PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/38073
GOGF 13/00, 12/02, 9/40, 9/44, 9/45 Al o
(43) International Publication Date: 29 June 2000 (29.06.00)
(21) International Application Number: PCT/US99/26897 | (81) Designated States: AU, CA, JP, NZ, European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, [E, IT, LU, MC,
(22) International Filing Date: 12 November 1999 (12.11.99) NL, PT, SE).
(30) Priority Data: Published
09/218,871 22 December 1998 (22.12.98) US With international search report,

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: CHANNELPOINT, INC. [US/US]; Suite 100, 5755 amendments.
Mark Dabling Boulevard, Colorado Springs, CO 80919
(US).

(72) Inventor: MILLER, David, L.; 5320 CIiff Point Circle West,
Colorado Springs, CO 80919 (US).

(74) Agents: BURTON, Carol, W. et al.; Hogan and Hartson LLP,
Suite 1500, 1200 17th Street, Denver, CO 80202 (US).

(54) Title: SYSTEM FOR EXPRESSING COMPLEX DATA RELATIONSHIPS USING SIMPLE LANGUAGE CONSTRUCTS

T 1
PROBOL N I |_____ BYTECOOE 204
SOURGE CODE Y VERIFIER
L
’
203 —+—[!
COMPILER /|| wrEreRETER Aol
' 1 1
’ \
: l" 2# 208
JAVA A 212
P BYTECODE
205 VIRTUAL MACHINE
ofs 210
HARDWARE
102

(57) Abstract

A programming environment including a source code programming language comprising a plurality of programming constructs. A
first set of constructs within the programming language are for expressing procedural operations performed on specified data. A second
set of constructs (201) within programming language are for expressing complex data relationships of the specified data. A compiler (203)
receives programmed source code comprising user—selected and arranged portions of the first and second set of constructs and generating
machine readable code (205) capable of implementing the procedural operations and complex data relationships expressed by the source
code.

OAICAASIN. &I ANRONTAAY 1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intenational applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbie d'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Isracl

Tceland

Tealy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™
TG
TJ
™
TR
T
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/38073 PCT/US99/26897

10

15

20

25

SYSTEM FOR EXPRESSING COMPLEX DATA
RELATIONSHIPS USING SIMPLE LANGUAGE
CONSTRUCTS

BACKGROUND OF THE INVENTION

1. Field of the Invention.

The present invention relates, in general, to database software and
computer program products and, more particularly, to software that relies on
complex data relationships to obtain program data and instructions required

for desired operation.

2. Relevant Backqround.

Software applications comprise coded instructions that are executable
on a computer to process data (i.e., inputs) to generate a desired result (i.e.,
outputs). Increasingly, portions of the data and portions of the coded
instructions (i.e., components) may be stored in a distributed fashion in
database structures. These database structures are coupled directly or
through networks to the computer on which the application is executing.
Application behavior is defined by a data model that describes the data
sources and relationships between the data sources. With the trend towards
increasingly distributed systems, application and database development
increasingly require a means to express the data model that the application
relies on. The present invention involves methods, systems, and computer
program products used to access and manipulate data within an application

that uses complex data sources and data models.

In prior solutions, the application developer must rely heavily on

database management systems (DBMS) and a knowledge of database

DRCRANIN. AR AARANTARY T <

WO 00/38073 PCT/US99/26897

10

15

20

25

connectivity to implement an application using distributed data and program
components. DBMS systems hide the low-level features of the underlying
data base and its connectivity to the required target data. Using a DBMS,
data can be accessed by higher level database query languages such as
structured query language (SQL). While this eases the burden of managing
multiple data sources, it has compounded the problem of managing complex
data models. Application developers must still express the complex data
relationships using a combination of program language constructs and
database-specific query language constructs. In practice, the application
developer is forced to use either embedded query language (e.g., SQL)
constructs or other vendor proprietary DBMS-specific application
programming interfaces (APIs). Both of these solutions fail to address the
complex data modeling requirements that now exist and require the
application developer to have extensive database and query language

knowledge.

Another trend in application development is to enable "domain experts”
to author domain-specific application software. Domain experts are
individuals with specific knowledge and experience in the domain in which the
application is to operate. Hence, domain experts have specific knowliedge
about the desired behavior of applications. Typically, the domain expert is not
a programmer, and so describes the desired application behavior to a
programmer who has general knowledge of the program constructs, operating
systems, and platforms that define the environment in which the application is
to operate. Unfortunately, the translation of an application from a
specification defined by a domain expert into code authored by a programmer
often results in unacceptable program code. Further, the domain expert
cannot verify the programmers work and the programmer cannot verify the
domain experts work further complicating the development process. Hence,

a need exists for methods and computer implemented systems enabling a

e a all S

WO 00/38073 PCT/US99/26897

10

15

20

25

domain expert to author application software without reliance on a computer
programmer.

As an example in the insurance industry, a "rating methodology"” is
typically developed by actuaries and business analysts who understand the
insurance industry and customer needs. Typically the methodology is
expressed in domain-specific terms and expressions that can be
communicated easily between the analysts and actuaries. However, these
domain specific terms and expressions do not readily translate into computer
readable program code. Hence, computer programmers translate the rating
methodology into a software implementation. This translation process is
costly, error prone, and time consuming. Analysts who designed the original
methodology cannot independently verify that the software transiation is an
accurate representation of the methodology. Moreover, the resulting software
often contains machine specific program code that is not portable between
mainframes, workstations, and personal computers. These factors alone or
in combination tend to slow down the development cycle so that new
applications as well as updates and modifications of existing applications take
unacceptably long to complete. A need exits for a systems and method for
application development that provides a more streamlined, shorter

development cycle.

