A metallized multilayer film comprising a film substrate having a polymer core layer, e.g., a polypropylene homopolymer (OOP), on at least one surface of which is a polymer skin layer having a lower melting temperature than that of said core layer, the exposed surface of skin layer having been treated, e.g., flame or corona discharge treated, prior to coating to increase its adherence to other materials, the film substrate containing a metal deposit, e.g., aluminum, coated on the treated surface of the polymer skin layers, and a polymeric, low temperature sealable coating (LTSC) comprising a copolymer of 10 to 35 wt.% of at least one alpha, beta-ethylenically unsaturated carboxylic acid, e.g., acrylic or methacrylic acid, with 65 to 90 wt.% of ethylene, an alkyl acrylate or methacrylate, acrylonitrile, or mixtures thereof on the surface of the metal deposit.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CV</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>TG</td>
<td>Togo</td>
<td>UK</td>
<td>United States of America</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This invention relates to metallized multilayered packaging films utilized in the packaging of food or non-food products or in the formation of bags, cartons or pouch-type containers designed to hold such products.

U.S. Patent No. 4,345,005 discloses oriented polypropylene film having enhanced adhesion to metallized coatings produced by coextruding a film substrate having a polypropylene homopolymer core layer and a propylene-ethylene copolymer outer layer, biaxially orienting the film, and corona discharge treating the outer layer. A metal coating may then be deposited on the corona discharge treated layer.

U.S. Patent No. 4,692,380 discloses metallized biaxially oriented polypropylene films produced by coextruding polypropylene homopolymer containing a fatty acid amide slip agent as the core layer with a propylene-ethylene copolymer which forms a thin layer on one surface of the polypropylene core layer, subjecting the propylene-ethylene layer to a corona discharge treatment, and metallizing the corona-discharge treated surface.

U.S. Patent No. 5,126,198 discloses heat-laminatable multilayer films comprising a polypropylene base layer and at least one additional layer containing a mixture of an ethylene/vinyl acetate copolymer and an ethylene/acrylic acid copolymer.

A metallized multilayer film suitable for packaging applications is provided comprising a film substrate having in cross-section a polymer core layer, on at least one surface of which is a skin layer of a polymer having a lower melting temperature than the polymer of the core layer, the exposed surface of such skin layer having been treated, e.g., flame or corona discharge treated, prior to coating to increase its adherence to other materials, such film substrate containing a metal layer, e.g., of aluminum, deposited on said treated skin layer surface and a low
temperature sealable coating (LTSC) comprising a copolymer of 10 to 35 wt.% of an alpha, beta-ethylenically unsaturated carboxylic acid with 65 to 90 wt.% of ethylene, an alkyl acrylate or methacrylate, acrylonitrile or a mixture thereof, deposited directly, i.e., without a primer, on the exposed surface of the metal layer.

It has been found that the film of this invention is suitable for packaging applications where the metal layer is protected from damage by a sealable coating with good metal adhesion and high seal strength.

The polymer of the core layer of the film of this invention generally has mechanical properties considered necessary or desirable in the film. In many cases, such polymer is a polyolefin having a melting point, for example, of at least 125°C and up to for example, 190°C, and a relatively high degree of crystallinity. A particularly desirable polyolefin making up the core layer is an isotactic polypropylene homopolymer which is, for example, 93 to 99% isotactic and has a crystallinity of 70 to 80%, and a melting point, for example, of 145°C or higher, e.g., up to 167°C.

Another desirable polymer suitable for the core layer of the film of this invention is a high density polyethylene (HDPE), which is a substantially linear polymer having a density, for example, of 0.952 to 0.962 g/cc, a melting point of, for example, of 130° to 148°C and a substantial degree of crystallinity.

