发明名称

结核分支杆菌蛋白 Rv1984c 在制备诊断潜伏性肺结核感染的产品中的用途

摘要

本发明提供了结核分支杆菌蛋白 Rv2693c 和 / 或 Rv1984c 在开发和 / 或设计具有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中的应用。本发明还提供了使用这 2 种结核分支杆菌蛋白制备的蛋白质芯片。通过本发明制备的蛋白质芯片，检测潜伏性肺结核感染患者及正常人血清中 2 个蛋白各自相合的 IgM 抗体的水平，联合分析这 2 个蛋白质的相应抗体的检测结果，判断被检人是否为潜伏性肺结核感染，检测结果表明，本发明提供的蛋白质芯片辅助诊断潜伏性肺结核感染的最佳工作点的特异性为 80.3%，敏感性为 75.6%，均高于现有技术中潜伏性肺结核感染诊断的指标。
1. 检测血清中抗 Rv1984c 抗体水平的产品在制备具有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中的应用。

2. 根据权利要求 1 所述的应用，其特征在于；
所述 Rv1984c 是如下 c) 或 d) 的蛋白；

C) 序列表中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

D) 将序列表中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质；
所述有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中，
包括记载同样内容的说明书：与正常未患有任何疾病的人相比，潜伏性肺结核感染者中，抗 Rv1984c 抗体水平显著升高。

3. 血清中的抗 Rv1984c 的抗体作为标志物在开发、设计和 / 或制备具有鉴别、诊断、辅
助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中的应用；
所述 Rv1984c 是如下 c) 或 d) 的蛋白；

C) 序列表中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

D) 将序列表中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质；
所述有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中，
包括记载同样内容的说明书：与正常未患有任何疾病的人相比，潜伏性肺结核感染者中，抗 Rv1984c 抗体水平显著升高。

4. 一种用于鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染的试剂盒，
包括检测芯片，所述检测芯片上连有 Rv1984c 蛋白，所述 Rv1984c 蛋白为一个检测点；
所述 Rv1984c 是如下 c) 或 d) 的蛋白；

C) 序列表中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

D) 将序列表中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质。

5. 根据权利要求 6 所述的试剂盒，其特征在于：所述检测芯片是将含有 Rv1984c 蛋白
的溶液点样于载体玻片上制成的。

6. 根据权利要求 4 或 5 所述的试剂盒，其特征在于：所述试剂盒还包括说明书，所述说
明书记载如下内容：
与正常未患有任何疾病的人相比，潜伏性肺结核感染者中，抗 Rv1984c 抗体水平显著
升高。

7. 根据权利要求 6 所述的试剂盒，其特征在于：
所述抗 Rv1984c 抗体水平显著升高按照如下方法进行判断：待测样品的检测结果中，
抗 Rv1984c 抗体呈阳性，则判定该待测样品是潜伏性肺结核感染阳性，否则为潜伏性肺结
核感染阴性；
所述抗体呈阳性判断标准为若 Rv1984c 抗体的测定比值处于如下值之间，则认为
是该抗体呈阳性；Rv1984c 抗体的测定比值处于 2.24 和 2.38 之间，包括 2.24 和 2.38。

8. 根据权利要求 4 或 5 所述的试剂盒，其特征在于：所述试剂盒还包括配合检测芯片
一起使用的试剂，所述试剂包括下述 1) - 4)：

2
1) pH 7.4 PBS 溶液，其组成为：

<table>
<thead>
<tr>
<th>成分</th>
<th>浓度（g/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>8.0</td>
</tr>
<tr>
<td>KIIPO₄</td>
<td>0.2</td>
</tr>
<tr>
<td>Na₃HPO₄·12H₂O</td>
<td>2.9</td>
</tr>
<tr>
<td>KCl</td>
<td>0.2</td>
</tr>
</tbody>
</table>

溶剂为 ddH₂O；

2) pH 7.4 的 PBST 溶液，其组成为：

<table>
<thead>
<tr>
<th>成分</th>
<th>浓度（g/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>8.0</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.2</td>
</tr>
<tr>
<td>Na₃HPO₄·12H₂O</td>
<td>2.9</td>
</tr>
<tr>
<td>KCl</td>
<td>0.2</td>
</tr>
<tr>
<td>Tween-20</td>
<td>0.5 mL/L</td>
</tr>
</tbody>
</table>

溶剂为 ddH₂O；

3) 含 BSA 的 pH 7.4 PBS 溶液：

<table>
<thead>
<tr>
<th>成分</th>
<th>浓度（g/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>10</td>
</tr>
<tr>
<td>NaCl</td>
<td>8.0</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.2</td>
</tr>
<tr>
<td>Na₃HPO₄·12H₂O</td>
<td>2.9</td>
</tr>
<tr>
<td>KCl</td>
<td>0.2</td>
</tr>
</tbody>
</table>

溶剂为 ddH₂O；

4) 荧光标记的抗人第二抗体。

9. 权利要求 4-8 任一所述试剂盒在制备具有鉴别、诊断、辅助诊断、筛查和/或辅助筛查潜伏性肺结核感染用途的产品中的应用。
说明书

结核分支杆菌蛋白 Rv1984c 在制备诊断潜伏性肺结核感染的产品中的用途

[0001] 本申请为申请号为 201310607359.0、申请日为 2013.11.25、发明创造名称为“结
核分支杆菌蛋白在制备诊断潜伏性肺结核感染的产品中的用途”的分案申请