COBOL is widely used for common business applications because
none of the programming languages that have become popular in the last
three decades aid in overcoming the limitations set out above. Most of the
advances embodied in popular programming languages since COBOL (e.g.,
BASIC, FORTRAN, C, C++, and JAVA) offer improvements to COBOL that
are simply irrelevant to common business applications such as insurance
rating that function essentially to transform database inputs into database
outputs. Principle functionality desired in these applications includes:

*

Simplified database access integrated into the language;

3

lla) ARABA=AA L

WO 00/38073 PCT/US99/26897

10

15

20

25

* Support for direct manipulation of sets of records without complex

loops, arrays, and the like;

* Runtime configuration based on business logic and constraints;
* Rule-based deduction;

* Automatic generation of user interface components; and

* Portability across all levels of enterprise computing.

Conceptually, many limitations of the prior art result because the
problem to be solved, i.e., implementing a business process, is merged with
the programming logic that is used to access data required by the business
process. Because of this merger, the application developer must know where
the data and/or program components reside and what relationship(s) those
data and program components have to the location of other data and program
components. Small changes in the business process due to expanded
product portfolios, legislative changes or business practices required

significant programming effort to implement.

Similarly, porting an existing application to a new computer system
required a similar level of programming effort. Such changes alter the data
model and force the application developer to make significant changes to the
expression of that data model in the application. Hence, it becomes
prohibitive to take advantage of new hardware and operating environments.
As a result, many existing business systems remain on older mainframe
computer systems implemented in COBOL code that is bulky, costly and
difficult to maintain. A need exists for expressing the complex data
relationships used by a business application using simple language

constructs.

Further difficulty arises because the application developer programs in
a generic programming environment that fails to provide simple constructs to
express common relationships that are inherent in databases. Typical

programming environments such as COBOL, C, C++ and Java(tm) include a

4

A e

WO 00/38073 PCT/US99/26897

10

15

20

25

variety of program constructs that ease the expression of procedural
processes. However, even modern programming languages such as Java fail
to provide programming constructs that directly express classic database
relationships such as "many-to-one", group membership, and "many-to-one"
relationships. Because of this, existing programming languages require the
application developer to write to the DBMS using the vendor proprietary
DBMS-specific API or query language. A need exists for a programming
environment that expresses complex data relationships as built-in language

constructs.

SUMMARY OF THE INVENTION

Briefly stated, the present invention involves a programming
environment including a source code programming language comprising a
plurality of programming constructs. A first set of constructs within the
programming language are for expressing procedural operations performed
on specified data. A second set of constructs within the programming
language are for expressing complex data relationships of the specified data.
A compiler receives programmed source code comprising user-selected and
arranged portions of the first and second set of constructs and generating
machine readable code capable of implementing the procedural operations

and complex data relationships expressed by the source code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a networked computer environment implementing the
system, method and devices in accordance with the present invention:

FIG. 2 illustrates basic program devices in accordance with an
embodiment of the present invention:

WO 00/38073 PCT/US99/26897

10

15

20

25

FIG. 3 illustrates in block diagram for interaction of program devices to

implement a method in accordance with the present invention;

Fig. 4a and Fig. 4b show example data structures illustrating the

operation of the present invention; and

Fig. 5a and Fig. 5b show example data structures illustrating additional

operation in accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to a programming environment that
enables an application developer to define inter-data relationships through an
easy to understand and easy to express class syntax. The class syntaxis
used to author class definitions. In operation, the class definitions are used to
create class instances at run time. In accordance with the present invention,
the class instances can be persistent (i.e., saved in a database) or local (i.e.,
transient, non-persistent instances). A feature of the present invention is that
both transient and persistent class instances are responsive to a common set
of programming language constructs. In this way, the application developer
does not need to have specific knowledge of whether a class instance is local

or persistent.

Another feature of the present invention is that the persistent classes
define data constructs that support not only the data attributes of the local
classes, but additional attributes that define classic data relationships such as
membership, "many-to-many" connections, and "many-to-one" connections.
In this manner an application developer can program to the interface of
persistent class without or any specific knowledge of the relationship(s)

between the data manipulated by the class.

INASHD.

WO 00/38073 PCT/US99/26897

10

15

20

25

This combination of features allows an application developer to author
an application that accesses data through both persistent and local data class
instances without any knowledge of the data source or the data model
describing the data relationships. In this manner the present invention greatly
reduces the programming knowledge required to implement an application
and lowers the entry barriers for domain-experts to implement, debug, and

modify business applications.

FIG. 1 illustrates a typical distributed computing environment in which
the present invention may be implemented. In overview, FIG. 1 shows
general and/or special purpose computers, workstations or personal
computers that are connected via communications links of various types.
Programs and data, many in the form of objects, are made available by
various members of the system for execution and access by other members
of the system.

