发明名称
粘接剂涂布装置

摘要
本发明提供粘接剂涂布装置，能提高通用性。粘接剂涂布装置 (10) 包括：包括机器人手臂 (12a) 的机器人 (12)；用于设置转子 (56) 的转子组件 (14)；包括能安装收纳有粘接剂的喷筒 (58) 的支架部 (16a)；将安装于该支架部的喷筒 (58) 中的粘接剂喷出的、能够装配于机器人手臂 (12a) 末端的喷嘴 (16)；对规定压力的压缩空气向安装于喷嘴 (16) 的支架部 (16a) 的喷筒 (58) 中的供给进行接通或切断切换控制的电磁阀 (22)；控制机器人 (12) 的动作的机器人控制器 (50)；将电磁阀 (22) 的接通或切断切换控制及机器人控制器 (50) 对机器人 (12) 的动作控制结合起来控制的上位控制器 (52)。
1. 一种粘接剂涂布装置，其向对象物的对象面涂布粘接剂，所述粘接剂涂布装置的特征在于，
所述粘接剂涂布装置具有：
机器人，其具备机器人手臂；
对象物用夹具，其用于设置具备所述对象面的所述对象物；
粘接剂注入构件，其具备；能够安装收纳有所述粘接剂的喷筒的支架部；活塞，其与安装于支架部的喷筒内周围紧贴，且能够在喷筒内滑动，将粘接剂推出；以及喷嘴，其能够装配于喷筒的末端，喷出粘接剂，所述粘接剂注入构件将安装于该支架部的所述喷筒中的所述粘接剂喷出，并且所述粘接剂注入构件能够装配于所述机器人的所述机器人手臂的末端；第1温度保持构件，其用于将从所述粘接剂注入构件喷出的所述粘接剂的温度保持在希望的范围内；
第2温度保持构件，其用于将在设置于所述对象物用夹具的所述对象物的所述对象面上涂布的所述粘接剂的温度保持在希望的范围内；
供给控制构件，其对来自流体供给构件的流体向安装于所述粘接剂注入构件的所述支架部的所述喷筒中的供给进行接收或断开切换控制，在将流体向喷筒内的供给切换成断开的期间，喷筒中的粘接剂不从喷嘴喷出，另一方面，在将流体向喷筒内的供给切换成接通时，活塞在喷筒中滑动向喷嘴侧，并将喷筒中的粘接剂推出，粘接剂被从喷嘴喷出，所述流体供给构件以规定压力供给流体；
机器人控制构件，其对所述机器人的动作进行控制；和
总结控制构件，其将由所述供给控制构件进行的所述接通或断开切换控制、和由所述机器人控制构件对所述机器人的动作控制联合起来进行控制。

2. 根据权利要求1所述的粘接剂涂布装置，其特征在于，
所述供给控制构件对所述供给控制构件和所述机器人控制构件进行联合控制，使得所述机器人通过一边使所述机器人手臂动作，一边使装配于所述机器人手臂末端的所述粘接剂注入构件喷出所述粘接剂，来进行向设置于所述对象物用夹具的所述对象物的所述对象面上涂布所述粘接剂的涂布操作。

3. 根据权利要求2所述的粘接剂涂布装置，其特征在于，
所述粘接剂涂布装置还具有：
工具，其能够装配于所述机器人的所述机器人手臂的末端；
机器人侧连接部件，其设置于所述机器人的所述机器人手臂的末端；
第1连接部件，其设置于所述粘接剂注入构件，能够与所述机器人侧连接部件连接；和
第2连接部件，其设置于所述工具，能够与所述机器人侧连接部件连接；
所述供给控制构件和所述机器人控制构件由所述供给控制控制构件进行联合控制，使得所述机器人通过一边使所述机器人手臂动作，一边通过在所述机器人侧连接部件连接所述第1连接部件使装配于所述机器人手臂末端的所述粘接剂注入构件喷出所述粘接剂，由此来进行所述涂布操作。

并且，在由所述供给控制控制构件的所述涂布控制操作结束后，所述机器人控制构件对所述机器人进行控制，使得通过解除所述机器人侧连接部件与所述第1连接部件的连接，从所述机器人手臂的末端卸下所述粘接剂注入构件，之后，通过在所述机器人
侧连接部件连接所述第 2 连接部件，在所述机器人手臂的末端装配所述工具，对在所述涂布操作中涂布有所述粘接剂的所述对象物的所述对象面进行规定操作。

4. 根据权利要求 3 所述的粘接剂涂布装置，其特征在于，
所述粘接剂涂布装置还具有：
载置台，其用于载置所述粘接剂注入构件；和
检测构件，其对检测对象物的重量进行检测，所述检测对象物包括载置于所述载置台上的所述粘接剂注入构件。

5. 根据权利要求 4 所述的粘接剂涂布装置，其特征在于，
所述粘接剂涂布装置还具有：
报警构件，当所述涂布操作开始之前由所述检测构件检测出的所述重量和所述涂布操作结束后由所述检测构件检测出的所述重量之差在希望的范围外时，所述报警构件报警该情况。

6. 根据权利要求 3 至 5 中任意一项所述的粘接剂涂布装置，其特征在于，
所述对象物用夹具构成能够设置所述对象物，所述对象物的凹部内侧具备所述对象面，
所述工具是具备能够在相互远离或靠近的方向上移动的 2 个把持部件，并能通过该 2 个把持部件把持粘接对象物的机器人手。