技术领域

[0002] 本发明属于生物医药领域，具体涉及结核分支杆菌蛋白在制备诊断和 / 或辅助诊
断疾病的产品中的用途。

背景技术

[0003] 多个世纪以来，结核病持续在全球成为一个不容忽视的公共卫生问题。目前全球
已有三分之一的人口携带结核杆菌，仅 2010 年一年就新增结核病病例 880 万，死亡 145
万，平均不到 22 秒即有一人死于肺结核，结核病高居传染病死亡人数之首。而我国是全
球 22 个国家中高发国家之一，结核病患者人数居全球第二位，受感染人数超过 5 亿，仅
2010 年一年就有新发病例 90 ～ 120 万，占了全球总新增病例的约 12%，如不及时采取有
效措施，在未来十年内可能有 3000 万人发病，将会导致严重的公共卫生问题和社会问题，
所以从国家战略层面必需尽快实现对肺结核的有效控制。

[0004] 科学证据表明，结核感染人体后，在大多数情况下，会受到人体内免疫系统的控
制，从而处于一个潜伏感染状态，在任何时候都有可能转化为活动性结核病。考虑到全球
结核感染人口，甚至在我国都是一个十分庞大的数字，结合结核病的易传播性和社会危害
性，在健康人群中筛查结核感染患者就显得尤为重要。已有研究证实潜伏性肺结核感染
(latent tuberculosis infection, LTBI) 的预防性治疗可降低 HIV/TB 双重感染人群进展
为活动性 TB 的风险。Bucher HC, Griffith LE, Guyatt GH, et al.: Isoniazid prophylaxis for
501-508。但是，目前国内诊断潜伏感染主要依据结核菌素皮试 (PPD 皮试) 的结果，一般认为 PPD 强阳性或在短期内从阴性转为阳性者是结核病潜伏感染者。然而因为 PPD 皮试无法区分在中国广泛推广的 BCG 接种所产生的免疫应答反应与潜伏感
染产生的应答反应，而基于抗原抗体反应的血清学诊断，由于其简便性、快速性，是重要
的潜伏性肺结核感染临床辅助性诊断手段。因此，从长远角度看，应致力于发现敏感性和特异
性均较好的结核标志物。

[0005] 理想的结核诊断标识物应符合以下条件：(1) 敏感性高；(2) 特异性高；(3) 存
在于体液，特别是血液中，易于检测。但是目前肺结核分支杆菌血清学诊断所针对的抗原如抗
原 5、38KD 抗原、30/31KD 抗原以及抗原 60 等，均存在阳性检出率低，与其它分支杆菌的交
叉免疫性等问题，虽然在疗效监测、提示复发、判断预后和高危人群的普查中具有一定的价
值，但目前仍不能用于潜伏性肺结核感染的确诊。为了实现对潜伏性肺结核感染的高灵敏
性、高特异性的诊断，急需在分子水平上寻找到更敏感、更特异的潜伏性肺结核感染生物标
志物。
发明内容

[0006] 本发明的一个目的是提供检测血清中抗 Rv2693c 抗体和 / 或抗 Rv1984c 抗体水平的产品在制备具有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中的应用。

[0007] 所述的应用中，所述 Rv2693c 是如下 a) 或 b) 的蛋白：

[0008] a) 序列中的 SEQ ID No. 1 所示的氨基酸序列组成的蛋白质；

[0009] b) 将序列中的 SEQ ID No. 1 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 1 所示蛋白具有相同功能的由 a) 衍生的蛋白质；

[0010] 所述 Rv1984c 是如下 c) 或 d) 的蛋白：

[0011] c) 序列中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

[0012] d) 将序列中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质；

[0013] 和 / 或，所述有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中，包括记载如下内容的说明书：与正常未有任何疾病的人相比，潜伏性肺结核感染人中，抗 Rv2693c 抗体水平和抗 Rv1984c 抗体水平中至少一种显著升高。

[0014] 所述抗体为 IgM。

[0015] 本发明的另一个目的是提供一种用于鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染的标志物组合物，由抗 Rv2693c 的抗体和抗 Rv1984c 的抗体组成；

[0016] 所述标志物组合物中，各个所述抗体为人离体血清中的抗体；

[0017] 所述抗体为 IgM。

[0018] 所述 Rv2693c 是如下 a) 或 b) 的蛋白：

[0019] a) 序列中的 SEQ ID No. 1 所示的氨基酸序列组成的蛋白质；

[0020] b) 将序列中的 SEQ ID No. 1 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 1 所示蛋白具有相同功能的由 a) 衍生的蛋白质；

[0021] 所述 Rv1984c 是如下 c) 或 d) 的蛋白：

[0022] c) 序列中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

[0023] d) 将序列中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质。

[0024] 本发明的再一个目的是提供血清中的抗 Rv2693c 的抗体和 / 或抗 Rv1984c 的抗体作为标志物在开发、设计和 / 或制备具有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中的应用；所述 Rv2693c 是如下 a) 或 b) 的蛋白：