The representative computer system shown in FIG. 1 includes a
workstation or personal computer (PC) 111 and associated server 101
coupled together through an appropriate communications link. The
workstation 101 may include input/output (“1/0”), central processing unit
("CPU") and memory sections (not shown) and an associated monitor for
interacting with a user. A variety of input devices, such as a mouse or
keyboard, form a portion of the workstation 101 and are coupled to the 1/0
section to provide user input data.

Workstations 111 typically includes mass storage devices such as
CDROM and hard disk devices (not shown) for read only and read-write
storage. Additionally, workstation 111 may access external mass storage
devices such as disk array 102 that is directly connected to server 101 and
disk array 103 and tape storage 104 that are coupled through network or fiber
116. Network 116 may be implemented as a wide area network (WAN), local
area network (LAN) and may use any available technology for establishing

7

o AnmaATAA L

WO 00/38073 PCT/US99/26897

10

15

20

25

communication links such as Ethernet, Fibre Channel (FC), Internet Protocol
(IP), asynchronous transfer mode (ATM), digital subscriber line (DSL), and
the like. Network 116 may also couple to external LAN or WAN subnetworks
such as LAN 108 including workstations 112 and 113 and a server 110
coupled together by a hub 109.

The computer program products containing mechanisms to effectuate
the apparatus and methods of the present invention may reside in the
memory portions of the workstations 111, 112 and 113 as well as servers 101
and 110 or any of the various associated computer mass storage devices
such as tape drive 104, disk arrays 102 and 103. The computer program
products containing mechanisms to effectuate the apparatus and methods of
the present invention are readily embodied in magnetic, optical, magneto-

optical or other available machine readable encoding systems.

The present invention is described in terms of a new computer
language called PROBOL™, although the teachings of the invention can be
applied an implemented in a number of other programming environments
including JAVA™ programming environment. PROBOL is a trademark of
Channelpoint, Inc. the assignee of the present invention and JAVA is a
trademark of Sun Microsystems, Inc., Palo Alto, California. The present
invention is desirably implemented using modular program components as
shown in FIG. 2. Modular components can be reused and are easier to
maintain. Updates can be made to only one place in the code, and problems

usually have only one source.

FIG. 2 illustrates an exemplary programming environment including a
"compile time environment" 201 and a "run time environment” 202. In the
preferred implementation, developing and running an application involves two
steps. A programmer or domain expert enters in PROBOL source code that
is stored, for example, as ASCI! data. The source code is an expression of

the applications desired behavior authored using programming constructs

8

WO 00/38073 PCT/US99/26897

10

15

20

25

[RACIN- arn ARNDDATAA S 1

defined by the programming environment in accordance with the present
invention. The source code comprises selected ones of the available
constructs selected and arranged by the programmer.

Two general classes of constructs are available in the programming
environment in accordance with the present invention. First, general purpose
programming constructs for expressing basic functions and processes useful
in manipulating data. Second, database-specific constructs are provided for
expressing complex data relationships typical of database operations. A
significant feature of the present invention is that it provides a source-level
programming language that combines basic programming constructs with
database constructs so that the program author can express the complex
data relationships simply and directly. While special purpose development
tools are often used, a text editor may suffice in some applications.

Although source code authoring is illustrated as a single step it typically
and desirably involves authoring multiple separate modules that are
interlinked by cross references within the modules. Some of these modules
comprise library modules that are predefined components within the
programming environment. Other modules comprise user-authored
components that are available for reuse. Yet other modules, often called
"main modules" are authored by the application developer or domain expert
to call and interlink these components in a manner that expresses a desired
application behavior. As described hereinafter, the programming environment
in accordance with the present invention enables the construction of
components such as local class 301 and database class 302 that
encapsulate complex data relationships so that the author of the "main
module” or the like that uses these components need not be aware of the

complex data relationships expressed in the components.

The source code is converted by a compiler 203 into machine readable
code that implements the application as expressed by the programmer. The

9

WO 00/38073 PCT/US99/26897

10

15

20

25

complex data relationships are compiled to SQL statements or statements
that access a particular DBMS API, for example and then expressed in Java
compliant code. In this manner, compiler 201 performs the difficult task of
expressing the complex data relationships in a vendor proprietary DBMS-

specific manner and hides this complexity from the application developer.

While it is contemplated that compiler 203 could generate machine
specific executable code, in the preferred implementation shown in FIG. 2 the
machine readable code 205 comprises Java bytecodes typically provided in
Java class files. The Java bytecodes are readable by a virtual machine rather
than a physical machine, but provide significant advantages in portability and
platform independence. Java bytecodes are compact and portable which
makes them an ideal form for storing and transferring a program in a network

computer environment such as shown in FIG 1.

The bytecode representation 205 is then transferred to the runtime
environment 202 to be processed by a program such as a Java Virtual
Machine (JVM). All JVMs understand the same bytecodes, O the bytecode
form of a Java program can be run on any platform with a JVM. In this way, a
JVM is a generic execution engine for Java bytecode -- the JVM can be
written once for a given platform, and then any bytecode program can be run
by it. Asin conventional JVMs, the preferred implementation includes a
bytecode verifier 204 and a bytecode interpreter 206 that optionally runs in
parallel a dynamic compiler 208 to provide interpreted native code (i.e.,
machine code) in a conventional manner. Unlike the interpreted code from
interpreter 206, optimized code from compiler 208 can be saved for later

reuse in code cache 212.

