DRILL SHIP FOR DEEP SEA INTERVENTION OPERATIONS

Inventors: Niels Elmbo, Kokkedal (DK); Thomas Danielsen, Kastrup (DK)

Assignee: A.P. MELLER-MÆRSK A/S, Copenhagen K (DK)

Appl. No.: 13/001,897
PCT Filed: Jun. 30, 2009
PCT No.: PCT/EP2009/058199
§ 371 (c)(1), (2), (4) Date: Apr. 12, 2011

Related U.S. Application Data

Provisional application No. 61/077,137, filed on Jun. 30, 2008.

Publication Classification

Int. Cl. E21B 43/01 (2006.01)
B63B 35/44 (2006.01)

ABSTRACT

A drill ship is provided for conducting subsea operations, including intervention, maintenance and workover operations. The ship includes a hull having a substantially wide beam-to-length ratio and a deck space. An automated system for handling tubulars and risers is mounted to the deck space, along with a pipe racking system. The deck space includes a heavy-lift heave crane for handling seafloor operations and a medium duty crane mounted over the deck space. The ship is configured to provide heavy lift subsea construction operations including 16-inch riser well intervention and workover programs, connected riser completion operations, and riserless tophole drilling and casing operations. The ship is also able to perform connected riser remedial drilling and slim hole well construction. The ship maximizes environmental efficiency in both construction and use, and provides a stable and safe work and living environment for operations personnel.
Wells - Hole Sizes & Casing Scheme (1)

- Large Casing Scheme
 - 36" conductor
 - 20" hole for 16" casing
 - 14-3/4" hole for 10-3/4" Casing
 - 9-1/2" open hole for sand control screens
 - Electrical Submersible Pump
 - Subsea Tubing, Head Spool, and X-mas Tree

Fig. 27

Wells - Hole Sizes & Casing Scheme (2)

- Slender Casing Scheme
 - 36" conductor
 - 17-1/2" hole for 13-3/8" casing
 - 12-1/4" hole for 9-5/8" Casing
 - 8-1/2" open hole for sand control screens
 - Subsea Tubing, Head Spool, and X-mas Tree
 - Gas lift completion or Artificial Lift outside well

Fig. 28
DRILL SHIP FOR DEEP SEA INTERVENTION OPERATIONS

SUMMARY OF THE INVENTION

In one embodiment, the drill ship is configured to operate in multi-tasking environments for subsurface oil and gas field development and maintenance, including various subsurface operations up to 7,500 feet of water depth. The drill ship includes capabilities for connected 16" riser well intervention and work over programs, heavy lift subsurface construction programs, connected 16" riser small outer diameter tubing hanger completion programs, riserless top hole large outer-diameter drilling and casing batch programs, and connected riser remedial drilling and slim hole well construction.

The design of the drill ship incorporates elements to ensure safety of personnel and environmentally efficient and "green" operation and construction. In particular, the ship exceeds the Mobile Offshore Drilling Unit (MODU) Passenger Vessel Intact and Damage Stability regulations. The design also incorporates concepts for protected temporary safe refuge muster concepts. Provisions on the ship are also made to form exhaust NOX emission reactors.

The design of the ship's hull incorporates a small force "hull form" which provides low fuel consumption within an environmental class. Furthermore, the hull is double-hull compliant and includes nitrogen-blanketed hull methanol and heavy fuel storage capability.

The deck of the ship includes automated deck tubular handling systems along with pipe racking systems and a riser handling system. Furthermore, knuckle-boom cranes are implemented on the deck for above-deck and subsurface operations. Finally, a regulation-sized helpipad is provided on the bow section of the ship.

