data and updating the opacity and color of the

ray based upon the sample data;

a shading unit being connected to the compositing unit for receiving the

plurality of sorted rays and the sample data;

a scattering unit for receiving the plurality of sorted rays and the sample data

173

WO 01/63561 PCT/US01/06345

10

15

20

25

30

and redirecting the ray direction based upon the sample data and the material type of

the data; and

a splatting unit being connected to the scattering unit and receiving the
plurality of sorted rays and the sample data for updating the voxel data and the ray
data associated with the sample location,

wherein one of the scattering unit and splatting unit is directly connected to the

shading unit and the other is connected to the queue sorter.

25. A block processor as defined in Claim 23, wherein the scattering unit is

connected to the shading unit.

26. A block processor as defined in Claim 23, wherein the splatting unit is

connected to the shading unit.

27. A block processor as defined in Claim 23, wherein the splatting unit is
configured to:
receive the ray data and the voxel data associated with the sample
location of the ray;
copy the voxel data and the ray data;
update the voxel data based upon the copy of the ray data; and
update the ray data based upon the copy of the voxel data.

28. Ablock processor as defined in Claim 23, wherein the shading unit has a

reflectance map for performing shading.

29. A block processor as defined in Claim 23, wherein the queue sorter is

configured to interface at least one other block processor.

30. A method for scattering at least one ray passing through a three-dimensional

(3D) volume dataset, the volume dataset having a plurality of discrete voxels and an

174

WO 01/63561 PCT/US01/06345

10

15

20

25

30

estimated gradient, each of the voxels having voxel data associated therewith, the at
least one ray having a direction, ray data associated therewith, and a sample location
in the volume dataset with respect to time associated with at least one voxel, the voxel
data associated with the sample location including a reflectivity in a range between 0
and 1, a refractivity in a range between O and 1, a glossiness in a range between 0 and
90, the method comprising the steps of:

(a) receiving and copying the ray data and voxel data associated with the
sample location;

(b) selecting a first random number in a range between 0 and 1

() reflecting the ray direction about the estimated gradient in the volume
dataset at the sample location when the first random number is less than the
reflectivity at the sample location;

(d) selecting a second random number in a range between 0 and 1

(e) refracting the ray direction based upon the refractivity of the voxel data
associated with the sample location and the estimated gradient in the volume dataset
at the sample location when the second random number is less than the refractivity at
the sample location;

® selecting a random direction and a gaussian distributed random angle,
the random angle being defined by the glossiness of the voxel data multiplied by a
third range between 0 and 1; and

(g) rotating the ray direction in the random direction by the random angle

based on the glossiness at the sample location.

31. An apparatus for scattering at least one ray passing through a three-
dimensional (3D) volume dataset, the volume dataset having a plurality of discrete
voxels and an estimated gradient, each of the voxels having voxel data associated
therewith, the at least one ray having a direction, ray data associated therewith, and a
sample location in the volume dataset with respect to time associated with at least one
voxel, the voxel data associated with the sample location including a reflectivity in a
range between 0 and 1, a refractivity in a range between 0 and 1, a glossiness in a

range between 0 and 90, the apparatus comprising:

175

WO 01/63561 PCT/US01/06345

10

15

20

25

30

a scattering unit configured to:

(@) receive and copy the ray data and voxel data associated with the
sample location;

(b) select a first random number in a range between 0 and 1

() reflect the ray direction about the estimated gradient in the volume
dataset at the sample location when the first random number is less than the
reflectivity at the sample location;

(@ select a second random number in a range between 0 and 1

(e) refract the ray direction based upon the refractivity of the voxel data
associated with the sample location and the estimated gradient in the volume dataset
at the sample location when the second random number is less than the refractivity at
the sample location;

® select a random direction and a gaussian distributed random angle, the
random angle being defined by the glossiness of the voxel data multiplied by a third
range between 0 and 1; and

(g) rotate the ray direction in the random direction by the random angle

based on the glossiness at the sample location.

32. A method for casting shadows of a volume dataset in relation to point light
sources located both inside and outside, distant light sources located outside the
volume dataset, and area light sources inside the volume dataset, the volume dataset
comprising a plurality of discrete voxels stored in a distributed fashion in a plurality
of three-dimensional (3D) memory units, each of the voxels having a location lying on
a gridpoint in the volume dataset and having voxel data associated therewith, the
method comprising the steps of:

(a) computing sum of the optical path length to all the point light sources
for all of the voxels in the volume data set;

(b) storing the sums of the optical path length values in both a radiosity
array and an unshot radiosity array;

(© selecting a projection direction and a face of the volume dataset which

is most perpendicular to the projection direction;

176

WO 01/63561 PCT/US01/06345

10

15

20

25

30

(d) dividing the volume dataset along the projection direction into a
plurality of slices which are parallel to the face, the plurality of slices having a first
slice, the first slice having at least one voxel associated with the face;

(e initializing a two dimensional (2D) array of rays on the selected face
with any distant light source energy, each of the rays having a path parallel to the
projection direction and ray data associated therewith;

® assigning the first slice as a current slice

(g) integrating and distributing light energy to voxels along each path of
each ray within the current slice; and

(h) repeating step (g) by sequentially sweeping along the projection
direction through each subsequent slice until each of the plurality of slices is

processed, each subsequent slice in turn becoming the current slice.