Although the present invention impacts all portions of the programming
environment shown in FIG. 2, of significant importance are the features that
impact the step(s) involved in authoring source code in step 201. The

programming environment in accordance with the present invention, like other

10

AAAAAAAAA

WO 00/38073 PCT/US99/26897

10

15

20

25

general purpose programming environments, provides constructs for
performing basic operations like mathematical calculations and conditional
logic. These basic operations are coded in "expressions” 300 (shown in FIG.
3) that are essential building blocks of applications. Although a complete
understanding of the types of expressions is not necessary for an
understanding of the present invention, by way of example expressions
include constructs that manipulate arithmetic data (e.g., math functions),
string data (e.g., concatenation and length functions), logical functions (e.g.,
Boolean functions), relationship functions (e.g., greater than, less than), and
the like. It is contemplated that domain-specific expressions will be included
in any particular implementation to ease the programming burden on the
application developer.

Cloud 303 in FIG. 3 represents an application executing in memory of
a computer system such as workstation 111 shown in FIG. 1. Expressions
300 are used to define other constructs and carry out data operations.
Expression 300 makes calls to local class 301 and database class 302 to
create class instances illustrated by local object 304 and database object 306,
respectively. One feature of the present invention is that expressions interact
with local class 301 and database class 302 in a substantially identical
manner so that the application developer need not be aware of whether a
particular object created by an expression is a local object 304 or a database
object 306.

An important feature in accordance with the present invention is that
the class definition of database class 302 can be altered at runtime. For
example, the attributes of a particular database class, and therefore the
attributes of any instance of that class, can be dynamically altered.

In a particular implementation the database class is altered,
recompiled and stored back to the database. The recompilation process

ensures that the modified database class is consistent with the original

11

WO 00/38073 PCT/US99/26897

10

15

20

25

database class. In effect, the modified class 302 is like a subclass or
extension of the original class 302. Subsequent instances of the altered
database class inherit the modified attributes of the modified class
description. This enables the application’s behavior to be modified
dynamically without halting the application or recompiling an entire
application. In effect, the application can evolve to meet changing needs as
opposed to more conventional processes which rewrite and recompile the

application.

Constructs within application 303 can also access library 307 which
contains predefined library functions and procedures. Library functions and
procedures may themselves create class instances and operate similarly to
expressions 300 and are implemented as separate constructs primarily to
encourage code modularity and reuse. During application execution, local
objects 304 store the data used by expressions and defined constructs during

program execution.

While local objects 304 in accordance with the present invention can
manipulate table data in a variety of ways and provide a result to the calling
expression 300, they cannot directly change data that is outside the program
itself (e.g., data in a database). To change external data the present
invention uses database objects 306 that are instances of database classes
302. Database classes 302 describe table data that can be used in a
calculation, just like local classes 301, but they are associated with a
database table 305. As a result, when information is changed in a database

object 306, the change is also made to its associated database table 305.

Local objects 304 may include in their definition a reference to a
database class 302. In this manner, a particular instance of the local object
304 may include data from database 305, but cannot persistently manipulate
that data without going through a database object 306. However, a database

object 306 will not include a reference to a local class 301 because any

12

MERASIR.

WO 00/38073 PCT/US99/26897

10

15

20

25

particular instance of a database class 302 does not know that the local class
301 exists because local class 301 is not persistent.

Expressions 300 include several commands, such as SAVE, MODIFY,
and DELETE, that control the way a database class 302 interacts with its
associated table 305. A SAVE command stores the object (e.g., the current
values of its variables) to an associated table 305, A MODIFY command
alters data in the object. A DELETE command deletes the object from
persistent storage 305. From perspective of an expression 300, and hence
the application developer writing expressions 300, the principle difference
between local objects 304 and database objects 306 is that database objects
306 will respond to a SAVE command by storing the database object 306 in
persistent storage 305 whereas a local object 304 cannot respond to a save
command. A local object 304 can be modified, and a DELETE command
effects a local object by deleting it from cache, but does not effect any
database table 305. Other commands available in expressions 300, such as
WHEN, FOREACH, and TYPEACTION, control the flow of command
execution and are used without regard to whether the object is a local objects
301 or a database object 306.

One reason that database classes 302 and local classes 301 can be
treated equally is that local classes 301 and database classes 302
encapsulate complex data relationship information. Prior programming
languages do not include constructs for expressing these relationships and
therefore forced the application developer to access the vendor proprietary
DBMS-specific definition and query languages or the DBMS API to express
complex data relationships.

A first effect of this is to enable simple to write database classes 302
as the programmer does not need to express these relationships in a series
of SQL commands, for example. A second effect of this is that local, transient
classes 301 can be treated substantially similarly to database classes and

13

AnmAR=ar s b

WO 00/38073 PCT/US99/26897

10

15

20

25

can be used to represent complex data models even where there is no

underlying DBMS. In prior general purpose programming environments (e.g.,
Visual Basic, C++ of Java) the task of expressing these complex relationships
without a DBMS was both difficult and non-intuitive thereby taking application

development out of the hands of domain experts.

To enable the expression of complex data relationships the
programming environment in accordance with the present invention includes
constructs that define a number of complex data types. Classic database
relationships include simple references, many-to-many connections,
membership, and one-to-many connections. In accordance with the present
invention, class definitions include attributes that indicate that instances of the

class will implement the indicated relationships.