[0025] a) 序列中的 SEQ ID No. 1 所示的氨基酸序列组成的蛋白质；

[0026] b) 将序列中的 SEQ ID No. 1 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 1 所示蛋白具有相同功能的由 a) 衍生的蛋白质；
所述 Rv1984c 是如下 c) 或 d) 的蛋白；

c) 序列列表中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

d) 将序列列表中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质；

所述有鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染用途的产品中，包括记载如下内容的说明书：与正常未患有任何疾病的人相比，潜伏性肺结核感染中，抗 Rv2693c 抗体水平和抗 Rv1984c 抗体水平中至少一种显著升高。

所述抗体为 IgM。

所述任一应用中，所述鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染具体指鉴别、诊断和 / 或辅助诊断待测人是否患有潜伏性肺结核感染，或筛查和 / 或辅助筛查待测人群中患有潜伏性肺结核感染的情况。

本发明的还一个目的是提供一种用于鉴别、诊断、辅助诊断、筛查和 / 或辅助筛查潜伏性肺结核感染的试剂盒，包括检测芯片，所述检测芯片上连有 Rv2693c 和 Rv1984c 蛋白中的至少 1 种蛋白，每种蛋白单独成立一个检测点；优选的，所述检测芯片上连有 Rv2693c 和 Rv1984c 蛋白；

所述 Rv2693c 是如下 a) 或 b) 的蛋白；

a) 序列列表中的 SEQ ID No. 1 所示的氨基酸序列组成的蛋白质；

b) 将序列列表中的 SEQ ID No. 1 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 1 所示蛋白具有相同功能的由 a) 衍生的蛋白质；

所述 Rv1984c 是如下 c) 或 d) 的蛋白；

c) 序列列表中的 SEQ ID No. 2 所示的氨基酸序列组成的蛋白质；

d) 将序列列表中的 SEQ ID No. 2 的氨基酸残基序列经过一个或几个氨基酸残基的取代和 / 或缺失和 / 或添加且与 SEQ ID No. 2 所示蛋白具有相同功能的由 c) 衍生的蛋白质。

所述试剂盒中，所述检测芯片是将分别含有 Rv2693c 和 / 或 Rv1984c 蛋白的溶液点样于载体玻片上制成的。

所述试剂盒中，所述分别含有 Rv2693c 和 / 或 Rv1984c 蛋白的溶液，由溶质和溶剂组成，所述溶质及其在所述溶液中的浓度为：

<table>
<thead>
<tr>
<th>溶质</th>
<th>浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv2693c 和 / 或 Rv1984c 蛋白</td>
<td>50 μg/mL</td>
</tr>
<tr>
<td>HEPES</td>
<td>11.916 g/L</td>
</tr>
<tr>
<td>NaCL</td>
<td>5.844 g/L</td>
</tr>
<tr>
<td>甘油</td>
<td>100 mL/L</td>
</tr>
<tr>
<td>谷胱甘肽</td>
<td>3.070 g/L</td>
</tr>
</tbody>
</table>

溶剂为水。

所述溶液中，还包括：体积百分比为 25% 的甘油，体积百分比为 0.02% 的
Tween 20, 0.05mg/ml 的 BSA 和 0.1g/L 的 Na\textsubscript{3}O。

[0045] 所述点样具体是采用生物芯片点样仪点样的，所述点样的点样体积为 0.3-1nl；优选 0.5-1nl；最优选 1nl。

[0046] 所述载体玻片具体采用的是三维 H 载体玻片。

[0047] 所述点样结束后，还需贴上 12 个孔的塑料围栏，并保持在 30% RH-40% RH 湿度 4℃环境中过夜后，将玻片放置入塑料盒中封口 -80℃低温保存；优选的，湿度为 35% RH。

[0048] 所述试剂盒还包括 IgM 阳性对照和 / 或 Cy5 标记抗人第二抗体；

[0049] 所述试剂盒还包括说明书，所述说明书记载如下内容；

[0050] 与正常未患有任何疾病的人相比，潜伏性肺结核感染人中，抗 Rv2693c 抗体水平和抗 Rv1984c 抗体水平中至少一种抗体显著升高。

[0051] 所述抗 Rv2693c 抗体水平和抗 Rv1984c 抗体水平中至少一种抗体显著升高按照如下方法进行判断：待测样品的检测结果中，抗 Rv2693c 抗体和 / 或抗 Rv1984c 抗体，至少有 1 种抗体呈阳性，则判定该待测样品是潜伏性肺结核感染阳性，否则为潜伏性肺结核感染阴性；

[0052] 所述抗体呈阳性的判断标准为若各个抗体的信噪比值处于如下值之间，则认为是该抗体呈阳性：Rv2693c 的抗体的信噪比值处于 2.30 和 2.35 之间，包括 2.30 和 2.35；Rv1984c 的抗体的信噪比值处于 2.24 和 2.38 之间，包括 2.24 和 2.38。