In the present embodiment, the light displacement hull includes a variety of operational areas and systems, including a blowout preventer (BOP) handling system, a 15% subsurface BOP, a 16" pressurized riser system, a box tower hoisting and lowering system with a top drive and an active heave compensated drawworks, the heavy-lift heave crane, and the medium duty deck crane. The power systems on the ship include a plurality of 2,200 horsepower fluid pumps and 2,200 horsepower cement units.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a slide view of a first embodiment of the drill ship of the present invention;
FIG. 2 is a rear perspective view of the drill ship of FIG. 1;
FIG. 3 is a front side perspective view of the drill ship of FIG. 1;
FIG. 4 is a right side perspective view of the drill ship of FIG. 1;
FIG. 5 is a perspective view overlooking the deck of the drill ship of FIG. 1;
FIG. 6 is a right side perspective view of the hull of the drill ship of FIG. 1;
FIG. 7 is a rear, right side perspective view of the drill ship of FIG. 1, showing portions of the deck operational areas;
FIG. 8 is a rear perspective view of the aft deck operational areas;
FIG. 8a is a top plan view of the aft deck area of the ship of FIG. 1;
FIG. 9 is a side perspective view of the drill ship of FIG. 1;
FIG. 10 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 11 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 12 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 13 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 14 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 15 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 16 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 17 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 18 is a cross-sectional plan view of a portion of the drill ship of FIG. 1;
FIG. 19 is a perspective view of a portion of the deck of the drill ship of FIG. 1;
FIG. 20 is a top plan view of the drill floor of the ship of FIG. 1;
FIG. 21 is a side schematic view of a subsurface BOP system with the embodiment of the drill ship of FIG. 1;
FIG. 22 is a perspective top view of the box tower hoisting and lowering system for use on the drill ship of FIG. 1;
FIG. 23 is a rear right-side perspective view of the heavy-lift active heave crane of the drill ship of FIG. 1;
FIG. 24 is an upper plan view of the rear portion of the deck of the drill ship of FIG. 1;
FIG. 25 is a perspective view of the medium duty deck crane for use on the drill ship of FIG. 1;
FIG. 26 is a cross-sectional view through the hull of the drill ship of FIG. 1; and
FIG. 27 and FIG. 28 are schematic slender well construction examples for well operations using the drill ship of FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

Hull and Main Ship Design

As shown in FIGS. 1-6, the drill ship 1 includes a hull 10, crew quarters structure at section 7, a helipad 5 and a main deck 12. Positioned on the aft region of the deck 12 are the box tower hoisting and lowering system and top drive 26, a heavy-lift knuckle-boom seafloor active heave crane 50, a medium duty seafloor and deck crane 60, and an ROV installation with an integrated vessel control center 70.

As shown in FIG. 1, directional thrusters 3 are positioned at various points in the hull, and the engines and power systems are housed within the hull as shown at 2. 4 azimuthing & 1 tunnel variable frequency thrusters are used. (20.3 MW combined thrusters rating), and capability to allow for loss of 1 Thruster in a Worst Case Compartment or Component Failure Mode which complies with requirements for redundant dynamic positioning capability.

The main hull 10 of the drill ship 1 is shown in the drawings at FIGS. 1-6. The hull 10 is formed for light displacement moderate environment conditions. In the preferred embodiments, the hull is 120 meters in length, 32 meters in breadth with an 8 meter operating draft. The drill ship has
23,000 metric tons of operating displacement, and utilizes 75% less shipyard steel fabrication weight than conventional newly-built drill ships. It is important to note that the hull includes a wide beam-to-length ratio to provide for improved deck operability. The hull form limits combined seas for operation 1ls-4 m, Hmax-8 m, and the significant pitch is 2°. The connected standby meets the Hmax-11.8 m parameter.