If it is desired to produce a film which is opaque after being subjected to uniaxial or biaxial orientation as described hereinafter, microspheres may optionally be dispersed in the core layer polymer before extrusion and orientation of the film. Such microspheres are composed of a material higher melting than and immiscible with the core layer polymer and may be any of those disclosed, for example, in U.S. Patent Nos. 4,377,616 and 4,632,869. The microspheres may be composed of a polymer, e.g., a polyester such a polybutylene terephthalate (PBT) or
polyethylene terephthalate (PET), a nylon, an acrylic resin, or polystyrene, or an inorganic material such as glass, metal or ceramic. The preferred material for the microspheres is PBT. The particle size of the microspheres may be, for example, 0.1 to 10 microns, preferably 0.75 to 2 microns. The microspheres may be present in the core layer in an amount of up to 20 wt.%, preferably 6 to 12 wt.% based on the total weight of the core layer. To preserve the structural integrity of the microsphere-containing core layer, a thin layer of core layer polymer in the absence of microspheres may be coextruded on one or both sides of the microsphere-containing core layer polymer. In this case, the total of the microsphere-containing polymer layer and the non-microsphere-containing polymer layers may be considered the overall core layer of the film on each side of which is an adjacent skin layer having a greater adhesiveness to other materials than the core layer. When such a polymer substrate is subjected to uniaxial or biaxial orientation, a cavity forms around each microsphere giving the oriented film an opaque appearance.

The polymer of the skin layer adjacent to one or both surfaces of the core layer is preferably an extrudable hydrocarbon polymer such as a polyolefin having a lower melting point, e.g., at least 5°C lower and up to 50°C lower, than the polymer of the core layer. Suitable polymers include isotactic polypropylene homopolymer, isotactic copolymers of propylene and a minor amount, e.g., 1 to 10 wt.%, of one or more different 1-olefins, e.g., ethylene or a higher 1-olefin having, for example 4 to 8 carbons atoms. Particularly suitable are isotactic copolymers of monomers consisting of propylene, ethylene in an amount of, for example 1 to 5 wt.% of the copolymer, and optionally, butylene in an amount, for example, of 0.5 to 5 wt.% of the copolymer. Other polymers which can be used for the skin layers of the film substrate when the core layer polymer is an isotactic polypropylene homopolymer are, for example, high density polyethylene (HDPE), and
linear low density polyethylene (LLDPE). If the core layer polymer is an HDPE, the polymer of the skin layers adjacent to the core layer may be any of the polymers disclosed previously except for HDPE itself, as long as the polymer has a lower melting point than the HDPE making up the core layer. The polymers of the skin layers may be the same or different.

The film is usually prepared by coextruding the polymers of these layers. After such extrusion of the basic film substrate utilizing conventional extrusion techniques, the film is heated and molecularly oriented in the longitudinal, i.e., machine, direction and optionally in the transverse direction. This uniaxial or biaxial orientation, which greatly improves the stiffness and tensile strength properties of the film, is accomplished by utilizing conventional techniques to stretch sequentially the film, for example, three to eight times in the machine direction and optionally, five to twelve times in the transverse direction, at a drawing temperature of 100° to 200°C. In most cases, a coextruded film having a core layer of polypropylene homopolymer would be biaxially oriented, while a film having a core layer of LDPE would be uniaxially oriented, i.e., only in the machine direction.

For some purposes, it may be desirable to produce the polymer substrate comprising the core and one or two adjacent skin layers by a cast film or chill roll extrusion process rather than a coextrusion and orientation process. In this case, the final polymer substrate is essentially unoriented and the final metallized film is generally much less stiff than films in which the substrate is prepared by a coextrusion and orientation process.

Before applying the metal, primer or polymeric, film-forming coatings to the surfaces of the film substrate the surfaces intended to receive the metal coating and optionally the opposite surface are treated to insure that the coatings will be strongly adherent to the film substrate, thereby eliminating the possibility of the
coatings peeling or being stripped from the film. This treatment can be accomplished by employing known prior art techniques such as for example, film chlorination, i.e., exposure of the film to gaseous chlorine, treatment with oxidizing agents such as chromic acid, hot air or steam treatment, flame treatment, corona discharge treatment, and the like. Flame or corona discharge treatment of the surfaces is typical in the production of the films of this invention.

Application of a metal layer to a treated surface of the film substrate is usually accomplished by conventional vacuum deposition although other methods known in the art such as electroplating or sputtering may also be used. Aluminum is preferred as the metal utilized for this purpose although other metals similarly capable of being deposited such as gold, zinc, copper, silver and others known in the art may also be utilized for certain purposes.

In the low temperature sealable coating (LTSC), the unsaturated carboxylic acid may be, for example, acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid, citraconic acid, or mixtures thereof. Usually, the copolymer is a copolymer of 65 to 90 wt.%, more usually 75 to 85 wt.% of ethylene, and 10 to 35 wt.%, usually 15 to 25 wt.% of acrylic acid (an EAA copolymer) or methacrylic acid (an EMA copolymer). The copolymer may have a number average molecular weight (Mn) of, for example, 2,000 to 50,000, preferably 4,000 to 10,000.