在由所述总括控制构件的所述联合控制进行的所述涂布操作后，且从所述机器人手臂的末端卸下所述粘接剂注入构件后，所述机器人控制构件对所述机器人进行控制，使得通过在所述机器人侧连接部件连接所述第 2 连接部件，从而在所述机器人手臂的末端装配所述机器人手，并进行作为所述规定操作的插入操作；所述插入操作为，由所述 2 个把持部件把持所述粘接对象物，将所述粘接对象物插入所述凹部中，所述凹部具备在所述涂布操作中涂布有所述粘接剂的所述对象物的所述对象面。

7. 根据权利要求 6 所述的粘接剂涂布装置，其特征在于，
所述粘接剂涂布装置还具有：
调整构件，其用于将装配于所述机器人的所述机器人手臂末端的所述机器人手的所述 2 个把持部件对所述粘接对象物的把持位置，调整到沿着与所述把持部件的移动方向正交的方向的大致中心位置，
所述机器人控制构件在所述插入操作中对所述机器人进行控制，使得由装配于所述机器人手臂末端的所述机器人手的所述 2 个把持部件把持所述粘接对象物并使其移动，在规定区域解除所述把持并放置所述粘接对象物，然后，当所述调整构件将所述粘接对象物的把持位置调整到所述大致中心位置时，由所述 2 个把持部件再次把持所述粘接对象物使其移动，并将所述粘接对象物插入具备在所述涂布操作中涂布有所述粘接剂的所述对象物的所述对象面的所述凹部中。

8. 根据权利要求 6 所述的粘接剂涂布装置，其特征在于，
所述机器人控制构件在所述插入操作结束后，对所述机器人进行控制，使得通过装配于所述机器人手臂末端的所述机器人手，进行将被插入所述对象物的所述凹部中的所述粘接对象物的插入方向末端侧的相反对侧的表面按下的按下操作。

9. 根据权利要求 7 所述的粘接剂涂布装置，其特征在于，
所述机器人控制构件在所述插入操作结束后，对所述机器人进行控制，使得通过装配
于所述机器人手臂末端的所述机器人手，进行将被插入所述对象物的所述凹部中的所述粘
接对象物的插入方向末端侧的相反侧的表面按下的按下操作。

10. 根据权利要求 2 至 5 中任一一项所述的粘接剂涂布装置，其特征在于，
所述对象物用夹具构成为能够设置所述对象物，所述对象物的凹部内侧具备所述对象
面，
所述总括控制构件对所述供给控制构件和所述机器人控制构件进行联合控制，使得所
述机器人在所述涂布操作中，将装配于所述机器人手臂末端的所述粘接剂注入构件的末端
插入到所述对象物的所述凹部的底部附近，之后，在使所述粘接剂注入构件的末端从所述
凹部的底部附近向开口侧移动期间，通过从所述粘接剂注入构件喷出所述粘接剂，向所述
凹部内侧所具备的所述对象面涂布所述粘接剂。

11. 根据权利要求 1 至 5 中任一一项所述的粘接剂涂布装置，其特征在于，
所述粘接剂注入构件具有能够装配于所述喷筒的末端的喷嘴，所述喷嘴具备将安装于
所述支架部的所述喷筒中的所述粘接剂喷出的喷出口，
所述喷嘴在末端具备槽部，所述槽部将从设在径向中心部的所述喷出口喷出的所述粘
接剂导向径向外周侧。

12. 根据权利要求 1 至 5 中任一一项所述的粘接剂涂布装置，其特征在于，
所述总括控制构件采用修正系数修正所述供给控制构件对来自所述流体供给构件的
所述流体的供给的接通切换时间，所述修正系数是对应安装于所述粘接剂注入构件的所述
支架部上的所述喷筒中的所述粘接剂量而预先设定的。
粘接剂涂布装置

技术领域
[0001] 本发明涉及一种向对象物的对象面涂布粘接剂的粘接剂涂布装置。

背景技术
[0002] 以往，有一种向对象物的对象面涂布粘接剂的粘接剂涂布装置是公知的（例如，参照专利文献 1）。在该粘接剂涂布装置中，圆筒喷嘴的外周面上有多个粘接剂喷出孔，这些喷出孔各自以独立的状态与分配器连接，从该分配器供给定量的粘接剂。并且，使圆筒喷嘴与转子磁铁同轴状地连接，以该状态在圆筒喷嘴和转子磁铁内插入对象物（永磁铁），在圆筒喷嘴侧嵌合后，从上述多个粘接剂喷出孔向对象物的对象面（内侧面）涂布粘接剂，同时使对象物向转子磁铁侧移动。当对象物的下端接近粘接剂喷孔时，减少粘接剂的喷出量，并且，当对象物的下端通过粘接剂喷出孔后，停止粘接剂的喷出。这样，转子磁铁的外周面与对象物的对象面之间的间隙注入粘接剂。

[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献 1：日本特开 2007-82345 号公报
[0006] 在上述现有技术中，使用了一种向对象物的对象面涂布粘接剂的专用粘接剂涂布装置。在使用这样的专用粘接剂涂布装置向对象物的对象面涂布粘接剂时，存在以下问题：不仅在换产调整作业、维修、清洗等方面费时费力，还会增加设备引进费用，缺乏通用性。