[0053] 所述抗 Rv2693c 抗体和 / 或抗 Rv1984c 抗体具体为 IgM。

[0054] 所述信噪比值的计算公式为：

\[
\text{SNR} = \frac{S - B}{\sigma}
\]

[0055] 式中，S 和 B 分别代表所述检测芯片中扫描仪直接显示的信号值和非样品点制区域的背景值，而 \(\sigma \) 则是代表该点原始信号的标准差，所述 \(\sigma \) 对应的实验次数为 3 次，所述 S 和 B 值是用扫描仪在 635nm 通道扫描得到的；所述扫描仪为 GenePix。

[0056] 所述试剂盒中，所述试剂盒还包括配合检测芯片一起使用的试剂，所述试剂包括下述 1)-4)。

[0058] 1) pH 7.4 PBS 溶液，其组成为：

NaCl 8.0 g/L
KH\textsubscript{2}PO\textsubscript{4} 0.2g/L
Na\textsubscript{2}HPO\textsubscript{4}•12H\textsubscript{2}O 2.9 g/L
KCl 0.2 g/L

溶剂为 ddH\textsubscript{2}O；

[0060] 2) pH 7.4 的 PBST 溶液，其组成为：

[0061]
NaCl 8.0 g/L
KH₂PO₄ 0.2 g/L
Na₂HPO₄·12H₂O 2.9 g/L
KCI 0.2 g/L
Tween-20 0.5 mL/L
溶剂为 ddH₂O；

3) 含 BSA 的 pH 7.4 PBS 溶液：

BSA 10 g/L
NaCl 8.0 g/L
KH₂PO₄ 0.2 g/L
Na₂HPO₄·12H₂O 2.9 g/L
KCI 0.2 g/L
溶剂为 ddH₂O；

4) 荧光标记的抗人第二抗体。

所述抗人第二抗体具体为抗人的 IgM 第二抗体。
本发明的最后一个目的是提供上述任一所述试剂盒在制备具有鉴别、诊断、辅助诊断、筛查和／或辅助筛查潜伏性肺结核感染用途的产品中的应用。

附图说明

图 1 为所制备的 2 个抗原蛋白 Rv2693c, Rv1984c 的银染定量结果图。
图 2 为所制备的 2 个抗原蛋白 Rv2693c, Rv1984c 的 Western-Blotting 鉴定结果图。
图 3 为应用蛋白质芯片辅助诊断潜伏性肺结核感染的方法的特异性和敏感性统计结果图。

具体实施方式

下述实施例中所使用的实验方法如无特殊说明，均为常规方法。
下述实施例中所用的材料、试剂等，如无特殊说明，均可从商业途径得到。
实施例 1、蛋白质芯片的制备
（一）结核分支杆菌抗原蛋白 Rv2693c、Rv1984c 的制备
1、表达
由基因工程改造过的酿酒酵母利用半乳糖诱导过量表达，具体过程为：
首先从分支杆菌属结核分枝杆菌 (Mycobacterium M. tuberculosis) H37Rv 菌株（北京株）中，通过 PCR 从头克隆获得蛋白 Rv2693c、Rv1984c 的基因编码片段，通过 Invitrogen 公司的 BP 酶将片段连接到 pDONR221 载体（购自 Invitrogen）上，转化到大肠杆
菌 DH5-Alpha 中扩增，提取载体再通过 LR 酶 (Invitrogen) 换至经过改造的能够表达 GST 标签的 pEGH-A 载体（该载体在“Jian Zhu, Heng Zhu, et al; J. Virol. May 2009 vol. 83 no. 10 p5219-5231”中公开过，公众可从易广体共生生物科技有限公司获得）上，再次转化到大肠杆菌 DH5-Alpha 中扩增，提取质粒转化到 Pep4 酿酒酵母菌株（该菌株在文献“Heng Zhu, Michael Snyder, et al; Nature Genetics 26, 283 – 289 (2000) doi:10.1038/81576”中公开过，公众可从易广体共生生物科技有限公司获得）中。诱导培养基中培养，待其 OD600 为 0.6-0.8 时，加入终浓度为 2g/L 的半乳糖，诱导 6h，4000rpm 离心回收菌，-80℃保存。

[0077] PCR 从头克隆中所使用的 PCR 引物序列如下所示：

[0078] 扩增 Rv2693c 蛋白的基因编码片段的引物对：

[0079] 上游引物：GGGACAAATTTTGATACAAAAAAGCAGGCTTAAACCCAGCAGCTAGC

[0080] 下游引物：GGGACCACCTTTGCATACGAAGAAGCTGAGTTACTACTAGCCGCGGCGT

[0081] 扩增 Rv1984c 蛋白的基因编码片段的引物对：

[0082] 上游引物：GGGACAAATTTTGATACAAAAAAGCAGGCTTAAACCCAGCAGCTAGC

[0083] 下游引物：GGGACCACCTTTGCATACGAAGAAGCTGAGTTACTACTAGCCGCGGCGT

[0084] 每 mL 诱导培养基（溶剂为水）中含有的组分如表 1 所示：

[0085] 表 1

<table>
<thead>
<tr>
<th>成分</th>
<th>货号及厂家</th>
<th>质量（g/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>YNB</td>
<td>Y1251 SIGMA</td>
<td>1.7</td>
</tr>
<tr>
<td>Ammonium Sulfate</td>
<td>A4418 SIGMA</td>
<td>5</td>
</tr>
<tr>
<td>SC-URA mix</td>
<td>SIGMA</td>
<td>2</td>
</tr>
<tr>
<td>Dextrose mix</td>
<td>G0643 SIGMA</td>
<td>20</td>
</tr>
</tbody>
</table>