The carboxylic acid copolymer in the low temperature sealable coating applied to the metallized surface is often obtained as a solution or fine dispersion of an ammonium salt of the copolymer in an ammoniacal water solution. When the copolymer is dried, ammonia is given off and the ionized and water sensitive carboxylate groups are converted to largely unionized and less water sensitive free carboxyl groups. There may be added to the solution or dispersion of the ethylene copolymer an amount of ions of at least one metal from Group Ia, IIa or IIb of the
Periodic Table, preferably, sodium, potassium, lithium, calcium or zinc ions, and most preferably sodium ions, e.g., in the form of their hydroxides. The quantity of such metallic ions may be in the range sufficient to neutralize, for example, 2 to 80%, preferably 10 to 50% of the total carboxylate groups in the copolymer. The presence of such metallic ions has been found in many cases to result in an improvement in certain properties, e.g., coefficient of friction (COF), hot tack, and blocking, without an unacceptable sacrifice of other properties, e.g., low minimum seal temperatures (MST).

When the copolymer in the sealable coating applied to the metallized surface is an EAA copolymer of 80 wt.% of ethylene and 20 wt.% of acrylic acid and the neutralizing metal ions are sodium ions added as sodium hydroxide, then the amount of sodium hydroxide added corresponding to the foregoing percentages of carboxylate groups neutralized, may be, for example, 0.33 to 8.8 phr, preferably 1.1 to 5.5 phr, where "phr" stands for parts by weight per hundred parts of the total resin, which is the same as the EAA copolymer when no other resin is present. For the purpose of determining the phr of various additives present in the coating, all the carboxylate groups of the ethylene copolymer are assumed to be in their free carboxyl (-COOH) form.

In addition to the carboxylic acid-containing base copolymer, the sealable coating applied to the metallized surface may also contain a dispersed wax, e.g., a relatively large particle size carnauba or microcrystalline wax as an anti-blocking agent. Other waxes which may be used are, for example, natural waxes such as paraffin wax, beeswax, japan wax, montan wax, etc., and synthetic waxes such as hydrogenated castor oil, chlorinated hydrocarbon waxes, long chain fatty acid amides, etc. The wax may be present in the coating in an amount of, for example, 2 to 12 phr, preferably 3 to 5 phr.
In addition to functioning as an anti-blocking material, the wax when incorporated into the coatings of the present invention also functions to improve the "cold-slip" properties of the films coated therewith, i.e., the ability of a film to satisfactorily slide across surfaces at room temperature.

The sealable coating applied to the metallized surface of the film may also contain a particulate material, e.g., an amorphous silica, for the purpose of further reducing the tack of the coating at room temperature. Amorphous silica is composed of particles which are agglomerations of smaller particles and which have an average particle size of, for example, 2 to 9 microns, preferably 3 to 5 microns, and may be present in the sealable coating in an amount, for example, of 0.1 to 2.0 phr, preferably 0.2 to 0.4 phr.

Other optional additives which may be included in the sealable coating applied to the metallized surface of the film include other particulate materials such as talc which may be present in an amount, for example, of 0 to 2 phr, cross-linking agents such as melamine formaldehyde resins which may be present in an amount, for example, of 0 to 20 phr, and anti-static agents such as poly(oxyethylene) sorbitan monooleate which may be present in an amount, for example, of 0 to 6 phr. An anti-bacterial agent may also be present.

In addition to the low temperature sealable coating on the metallized surface of the film as previously described, a polymeric, film-forming coating may optionally be applied to the surface of the film opposite the metallized surface. However, to ensure adherence of this coating to such opposite surface of the film substrate, a coating of primer is first applied to such surface, either after the skin layer on such surface is treated to increase further its adhesiveness to other materials or in the absence of such treatment. Primer materials which are suitable are well known in the art and include, for example, titanates, poly(ethyleneimine), and reaction products of an epoxy
resin and an aminoethylated vinyl polymer. The primer is applied to the treated surface of the film substrate by conventional solution coating means. A particularly effective primer herein is poly(ethylene imine) applied as either an aqueous or organic solvent e.g., ethanol, solution, or as a solution in a mixture of water and organic solvent, containing 0.5 wt.% of the imine.