[0037] The hull has a DP-3 stationkeeping with +15 knot transit rating. The parameters for the hull are as follows:

[0038] DP-3 Rating for 57 Knt wind, 2.5 Knt Current in Combined Beam Condition

[0039] 4 Independent Engine Rooms, 22.6 MW combined generating power

[0040] Design Transit Speed+15 Knts

[0041] +30 Day F.O. Capacity in High Load Conditions

[0042] Panamax Compliant

[0043] As shown in FIGS. 1 and 2, the hull 10 of the drill ship 1 includes a wide deck area 12 for subsea operations. The deck 12 includes an integrated system storage area 20 close to the control center 22 of the ship 1 as shown in FIG. 7. Also shown in FIG. 7 is the helipad 5, crew quarters 7, a tubular storage area 24, the box tower 26, and a pipe rack and handling system 30. All of these integrated systems are rated for a water depth of up to 7,500 feet.

[0044] A perspective view of the deck 12 is shown in FIG. 8, which also shows the box tower hoisting and lowering system 26, the heavy-lift heave crane 50 and the light-duty deck crane 60. The large ultra high capacity load rated open aft deck 12 is suitable for a wide range of configurations. The loading on the ultra high capacity deck 12 is rated at 10-15 T/m2 (2,000-3,000 pounds/foot²). Typically, on other types of global offshore drilling units, the load rating is only 500 pounds/foot².

[0045] As shown in FIG. 9, both the port and starboard sides of the hull 10 are integrated with the Remote Operated Vehicle (ROV) portion of the hull 10 is integrated with the ROV installation 70. The ROV installation 70 preferably includes an integrated vessel control center, with a system designed for dual work-class ROV systems. Various integrated control centers and systems are shown as indicated in FIGS. 10 and 11.

[0046] The hull design in the wide-beam of the ship allows for relatively large and comfortable crew quarters 7, the configurations of which are shown for example in FIGS. 12, 13 and 14. As shown, the ship quarters 7 provides for 140-person quarters and project office facilities. As shown, 100 single man cabins 81 are shown and 20 dual man cabins 82 are provided. A plurality of mess areas 83 are provided along with a plurality of galleys 84 and storage compartments 85 in the crew area.

[0047] In general, the cross-sectional layouts of the crew areas in relation to the hull 10 of the ship 1 are shown in FIGS. 17 and 18. Tubular storage area 24 is provided for vertical storage of the tubulars in the midsection behind the operational control center 22 for the ship, as shown in FIG. 16. A cross-sectional area, vertically through the hull 10 is shown at FIG. 15. Various below-water facilities and operational areas in the lower decks, including engines 2, engine control rooms 91, workshops 92 and various utility rooms 93 are shown in FIGS. 15 and 16. In general, the ship of the present embodiment includes seven decks above the bottom floor base 95 of the hull 10 at its highest elevation as shown in FIG. 16.

BOP Handling System

[0048] The drill ship 1 includes a specialized and efficient handling system for the BOP as shown in FIGS. 19 and 20. The handling system 100 includes a hinged rig floor and unitized stack handling capabilities. Efficient workspace is provided by a driller control room 104 and vertical tensioning ship joint storage 106.

Slender Riser and Subsea BOP System

[0049] The Subsea BOP system utilized in the present embodiment is a 13¾", 10 ksi, NACE-compliant BOP stock. The BOP stack will be a conventional wellhead connector, double ram, annual ram, LMRP configuration. Optionally, a crawler retrievable BOP/LMRP system may be provided with an infield wet storage of the deployed riser. Furthermore, 3, 4 or 5 ram stack options are available, dependent on the subsea test tree requirements in the program implemented. The riser may be a 16" slender riser implementation.

[0050] An MUX control system is also provided with 3.38" ID kill-and-choke lines. A riser boost line is also provided and the system includes an EMI-pressurized 500 psi gas buster riser rating (in lieu of a diverter). Finally, the system includes a tensioning slip joint, all of which are shown in FIG. 21.

Bog Tower Hoisting and Lowering System with Top Drive

[0051] A box tower hoisting and lowering system with top drive and active heave compensation is provided at 26 as shown in FIG. 22 and the foregoing figures. In the exemplary embodiment, the box tower is a 400 metric ton multipurpose tower implemented for vertical lifting above the deck 12. The system includes a 400 metric ton heave-compensated AC drawworks and a 350 metric ton top drive. Finally, the tower includes a segmented traveling block system as shown.