[0087] 2. 纯化

[0088] 1). 准备裂解液：

[0089] 50ml 裂解液中加 50 μl 羟基乙醇，125 μl PMSF 及两片 Roche 蛋白抑制剂；

[0090] 2). 于 -80°C 冰箱中取出上述步骤 1 收集的菌（从 120ml 诱导培养基培养收集到的菌体），加 400 μl 氧化钠和 400 μl 裂解液，4°C 环境中震荡 30s，后置冰上 2min，重复四次；

[0091] 3). 取出后，11,000 rpm 离心 2min，取上清于一新的 15ml 离心管中；

[0092] 4). 重复 2 和 3 步四次，将上清收集于同一离心管中；

[0093] 5). 添加裂解液至 12mL 即原始诱导培养基体积的 1/10，同时用未加抑制剂的裂解液将谷胱甘肽 beads 清洗 3 次。12mL 裂解液中加入 300 μl 的 beads；

[0094] 6). 加入 beads 后的裂解液于 4°C 碎碎 2h；

[0095] 7). 11,000 rpm 离心 2min 后取上清保存于 4°C。Beads 用清洗液 I 和清洗液 II 各洗 3 次；

[0096] 8). 加 300 μl 洗脱液孵育 15min 后，离心取上清收集于一新的离心管中，重复一次。
得到了的洗脱液即有该蛋白。

上述纯化过程中所用到的缓冲液（溶剂均为水）的组成见表 2- 表 5。

表 2 溶解液（1L）

<table>
<thead>
<tr>
<th>成分</th>
<th>厂家</th>
<th>质量（g/L） & 体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>SIGMA</td>
<td>6.057g</td>
</tr>
<tr>
<td>NaCl</td>
<td>SIGMA</td>
<td>5.844g</td>
</tr>
<tr>
<td>EGTA</td>
<td>SIGMA</td>
<td>0.38g</td>
</tr>
<tr>
<td>Glycerol</td>
<td>SIGMA</td>
<td>100mL</td>
</tr>
</tbody>
</table>

表 3 洗涤液 I（1L）

<table>
<thead>
<tr>
<th>成分</th>
<th>厂家</th>
<th>质量（g/L） & 体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>SIGMA</td>
<td>6.057g</td>
</tr>
<tr>
<td>NaCl</td>
<td>SIGMA</td>
<td>5.844g</td>
</tr>
<tr>
<td>EGTA</td>
<td>SIGMA</td>
<td>0.38g</td>
</tr>
<tr>
<td>Glycerol</td>
<td>SIGMA</td>
<td>100mL</td>
</tr>
<tr>
<td>TritonX-100（100%）</td>
<td>SIGMA</td>
<td>1ml</td>
</tr>
<tr>
<td>羟基乙醇</td>
<td>SIGMA</td>
<td>1ml（即用即加）</td>
</tr>
<tr>
<td>PMSF</td>
<td>SIGMA</td>
<td>0.087g</td>
</tr>
</tbody>
</table>

表 4 洗涤液 II（1L）

<table>
<thead>
<tr>
<th>成分</th>
<th>厂家</th>
<th>质量（g/L） & 体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEPES</td>
<td>SIGMA</td>
<td>11.916g</td>
</tr>
</tbody>
</table>

表 5 洗脱液（1L）

<table>
<thead>
<tr>
<th>成分</th>
<th>厂家</th>
<th>质量（g/L） & 体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>SIGMA</td>
<td>5.844g</td>
</tr>
<tr>
<td>EGTA</td>
<td>SIGMA</td>
<td>0.38g</td>
</tr>
<tr>
<td>Glycerol</td>
<td>SIGMA</td>
<td>100mL</td>
</tr>
<tr>
<td>TritonX-100（100%）</td>
<td>SIGMA</td>
<td>1ml</td>
</tr>
<tr>
<td>羟基乙醇</td>
<td>SIGMA</td>
<td>1ml（即用即加）</td>
</tr>
<tr>
<td>PMSF</td>
<td>SIGMA</td>
<td>0.087g</td>
</tr>
<tr>
<td>成分</td>
<td>厂家</td>
<td>质量 (g/L) & 体积</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>HEPES</td>
<td>SIGMA</td>
<td>11.916g</td>
</tr>
<tr>
<td>NaCl</td>
<td>SIGMA</td>
<td>5.844g</td>
</tr>
<tr>
<td>Glycerol</td>
<td>SIGMA</td>
<td>100mL</td>
</tr>
<tr>
<td>Glutathione</td>
<td>SIGMA</td>
<td>3.070g</td>
</tr>
</tbody>
</table>