FIG. 4a illustrates a simple reference relationship akin to a reference to
a foreign key in a conventional DBMS. In the case of local objects 301, the
class definition includes a pointer or other available reference expression
pointing to another class. To ease description, the class that contains the
reference is referred to herein as a "reference class" and the class being
pointed to is referred to as the "support class". In the particular
implementation, the reference class cannot be a subclass, however, the

support class can be either a top-level class or a subclass.

With a simple reference, any instance of the reference class is actually
an instance of the reference class in combination with an instance of the
support class. FIG. 4a shows a reference class 401 called "Employer” which
is used to store information about employers, and a first support class 403
called "Secretary" used to store information about the employer's secretary.
A third support class 405 called "Time_in_job" is used to support information
about duration of the Secretary's employment. To implement the first
reference a simple reference using a keyword "REFERENCE TO" is added to
the Employer class definition. To implement the second reference the

14

10

15

20

25

WO 00/38073 PCT/US99/26897

keyword "REFERENCE TO" is added to the Secretary class definition. In the
illustration the Time_in_job class does not define any reference attributes.
Any number of references can be chained in this manner within the class

definition and so completely hidden from the application programmer.

To create an instance of the class Employer an expression 300
includes the Employer class as one of its arguments. The relationships
shown in FIG. 4a are automatically traversed so that the instance 407 of
Employer.Jim includes the sequence of values "Jim, 30, 0, Val, 40, 6". In
memory, the object 407 does not include the references themselves, but
instead contains the data referred to in the support classes 403 and 405.

FIG. 4b shows an implementation in which the classes described in
FIG. 4a are implemented as database classes. The principle difference is
that database classes are associated with a database table structure shown
in FIG. 4b. The database table 411 named Employer includes an entry for
each employer and a field for each variable defined by the class. One field in
table 411 includes a pointer to the Secretary table 413. Similarly, one field in
Secretary table 413, includes a pointer to Time_in_job table 415. As will be
appreciated, the data structure shown in FIG. 44 greatly resembles the table
structure shown in FIG. 4b. As set out hereinbefore, the same expression
300 directed at a database class 302 will result in an instance having the
same content and behavior as instance 407, however, the data will have

come from (and will be stored to) database tables 411, 413 and 415.

A more complex data relationship is the classic "one-to-many"
relationship which enables a reference object to refer to a sequence of
objects. FIG. 5a illustrates a parent class 501 (i.e., the reference class) that
includes a one-to-many referengéﬂ(indicated as REF in FIG. 5a) to a child
class 502 (i.e., the support class. In a particular implementation, the one-to-
many reference is indicated by using the attribute "USING BACK

15

ISANCIN. an ARNOATAAG 1

WO 00/38073 PCT/US99/26897

10

15

20

25

REFERENCE" in the variable definition with an argument identifying the child
class 502.

Conversely, child class 502 includes a membership reference
(indicated as O-M REF in FIG. 5a) to parent class 501. An instance of the
parent class automatically traverses the one-to-many relationship to create
instances in the child class where the M.REF pointer refers back to the
appropriate instance of the parent class. An instance 507 of "JOE", for
example, in the parent class includes the variables from the parent class 501
in combination with the sequence instances of the child class 502 from the
support class. Inthe database table view shown in FIG. 5b, each entry in the
child table 512 includes a reference back to the associated entry in the parent
table 511.

A still more complex data relationship is the classic "many-to-many"
relationship. Many-to-many relationships are useful in a conceptual model to
quickly capture what the business world sees. A many-to-many relationship
is impossible in a relational database. It requires an unknown number of links
in both directions and violates the 1st normal form. Ina logical model, a

many-to-many relationship is replaced by an associative entity.

Many-to-many relationships describe a relation between two classes
that allows each of them to create a sequence from instances of the other.
Both classes are considered reference classes and both must be top-level,
not subclasses. In a many-to-many reference the support class does not hold
any data, but exists only to store the links between the two reference classes.
In accordance with the present invention, a many-to-many relationship can be
defined in a database class by assigning a class variable the attribute "MANY
TO MANY". The MANY TO MANY attribute uses a forward and a back
reference to the support class 602 shown in FIG. 6. The first class 601
includes a REF that defines a many-to-many connection to the second class

603, a forward reference to support class 602, and a back reference from

16

NSRS s

WO 00/38073

10

PCT/US99/26897

support class 602 as shown. A similar connection is expressed in the

definition of second class 602. Also, the definition of support class 603

includes membership references to the first and second class.

The present invention is usefully understood in by way of a specific

example involving a hotel room reservation application. The class

descriptions shown in Table 1 illustrate how the application may be defined

using local classes.