The coating applied to the primer-containing surface of the film opposite the metallized surface may be a sealable coating of the same type as that applied to the metallized surface or it may be any of other types of polymeric, film-forming coatings known in the art. A particularly suitable coating is one containing as a film-forming component an interpolymer of 1) 18 to 80 wt.% of at least one C1-C4 alkyl methacrylate, 2) 18 to 80 wt.% of at least one C1-C4 alkyl acrylate, and 3) 1 to 15 wt.% of at least one alpha, beta-ethylenically unsaturated carboxylic acid based on the weight of the polymer (an "acrylic terpolymer"); and colloidal silica as a hot slip agent in an amount, for example of 30 to 60 phr and having a particle size of, for example, 10 to 200 millimicrons. The unsaturated acid of the acrylic terpolymer may be any of those disclosed previously as suitable for the copolymer in the low temperature sealable coating applied to the metallized surface of the film, although acrylic and/or methacrylic acid are preferred. The copolymer may be utilized in the coating composition as a partially neutralized aqueous solution or as a dispersion, i.e., a latex. Additives may be present in the coating compositions which are the same or similar in nature and amount as those disclosed previously as suitable in the low temperature sealable coating applied to the metallized surface of the film, particularly a wax such as carnauba wax which functions as an antiblocking and cold slip agent, and talc which acts as a lubricant. This type of composition is disclosed, for example, in U.S. Patents Nos. 3,753,769 and 4,749,616.
Another type of polymeric coating which may be applied to the surface of the film opposite the metallized surface in conjunction with a primer is a coating in which the film-forming component is a polymer of at least 50 wt. % of vinylidine chloride, preferably 75 to 92 wt. % of vinylidine chloride, 2 to 6 wt. % of an alpha, beta-ethylenically unsaturated acid such as any of those disclosed previously as suitable for the copolymers in sealable coatings and the remainder a C_3-C_4 alkyl acrylate or methacrylate, or acrylonitrile. Additives the same or similar to those disclosed previously in other coatings may also be present in these coatings. The vinylidine chloride copolymer may be utilized as a partially neutralized aqueous solution or as an aqueous dispersion, i.e., a latex. This type of coating is disclosed, for example, in U.S. Patent No. 4,944,990.

The contemplated low temperature sealable coating (LTSC) composition is applied to the metallized surface of the polymer film, and, if used, the primer and polymeric coatings to the opposite surface, in any suitable manner such as by gravure coating, roll coating, dipping, spraying, etc. The excess aqueous solution can be removed by squeeze rolls, doctor knives, etc. The coating compositions will ordinarily be applied in such an amount that there will be deposited following drying, a smooth, evenly distributed layer of from 0.2 to 1 gram/1000 sq. in. of film surface. In general, the thickness of the applied LTSC is such that it is sufficient to impart the desired sealability, coefficient of friction (COF), and hot slip characteristics to the substrate polymer film.

The coating once applied to the film is subsequently dried by hot air, radiant heat or by any other suitable means thereby providing a non-water soluble, adherent, glossy coated film product useful, for example, as a packaging film.

A printed ink pattern may be applied to the coating on either surface of the film, or to the uncoated surface
opposite the metallized surface if no coating is applied to such opposite surface, using, for example a conventional solvent-based ink composition. The printed pattern may be covered with an overlacquer to prevent the pattern from damage. The overlacquer may cover the entire surface containing the printed pattern, in which case sealing is accomplished solely by the softening of the coating or a polymer skin layer on the opposite surface of the film on the portion of the film constituting the outer film of the seal. However, if an "in to out" seal is also desired wherein sealing is also accomplished by the softening of the coating or polymer skin layer on the surface containing the printed ink pattern, a portion of which constitutes the inner film of the seal, then the printing and overlacquering is done in a pattern to allow the coating or polymer skin layer to be exposed in the sealing region.