33. A method for casting shadows as defined in Claim 32, wherein step (e)

comprises the sub-steps of:

(a) making a copy of all the ray data and all voxel data on the current
slice, the voxel data including the reflectivity, opacity, radiosity, and unshot radiosity,
the ray data representing light energy;

(b) selecting a current voxel,

(© determining an appropriate neighborhood of rays for the current voxel;

(d) resampling the ray data at the current voxel,

©) modulating the ray data by a factor zeta to distribute the energy;

® updating the current voxel data based on the resampled ray data;

(8) updating the data of the neighboring rays based on the current voxel
data;

(h) repeating steps (b) through (g) for each voxel in the current slice;

) storing the ray data back into the neighboring rays; and

) storing the voxel data back into the volume dataset.

34. A method for performing global illumination of a volume dataset in relation to

177

WO 01/63561 PCT/US01/06345

10

15

20

25

30

point light sources located both inside and outside, distant light sources located
outside the volume dataset, and area light sources inside the volume dataset, the
volume dataset comprising a plurality of discrete voxels stored in a distributed fashion
in a plurality of three-dimensional (3D) memory units, each of the voxels having a
location lying on a gridpoint in the volume dataset and having voxel data associated
therewith, the method comprising the steps of:

(a) computing sum of the optical path length to all the point light sources
for all of the voxels in the volume data set;

(b) storing the sums of the optical path length values in both a radiosity
array and an unshot radiosity array;

(c) selecting a projection direction and a face of the volume dataset which
is most perpendicular to the projection direction;

(d) dividing the volume dataset along the projection direction into a
plurality of slices which are parallel to the face, the plurality of slices having a first
slice, the first slice having at least one voxel associated with the face;

(e) initializing a two dimensional (2D) array of rays on the selected face
with any distant light source energy, each of the rays having a path parallel to the
projection direction and ray data associated therewith;

(®) assigning the first slice as a current slice

(g) integrating and distributing light energy to voxels along each path of
each ray within the current slice;

(h) repeating step (g) by sequentially sweeping along the projection
direction through each subsequent slice until each of the plurality of slices is
processed, each subsequent slice in turn becoming the current slice; and

@) repeating steps (c) through (h) continuously during global illumination.

35. A method for performing global illumination as defined in Claim 34, wherein
step (e) comprises the sub-steps of:

() making a copy of all the ray data and all voxel data on the current
slice, the voxel data including the reflectivity, opacity, radiosity, and unshot radiosity,

the ray data representing light energy;

178

WO 01/63561

10

15

20

25

data;
(h)
(®)
()

PCT/US01/06345

selecting a current voxel,

determining an appropriate neighborhood of rays for the eurrent voxel;
resampling the ray data at the current voxel;

modulating the ray data by a factor zeta to distribute the energy;
updating the current voxel data based on the resampled ray data;

updating the data of the neighboring rays based on the current voxel

repeating steps (b) through (g) for each voxel in the current slice;
storing the ray data back into the neighboring rays; and

storing the voxel data back into the volume dataset.

36. A programmable processing element for controlling the storage location of

volume data and polygon data distributed among blocks of a scheduling grid and

being stored in a memory hierarchy having a first tier, a second tier, and a third tier,

the scheduling grid having a plurality of rays casted there through and stored in ray

queues, the programmable processing element comprising:

a dispatcher for controlling the volume data and the polygon data movement

through the memory hierarchy, the dispatcher being operatively coupled to the first,

second and third tiers;

a scheduler for determining the block processing order based upon the

scheduling grid and the plurality of ray queues; and

a buffer connected between the dispatcher and the scheduler for facilitating

communication between the dispatcher and the scheduler.

37. The programmable processing element as defined in Claim 36, wherein the

scheduler has a heuristic metric for determining the block processing order.

179

PCT/US01/06345

WO 01/63561

1/70

snd

Y // ‘l
(4344n9)
2 | auvO SOIHdVYO Ndo AHOWIN Msia

| - -

_ S S /

« N b 4
ONISSIO0Nd

b—| HOLNOW MO1d FOVINI ~a-— ———— _

ONISSIO0Nd

MOT14d V.LVA SANTOAN ~=-oooooooneee e

/ o [0

PCT/US01/06345

WO 01/63561

2/70

¥344nd NHOASNVHL
INVEAOL \._ I9OVINI 02
zz—"| »
|
o2 __1{ ONIONT18

8L Au1anoa |

AYIOVNL | _H+—9}

14 2

idv

!