LIBRARY MODULE HotelManagement IS

PUBLIC CLASS Hotel IS
ATTRIBUTE rooms IS {Room}
END CLASS

PUBLIC CLASS Reservation IS
ATTRIBUTE registeredGuest IS STRING
ATTRIBUTE checkin IS DATE
ATTRIBUTE checkOut IS DATE ~
ATTRIBUTE rooms IS {Room.Reservations)
END CLASS

PUBLIC CLASS Room IS

ATTRIBUTE roomnumber IS INTEGER
ATTRIBUTE floor IS INTEGER
ATTRIBUTE smoking IS BOOLEAN
ATTRIBUTE maids IS {STRING}
ATTRIBUTE reservations IS {Room}

END CLASS

END MODULE

Table 1

Definition of Hotel Class.
variable "rooms” in class "Hotel" is a
set of Room instances

Definition of "Reservation" Class.

variable "rooms" in class
"Reservation" is a set of "reservation”
instances of the support class "Room”
Definition of "Room" Class.

variable "rooms" in class

"Reservation" is a set of "reservation”
instances of the support class "Room"

As seen in Table 1, the data model is expressed directly in the class

descriptions by specifying variables that include instances or sequences of

instances of other local classes defined in the module. In contrast, Table 2

shows database class descriptions to implement an analogous data structure

to that shown in FIG. 2.

17

nARBATAAY 1

WO 00/38073

LIBRARY MODULE HotelManagement 1S

PUBLIC DATABASE CLASS Hotel IS

TABLE hotel

KEY hotellD

ACCESS FOR "ProbolAdmin" IS READ,

WRITE, CREATE, DELETE

ATTRIBUTE rooms IS {Room}

USING BACK REFERENCE Room.hotel

END CLASS

PUBLIC DATABASE CLASS Reservation 1S
TABLE reservation
KEY resiD
ACCESS FOR "ProbolAdmin” IS READ,
WRITE, CREATE, DELETE
ATTRIBUTE registeredGuest IS STRING
ATTRIBUTE checkin IS DATE
ATTRIBUTE checkOut IS DATE
ATTRIBUTE rooms IS {Room.Reservations}
END CLASS

PUBLIC DATABASE CLASS Room IS
TABLE Room
KEY roomID
ACCESS FOR "ProbolAdmin" IS READ,
WRITE, CREATE, DELETE
MEMBERSHIP REFERENCE hotel IS
REFERENCE TO Hotel.rooms
ATTRIBUTE roomnumber IS INTEGER
~ ATTRIBUTE floor IS INTEGER
ATTRIBUTE smoking IS BOOLEAN
ATTRIBUTE maids IS {STRING}
ATTRIBUTE reservations 1S {Room}
END CLASS

DATABASE CLASS Room Reservation
SUBCLASS of Room, Reservation IS
TABLE roomReservation
KEY roomRes|D
ACCESS FOR "ProbolAdmin” IS READ,
WRITE, CREATE, DELETE
MEMBERSHIP REFERENCE reservation IS
REFERENCE TO Reservations.rooms
MEMBERSHIP REFERENCE room IS
REFERENCE TO Room.reservations
END CLASS e

END MODULE

Table 2

18

PCT/US99/26897

Definition of Hotel Class.
Declare table association

variable "rooms" in class "Hotel" is a
set of Room instances from the Room
Database class

Definition of "Reservation” Class.

variable "rooms” in class
#"Reservation" is a set of
H#'reservation” instances of #the
support database class #'Room”

Definition of "Room"” #Class.

#Declare membership #relationship to
dB class #Hotel

variable "rooms" in class
#'Reservation” is a set of
#'reservation” instances of #the
support database class "Room"”
#Definition of support class

3t 3 33

#Declare Membership references
(e.g., forward and back references)
#

#

WO 00/38073 PCT/US99/26897

The database class description is somewhat more complex than the
local class description, however, it can be appreciated that even the database
class description uses programming constructs that express the data model
without requiring any vendor proprietary DBMS-specific knowledge or SQL

5 ekperﬁse. Because database class description shown in TABLE 2 is
constructed in the same programming language set used to build local class
descriptions shown in Table 1, the two descriptions are highly compatible,

and in fact interchangeable in many instances.

Tables 1 and 2 can be used to compare the coding complexity required
10 to access local and database classes in accordance with the present
invention as compared to a solution written in conventional SQL. It should be
noted that that the compared SQL code doesn't provide the data relationships
that were are used. Hence, the SQL versions below would in practice be
larger and more complex. Below is an example that both reads and writes
15 transparently to the database. As you can see from the example the same

expressions can be used on either the local or database version of the class

definitions.

Task: : Expression:

Locate the first reservation where the Reservation rl IS FIRST(r IN
registered guest is "John Doe. Reservation WHERE

r.registeredGuest="JohnDoe")
Locate all of the rooms that "John Doe " has rl.rooms
reserved.

Add another room to the reservation. MODIFY rl ASSIGN(rooms <--
@rl.rooms, room3))

Table 3

19

SutemAAIN A AnmARTALL y

WO 00/38073 PCT/US99/26897

Task: SQL Expression:
Locate the first reservation where the Select reservation.reslD,
registered guest is "John Doe. reservation.acllD,

reservation.registeredguest,
reservation.checkin,
reservation.checkout from reservation
where reservation.registeredguest

='John Doe'
Locate all of the rooms that "John Doe " has Select roomReservation.roomRes(D,
reserved. room.room|D, roomReservation.acliD,

room.acllD from roomreservation, room
where (roomreservation.reservation =
4398063617922) and
(roomreservation.room = room.roon-JD)
Add another room to the reservation. insert into roomreservation (roomResiD,
acllD, reservation, room) values
(4398063617971, 2,
4398063617922,4398063617919)

insert into roomreservation (roomResID,
acllD, reservation, room) values
(4398063617972, 2,
4398063617922,4398063617920)

insert into roomreservation (roomResiD,
acliD, reservation, room) values
(4398063617973, 2,
4398063617922,4398063617921)

delete from roomreservation where
roomReservation.roomResID =
4398063617965

delete from roon-treservation where
roomReservation.roomR ResID =
4398063617964

Table 4

As is apparent from a comparison of Tables 3 and 4, the programming
environment in accordance with the present invention drastically reduces the
complexity of data modeling in a fashion that alleviates the need for the

5 application developer to manage the inter-data relationships of a complex
data model. This allows the developer to rapidly develop applications by not

having to understand the inherit complexity of the data that is being used.