Optionally, another film (the "laminating film") may be laminated to a surface of the metallized film of this invention, to which an overlacquer has not been applied, for the purpose of improving the mechanical properties, e.g., tear strength, and machinability, increasing the stiffness, protecting the printed pattern and/or providing hermetic seals of the metallized film. Thus, the laminating film may be bonded to a sealable coating on either the metallized surface or the opposite surface of the film of this invention, either after a printed pattern has been applied to the sealable coating or in the absence of such printed pattern, or the bonding of the laminated film may be to said opposite surface in the absence of any sealable coating. The laminating film may, for example, comprise a polymer having superior mechanical properties, e.g., isotactic polypropylene homopolymer, which is bonded to the film of the invention using as an adhesive molten polymer having a lower melting point than the laminating polymer, e.g., low density polyethylene (LDPE), or the laminating film may comprise a major layer of such polymer of superior mechanical properties and a minor layer of a
polymer having a lower melting temperature than the polymer of the major layer with the lamination being accomplished by pressing the surface of the laminating film containing such minor layer against the desired surface of the metallized film of the invention at a temperature high enough to render tacky the polymer of the minor layer. The methods and equipment necessary to accomplish the described bonding are well-known in the art.

EXAMPLE

A three layer film is extruded with a core layer of an isotactic polypropylene homopolymer sold as Fina 3371, a coextruded skin layer of HDPE on one surface of the core layer, and a coextruded skin layer of an isotactic terpolymer of over 90 wt.% of propylene and 1-5 wt.% each of ethylene and butene-1, sold as Chisso 7780 on the other surface of the core layer. The HDPE skin layer was composed of 97.5 wt.% of a pure HDPE sold as Exxon HX0353.67, 0.5 wt.% of a fluoropolymer to prevent die build up sold as Huntsman Polcomm A27527, and 2.0 wt.% of a master batch of HDPE with high stabilizer to prevent gels.

The coextrudate was quenched at 30° to -50°C, reheated to 115°C and stretched in the machine direction 5 times using transport rolls operating at different speeds. After the desired machine direction, the film was transversely stretch oriented 8 times, at an appropriate temperature profile ranging from 155° to 180°C.

The resulting film substrate had an overall optical gauge thickness of 70 ga. (gauge, 1/100 mil) with a core layer of 62 ga. (layer B), an HDPE skin layer of 2 ga., (layer A) and a propylene-ethylene-butene-1 terpolymer skin layer of 6 ga., (layer C). Subsequently the HDPE skin layer was flame treated and metallized by vacuum deposition of aluminum under standard conditions for high barrier aluminum metallizing to an optical density of 2.3.

For application to the metallized surface of the film, a sealable coating composition is prepared by adding to an aqueous solution or fine dispersion of 25 wt.% of an
ammonium salt of a copolymer of 80 wt.% of ethylene and 20 wt.% of acrylic acid, sold by Michelman as MichemPrime 4983 EAA, 1.5 phr (parts by weight per hundred parts of the copolymer) of sodium hydroxide (NaOH), 4 phr of carnauba wax sold by Michelman as MichemLube 215, 0.4 phr of talc, and 0.3 phr of amorphous silica sold as Syloid 42. All the components are added as an aqueous dispersion or solution. Water is then added to bring the final coating composition to a solids content of 12 wt.%.

The coating composition was applied to the metallized surface of the film in the absence of a primer using standard gravure and coating apparatus and techniques, and the coating was dried at 240°F. The total coating weight on the film following drying was from 0.65 gram/1,000 in² of film.

The untreated surface of the film substrate which is opposite the metallized surface and which contains a skin layer of a propylene-ethylene-butene-1 terpolymer, was first primed with a 0.5 wt.% solution of poly(ethylene-imine) in a mixture of 85% water and 15% ethanol. The primed surface was then coated with a composition comprising an aqueous dispersion or solution of a terpolymer of methyl methacrylate, ethyl acrylate and methacrylic acid, colloidal silica, and carnauba wax, with a total solids content of 13 wt.%, as described in U.S. Patent No. 2,753,769, to a coating weight of 0.6 gm/1000 in² of film, using standard gravure coating apparatus and techniques and a drying temperature of 240°C.

The coated film of this example was tested for Water Vapor Transmission Rate (WVTR) in g/100 in²/day measured at 100°F and 90% R.H., Oxygen Transmission Rate (OTR) in cc/100in²/day measured at 73°F and 0% R.H., Minimum Seal Temperature (MST) in degrees F to obtain 100gm/in flat seal with metallized HDPE (A) layer, and the crimp seal strength (CRIMP) of the metallized HDPE (A) layer at 20 psi, 0.75 sec. and 260°F. The values of these properties obtained as
compared with values obtained for an identical but uncoated film control on both surfaces are shown in the Table.