¢l

NOILVOIddV

¢-Ild

PCT/US01/06345

WO 01/63561

3/70

¥344Ng IV OL gz

1SOH T_,,

8¢
_ ™~ A R/
f, /
pe—— ﬂ_:...—o et 0 0 o U m_—[—o
¢-39N9 ¢-39Nn0
INION3) ﬂ
o /\T AHLINOED ‘ @
(v
AMOWAW || -+« | AYOWIW z
. 7 yi t A
J J |
ve vz

J

&-Old

PCT/US01/06345

WO 01/63561

4/70

H3d44nd INVE4 OL

SNd T13aXid ¥344ngd JNvHd

!

e TN\~

144

]

1INN
dHVM

SNd 13Xid 3NV1d3SVd

-

1INN
duVM’

]

|

o¢/-

AJOWIN

ac

oy

oy

L

AJOWINW

ac

\

[AHOWIN
az

'Sng LNd1NO AY1IW03O!

1INN
g-3ano

i > o0 R o

[

wm/

LINN

$-38NO

wm/

" 1INN
g-36N0

J

AYOWIN|

ac

wm/ﬁ

1NdNI

INIL- VA |

{ snd 1NdLNI AdL3IN030,

ve

... 7o\ AxOWaw

ae

AHOW3N

om\/N

1NdNI

JNILL-TVIY

1NdNI
INIL-TVIY

as
og L

Movaa33d

08

9~

SNg 1NdNI AY3OVII

p-Old

WO 01/63561

FIG-5

5/70

PCT/US01/06345

TO FRAME BUFFER

52
\’\ TEXTURE COORDINATES
GEOMETRY SLICES
ADDRESS
| GENERATION A Y
o4 62-" | AND CONTROL| 76 7
3D MEMORY
MEMORY |~ CONTROL ™\ 78
DOUBLE SLICE
VOXEL FIFO | _ g4
] l l
TriLin GRADIENT
™\ 56
TEXTURE
58 ! MAP
SHADER BYPASS 72
60
MULTIPLE * Y /
VOLUMES COMPOS BiLin
FEEDBACK T
) COMPOSITING | LTEXELS
FEEDBACK
COMPOS
40 + Y BUFFER
™\ 68 {20 MEMORY RGBAZ
‘ } 4 drosaz
IMAGE 44
BASED _ WARP
RENDERING LOD SCALING
FEEDBACK ‘ FEEDBACK