20

WO 00/38073 PCT/US99/26897

Although the invention has been described and illustrated with a
certain degree of particularity, it is understood that the present disclosure has
been made only by way of example, and that numerous changes in the

combination and arrangement of parts can be resorted to by those skilled in

5 the art without departing from the spirit and scope of the invention, as

hereinafter claimed.

21

WO 00/38073 PCT/US99/26897

10

15

20

25

WE CLAIM:

1. A computer implemented method for data processing in a
computer including a processor and associated memory, the method
comprising the steps of:

defining a local data classes;

defining a persistent data classes;

instantiating a local data object from the local data class;

at runtime, instantiating a first persistent object from the persistent data
class, wherein the first persistent object and the local object have the same
interface,

dynamically altering at least one attribute of the persistent data class at
runtime; and

at runtime, instantiating a second persistent object from the altered
persistent data class, wherein the first persistent object and the second

persistent object have the same interface and differing behavior.

2. The computer implemented method of claim 1 further
comprising:

providing procedural code that calls to the local and persistent classes
without regard to whether the called class is local or persistent to cause the

instantiation.

3. The computer implemented method of claim 1 wherein the step
of defining comprises storing programming constructs that define the

structure, behavior, and interface of the data object.

4. The computer implemented method of claim 1 wherein the step
of instantiating comprises storing in memory a data structure that conforms to
the structure of the class definition and is subject to the behavior defined in

the class definition.

22

MSPAAIN.

WO 00/38073 PCT/US99/26897

10

15

20

25

5. The computer implemented method of claim 1 wherein the class

instance is static and specifies data that cannot be altered at runtime;

6. The computer implemented method of claim 1 wherein the class

instance is dynamic and holds data that can be altered at runtime.

7. The computer implemented method of claim 1 herein the class
definition includes a relationship attribute that associates the instantiated

object with another data object.

8. The computer implemented method of claim 1 wherein the
objects’ interfaces expose the relationships defined in the objects’ class

definition.

9. A computer implemented method for using an external database
Oon a computer having a processor, a memory coupled to the processor, the
method comprising the steps of:

creating an instance of a first data object, the first data object having
program constructs expressing data operations performed on transient data
values and an interface;

creating an instance of a second data object, the second data object
having program constructs expressing data operations performed on
persistent data values and an interface, wherein the second data object’s

interface is compatible with the first data object's interface.

10. The computer implemented method of claim 9 further
comprising:

executing procedural code in main memory using the processor to call
the first and second objects, wherein the procedural code includes a single
set of program constructs to call the instance of the first data object and the
instance of the second data object.

23

" ARSBATIAT 1

WO 00/38073 PCT/US99/26897

10

15

20

11. The computer implemented method of claim 9 further
comprising:
storing definitions of the first and second objects in separate class files

in the database.

12. The computer implemented method of claim 9 wherein the
second set of methods include methods for retrieving at least some of the
variable’s data from the database and storing at least some of the variable’s

data to the database.

13. The computer implemented method of claim 9 wherein the first

set of methods exclude methods for accessing the database.

14. The computer implemented method of claim 9 wherein the
second object is persistent so that its state is saved in the database when the

second object is terminated;

15. The computer implemented method of claim 9 further
comprising the steps of:

terminating the first object;

instantiating the first object a second time, wherein the state of the first

object state begins in a preselected initial state upon the second instantiation.

16. The computer implemented method of claim 9 wherein the first
object is static so that the value of its variables are defined by internal

variable definitions within the object upon instantiation.

17. The computer implemented method of claim 9 wherein the first
object is dynamic so that the value of its variables are defined by external

variables obtained by the object after instantiation.

24

WO 00/38073 PCT/US99/26897

10

15

20

18. A programming environment comprising:

a source code programming language comprising a plurality of
programming constructs;

a first set of constructs within the programming language for
expressing procedural operations performed on specified data;

a second set of constructs within the programming language for
expressing complex data relationships of the specified data;

a compiler receiving programmed source code comprising user-
selected and arranged portions of the first and second set of constructs and
generating machine readable code capable of implementing the procedural
operations and complex data relationships expressed by the source code.

19. The programming environment of claim 18 wherein the second
set of constructs comprises a construct for assigning to a variable an attribute
indicating a relationship between the variable and an external database

object.

20. The programming environment of claim 18 wherein the second
set of constructs comprises a construct for assigning to a variable an attribute
indicating a one-to-many relationship between the variable and a plurality of

external database objects.