Heavy-Lift Crane

[0052] Importantly, the deck 12 of a ship 1 is implemented with a heavy-lift knuckle-boom, seafoal active heave crane 50 as shown in FIG. 23 in the previous figures. The crane 50 in the exemplary embodiment of the drill ship 1 is rated at 250 metric tons. The crane 50 also includes a 250 metric ton rated full fall rated hook with capacity to 5,000 feet of water depth. Also, a 200 metric ton single full fall rated hook is provided for a capacity to 7,500 feet of water depth. Higher load capacity can be accommodated into the crane design. Preferably, the crane includes a two-hour lowering speed to the rated depth at maximum loads.

Cone, Such as Medium Duty Crane

[0053] As shown in FIGS. 24, 25 and in the previous figures, the medium duty seafloor and deck crane 60 is also provided on the deck 12 of the ship 1. The crane is a knuckle-boom deck utility crane nominally rated at 50 metric tons, and in the preferred embodiment includes a 15 kip seafloor rating to a water depth of 7,500 feet. The boom reach of the crane 60 covers the entire usable vessel deck area, including the aft
deck 12. Furthermore, the crane 60 preferably includes a pipe gripper arm for manipulating the tubulars from a tubular storage area 24.

Fluid Power Systems

As shown in FIG. 26, the ship 1 includes a plurality of fluid pump systems and cement units. In particular, the present embodiment includes four 7,500 psi, 2,200 horsepower quintaplex fluid pumps with precision AC drives. The system includes an option for a higher working pressure as well. Below deck, charging pumps in the special piping system maximize the usable tank volume relative to a 2,200 horsepower cement unit. The main system includes a 3,000 bbl NAI mud system including a 1,200 gpm fluid processing system. The system also includes a 3,000 bbl completion brine system with 1,880 gpm, 2 micron filtration system. Additional base oil and brine capacity can be incorporated into the design.

Slender Well Construction Examples

The exemplary drill ship 1 of the present embodiment is capable of maintaining both large and slender casing schemes, the parameters of which are shown by the schematics of FIGS. 27 and 28. In particular, the large casing scheme is shown in FIG. 27, including the hole construction for a 16" casing. FIG. 28 shows the casing scheme for a slender 13½" casing.

SPECIFICATION SUMMARY

The following ratings, parameters and specifications are provided for the present embodiments of the drill ship 1:

Design Criteria

Water Depth 7,500 ft.
Dynamic Positioning DP(AAA)

Derrick

- Multi Purpose Lift Tower
- 400 mt capacity
- Segmented Traveling Block
- 350T Top Drive

Fluid Pumps

- 4x2200 HP Quintaplex Pumps
- High Volume and High Pressure Capability

Cranes

- 250 mt deck mounted, heave compensated, crane for subsea construction, rated to 7,500 ft. water depth
- 50 mt deck mounted, knuckle boom crane with integral fast winch rated for 15 kips at 7,500 ft. water depth

Subsea BOP

a. One Wellhead Connector, 13½"x18¾"
b. Two 13½" Double Ram BOP Units

c. One 13½" Annular Preventer
d. One 13½" Lower Marine Riser Package Connector

BOP Stack

- Crane Retrievable
- Multiple configurations optimized for program
- MUX control with acoustic & ROV backup control

Operational Regions

- Moderate Environment Deepwater, Worldwide

Drawworks

- Active Heave Compensated
- 400 mt capacity

Cement Unit

- 2000 bhpx7500 psi WP quintaplex fluid pump
- 16" OD Risers×14.85" ID
- 75' Joints Lengths
- Two (2) 3.38" ID 10,000 psi Choke and Kill lines
- One (1) 1.40" ID 5,000 psi hydraulic supply lines
- One (1) 3.34" IDx5,000 psi mud booster/circulating line
- Pup Joints, for any 5' increment
- Buoyancy

Fluid Systems

- Mud Pits 3,000 bbl, minimum
- Brine Pits 3,000 bbl, minimum
- 1,880 gpm 2 Micron Filtration System

Bulk Capacity

- Bulk Gel/Bar, 3,000 ft³ combined
- Bulk Cement, 2,000 ft³

Helideck

- S61 or S92 Capable

Quarters for 140 Personnel

- 100 private staterooms with bath
- 20 double staterooms with bath

- It is understood that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.