PCT/US01/06345

WO 01/63561

6/70

(Wa-zev)
IL

memk NN [2 J

(na-9.8)
MOOTgININ
13aXOA 2 (17

vd

oY

e
Yall Vel VallVe

V9-Old

WO 01/63561 PCT/US01/06345
7/70

Wl MO M~

VOXEL
0
4
1
5
2

|
]
U)) O O
E_,’f Froleslesles
o A N o
N~ Te]
|
|
- -
™
|
O T TT T w N
AN
N\
N o

FIG-0B

PCT/US01/06345

WO 01/63561

8/70

16

18
6\ 48\ 06 06 06

\I“

68 -‘ , 98

68

X aNwvos | 1 S
X~ wviO3ds “| _.llp._vll|_rl..“.||_r||\A”“:xm

N . m
JOVINI 139HVL \ AV oNIddv JOVWIIOUN0S A Y

qydvMyd o4
f “ f
28 08

L-9Ol4d

PCT/US01/06345

WO 01/63561

9/70

(seoepuns qag)
JOVIAL 30UNOS

1NIOd

ANdNVS

INIOdMIIA

¥6

NOLLOZASHILNI

Y/Nw

96

(us810g)
| o—— JOVINI LIOAVL

8-l

WO 01/63561

FIG-9

D
\\
©
w
<
o
=
w
o

10/70

TEMPLATE 5 @&—&

TEMPLATE 4 &

PCT/US01/06345

ENCODING

0 —-=—— TEMPLATE

TEMPLATE 3 Q=g

TEMPLATE 2 O

TEMPLATE 1

WO 01/63561 PCT/US01/06345

11/70

o
>
<
7]
«©

106

FIG-10

WO 01/63561

FIG-11

12/70

PCT/US01/06345

90 86

>
©
0
o
©
=
pi
=
<
o
'\'
o

PCT/US01/06345

WO 01/63561

13/70

(o1u09) JOVYI FIOUNOS ———=— (8jo119) AOVNI 1IFOUVL

gLl - Jaxid
o ONIddVN QHVAIOVE

ardo 13Xid
a3addviN

PCT/US01/06345

WO 01/63561

14/70

&1-Old

PCT/US01/06345

WO 01/63561

15/70

oEl

PCT/US01/06345

WO 01/63561

16/70

144,

G1-Old

PCT/US01/06345

WO 01/63561

17/70

12°15

91-Ol4

PCT/US01/06345

WO 01/63561

18/70

(
3011S - A

L1-O1d

PCT/US01/06345

WO 01/63561

19/70

29l

ONILNERILNOD LON STIXOA |1

121

09} —— \\ | N 091

A - - — — T N f
oor—/ 1] [L]\ e g oss
4 ,.,....... ‘ /

09t —+4—/] .H.,...._,.., N_.,.._..,_., /ﬂL/\ 091

wveos gDl

PCT/US01/06345

WO 01/63561

20/70

29l

STIXOA QI TdWYSHIAO |i

S~
=

‘- . ‘e . R
= T

4 < af. "7 . DT BN A
IV AT ROy 5

s M SR
. N P =il

-~ ’ : b
B

WO 01/63561 PCT/US01/06345
21/70

o)
z g
%
oo o
w < ~
o b
: 8
m \
Iy
%, . e I
... -~ (] N
a, N~ o
.,.. -
=) <t .'.
~ t ... et
=
= .r.".,
D ,
l_ .. N
o tee, =
2 e
T A PO
= o’
T ‘\oo o'
> *®
0o X o
~ " o
- “‘
R Ao
%
*
“‘ b
““F
< N ©w ™ o N
‘l\l‘ ‘; nooon
N N N, N, N >
©
N~
-

FIG-19

WO 01/63561 PCT/US01/06345
22/70

FIG-20A

BASEPLANE REGION
BOUNDARIES

~ BASEPLANE PIXELS

FIG-20B

PCT/US01/06345

WO 01/63561

23/70

S1HOIIM 00
TVINOZIYOH

om_‘/ \ow_‘

S1HOIEAM 0 N 0 0
IVOLLY3AA ,

o)
oL omkm&m&o\mt

00 olo|o|lo]|o
8.1

[¢-OId

WO 01/63561 PCT/US01/06345
24/70

FIG-22

TN

186

182

192

188\ X AKX XX XK -

REGION
BOUNDARIES

:7 VOLUME
¢ VOXEL COORDINATES

A RESAMPLING FILTER WEIGHTS
X RAY SAMPLE LOCATIONS

PCT/US01/06345

WO 01/63561

25/70

suejd abeuwj jeuiq 0} aue|daseg diepn
10} pu@
jI pus
Jejjid Jejueg
ypm Jayng Buisodwod u; sAey ajdwesumoq
NOI93Y }SOWjUOl} Jou Ji
1o} pus
Jayng ui sAey ojuo sajdweg ejisodwo)
so|dwes Ajissej) pue speys
(unig) ao1is siyy 1o} sejdweg ajejodisju)
[NOI93M]3DINSNIW O} [NOI9Y]IVISX VY = 3D17S 10}
0 0} NOI9AYXV|A = NOI9IY 1O}
salepunog uoibay |euauodxy andwo)
S)HUN [8XOA ul 843 jo uonisod-Z 8)ndwo)

&¢-Old

PCT/US01/06345

WO 01/63561

26/70

I NOIO3N <

¢ NOI9D3Y <

ONITdWVSZYH AV ¥HO4
SLHOIIM H3A1Id 113714vE ~g™

c0c
002
g v 00¢
- Qf * U - y—r— \l * ®
L] .
> o ! F - — L5202
® ° (] e ° ¢) o °)
® °® [[® [] ® ®
) ®] ° °] ® e ° °®
. .
w ! B } 9 p 0 q e

y¢-Old

PCT/US01/06345

WO 01/63561

27/70

L 0 }-

MM MO M

VI N>>ON>>| b 0 -
>>O>>-30>>:
Fo_‘-

- {3174 EXEXE IALLOF443 ONILINSTY

l
M SIHOIAM-Z
}

}

M ISIHOIIM-A

}

L 0L- :SIHOIIM - X

Gc-OId

PCT/US01/06345

WO 01/63561

28/70

VAYLNI

DD vlé«dz:om_

3 ..—"

o
-—
N
\

™

avi1s

¥ic

i

s 44

ATdWVS X
gVv1S NO9OATOd ——

9¢-Old

PCT/US01/06345

WO 01/63561

29/70

9¢¢

[4 [4

€ I

b b

4 0
SATONVIEL 3001S NIHLIM
40 Y39NNN S3DILH3A 40
ONILTINSTY H3GNNN

vee

/ﬁm.& /ovw

L¢-Dld

PCT/US01/06345

WO 01/63561

30/70

PLLL 9S

L SS

vLEL' 1L 1)
rANNE €S

TANAE ¢S

LL IS

STTONVIHL
y3awaw | Si3xong

N\

AR

—~—T

9s

/

gS

/

¥S

i\

€S ¢S

T

[G U G U X G

IS

8¢-Ild

PCT/US01/06345

WO 01/63561

31/70

zee
Y 1] \\

vee pez —
INNTOA

M3IA
AYLINO0ID
AHLIANOTD
(aadyvm-3dd) a3HvaHS

| —0€2

AY1INOIO VNLOV

(\-gcz

6¢-Old

PCT/US01/06345

WO 01/63561

32/70

9€C—_|

§S300V
J1av.ivid3d

AV1dSIid

AR
¥3d4ng

3LISOdNOD
WVdS

IS

[ONILISOdNOD |

AdISSY1D
® 3AVHS

aNIN3did 6 - 238N0

SATdNVS
JLVIOdH3LNI

oo
onT
11
ST
111y

\-0pe

IRAR

8¢¢

06-O1d

PCT/US01/06345

WO 01/63561

33/70

f¥333n8 INvaL
e
$S300V
0SZ SNOILVY3O INTWOVHA SSIN
F .-
H AHOW3N H
HEWNTON H\-0pz
aNIMadid - - m__m__ot_mx =
ove —~_ AH1LINOID I D O |
4)
=, (_30I1S 8ve
- INNTOA
D 9ve