发明内容
[0007] 本发明鉴于上述问题而作出，其目的在于提供一种能够提高通用性的粘接剂涂布装置。
[0008] 为解决上述问题，根据本发明的第一技术方案，适用如下一种粘接剂涂布装置，该粘接剂涂布装置向对象物的对象面涂布粘接剂，并具有：机器人，其具备机器人手臂；对象物用夹具，其用于设置具备所述对象面的所述对象物；粘接剂注入构件，其具备能够安装收纳有所述粘接剂的喷筒的支架部，所述粘接剂注入构件将安装于该支架部的所述喷筒中的所述粘接剂喷出，并且所述粘接剂注入构件能够装配于所述机器人的所述机器人手臂的末端；第 1 温度保持构件，其用于将从所述粘接剂注入构件喷出的所述粘接剂的温度保持在希望的范围内；第 2 温度保持构件，其用于将所述对象物用夹具的所述对象物的所述对象面上涂布的所述粘接剂的温度保持在希望的范围内；供给控制构件，其对来自流体供给构件的所述流体向安装于所述粘接剂注入构件的所述支架部的所述喷筒中的供给进行接通或断开切换控制，所述流体供给构件以规定压力供给流体；机器人控制构件，其控制所述机器人的动作；总括控制构件，其将由所述供给控制构件进行的所述接通或切断切换控制、和由所述机器人控制构件对所述机器人的动作控制联合起来进行控制。
[0009] 根据本发明的粘接剂涂布装置，可提高通用性。
附图说明
[0010] 图 1 是示意性地表示一实施方式的粘接剂涂布装置的构成的立体图；
[0011] 图 2 是表示粘接剂涂布装置的机构性构成的方框图；
[0012] 图 3 是示意性地表示转子组夹具及转子的构成的俯视图；
[0013] 图 4 是示意性地表示喷嘴的构成的侧视图；
[0014] 图 5 是与从图 4 中的箭头 A 方向看的向视图对应的喷嘴的俯视图；
[0015] 图 6 是示意性地表示机器人手的构成的侧视图；
[0016] 图 7 是示意性地表示磁铁持换用夹头的构成的俯视图；
[0017] 图 8 是用于说明机器人进行的涂布操作的立体图；
[0018] 图 9(a) ～图 9(c) 是用于说明机器人进行的涂布操作的示意图；
[0019] 图 10 是用于说明机器人进行的插入操作的立体图；
[0020] 图 11(a) ～图 11(b) 是用于说明机器人进行的插入操作的侧视图；
[0021] 图 12(a) ～图 12(b) 是用于说明机器人进行的插入操作的侧视图；
[0022] 图 13 是用于说明机器人进行的插入操作的立体图；
[0023] 图 14 是用于说明机器人进行的插入操作的示意图；
[0024] 图 15(a) ～图 15(b) 是用于说明机器人进行的按下操作的示意图。
符号说明
[0026] 10 粘接剂涂布装置
[0027] 12 机器人
[0028] 12a 机器人手臂
[0029] 14 转子组夹具（对象物用夹具）
[0030] 16 喷嘴（粘接剂注入构件）
[0031] 16a 支架部
[0032] 16c 喷嘴
[0033] 18 气源
[0034] 20 调节器
[0035] 22 电磁阀（供给控制构件）
[0036] 24 加热器
[0037] 26 加热器
[0038] 28 加热器
[0039] 30 温度传感器
[0040] 32 温度传感器
[0041] 34 温度传感器
[0042] 36 温度调整器
[0043] 38 载置台
[0044] 40 重量传感器（检测构件）
[0045] 42 报知器（报知构件）
[0046] 46 机器人手（工具）
[0047] 46a 把持部件
具体实施方式

[0062] 如图 1 及图 2 所示，本实施方式的粘接剂涂布装置 10 是向设在转子 56（对象物）上的切槽 56a（四部）内表面（对象面）涂布粘接剂的装置，所述转子 56 装配于未图示的电机上。该粘接剂涂布装置 10 具有：机器人 12、转子组夹具 14（对象物用夹具）、喷枪 16（粘接剂注入构件）、气源 18、调节器 20、电磁阀 22（供给控制构件）、加热器 24、26、28、温度传感器 30、32、34、温度调整器 36、载台 38、重量传感器 40（检测构件）、报警器 42（报警构件）、磁铁组夹具 44、机器人手 46（工具）、磁铁持换用夹头 48（调整构件）、机器人控制器 50（机器人控制构件）、以及上位控制器 52（总括控制构件）。

[0063] 机器人 12 包括机器人手臂 12a。机器人 12 的动作由机器人控制器 50 控制。在本实施方式中，机器人 12 由下操作：在机器人手臂 12a 的末端装配喷枪 16，进行后述的涂布操作，在机器人手臂 12a 的末端装配机器人手 46，进行后述的插入操作及按压操作（具体在后叙述）。在机器人手臂 12a 的末端，设置有机器人侧 ATC（Auto Tool Changer）54，作为机器人侧连接部件。

[0064] 转子组夹具 14 是用于设置上述转子 56 的夹具。在本例中，如图 3 所示，在转子组夹具 14 上设有转子 56，所述转子 56 的上表面设有 8 个大致为长方体形状的切槽 56a。另外，在转子组夹具 14 上设有上述加热器 24 及温度传感器 30，用于防止涂布在转子 56 的切槽 56a 内表面的粘接剂凝固。通过这些加热器 24 及温度传感器 30 和上述温度调整器 36，使涂布在转子 56 的切槽 56a 内表面的粘接剂的温度保持在希望的范围内。