3. 鉴定
下述实验过程中，所述的溶剂或液体的百分数为体积百分数。
1) 材料制备
配置两块 12% 的 SDS-PAGE 胶，1.0mm，15 孔。一块银染，一块 Western Blotting。取上述纯化好的蛋白各 20 μl，加入 4 μl 6X Loading buffer，同时制备规格浓度梯度的 BSA 样品作为银染定量对照，煮样 5min。
2) 跑胶
依次每孔加入 12 μl 上述制备好的样品，BSA 样品样品 2.5 μl Marker (Takara) 记录次序。80V 30min, 140V 1h。
3) 银染操作步骤：
固定 :30min 或者更长时间 40% 乙醇 10% 冰醋酸加水到 250ml
致敏 :30min 75ml 乙醇 30% 乙醇 17g 乙酸钠 28.2g 三水乙酸钠 0.5g 硼酸硫酸钠 (大苏打) 加水到终体积 250ml
水洗 :3x10min
银染 :20min 0.625g AgNO3 100 μl 37% 甲醇（在使用前加入）加水到终体积 250ml
水洗 :2x1min
显色 :时间视情况而定 6.25g Na2CO3 50 μl 37% 甲醇（在使用前加入）加水到终体积 250ml
终止 :10min 1g 甘氨酸加水到终体积 250ml
保存 :1% 冰醋酸，4℃
4) Western-Blotting 步骤：
转膜 :15V 40min (半干转, Bio-Rad)。转膜缓冲液 :甘氨酸 2.9g；Tris 5.8g；SDS 0.37g；甲醇 200ml；加 ddH2O 定容至 1000ml
封闭 :5% 脱脂牛奶 (Bio-Rad) 1h。
第一抗体孵育: Anti-GST 鼠抗 (Novagen) 终浓度 1 μg/ml 1h
第二抗体孵育: 羊鼠抗荧光 800通道 (Odyssey) 终浓度 1 μg/ml 1h
Odyssey 扫描仪扫描，保存图片。
进行银染定量和 Western-Blotting 鉴定的结果分别如图 1 和图 2 所示。图 1 结果表明所制备的 Rv2693c 和 Rv1984c 蛋白的量均为 50 μg/ml；图 2 结果证明，所制备的 Rv2693c 和 Rv1984c 蛋白正确。
经测序，所制备的 Rv2693c，Rv1984c 蛋白分别依次具有序列表中 SEQ ID No.1-2
所示的氨基酸序列。

[0131] （二）预点抗原的蛋白质芯片的制备
[0132] 在含上述制备的 50 μg/ml 的 Rv2693c 抗原蛋白的洗脱液溶液中，加入终浓度为
25%（体积百分比）的甘油、0.02%（体积百分比）的 Tween20、0.05mg/ml 的 BSA 和 0.1g/
L 的 NaCl。采用生物芯片点样仪将上述混合液点于载体玻片（载体玻片为商品化的三维 H
载体玻片，购自北京博奥生物芯片有限责任公司）上，每点点样约 1mL, 2 个平行点。采用生物
芯片点样仪（购自北京博奥生物芯片有限责任公司）点制。

[0133] 将上述 Rv2693c 抗原蛋白替换为 Rv1984c 抗原蛋白（均为 50 μg/ml）、作为阳性对
照的 IgM (1mg/ml) 标准品或 Cy5 标记抗人第二抗体（20 μg/ml），混合液中其它组分和终浓
度不变，制备出分别含 Rv1984c 抗原蛋白、IgM 标准品或 Cy5 标记抗人第二抗体的混合液。

[0134] 以上述相同的点样方法，将分别含 Rv1984c 抗原蛋白、IgM 标准品或 Cy5 标记抗人第
二抗体的混合液点于上述同一载体玻片上，形成微阵列，每玻片可点 12 个重复平行封闭区
间。点样结束后贴上 12 个孔的塑料围栏，并保持在 35% RH 湿度 4℃环境中 16h 后，将玻片
放置于塑料盒中封口 -80℃低温保存。

[0135] 实施例 2：应用蛋白质芯片辅助诊断潜伏性肺结核感染
[0136] （一）待测血清样品的准备
[0137] 全血标本于室温放置 2 小时或 4℃过夜后于 1000g 离心 20 分钟左右，取上清即可
立即检测；或进行分装，并将标本放于 -20℃或 -80℃保存，但应避免反复冻融。4℃解冻后
的样品应再次离心，然后检测。

[0138] （二）诊断过程中所涉及的各种缓冲液及试剂的配制
[0139] (1) 样品稀释液（见表 6）：pH 7.4 PBS 溶液
[0140] 表 6

<table>
<thead>
<tr>
<th>样品稀释液</th>
<th>质量（g）</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>8.0</td>
</tr>
<tr>
<td>K2HPO4</td>
<td>0.2</td>
</tr>
<tr>
<td>Na2HPO4·12H2O</td>
<td>2.9</td>
</tr>
<tr>
<td>KCl</td>
<td>0.2</td>
</tr>
<tr>
<td>ddH2O</td>
<td>加至 1000 mL</td>
</tr>
</tbody>
</table>