S [6-D]

PCT/US01/06345
34/70

WO 01/63561

) 4°T4
WvNQ |
25224 3snvna | SS300V
SNOILYY3IdO
ININOVYA Anz

ANIN3did AT
\ ONIHIANTA 4 }

ANNTOA
SS300V ¢-34n9
m-ﬁ«ﬁg ANIN3did
JNOID
y Adl |
O O 22
-
- ASOWEIN [~
H JNNTOA [
H1 1 9z
9G¢ viva
85¢ " NOOATOd
LNIONISNVEL
FSUVAS

¢&-Ild

PCT/US01/06345

WO 01/63561

35/70

NR/

g13s AOVAYTLINI ||~
¢ ~0. Nnwya -] HM IN3IND
© 8Oy avay - odi4 | b9z
13X090
v L3S JOVAYILNI || o
092~ WvHa == 3JLRM]
0 49Y Eﬁ_m -
, % ONIANTTd ANV
o) ONDIOIHO H1d3d
Wvya I * »
89Z—~_| ONILS |=—={FOVIUILNI Hld3a
/H1d3a avay m:mwmm 30118
/8« © INIHHNO

£6-0ld

PCT/US01/06345

WO 01/63561

36/70

N

Z

M|
+-

NZ

NN

-=— $13X00 91

7)NvE | € XNvd

¢ XNV | | JNvd

[mxoo 79—

9.¢

{

| g13s | v1as | €g.3s

v 13s |

vic

ANIINVOS
ANIHHNO

8lz— —
\Alm._mxoo pQ —am

| ¥JINvE | €XNvd | ZMNvE | | MNvE

~=— §73X00 91 —»

snasil

N/

8diHO []| ¥diHO [
LdHO FH ediHO N

9dHO Y 2dHO I/
sdiHO] +diHO |}

¢ 13S 1 138

y&-Old

PCT/US01/06345

WO 01/63561

37/70

¥3addng 9 L Acino 882
O] T T T T T T T T T T TITTITTITTTITITT
e
1ML
I607 buipualg |
MIEIRE]

3z
Jd_ N
06¢ NMH_ [eJol || sodX | — _lﬂ__mluln_
P rnw T E_LO | NAX L : 082
Z L0 | »»L C waddna
HEEEEEEEEEEEEEREEEEREER.

98¢

€ L0
2 T§LO

GE-OId

WO 01/63561 PCT/US01/06345
38/70

FIG-36

RLE_AddFragment (xPos, yPos, RGBA) {
tmp = nextFreeScanline() ;
RLE_AddPixelToScanline(data[yPos], xPos, RGBA, tmp) ;

freeScanLine (data [yPos]) ;
data [yPos] =tmp ;
}
RLE_AddPixelTo Scanline(in, xPos, RGBA, out) {
totai=0 ;
inPtr=0;
outPtr=0;

while(total < lineWidth) {
if (total == xPos) {
out [outPtr: :outPtr+3] = BLEND (RGBA, in [inPtr: :inPtr+3]);
outPtr +=4,
total++;
if(in[linPtr: :inPtr+3] == 0)
in [inPtr+4] - - ;
else
inPtr +=4;
}

out [outPtr: :outPtr+3] = in [inPtr: :inPtr+3] ;
if (in [inPtr: :inPtr+3] == 0) {
if (total < xPos && total+in[inPtr+4] > xPos) {
out [outPtr+4] = xPos - total -1 ;
outPtr +=5 ;
in [inPtr+4] -= xPos-total ;
total = xPos ;
} else {
out [outPtr+4] = in[inPtr+4] ;
total += in [inPtr+4] ;
outPtr +=5;
inPtr +=5;

} else {
total ++ ;
outPtr +=4 ;
inPtr +=4;
} /I endif run-of-zeroes
} /I endwhile still within scanline

}

PCT/US01/06345
39/70

WO 01/63561

d344n49 NV

11

) -
2 11SONOD qaauaana -
m._mwwwmumm WvHS ONIJOONA \
HIONTT |
1 | NNY
wz_h.__wwm_so”uj WVID3ds |WOANVY
aNM3did //
¢6e~ | ¢3End V4
SNOILVHIJO LNINOVYA
SS300V
< J18VLV3d
HEEEEH
= = aNIadid
= mw,_w_m_,_w A F| -8sC Ad1INo30 [€Ve
HHH v1iva
NOOATOd
INFONISNVAL
3SUVdS