[0065] 如图 4 所示，喷枪 16 包括：支架部 16a、活塞 16b 以及喷嘴 16c。其中，所述支架部 16a 能够安装喷嘴 58，所述喷嘴 58 的中空状内部收纳了粘接剂，所述活塞 16b 与安装于支架部 16a 的喷嘴 58 内周面紧贴，且能够在喷嘴 58 内滑动，将粘接剂推出；所述喷嘴 16c 能够装配于喷嘴 58 的末端，喷出粘接剂。

[0066] 在支架部 16a 通过支承部件 62 设置有喷枪侧 ATC60（第 1 连接部件），所述喷枪侧 ATC60 能够与上述机器人侧 ATC54 连接。通过将该喷枪侧 ATC60 与机器人侧 ATC54 连接，
可将喷枪16装配到机器人手臂12a的末端。在支架部16a的外周面上，卷绕有上述加热器26，且设有上述温度传感器32，用于将喷嘴58中的粘接剂的粘度保持在希望的范围内。这些加热器26及温度传感器32通过固定部件64固定在支架部16a的外周面。由这些加热器26及温度传感器32和上述温度调整器36，使喷嘴58中的粘接剂的温度保持在希望的范围内。

【0067】在安装于支架部16a的喷嘴58的与喷嘴16c相反侧的端部，配置有气管（air tube）66的另一端，所述气管66的一端连接于所述气源18，且所述气管66与上述调节器20和电磁阀22连接。

【0068】气源18通过气管66供给压缩空气（流体）。调节器20调整由气源18供给的压缩空气的气压。由调节器20调整了气压的压缩空气，通过气管66以规定压力被供给。这些气源18和调节器20相当于权利要求书中记载的流体供给构件。电磁阀22通过对气管66的另一端侧进行开启关闭切换控制，对由气源18供给并由调节器20调整了气压的具有规定压力的压缩空气向喷嘴58中的供给进行接通或断开切换控制。

【0069】也就是说，通过电磁阀22封闭气管66的另一端侧，将压缩空气向喷嘴58中的供给切换成断开的期间，喷嘴58中的粘接剂不从喷嘴16c喷出。另一方面，通过电磁阀22开放气管66的另一端侧，将压缩空气向喷嘴58中的供给切换成接通时，压缩空气通过气管66向喷嘴58中的活塞16b上部侧的空隙被供给。这样，活塞16b在喷嘴58中滑动到喷嘴16c侧，并将喷嘴58中的粘接剂推出，粘接剂从喷嘴16c喷出。

【0070】如图5所示，喷嘴16c的末端包括喷出口161和槽部162。其中，所述喷出口161设有径向大致中心部，将喷嘴58中的粘接剂经内部管161a向外部喷出；所述槽部162将从喷出口161喷出的粘接剂导向径向外周侧。即，从喷出口161喷出的粘接剂通过沿槽部162移动被导向径向外周侧。另外，如图4所示，喷嘴16c中埋设有上述加热器28及温度传感器34，用于防止没有从喷出口161喷出而滞留在喷嘴16c中的粘接剂凝固。由这些加热器28及温度传感器34和上述温度调整器36，使喷嘴16c中滞留的粘接剂的温度保持在希望的范围内。

【0071】温度调整器36通过基于由上述温度传感器32检测出的温度信息控制上述加热器26，使安装于喷枪16的支架部16a的喷嘴58中的粘接剂的温度保持在希望的范围内，且通过基于由上述温度传感器34检测出的温度信息控制上述加热器28，使滞留于喷枪16的喷嘴16c中的粘接剂的温度保持在希望的范围内。这样，使从喷枪16的喷嘴16c喷出的粘接剂的温度保持在希望的范围内。即，加热器26、28、温度传感器32、34，以及温度调整器36相当于权利要求书中记载的第1温度保持构件。另外，温度调整器36通过基于由上述温度传感器30检测出的温度信息控制上述加热器24，使涂布于设置在转子组夹具14的转子56的切槽56a的内部表面的粘接剂的温度保持在希望的范围内。即，加热器24、温度传感器30以及温度调整器36相当于权利要求书中记载的第2温度保持构件。

【0072】载置台38是用于载置喷枪16的台，且该载置台38设有上述重量传感器40。重量传感器40对检测对象物的重量进行检测，所述检测对象物包括：载置于载置台38上的喷枪16，安装于喷枪16的支架部16a的喷嘴58，以及喷嘴58中的粘接剂等。重量传感器40所检测出的检测对象物的重量信息输入到上位控制器52中。

【0073】当后述的涂布操作开始前由重量传感器40检测出的检测对象物的重量，和涂布
操作结束后由重量传感器 40 检测出的检测对象物的重量之差，即涂布操作中从喷枪 16 的
喷嘴 16c 喷出的粘接剂的喷出量（涂布在设置于转子组夹具 14 的转子 56 的 8 个切槽 56a
的内表面的粘接剂的涂布量）在希望的范围外时，由上位控制器 52 控制报警器 42，以报警
该情况。