21. The programming environment of claim 18 wherein the second
set of constructs comprises a construct for assigning to a set of variables an
attribute indicating a many-to-many relationship between the set of variables

and a plurality of external database objects

25

WO 00/38073 PCT/US99/26897

+

1/6

—112

—113
FIG. 1

,m
.
5

[110
p—]
=
/P___d

S

| S—————

T

| S———
S

[111
=
e
———
116

103

PCT/US99/26897

WO 00/38073

2/6

0] ¥4

col

FUVYMAYVYH

L/

S/0

INIHOVIN TvNLYIA

80¢

N

1
H3NdNOD
JINVNAQ

0Z
[

d313HdYILNI

S EIETISE TN

0oz 3Q0031A9

[AV4 \

¢ OI4

| 30093148 -
\ VAV

d37dWOD

o104

3000 33YNOS
7080¥d

—1— €0¢

o RAnBATAR S 1

At Vo NN

PCT/US99/26897

WO 00/38073

3/6

S0E

193r80
ap
L0€ toe .
90€
SSV10
38VAY.LYd
/
20g —

8]0

103r8o0
WwO071

140

A

SSV10
VYO0

log —

£ Ol4

PCT/US99/26897

WO 00/38073

ay Old

mwu o | oe | wir
wa_ z | os |Tua
ol 2 | w frus
nww_ b | sz {3or
¥IAOTJWI

8 'OF "IVA '0 'OE 'WIr

P ADI <
9 < No4 | O VA <
A3
12 Noa | 2 annr
A3
8 Nog | SE Wvd
AT
Zh | NO4 rdd All3g
gor NI 3niL AHV13Y03S
({e}
—
<t
ey Olo
9 < 434| ov TVA
14 4341 ¢ | 3nnr
8 43Y4| 6¢€ nWvd
Zl 438} ¢¢ | ALL38

A

434] 0 | O | WIT
434} ¢ | 0§ |14
434} ¢ | v |N1S
434] | | 6¢ |30r

PCT/US99/26897

WO 00/38073

as old

AT
o0 | wa |1 o | og | wir
AS
v | awnor | A3 z | os |18
AT
8 vain | A2 z | i |nus
AT
8 I Ee ¢ | sz | zor
aHO
sle A IN3YVd K 11g
©
—
= Comvmn)
BB P
m @\H\ € 62 3dor
L0G
43 oc | wir
os | g
v | anwor | 439w 434 S0
) 43y 1w | nis
g | vnin |d3uw
I sz | 3or
v | awwir | 93aw 3
1 R 105

PCT/US99/26897

WO 00/38073

6/6

43y

434

43y

43y

N €09

9 9l

434

434

43d

434

39N | 438N

SN | 438N

EE A RIEER
09 —~

INTERNATIONAL SEARCH REPORT Inte. .ational application No,
PCT/US99/26897

A CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 13/00, 12/02, 9/40, 9/44, 9/45
US CL :395/705, 712; 709/302, 303, 305; 707/103
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/705, 712; 709/302, 303, 305; 707/103

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5,291,583 A (BAPAT) 01 March 1994, 1-21
the entire paper is relavant

Y US 5,339,430 A (LUNDIN et al.) 16 August 1994, 1-21
the entire paper is relevant

Y US 5,361,350 A (CONNER et al.) 01 November 1994, 1-21
the entire paper is relevant

Y US 5,437,025 A (BALE et al.) 25 July 1995, 1-21
the entire paper is relevant

Y US 5,473,777 A (MOELLER et al.) 05 December 1995, 1-21
the entire paper is relevant

Further documents are listed in the continuation of Box C. D See patent family annex.

Specinl categories of cited documents T {ater docuinent published after the internationsl {iling date or priarity
- . L . date and nol in conflict with the application but cited to understand
A document delining the general state of the art which is not considered the principle or theory underlying the invention
10 be of particular relevance
g : : . . . X" document of particular relevance; the claimed invention cannot be
E cartier document published on or after the intemational (iling date considered novel or cannot be considered to involve an invenuve step
‘L document which may throw doubts on priority claim(s) or which is whon the docuinent is taken alone
cited to esuablish the publication date of another citation or other .
special reason (as specified) 'Y* document of particular relevance; the clained invention cannot be
considered lo involve an mventive step when the document 13
*o" document referving to an oral disclosure, use, exhibition or other comnbined with one or more other such documents, such combination
means being obvious ta a person skilled in the ant
b document published'prior to the intemational filing date but later than + g » document member of the same patent family
the priority date claiined
Date of the actual completion of the international search Date of mailing of the international search report
06 APRIL 2000 0 9 MAY ZOOO
Name and mailing address ol the [SA/US Authorized olficer .
Commissioner of Patents and Trademarks O
Box PCT
Washington, D.C. 20231 THUY PARD
Facsimile No. (703) 305-3230 Telephone No. (703) 305-1091

Form PCT/ISA/210 (second sheet) (July [998)

DRISRASIA. AR nANEATIAY T o

INTERNATIONAL SEARCH REPORT

Inte. uational application No.

the entire paper is relevant

PCT/US99/26897

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevani passages Relevant to claim No.
Y US 5,659,751 A (HENINGER) 19 August 1997, 1-21

the entire paper is relevant
Y US 5,710,925 A (LEACH et al.) 20 January 1998, 1-21

the entire paper is relevant
Y US 5,805,899 A (EVANS et al.) 08 September 1998, 1-21

Form PCT/ISA/210 (continuation of second sheet) (July 1998) »

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