PCT/US01/06345

WO 01/63561

40/70

AN A3LINII™HO ONOTTV FONVLSIA

HoaLrx3 3903 H3ALINAD

INIVA
ALISNIQ

1414

103rdo
anos

86¢

96¢

8e-OL.1

PCT/US01/06345

WO 01/63561

41/70

ANIT A3LNIHO ONOTV NOILISOd

HOR31X3 t-ERRNE S 3dis1no

0

/ lgg 3NIVA
/ ALISN3Q

I3
!
+

\ / Y
S/
7/ JTONVRIL

NIHL
00¢

66-DId

WO 01/63561 PCT/US01/06345
42/70

R7

(%)
O
£
™
(14
L
(3}
© © <
14 S ry —~~—
o
o\ O
g
©
g
(o] T
L
eo 5
>5
(o]

FIG-40

PCT/US01/06345

WO 01/63561

43/70

10 puo
dogz + 151q = 151
10, pu2
‘daig A + 181 = 151
10 puo
$da)gx + 1517 = 1817
(oz119x%0A) [2°4*x] Ut (3s1q)f 21038
XXDUIqq 0} X'Ulu 'qq = X 104
A xourqq 0y Aupwqq = 4 104
sdajs Jun gum z'xouw'qq 0) z'utu'qq = z 104
‘Ypmeqq Xy - 431y'qq x g- D = dajsz
‘Ppmqq Xy - g = doggd
y = daigx
‘a
+Zz uurqq x D + Lurqq X g + xuurqq X y = 1siq
“(99)x0q Surpunoq sj3ueLy pury
(@ D ‘g 'v)eueld sugsd

1Dl

PCT/US01/06345

WO 01/63561

44/70

JAHOWIN

~— JHOLS —— T~
L IAIZ0TY —= J9VHOLS 80¢
~—HOL3434d — NOLLYINOIVO ¥3ALTH N_gge
* 1vaday
P0E—~_| NOILOTT3S NOI93Y
AV
N\ NOLLYINOTVO SIONVSIA
] FHYMAHVH
_ FHYMLI0S
dNL13S ITONVIRIL

¢v-O1d

PCT/US01/06345

WO 01/63561

45/70

OLE-~_

|

I"__—_"'-__—__'—_—_—__—_—"—————'_"l

AONVLSIA M3aN

3JONV.1SId

1o313S
\ XMW & "dais

WO 01/63561 PCT/US01/06345
46/70

VIEWPOINT

PROJECTION
PLANE

A
:-é”“"

uv PLANE
T O
Dt
|

uv PLANE

FIG-44

WO 01/63561 PCT/US01/06345
47/70

FIG. 45

402

Step 1:
Ray Casting
by

VolumePro

Step 2:
Image Warp
via
+ Texture Mapping

. \
View \
Direction\

408

WO 01/63561 PCT/US01/06345
48/70

FIG. 46

Parallel ray casting
by VolumePro

Perspective texture
mapping

412
402

. o

410

414

FIG. 47

Parallel ray casting
by VolumePro

Perspective texture

mapping
410

»
_

1
'
D v 1
Y \ & H
» K i K '
\ \ Y \ '
s, Y \ [v
. AX H]
) 1y
Y [} [} '
AN . \ [} H
02 J> N \ \ 3 !
4 - h Y
2y
N \ \ voor 4
S N \ ' H :
A3 . \ . 1 i 1
. K Y Y t 3
“) I
0y . 2 Y \ H
. \ \, . \ ' H
N K . N '
3 'Y k3 L] L
1 5 X
~ 1Y . H ’
1 O ~ \\ \ \ 1o '
)]
S . \,) PO
S, % [} t oy
\, vow
S N H
. N \ v L]
-, NN
o
N SN N N g
N
“~ N A O B
A oW LY H
Seal WA
“~ s vt
RRRARNANEY]
1
Salvahay

Volume Axis Aligned Planes "
414

WO 01/63561 PCT/US01/06345

49/70

FIG. 48

416
T 32050 00 aakhh i Current
000000 igé\ @ Thin Slab
00000
000 S\ &
o 0o
g§§§§§§¥;8888 Cmﬁﬁhnmg.
s\s\W 0000000 Voxels
it

00000000

#$# 0000000
0000000
000000000

000 Unused
0000 0
0000

FIG. 49

WO 01/63561 PCT/US01/06345
50/70

FI1G. 50

. Find near and far Z for given volume and view frustum
Jar Z - near Z

cutplaneCount

1
2. cutplanewidth =

3. Load cutplanewidth on VolumePro card
4. Compute cutplane equation 4, B & C

5. D=farZ

6. while D <nearZ

7. Load 4, B & C on VolumePro card

8 Call VolumePro render

9 Fetch baseplane buffer

10 Set Texture with baseplane buffer

11. Transform baseplane by

12, Render baseplane (performs warping) with blending
13. D =D - cutplanewidth

WO 01/63561 PCT/US01/06345
51/70

FIG. 51

WO 01/63561 PCT/US01/06345
52/70

FI1G. 92

422 418
[

FIG. 33

WO 01/63561 PCT/US01/06345
53/70

FIG. 54
51
CPU Main Memory
Camera Pos., Volume/Geometry
Initial Ray Info Storage
A A

504
PCI/AGP/CROSSBAR

’/‘500\' I/S""'\, \(‘501
8 .8 .8 8 S Cniri M \5%
SIEIGIE]: D
T SDRAM
5
502_\ : : : X

| Multiple .