磁铁组夹具 44 是用于设置大致长方体形状的磁铁 68（粘接对象物）的夹具。本
实施例中，在磁铁组夹具 44 设置有 8 个磁铁 68。

如图 6 所示，机器人手 46 构成为，其末端包括能够在相互远离或靠近的方向上移动
的 2 个把持部件 46a，由这 2 个把持部件 46a，能够把持设置于磁铁组夹具 44 上的磁铁
68。在机器人手 46 的把持部件 46a 的相反侧端部，设置有能够与上述机器人侧 ATC54 连
接的手侧 ATC70（第 2 连接部件）。通过将该手侧 ATC70 与机器人侧 ATC54 连接，可将机器人
手 46 装配到机器人手臂 12a 的末端。

如图 7 所示，磁铁持换用夹头 48 包括能够相互远离或靠近的方向上移动的 2 个
把持部件 48a。该磁铁持换用夹头 48 通过 2 个把持部件 48a 把持置于这 2 个把持部件
48a 之间的规定区域 72 中的磁铁 68，可将机器人手 46 的 2 个把持部件 46a 把持磁铁 68
的把持位置调整成沿着与把持部件 46a 的移动方向正交的方向的大致中心位置。

机器人控制器 50 对机器人 12 的动作进行控制。

上位控制器 52 将电磁阀 22 对压缩空气向喷筒 58 中的供给的接通或断开切换控
制，和机器人控制器 50 对机器人 12 的动作控制联合起来进行控制。在上位控制器 52 的适
合的存储器中，存储有对应装置于喷枪 16 的支架部 16a 的喷嘴 58 中的粘接剂量而预先设
定的修正系数。在本实施方式中，喷嘴筒 58 中的粘接剂量分成多级（例如：4 级），并且，预
先设定并存储于各相对应的修正系数，即在电磁阀 22 对压缩空气向喷筒 58 中的供给的
接通切换时间（换言之，电磁阀 22 对气管 66 另一端的开放时间）中加入的时间信息。例
如，当喷嘴筒 58 中的粘接剂未使用时的量为 400cc 时，预先进行以下设定并存储：当喷筒
58 中的粘接剂量为 300cc～400cc 时设为第 1 级；当喷筒 58 中的粘接剂量为 200cc～300cc
时设为第 2 级；当喷筒 58 中的粘接剂量为 100cc～200cc 时设为第 3 级；当喷筒 58 中的粘
接剂量为 0cc～100cc 时设为第 4 级，1 级的修正系数为 0 秒（无实际性修正）；2 级的
修正系数为 0.05 秒；3 级的修正系数为 0.1 秒；4 级的修正系数为 0.15 秒。上位控
制器 52 根据安装于喷枪 16 的支架部 16a 的喷筒 58 中的粘接剂量，使用存储在上述适合的
存储器中的修正系数，修正电磁阀 22 对压缩空气向喷筒 58 中的供给的接通切换时间（换
言之，电磁阀 22 对气管 66 的另一端侧的开放时间）。

接着，参照图 8～图 15，对本实施例中机器人 12 所执行的一系列动作的一个例子
进行说明。

在图 8～图 15 中，机器人 12 在规定的动作开始指令被输入之后开始动作。首先，如图 8 及图 9 所示，机器人 12 使机
器人手臂 12a 的末端的机器人侧 ATC54 移动，并通过在机器人侧 ATC54 连接载置于上述载
置台 38 上的喷枪 16 的喷枪侧 ATC60，在机器人手臂 12a 的末端装配喷枪 16。然后，通过一
边使机器人手臂 12a 动作，一边使装配于机器人手臂 12a 的末端的喷枪 16 的喷嘴 16c 将安
装于支架部 16a 的喷筒 58 中的粘接剂喷出，从而进行向设置于转子组夹具 14 的转子 56 的
切槽 56a 的内表面涂布粘接剂的涂布操作。
在该涂布操作中，如图9所示，机器人12使喷嘴16c的末端向切槽56a的上部移动（参照图9(a)），将喷嘴16c的末端插入到切槽56a的底部附近（参照图9(b)），之后，在使喷嘴16c的末端从切槽56a底部附近向开口侧移动期间，通过喷嘴16c喷出粘接剂。向切槽56a的内表面涂布粘接剂（参照图9(c)）。另外，在图9(c)中，用符号S表示向切槽56a的内表面涂布的粘接剂。在向转子56的8个切槽56a的内表面依次进行上述动作后，结束涂布操作。

结束涂布操作后，机器人12使装配于机器人手臂12a的末端的喷枪16移动，并通过解除机器人侧ATC54和喷枪侧ATC60的连接，从机器人手臂12a的末端卸下喷枪16，并将该喷枪16载置于上述载置台38上。之后，如图10～图14所示，使机器人手臂12a的末端的机器人侧ATC54移动，并通过在机器人侧ATC54连接机器人手46的手侧ATC70，在机器人手臂12a的末端装配机器人手46。然后，作为规定操作，进行以下插入操作：由装配于机器人手臂12a的末端的机器人手46的2个把持部件46a把持设置于磁铁组夹具44上的磁铁68，并将该磁铁68插入在上述涂布操作中内表面涂布有粘接剂的转子56的切槽56a中。