[0141] (2) 洗涤液（见表 7）：pH 7.4 的 PBST 溶液
[0142] 表 7

[0143] [0144]
<table>
<thead>
<tr>
<th>洗涤液</th>
<th>质量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>8.0</td>
</tr>
<tr>
<td>K_2HPO_4</td>
<td>0.2</td>
</tr>
<tr>
<td>Na_2HPO_4·12H_2O</td>
<td>2.9</td>
</tr>
<tr>
<td>KC1</td>
<td>0.2</td>
</tr>
<tr>
<td>Tween-20</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>ddH_2O</td>
<td>加至 1000 mL</td>
</tr>
</tbody>
</table>

(3) 芯片封闭液（见表 8）：含 BSA 的 pH 7.4 PBS 溶液

表 8

<table>
<thead>
<tr>
<th>封闭液</th>
<th>质量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>10</td>
</tr>
<tr>
<td>NaCl</td>
<td>8.0</td>
</tr>
<tr>
<td>K_2HPO_4</td>
<td>0.2</td>
</tr>
<tr>
<td>Na_2HPO_4·12H_2O</td>
<td>2.9</td>
</tr>
<tr>
<td>KC1</td>
<td>0.2</td>
</tr>
<tr>
<td>ddH_2O</td>
<td>加至 1000 mL</td>
</tr>
</tbody>
</table>

(4) Cy5 标记抗人第二抗体的浓缩液：使用市售的抗人 IgM–Cy5 荧光标记二抗，稀释至浓度为 1mg/ml, 分装于避光小管。

（三）应用蛋白质芯片辅助诊断潜伏性肺结核感染的方法

1. 具体操作步骤
 1) 将实施例 1 点制好密封的芯片从 -80°C 取出，室温复温 10 分钟。
 2) 封闭：将芯片放入洗涤盒，加入约 50ml 芯片封闭液（见表 8），摇床 50rpm，室温 1h。
 3) 快速甩掉芯片上多余的液体，置于湿盒内。
 4) 待测样品的稀释与加样：将待测血清样品按体积比 1:100 用上述配制的样品稀释液（见表 6）稀释，取 30 μL 稀释后的含待测血清的溶液加入到封闭的围栏封闭空间中，反应 1h，室温。待检测样品临用前 15 分钟内配制。
 5) 将芯片从湿盒中取出，置于洗涤盒，加入约 50ml 上述配制的洗涤液，摇床 50rpm，室温 5min，重复 3 次。
 6) 快速甩掉芯片上多余的液体，置于湿盒内。
 7) 每个封闭空间加入 30 μL 已经稀释至终浓度 1 μg/ml 的 Cy5 荧光抗人二抗于芯
片上，避光反应 1h。

【0159】8) 将芯片从湿盒中取出，置于洗涤盆，加入约 50ml 上述配制的洗涤液，摇床
50rpm，室温 5min，重复 3 次。再用约 50ml 超纯水洗一次，5min。

【0160】9) 离心干燥，用 Genepix 扫描仪在 635nm 通道下读取数据。

【0161】2. 待测样品分别对 2 种抗原蛋白抗性被判定

【0162】用 Genepix 扫描仪在 635nm 通道扫描得到的结果是通过点样点的信噪比（SNR）来
进行衡量，点样点的信噪比（SNR）计算公式为：

$$\text{SNR} = \frac{S - B}{\sigma}$$

【0163】式中，S 和 B 分别代表芯片中原基的信号值（是扫描仪直接显示的数值）和背景
值（非样品点制区域的信号值），而 σ 则是代表该点原始信号的标准差（σ 对应的实验次
数为 3 次）。

【0164】将蛋白质芯片上点样点的信噪比值与下述表 9-表 10 的信噪比区间（所述信噪比
区间包括所给的信噪比区间的两端值）进行对比，以进行待测样品对相应抗原抗性的阳
性、阴性结果的判定：

【0165】抗 Rv2693c（见表 9）：

【0166】表 9

<table>
<thead>
<tr>
<th>信噪比区间</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.30, 2.35)</td>
<td>阳性</td>
</tr>
<tr>
<td>(2.12, 2.20)</td>
<td>阴性</td>
</tr>
</tbody>
</table>

【0167】抗 Rv1984c（见表 10）：

【0168】表 10

<table>
<thead>
<tr>
<th>信噪比区间</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.24, 2.38)</td>
<td>阳性</td>
</tr>
<tr>
<td>(2.09, 2.19)</td>
<td>阴性</td>
</tr>
</tbody>
</table>

【0169】3. 待测样品检验结果的判定

【0170】判定标准：

【0171】与正常未患有任何疾病的人相比，潜伏性肺结核感染者中，抗 Rv2693c 抗体水平
和抗 Rv1984c 抗体水平中至少一种抗体显著升高，具体表现为：

【0172】如果待测样品的检测结果中，抗 Rv2693c 抗体水平和抗 Rv1984c 抗体中至少有 1
种抗体呈阳性（判断抗体是否为阳性的标准：实施例 1 制备的蛋白质芯片上同一抗原的 2
个平行点样点都判定为阳性时，该抗体为阳性。），则判定该待测样品是潜伏性肺结核感染
阳性，否则为潜伏性肺结核感染阴性。

