(19) 中華民國智慧財產局
(12) 發明說明書公告本
(11) 證書號數：TW 1436088 B
(45) 公告日： 中華民國 103 (2014) 年 05 月 01 日

(21) 申請案號：100127084
(22) 申請日： 中華民國 100 (2011) 年 07 月 29 日
(51) Int. Cl.： G02B13/00 (2006.01) G02B13/22 (2006.01)
G02B9/34 (2006.01)
(71) 申请人： 大立光電股份有限公司 (中華民國) LARGAN PRECISION CO., LTD. (TW)
台北市南屯區精科路 11 號
(72) 發明人： 周明達 CHOU, MING TA (TW)； 蔡宗翰 TSAI, TSUNGHAN (TW)
(74) 代理人： 蔡坤財； 李世章
(56) 參考文獻：
TW 200712540A
JP 2005-351972A
JP 2009-3443A
審查人員：陳輝安
申請專利範圍項數：18 項 圖式數：16 共 0 頁

(54) 名稱
光学影像擷取鏡頭組
OPTICAL IMAGE CAPTURING LENS ASSEMBLY
(57) 摘要
一種光学影像擷取鏡頭組，由物側至像側依序包含四枚獨立非黏合透鏡：第一透鏡、第二透
鏡、第三透鏡以及第四透鏡。第一透鏡具有正屈折力，其物側表面為凸面。第二透鏡具有負屈折
力，其物側表面為凹面、像側表面為凸面。第三透鏡具有正屈折力並為塑膠材質，其物側表面及像
側表面皆為凸面且皆為非球面。第四透鏡具有負屈折力並為塑膠材質，其物側表面為凹面、像側表
面為凸面且皆為非球面。藉此，可有效縮小光學影像擷取鏡頭組的總長度，降低其敏感度，並提升
成像品質。

An optical image capturing lens assembly comprises four independent non-cemented lens elements, in
order from an object side to an image side: the first lens element with positive refractive power having a
convex object-side surface, the second lens element with negative refractive power having a concave object-
side surface and a convex image-side surface, the third lens element with positive refractive power made of
plastic material and having a convex object-side surface and a convex image-side surface, both being
aspheric, the fourth lens element with negative refractive power made of plastic material and having a
concave object-side surface and a convex image-side surface, both being aspheric. By such arrangement,
total track length and the photosensitivity of the image capturing lens system can also be effectively reduced
while retaining high image quality.
100...光圈
110...第一透镜
111...物侧表面
112...像侧表面
120...第二透镜
121...物侧表面
122...像侧表面
130...第三透镜
131...物侧表面
132...像侧表面
140...第四透镜
141...物侧表面
142...像侧表面
150...成像面
160...红外线滤除
滤光片
An optical image capturing lens assembly comprises four independent non-cemented lens elements, in order from an object side to an image side: the first lens element with positive refractive power, having a convex object-side surface, the second lens element with negative refractive power having a concave object-side surface and a convex
image-side surface, the third lens element with positive refractive power made of plastic material and having a convex object-side surface and a convex image-side surface, both being aspheric, the fourth lens element with negative refractive power made of plastic material and having a concave object-side surface and a convex image-side surface, both being aspheric. By such arrangement, total track length and the photosensitivity of the image capturing lens system can also be effectively reduced while retaining high image quality.
四、指定代表圖：

(一) 本案指定代表圖為：第 1 圖。

(二) 本代表圖之元件符號簡單說明：

光圈：100
第一透鏡：110
物側表面：111
像側表面：112
第二透鏡：120
物側表面：121
像側表面：122
第三透鏡：130
物側表面：131
像側表面：132
第四透鏡：140
物側表面：141
像側表面：142
成像面：150

紅外線濾除濾光片：160

五、本案若有化學式時，請揭示最能顯示發明特徵的化學式：
六、發明說明：

【發明所屬之技術領域】

本發明是有关於一種光學影像識取鏡頭組，且特別是有關於一種應用於電子產品上的小型化光學影像識取鏡頭組。

【先前技術】

近年來，隨著具有攝像功能之可攜式電子產品的興起，小型化光學影像識取鏡頭組的需求日益提高。而一般光學影像識取鏡頭組的感光元件不外乎是感光耦合元件（Charge Coupled Device, CCD）或互補性氧化金屬半導體元件（Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor）兩種。且由於製程技術的精進，使得感光元件的畫素尺寸縮小，小型化光學影像識取鏡頭組逐漸往高畫素領域發展，因此，對成像品質的要求也日益增加。

傳統搭載於可攜式電子產品上的小型化光學影像識取鏡頭組，多採用三片式透鏡結構為主，光學影像識取鏡頭組由物側至像側依序為一具正屈折力的第一透鏡、一具負屈折力的第二透鏡及一具正屈折力的第三透鏡，如美國專利第 7,145,736 號所示。

但由於製程技術的進步與電子產品往輕薄化發展的趨勢下，感光元件畫素尺寸不斷地縮小，使得鏡頭組對成像品質的要求更加提高，習知的三片式透鏡組將無法滿足更高階的光學影像識取鏡頭組。此外，美國專利第 7,365,920 號揭露了一種四片式透鏡組，其中第一透鏡及第二透鏡係
以二片玻璃球面鏡互相黏合而成為 Doublet(雙合透鏡)，用以消除色差。但此方法有其缺點，其一，過多的玻璃球面鏡配置使得系統自由度不足，導致系統的總長度不易縮短；其二，玻璃鏡片黏合的製程不易，容易形成製造上的困難。