‘banks (macros), .

.+ of eDRAM - |

: : | . SDRAM |-506

k‘Stﬁ/ L5oﬂj

WO 01/63561

PCT/US01/06345
54/70

5L

Sig

y. ,n ‘)
A i ‘iE ‘WQ@;’"“ \
it .’
1 I!i&'

A

\
(518 kS’LD \‘ Rey

(x,v¥,2) (dx,dy,dz) RGBA
(x,v,2) (dx,dy,dz) RGBA

\ 524
5 524
(X,y,2} {dx,dy,dz) E3BA
{X,y,2) {dx,dy,dz) REBA
{Z,¥,2) (‘dx,dy,:iz)?f;BA
ri7)
518 \ Scheduler -/5 .
A Ve 5.0
530\ | Frro [~ 528 :
BV — . N Dispatcher , >\ —~ 512
515 - 510
50&, A | ! L\- ~500
PE
514 Sto
([N 508
Sag 501

WO 01/63561 PCT/US01/06345

FL6 56 A

~5i6

_\;\:\ 511

7
Aj/
FI6 56 B
JB]G
N) 550 ,:7
&l;;’ d"\%
5,:,,,_)/ S .
E 47 s hR(A
: / ——]
i, N KRM B
A

T,

5l

WO 01/63561 PCT/US01/06345
56/70

FL6 56C

WO 01/63561 PCT/US01/06345
57/70

FTé4 50 D

WO 01/63561 PCT/US01/06345
58/70

FIG. 57

ProcessorfB112] 3

Simple slab
partition

FIG. 58

Goo

Processorfff 12 3

Repeating slab
partition

WO 01/63561 PCT/US01/06345
59/70
FIG. 59
Processorifi:f:1%] 3
Block skewed
partition
FIG. 60
256 Position X Position Y
196 Position Z Direction X
Direction Y Direction Z
128 Destination U Destination V
Contribution Lifetime
64 Opacity -Generation
Interaction Red Type
Green Blue. User storage
0— l I (l T
0 4 8 12 16 20 24 28 32

WO 01/63561 PCT/US01/06345

60/70

FIG. 61

A /656
Gl 20 -
o4 § /
\o\
Brozd | Left KT\’
Plloceeswzm
(04
BLoLL Right / .
FRocES502| neighbord\ :

Ray queues

~G1Y
3 - N 3
/' § o S\ Sk 3k

604 N R
a > 5 s 53 s S
(s 5 (
b5 651 050 (44
12 2 11 11

Density Tag Gradient lrradiance

0 12 14 25 36

WO 01/63561

PCT/US01/06345
61/70

,0%

Scattered
Kga'(s)

_______________ e
1-0'(s) Transmitte>
1-a'(s)

pio
Absorbed
(1-Kga'(s)

olL

/620 /(Plg bL

WO 01/63561 PCT/US01/06345
62/70

FIG. 65

Rank Selected Buffer Comparison Buffer

-1 compare

FIG. 66

WO 01/63561 PCT/US01/06345
63/70

FIG. 67

Procedure Backproject (volume, direction)
Initialize sheet buffer
For each slice
For each voxel in slice
classify voxel color, opacity, and reflectivity
determine corresponding ray buffer location
wrap around using modulo operator
clear energy of rays that just entered the volume
If voxelOpacity > 0
// exchange energy between ray and voxel
compute dot product of ray direction and gradient
If dot < 0
// energy from ray transferred to voxel
energyRayToVoxel = voxelOpacityXrayEnergyxé(s,o)
Else If dot = O
// no surfaces, just isotropic
// absorption and emission
energyRayToVoxel = voxelOpacityxrayEnergy
energyVoxelToRay = voxelUnshotx(
Else If dot > 0
// energy from voxel transferred to ray
energyVoxelToRay = voxelUnshotX({xd(s,o)
End If
// store new voxel gquantities
voxelRadiosity += energyRayToVoxel
voxelUnshot += voxelReflectivityXenergyRayToVoxel
voxelUnshot -= energyVoxelToRay
// bilinear splat new ray quantities
rayEnergy += energyvVoxelToRay - energyRayToVoxel
End If
End Loop
End Loop
End Procedure