【0173】（四）、应用蛋白质芯片辅助诊断潜伏性肺结核感染的方法的特异性和敏感性
采用200份潜伏性肺结核感染相关患者的血清（临床诊断为潜伏性肺结核感染的患者100份，健康人100份，血清样本由广东省结核病控制中心提供，血清样本的取得均经过患者及体检者的知情同意。）对实施例1的蛋白质芯片进行了特异性和敏感性检测，以上述判定标准判定待测者是否为潜伏性肺结核感染阳性。

[0178] 检测结果如图3所示。图1中横坐标假阳性率代表（1-特异性），纵坐标真阳性率代表敏感性。根据阳性似然比即敏感性/(1-特异性)计算得出实施例1的蛋白质芯片辅助诊断潜伏性肺结核感染的最佳工作点的特异性为80.3%，敏感性为75.6%，均大大高于现有技术中潜伏性肺结核感染诊断的指标。

[0179] 100份潜伏性肺结核感染病人中，80份被检测出阳性；100份健康人中，有24份被检测出阳性。
序列表

<110>广东体必康生物科技有限公司

<120>结核分支杆菌蛋白 Rv1984c 在制备诊断潜伏性肺结核感染的产品中的用途

<160>2

<210>1

<211>223

<212> PRT

<213>结核分枝杆菌 (Mycobacterium M. tuberculosis)

<400>1

Val Asn Ala Asn Arg Thr Ser Ala Gln Arg Leu Leu Ala Gln Ala Gly
1 5 10 15
Gly Val Ser Gly Leu Val Tyr Ser Ser Leu Pro Val Val Thr Phe Val
20 25 30
Val Ala Ser Ser Ala Ala Gly Leu Leu Pro Ala Ile Gly Phe Ala Leu
35 40 45
Ser Met Ala Gly Leu Ile Leu Leu Trp Arg Leu Leu Arg Arg Glu Ser
50 55 60
Ala Arg Pro Val Val Ala Gly Phe Cys Gly Val Ala Val Cys Ala Leu
65 70 75 80
Ile Ala Tyr Leu Val Gly Gln Ser Lys Gly Tyr Phe Leu Leu Gly Ile
85 90 95
Trp Met Ser Leu Leu Trp Ala Val Val Phe Thr Leu Ser Ile Leu Ile
100 105 110
Arg Arg Pro Ile Val Gly Tyr Leu Trp Ser Trp Leu Ser Gly Arg Asp
115 120 125

[0002]
Arg Ala Trp Arg Asp Val Ser Arg Ala Val Phe Ala Phe Asp Val Ala
130 135 140
Thr Leu Gly Trp Thr Leu Val Phe Ala Ala Arg Phe Ile Val Gln Arg
145 150 155 160
His Leu Tyr Asp Ala Asp Lys Thr Gly Trp Leu Gly Val Ala Arg Ile
165 170 175
Gly Met Gly Trp Pro Leu Thr Ala Leu Ala Ala Leu Ala Thr Tyr Ala
180 185 190
Ala Ile Lys Ala Ala Gln Arg Ala Ile Leu Ala Ser His Asp Ala Ala
195 200 205
Ala Val Gly Gly Ala Ala Glu Phe Asp Ala Asp Ala Gly Arg Glu
210 215 220

<210>2
<211>217
<212>PRT
<213>结核分枝杆菌（Mycobacterium M. tuberculosis）

<400>2

Met Thr Pro Arg Ser Leu Val Arg Ile Val Gly Val Val Val Ala Thr
1 5 10 15
Thr Leu Ala Leu Val Ser Ala Pro Ala Gly Gly Arg Ala Ala His Ala
20 25 30
Asp Pro Cys Ser Asp Ile Ala Val Val Phe Ala Arg Gly Thr His Gln
35 40 45
Ala Ser Gly Leu Gly Asp Val Gly Glu Ala Phe Val Asp Ser Leu Thr
50 55 60
Ser Gln Val Gly Gly Arg Ser Ile Gly Val Tyr Ala Val Asn Tyr Pro
65 70 75 80
Ala Ser Asp Asp Tyr Arg Ala Ser Ala Ser Ala Ser Asn Gly Ser Asp Ala
85 90 95

[0003]
Ser Ala His Ile Gln Arg Thr Val Ala Ser Cys Pro Asn Thr Arg Ile
100 105 110
Val Leu Gly Gly Tyr Ser Gln Gly Ala Thr Val Ile Asp Leu Ser Thr
115 120 125
Ser Ala Met Pro Pro Ala Val Ala Asp His Val Ala Ala Val Ala Leu
130 135 140
Phe Gly Glu Pro Ser Ser Gly Phe Ser Ser Met Leu Trp Gly Gly Gly
145 150 155 160
Ser Leu Pro Thr Ile Gly Pro Leu Tyr Ser Ser Lys Thr Ile Asn Leu
165 170 175
Cys Ala Pro Asp Asp Pro Ile Cys Thr Gly Gly Gly Asn Ile Met Ala
180 185 190
His Val Ser Tyr Val Gln Ser Gly Met Thr Ser Gln Ala Ala Ala Thr Phe
195 200 205
Ala Ala Asn Arg Leu Asp His Ala Gly
210 215