Table

<table>
<thead>
<tr>
<th>Test</th>
<th>Coated Film of the Example</th>
<th>Uncoated Film Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTR</td>
<td>1.51</td>
<td>2.87</td>
</tr>
<tr>
<td>WVTR</td>
<td>0.008</td>
<td>0.012</td>
</tr>
<tr>
<td>CRIMP</td>
<td>493</td>
<td>No seal</td>
</tr>
<tr>
<td>MST</td>
<td>209</td>
<td>No seal</td>
</tr>
</tbody>
</table>

As can be seen in the foregoing table, excellent water vapor barrier and moderate oxygen barrier and sealability were produced in a single film. This structure can be used to replace the paper/poly/foil/poly structure (but with a metallized look because the base film is clear) by itself or in lamination to provide a stiffer film with locked in print or a thicker sealant layer.
CLAIMS:

1. A metallized multilayer film comprising a film substrate having a polymer core layer on at least one surface of which is a polymer skin layer having a lower melting temperature than that of said core layer, the exposed surface of said skin layer having been treated prior to coating to increase further its adherence to other materials, said film substrate containing a metal deposit on said treated skin layer surface and a polymeric low temperature sealable coating (LTSC) comprising a copolymer of 10 to 35 wt.% of at least one alpha, beta-ethylenically unsaturated carboxylic acid with 65 to 90 wt.% of ethylene, an alkyl acrylate or methacrylate, acrylonitrile, or mixtures thereof, on the surface of said metal deposit.

2. The film of claim 1 wherein said core layer contains on its surface opposite that containing the metal deposit a second skin layer having a melting temperature lower than that of the core layer.

3. The film of claim 1 wherein said core layer polymer is an isotactic polypropylene homopolymer.

4. The film of claim 1 wherein the polymer of said surface treated skin layer is an isotactic copolymer of propylene, ethylene, and optionally butene-1.

5. The film of claim 2 wherein said second skin layer is a high density polyethylene (HDPE).

6. The film of claim 1 wherein said LTSC copolymer is a copolymer of ethylene and acrylic acid (EAA copolymer) or methacrylic acid (EMA copolymer) wherein 2 to 80% of the carboxylate groups are neutralized with metal ions from Groups Ia, IIa or IIb of the Periodic Table.
7. The film of claim 6 wherein said EAA or EMA copolymer is a copolymer of 75 to 85 wt.% of ethylene and 15 to 25 wt.% of acrylic or methacrylic acid, in which 10 to 50% of the carboxylate groups are neutralized with sodium, potassium, calcium or zinc ions.

8. The film of claim 1 wherein said carboxylate ions are neutralized with sodium ions.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :B32B 15/08, 27/00, 27/00
US CL: :428/461
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 428/461, 457, 462, 500, 515, 516

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5,126,198 A (L. SCHINKEL ET AL.) 30 June 1992 (30.06.92), column 3, line 50 through column 6, line 56.</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US 4,865,908 A (L.L. LIU ET AL.) 12 September 1989 (12.09.89), column 1, line 46 through column 3, line 46; column 5, line 19 through column 7, line 6; column 8, line 40 through column 10, line 66.</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>US 4,749,616 A (L.L. LIU ET AL.) 07 June 1988 (07.06.88), column 2, line 51 through column 4, line 23; column 6, line 8 through column 7, line 21; column 9, line 34 through column 10, line 50.</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance: the claimed invention cannot be considered involving an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 Z document member of the same patent family

Date of the actual completion of the international search
01 AUGUST 1997

Date of mailing of the international search report
05 SEP 1997

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No: (703) 305-3230

Authorized officer
JOHN ZIMMERMAN

Telephone No: (703) 308-2512

Form PCT/ISA/210 (second sheet)(July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4,692,380 A (D.E. REID) 08 September 1987 (08.09.87), column 1, line 46 through column 2, line 69; column 4, line 61 through column 6, line 8.</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>US 4,345,005 A (F.E. ALL ET AL.) 17 August 1982 (17.08.82), column 1, line 26 through column 2, line 61; column 3, line 30 through column 4, line 52.</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>US 3,753,769 A (R.H. STEINER) 21 August 1973 (21.08.73), column 2, line 3 through column 5, line 30; column 13, line 22 through column 14, line 31.</td>
<td>1-8</td>
</tr>
</tbody>
</table>