在该插入操作中，机器人12如图11(a)及图11(b)所示，由机器人手46的2个把持部件46a在厚度方向上把持磁铁68并移动，如图12(a)所示，在上述区域72解除把持，将磁铁68放置于磁铁保持用夹头48上。于是，如图12(b)所示，由磁铁保持用夹头48的2个把持部件48a在宽度方向把持上述放置的磁铁68。这样，机器人手46的2个把持部件46a将磁铁68的把持位置调整到沿着与把持部件46a的移动方向正交的方向的磁铁68。之后，如图13所示，由机器人手46的2个把持部件46a，在厚度方向把持被调整了把持位置的磁铁68，并在上述涂布操作中内表面涂布有粘接剂的转子56的切槽56a的上部移动，如图14所示，将磁铁68插入该切槽56a中。这样，结束插入操作。

在结束插入操作后，机器人12如图15(a)及图15(b)所示，由装配于机器人手臂12a的末端的机器人手46的2个把持部件46a，进行将上述插入操作中插入到转子56的切槽56a中的磁铁68的插入方向末端侧的相反侧的表面接下的按下操作，将磁铁68收纳在切槽56a中。这样，结束按下操作。

在结束按下操作后，再次进行插入操作，由机器人手46的2个把持部件46a将磁铁68插入到下一个磁铁68的下一个切槽56a中。之后，再次进行按下操作，由机器人手46的2个把持部件46a将磁铁68收纳在切槽56a中。然后，重复进行插入操作和按下操作，在将磁铁68分别收纳在转子56的8个切槽56a中后，机器人12结束一系列动作。

说明如上所述的机器人12执行的一系列动作中的控制内容之一例。

也就是说，上位控制器52对电磁阀22及机器人控制器50进行联合控制，使得机器人12使装配于机器人手臂12a的末端的喷嘴16的喷嘴16c的末端向设置于转子组夹具14的转子56的切槽56a的上部移动，并将喷嘴16c的末端插入到切槽56a的底部附近，之后，在使喷嘴16c的末端从切槽56a底部附近向开口侧移动期间，通过喷嘴16c喷出粘接剂。来进行上述涂布操作。这样，将电磁阀22对压缩空气向喷嘴58中的供给的接通或断开切换控制和机器人控制器50对机器人12的动作控制联合起来进行控制。

然后，在由上位控制器52联合控制的涂布操作结束后，机器人控制器50对机器人
12 进行控制，使得从机器人手臂 12a 的末端卸下喷枪 16，并将该喷枪 16 悬置于载置台 38 上，之后，在机器人手臂 12a 的末端装配机器人手 46，进行作为规定操作的上述插入操作。具体地说，在插入操作中，对机器人 12 进行控制，使得由装配于机器人手臂 12a 的末端的机器人手 46 的 2 个把持部件 46a 来把持设于磁铁枪组夹具 44 的磁铁 68 使其移动，在区域 72 中解除把持，将磁铁 68 放置到磁铁持用夹头 48，然后，当磁铁持用夹头 48 将磁铁 68 的把持位置调整到上述大致中心位置时，由 2 个把持部件 46a 再次把持磁铁 68 使其移动，将磁铁 68 插入涂布操作中内表面涂布有粘接剂的转子 56 的切槽 56a 中。

[0089] 另外，在涂布操作结束后，若载置台 38 上载有喷枪 16，则此时的前述检测对象物的重量会由重量传感器 40 检测出，该被检测出的检测对象物的重量信息被输入上位控制器 52 中。于是，上位控制器 52 求出涂布操作开始前由重量传感器 40 检测出的检测对象物的重量、和涂布操作结束后由重量传感器 40 检测出的检测对象物的重量之差，并判断该差即在涂布操作中由喷枪 16 喷出的粘接剂的喷出量（涂布于转子 56 的 8 个切槽 56a 的内表面的粘接剂的涂布量）是否在希望的范围内。当该差在希望的范围内时，控制报警器 42，以报知该信息。

[0090] 机器人控制器 50 在涂布操作结束后，对机器人 12 进行控制，使得由装配于机器人手臂 12a 的末端的机器人手 46 的 2 个把持部件 46a 来进行上述按次操作。

[0091] 如以上所说明的，本实施方式的粘接剂涂布装置 10 具有：包括机器人手臂 12a 的机器人 12、设置有转子 56 的转子组夹具 14、能够装配于机器人手臂 12a 的末端的喷枪 16、电磁阀 22、温度传感器 34、控制机器人 12 的动作的机器人控制器 50、以及上位控制器 52。喷枪 16 包括能够安装收纳有粘接剂的喷筒 58 的支架部 16a，从喷嘴 16c 喷出安装于支架部 16a 的喷筒 58 中的粘接剂。在支架部 16a 设有加热器 26 及温度传感器 32，在喷嘴 16c 设有加热器 28 及温度传感器 34。通过这些加热器 26、28 及温度传感器 32、34 和温度调整器 36，能够防止喷枪 16 中的粘接剂凝固，且能够使喷枪 16 中的粘接剂的粘度保持大致均匀，因此，能够使喷枪 16 喷出的粘接剂的量大致均匀。其结果，能够使得向设置于转子组夹具 14 的转子 56 的切槽 56a 的内表面涂布的粘接剂的涂布量大致均匀。在转子组夹具 14 设有加热器 24 及温度传感器 30。通过这些加热器 24 及温度传感器 30 和温度调整器 36，使设置于转子组夹具 14 的转子 56 的切槽 56a 的内表面所涂布的粘接剂的温度保持在希望的范围内。由此，能够防止设置于转子组夹具 14 的转子 56 的切槽 56a 的内表面所涂布的粘接剂在上述插入操作前凝固。电磁阀 22 对压缩空气向喷筒 58 中的供给进行接通或断开切换控制，所述压缩空气由气源 18 供给并由调节器 20 调整气压而成为规定压力。上位控制器 52 将电磁阀 22 对压缩空气向喷筒 58 中的供给的接通或断开切换控制，和机器人控制器 50 对机器人 12 的动作控制联合起来控制。通过上述控制，机器人 12 可在机器人手臂 12a 的末端装配喷枪 16，顺利地进行向设置于转子组夹具 14 的转子 56 的切槽 56a 的内表面涂布粘接剂的涂布操作。