1. A drill ship for conducting subsea operations comprising:
 a. a hull having a substantially wide beam-to-length ratio and a deckspace;
 b. an automated system for handling tubulars and risers, said system interfacing with a pipe rack arrangement mounted to said deckspace;
 c. a heavy-lift heave compensated crane mounted over said deckspace for handling seafloor operations; and
 d. a medium duty crane mounted over said deckspace.

2. The drill ship in claim 1 wherein the hull incorporates a small force hull form to provide low fuel consumption, and wherein the hull is nitrogen-blanketed for storage of methanol and heli fuel.
3. The drill ship in claim 1 further comprising at least one exhaust NOx emission reactor.
4. The drill ship in claim 1 wherein the hull has a beam-to-length ratio less than three.
5. The drill ship in claim 1 further comprising:
 a helipad; and
 a remote operated vehicle installation.
6. The drill ship in claim 1 wherein the automated handling system comprises a hinged rig floor.
7. The drill ship in claim 1 further comprising a blowout preventer stack.
8. The drill ship in claim 7 wherein the blowout preventer stack is a well connector, annual ram blowout preventer stack.
9. The drill ship in claim 7 wherein the blowout preventer stack comprises:
 a wellhead connector;
 a double ram blowout preventer unit;
 an annular preventer; and
 a lower marine riser package connector.
10. The drill ship in claim 1 further comprising a box tower hoisting and lowering system with top drive and active heave compensation, the box tower hoisting and lowering system comprising:
 a heave-compensated drawworks; and
 a segmented traveling block.
11. The drill ship in claim 10 wherein the heave-compensated drawworks has a 400 metric ton capacity.
12. The drill ship in claim 1 wherein the heavy lift crane is a heavy-lift knuckle-boom, seafloor action heave crane.
13. The drill ship in claim 12 wherein the heavy-lift crane has a two-hour lowering speed to the rated depth at maximum load.
14. The drill ship in claim 1 wherein the medium duty crane is a knuckle-boom deck utility crane.
15. The drill ship in claim 14 wherein the medium duty crane comprises a pipe gripper arm.
16. The drill ship in claim 1 further comprising:
 a fluid pump; and
 a cement processor.
17. The drill ship in claim 1 wherein the cement processor comprises:
 a fluid pump;
 a choke-and-kill line;
 a hydraulic supply line;
 a mud booster/circulating line; and
 a pup joint.
18. A method of conducting a subsea operation comprising:
 navigating a ship to a location in a body of water, the ship comprising:
 a hull having a substantially wide beam-to-length ratio and a deckspace;
 an automated system for handling tubulars and risers, said system interfacing with a pipe racking arrangement mounted to said deckspace;
 a heavy-lift heave crane mounted over said deckspace for handling seafloor operations; and
 a medium duty crane mounted over said deckspace.
19. The method of claim 3 further comprising operating the automated system to move a blowout preventer stack.
20. A drill ship for conducting subsea operations comprising:
 a light displacement hull;
 a heavy-lift heave crane;
 a medium duty deck crane;
 a plurality of fluid pumps;
 a plurality of cement units; and
 a blowout preventer (BOP) handling system comprising:
 a subsea blowout preventer;
 a pressurized riser system; and
 a box tower hoisting and lowering system with a top drive and an active heave compensated drawworks.

* * * * *