FIG. 68

Ray
Buffer

\

N s

Volume

) AN RSEAN OIS &

Direction

RO
S

WO 01/63561

FIG. 69

64/70

| L3 lfllll![¥ llllllll T T T 17T "l
Ve
10
RMS
difference

3 — B84x84x47
3 — 148x148x75
o - 276x276x130

0] il 1 1I|1x||'
10 100 1000 10000

lterations

FIG. 70

PCT/US01/06345

WO 01/63561
65/70

FIG. 71

724
N
725
T30
Black and white Object on
backdrops turntable

PCT/US01/06345

720
6 Light source

/A

771

Camera

WO 01/63561 PCT/US01/06345
66/70

FIG. 72

|oo000000 000]

An L

FIG. 73

o Slice 255 o "\

o, 25631 | © “_
Slice 3_4x2562-14«"] Z

Slice 2 3x2562.44"]

Slice 1 2x2562.147]_ s

>

o
. S

probability: 1

WO 01/63561

FIG. 74

67/70

PCT/US01/06345

E—~-2563.1
6x1285\\\zx1285\\\\

6x

1283 \2x1283 \ 3x1283

2X 3
128 3
a 2x128 3x1283
128
\\\\ 0 1283
643
32

6x163\\\\?x163\\\\

3TN\ 2x163 _ 3x163
2X

\\\\\ 163 :

4x 2x163 | 3x163

163

probability: 1/2,1/4,1/8,1/186,...

WO 01/63561 PCT/US01/06345
68/70 .

FIG. 75

NG54 N55 \62 \63 \ Slice 3
541N\ .50 \.51 \.58 \59 \, Slice 2

501N22 \.23 \. 30 \.31 \\ Slice 1
18 N\ 19 \.26 \.27 \\ Slice 0

18 | 19 | 26 | 27

52
48

38
34

36
32

18

16 16 | 17 | 24 | 25

YAV LY AV

FI1G. 76

" Slice 0 Slice 1

18119126 |27 22123|30 |31
16 117 (24 |25 20(21128 |29

3 (1011 6|7 [14]15

Slice 2 Slice 3
5015158 |59 54155162 |63
48 |49 |56 |57 525360 |61

343542 |43 38139 |46 |47
32 (33|40 |41 36|37 |44 |45

WO 01/63561 PCT/US01/06345
69/70

FIG. 77

Position to index lookup tables (entries in binary and decimal)

LUTX[0] = 000000=0 LUTy[0]= 000000=0 LUTZ0]= 000000=0
LUTx[1]= 000001=1 LUTy[1]= 000010=2 LUTZ[1]= 000 100=4
LUTx[2]= 001000=8 LUTy[2]= 010000=16 LUTZ2]= 100 000 = 32
LUTX[3]= 001001=9 LUTy[3]= 010010=18 LUTZ3]= 100 100 = 36

FIG. 78

Index to Position lookup tables

LUT5-3[0]={0,0,0} LUT20[0]={0,0,0}
LUT5-3[1]={2,0,0} LUT2-0[1]={1,0,0}
LUT5-3[2]={0,2,0} LUT2-0[2]={0,1,0}
LUT5-3[3]={2,2,0} LUT20[3]={1,1,0)
LUT5-3[4]1={0,0,2} LUT2-0[4]={0,0,1)}
LUT5-3[5]={2,0,2} LUT2-0[5]={1,0,1}
LUT5-3[6]={0,2,2} LUT2-0[6]={0,1,1)}
LUTS-3[7]={2,2,2} LUT20[7]={1,1,1)

PCT/US01/06345

WO 01/63561

70/70

y344ng I | WHOASNVYL

FJNVYEL OL 1 3oviaz

ze—"| »
|
|

ONION3E

AMIOVANI [_t—g;

—‘

8 N Au1ano3o |t—m
_
|

- — — —— - e cme o——

»

NOILVOINddV

cl——

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/06345

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6T 17/00
US CL :345/424, 426, 536, 537, 569
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. 345/424, 419, 426, 430

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST. (motion adj (blur or blurring or blurred)) and ((blend or blending or blended or combine or combining or combined

or assemble or assembling or assembled) adj images!)

i

C. DOCUMENTS CONSIDERED TO BE RELEVANT

the priority date claimed

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,847,711 A (KAUFMAN et al) 08 December 1998, col.3, 11.6-| 1-13
Y US 5,253,065-A (RICHARDS et al) 12 October 1993, col.5, line 54-| 1-13
- col.6, line7.
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited do: t " later document published after the international filing date or priority
wAm . L . date and not in conflict with the application but cited to understand
Al document de'ﬁnmg the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
. "X document of particular relevance; the claimed invention cannot be
‘E carlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
"L" document which may throw doubts on priority claim(s) or which is when the document is taken alone.
cited to establish the publication dats of another citation or other ; i .
spocial reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P document published prior to the international filing date but later than » g document member of the same patent family

Dare of the actual completion of the international search

01 MAY 2001

Date of mailing of the international search report

14 JUN 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authgr fficer

ARK K. ZIMMERMAN

Telephone No. (703) 305-9798

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