[0092] 这样，例如，在采用向转子 56 的切槽 56a 的内表面涂布粘接剂的专门化的专用粘接剂涂布装置，向转子 56 的切槽 56a 的内表面涂布粘接剂时，存在以下问题：不仅在换产调整作业、维修、清洁等方面费时费力，还会增加设备引进费用，缺乏通用性。针对以上问题，在本实施方式的粘接剂涂布装置 10 中，机器人 12 可在机器人手臂 12a 装配喷枪 16，向转子 56 的切槽 56a 的内表面涂布粘接剂，所以无需采用如上所述的专用粘接剂涂布装置，可
提高通用性。

[0093] 本实施方式特别是，上位控制器 52 对电磁阀 22 及机器人控制器 50 进行联合控制。使得机器人 12 通过一边使机器人手臂 12a 动作，一边使装配于机器人手臂 12a 末端的喷枪 16 喷出粘接剂，来进行向设置于转子组夹具 14 的转子 56 的切槽 56a 内表面涂布粘接剂的涂布操作。这样，可使机器人 12 确实地执行向转子 56 的切槽 56a 内表面涂布粘接剂的涂布操作。

[0094] 本实施方式特别是，具有：能够装配到机器人手臂 12a 末端的机器人手 46 具，设置于机器人手臂 12a 末端的机器人侧 ATC54，设置于喷枪 16 的喷枪侧 ATC60，设置于机器人手 46 的手侧 ATC70。喷枪侧 ATC60 及手侧 ATC70 能够与机器人侧 ATC54 连接。这样，可容易地相对于机器人手臂 12a 的末端装配或拆下喷枪 16 及机器人手 46，因此，可容易地将喷枪 16 换成机器人手 46，或将机器人手 46 换成喷枪 16。由上位控制器 52 对电磁阀 22 及机器人控制器 50 进行联合控制。使得机器人 12 通过一边使机器人手臂 12a 动作，一边通过在机器人侧 ATC54 连接喷枪侧 ATC60，使装配于机器人手臂 12a 末端的喷枪 16 喷出粘接剂，由此来进行上述涂布操作。这样，可使机器人 12 确实地执行涂布操作。机器人控制器 50 在由上述上位控制器 52 联合控制的涂布操作结束后，对机器人手 12 进行控制。使得通过解除机器人侧 ATC54 和喷枪侧 ATC60 的连接，从机器人手臂 12a 末端向下喷枪 16。之后，通过在机器人侧 ATC54 连接手侧 ATC70，在机器人手 12a 的末端装配机器人手 46，对在涂布操作中涂布有粘接剂的转子 56 的切槽 56a 的内表面进行规定操作。这样，在涂布操作结束后，将喷枪 16 换成机器人手 46，可使机器人 12 确实地在涂布操作中涂布有粘接剂的转子 56 的切槽 56a 的内表面执行规定操作。

[0095] 本实施方式特别是，上位控制器 52 对电磁阀 22 及机器人控制器 50 进行联合控制。使得机器人 12 在上述涂布操作中，将装配于机器人手臂 12a 末端的喷枪 16 的喷嘴 16c 末端插入到转子 56 的切槽 56a 的底部附近。之后，在使喷嘴 16c 的末端从切槽 56a 的底部附近向开口侧移动期间，通过从喷嘴 16c 喷出粘接剂，向切槽 56a 的内表面涂布粘接剂。这样，在涂布操作中，可使机器人 12 确实地执行向转子 56 的切槽 56a 的内表面涂布粘接剂的动作。由于在将喷嘴 16c 插入切槽 56a 中时不会喷出粘接剂，而是在将喷嘴 16c 从切槽 56c 的底部附近拔出的步骤中喷出粘接剂，因此，减少了附着于喷嘴 16c 的喷出口 161 的上侧部分的粘接剂，使向各切槽 56a 的涂布量更均匀化。

[0096] 本实施方式特别是，具有：用于载置喷枪 16 的载置台 38，和对检测对象物的重量进行检测的重量传感器 40，所述检测对象物包括载置于载置台 38 上的喷枪 16。通过由重量传感器 40 检测检测对象物的重量，能够检测出安装于检测对象物所包括的喷枪 16 的支架部 16a 的喷嘴 58 中的粘接剂的剩余量。通过由重量传感器 40 检测，在上述涂布操作开始前检测对象物的重量，和涂布操作结束后检测对象物的重量，能够检测出从喷枪 16 喷出的粘接剂的喷出量（向转子 56 的切槽 56a 的内表面涂布粘接剂的涂布量）。

[0097] 本实施方式特别是，具有报警器 42，当上述的涂布操作开始前由重量传感器 40 检测出的检测对象物的重量，和涂布操作结束后由重量传感器 40 检测出的检测对象物的重量之差在希望的范围内时，报警器 42 报知该情况。这样，能够确实地让使用者知道如下情况：由于喷枪 16 中的粘接剂发生堵塞等，在涂布操作中从喷枪 16 喷出的粘接剂的喷出量过少，或在涂布操作中从喷枪 16 喷出的粘接剂的喷出量过多。
说明书

[0098] 本实施方式特别是，机器人控制器 50 在由上位控制器 52 联合控制的涂布操作结束，并从机器人手臂 12a 的末端卸下喷嘴 16 后，控制机器人 12，使得通过在机器人侧 ATC54 连接手侧 ATC70，在机器人手臂 12a 的末端装配机器人 46，并由机器人手 46 的 2 个把持部件 46a 把持磁铁 68，进行将磁铁 68 插入在涂布操作中内表面涂布有粘接剂的转子 56 的切槽 56a 中的插入操作。这样，在涂布操作结束后，将喷嘴 16 换成机器人手 46，并由机器人手 46 的 2 个把持部件 46a 把持磁铁 68，从而使机器人确实地执行将磁铁 68 插入在涂布操作中内表面涂布有粘接剂的转子 56 的切槽 56a 中的插入操作。

[0099] 本实施方式特别是，具有磁铁持换用夹头 48，该磁铁持换用夹头 48 用于将装配于机器人手臂 12a 的末端的机器人手 46 的 2 个把持部件 46a 对磁铁 68 的把持位置调整到沿着与把持部件 46a 的移动方向正向的方向的大致中心位置。机器人控制器 50 在上述插入操作中，对机器人手 12 进行控制，使得由装配于机器人手臂 12a 末端的机器人手 46 的 2 个把持部件 46a 把持磁铁 68 使其移动，在规定区域 72 中解除把持并放置磁铁 68，然后，当磁铁持换用夹头 48 将磁铁 68 的把持位置调整到上述大致中心位置时，由 2 个把持部件 46a 再次把持磁铁 68 使其移动，将磁铁 68 插入在涂布操作中内表面涂布有粘接剂的转子 56 的切槽 56a 中。这样，可使机器人 12 在插入操作中确实地执行以下动作：由机器人手 46 的 2 个把持部件 46a 把持磁铁 68 使其移动，在规定区域 72 中解除把持，放置磁铁 68，然后，当磁铁持换用夹头 48 使用磁铁 68 的把持位置定于中心时，由 2 个把持部件 46a 再次把持磁铁 68 使其移动，将磁铁 68 插入转子 56 的切槽 56a 中。

[0100] 本实施方式特别是，机器人控制器 50 在上述插入操作结束后，控制机器人 12，使得其进行按下操作：通过装配于机器人手臂 12a 的末端的机器人手 46，将插入转子 56 的切槽 56a 中的磁铁 68 的插入方向末端侧的相反对侧的表面按下。这样，在插入操作结束后，可使机器人 12 确实地执行将插入转子 56 的切槽 56a 中的磁铁 68 的插入方向末端侧的相反侧的表面按下的按下操作。

[0101] 本实施例方式特别是，喷嘴 16 具有能够装配于喷嘴 58 的末端的喷嘴 16c，所述喷嘴 16c 包括将安装于支架部 16a 的喷嘴 58 中的粘接剂喷出的喷出口 161。喷嘴 16c 的末端包括槽部 162，所述槽部 162 将从设在径向中心部的喷出口 161 喷出的粘接剂导向径向外周侧。因此，在将喷嘴 16c 插入切槽 56a 内部的状态下喷出粘接剂时，粘接剂沿着槽部 162 被引导至喷嘴 16c 的整周，在切槽 56a 的内表面均匀地涂布粘接剂。

[0102] 本实施方式特别是，可获得以下效果。即，一般，随着喷嘴 58 中粘接剂量的减少，喷嘴 58 中的空隙体积加大，因此，用于从喷嘴 16 喷出定量的粘接剂的向喷嘴 58 中供给压缩空气的时间变长。于是，在本实施方式中，上位控制器 52 使用对应于喷嘴 58 中粘接剂量而预先设定的修正系数，修正电磁阀 22 对压缩空气向喷嘴 58 中的供给的接通切换时间。这样，即使喷嘴 58 中的粘接剂量减少时，也可从喷嘴 16 喷出定量的粘接剂。

[0103] 另外，实施方式并不仅限于上述内容，可在不脱离其意图及技术思想的范围内做种种变更。例如：在上述实施方式中，除了控制机器人 12 动作的机器人控制器 50 以外，另设有上位控制器 52，由该上位控制器 52 使以下控制互为同步来进行控制：电磁阀 22 对压缩空气向喷嘴 58 中的供给的接通或切断切换控制，以及机器人控制器 50 对机器人 12 的动作控制。但不不仅限于这些控制，即，也可使机器人控制器在控制机器人 12 的动作的同时，使电磁阀 22 对压缩空气向喷嘴 58 中的供给的接通或切断切换控制，以及机器人控制器 50
对机器人 12 的动作控制互为同步来进行控制。该情况下，机器人控制器相当于权利要求书中记载的机器人控制构件及总括控制构件。

【0104】此外，虽然这里没有一一例举，但上述实施方式可在不脱离其意图的范围内作种种变更进行实施。
图3
图 9

图 10
图 12