【發明內容】

本發明之一態樣是在提供一種光學影像擷取鏡頭組，由物側至像側依序包含四枚獨立非黏合透鏡：第一透鏡、第二透鏡、第三透鏡以及第四透鏡。第一透鏡具有正屈折力，其物側表面為凸面。第二透鏡具有負屈折力，其物側表面為凹面、像側表面為凸面。第三透鏡具有正屈折力並為塑膠材質，其物側表面及像側表面皆為凸面且皆為非球面。第四透鏡具有負屈折力並為塑膠材質，其物側表面為凹面、像側表面為凸面，且其物側表面及像側表面皆為非球面。第三透鏡之物側表面曲率半徑為 R5，像側表面曲率半徑為 R6，第二透鏡與第三透鏡於光軸上的間隔距離為 T23，第三透鏡與第四透鏡於光軸上的間隔距離為 T34，其滿足下列條件：

\[-20 < \frac{R5}{R6} < -1.4;\]

\[0.1 < \frac{T23}{T34} < 6.5.\]

本發明之另一態樣是在提供一種光學影像擷取鏡頭組，由物側至像側依序包含四枚獨立非黏合透鏡：第一透鏡、第二透鏡、第三透鏡以及第四透鏡。第一透鏡具有正屈折力，其物側表面為凸面。第二透鏡具有負屈折力，其
物側表面為凹面、像側表面為凸面。第三透鏡具有正屈折力並為塑膠材質，其物側表面及像側表面皆為凸面且皆為非球面。第四透鏡具有負屈折力並為塑膠材質，其物側表面為凹面、像側表面為凸面，且其物側表面及像側表面皆為非球面。第一透鏡之折射率為 N1，第二透鏡之折射率為 N2，第三透鏡之物側表面曲率半徑為 R5、像側表面曲率半徑為 R6，其滿足下列條件：

\[-0.25 < N1-N2 < 0\]; \; \text{以及} \;
\[-0.1 < (R5+R6)/(R5-R6) < 1\].

第一透鏡具有正屈折力且其物側表面為凸面，係有助於縮短光學影像撿取鏡頭組的總長度。第二透鏡具有負屈折力，且其物側表面為凹面、像側表面為凸面，係可補正第一透鏡所產生的像差，並可修正光學影像撿取鏡頭組的像散。第三透鏡具有正屈折力，且其物側表面及像側表面皆為凸面，係可降低光學影像撿取鏡頭組對於誤差的敏感度。第四透鏡具有負屈折力，且其物側表面為凹面、像側表面為凸面，係有助於修正光學影像撿取鏡頭組的像散及高階像差，且具負屈折力之第四透鏡與具正屈折力之第三透鏡互相搭配，可產生望遠效果以縮短光學影像撿取鏡頭組之後焦距並減少其總長度。

當 R5/R6 滿足上述條件時，有助於調配適當第三透鏡之屈折力，且可降低光學影像撿取鏡頭組對於誤差之敏感度。

當 T23/T34 滿足上述條件時，可適當調配透鏡間的距離，有助於縮短光學影像撿取鏡頭組的總長度及其組裝。
當 N1-N2 滿足上述條件時，有利於第一透鏡與第二透
鏡於光學塑膠材質的選擇上獲得較合適的匹配。
當(R5+R6)/(R5-R6)滿足上述條件時，有助於調配適當
第三透鏡之屈折力，且可降低光學影像擷取鏡頭組對於誤
差之敏感度。

【實施方式】

本發明提供一種光學影像擷取鏡頭組，由物側至像側
依序包含第一透鏡、第二透鏡、第三透鏡以及第四透鏡，
且另包含一影像感測元件設置於成像面。其中，第一透鏡
至第四透鏡為四枚獨立且非黏合(Non-cemented)透鏡，意即
兩相鄰之透鏡並未相互黏合，而彼此間設有空氣間距。
由於黏合透鏡的製程較獨立且非黏合透鏡複雜，特別在兩
透鏡之黏接面需擁有高準度的曲面，以便達到兩透鏡黏合
時的高密合度，且在黏合的過程中，也可能因偏位而造成
黏貼密合度不佳，影響整體光學成像品質。因此，本拾像
透鏡系統提供四枚獨立且非黏合透鏡，以改善黏合透鏡所
產生的問題。

第一透鏡具有正屈折力，用以提供光學影像擷取鏡頭
組所需的部份屈折力，有助於縮短光學影像擷取鏡頭組的
總長度。第一透鏡之物側表面為凸面，像側表面則可為凹
面或凸面。當第一透鏡之物側表面為凸面、像側表面為凹
面時，有助於修正光學影像擷取鏡頭組之像散；而當第一
透鏡之物側表面及像側表面皆為凸面時，則有助於加強第
一透鏡正屈折力的配置，以進一步縮短光學影像擷取鏡頭
組的總長度。

第二透鏡具有負屈折力，可補正具有正屈折力的第一透鏡所產生的像差。第二透鏡之物側表面為凹面、像側表面為凸面，係有助於修正光學影像擷取鏡頭組的像散，以提升其成像品質。

第三透鏡具有正屈折力，且其物側表面及像側表面皆為凸面。藉此，可分配第一透鏡的正屈折力，有助於降低光學影像擷取鏡頭組對於誤差的敏感度。

第四透鏡具有負屈折力，且其物側表面為凹面、像側表面為凸面，係有助於修正光學影像擷取鏡頭組的像散及高階像差。另外，具負屈折力之第四透鏡與具正屈折力之第三透鏡互相搭配，用以產生望遠效果以縮短光學影像擷取鏡頭組之後焦距並縮短其總長度。

第三透鏡之物側表面曲率半徑為 R5、像側表面曲率半徑為 R6，其滿足下列條件：-20 < R5/R6 < -1.4；以及 -0.1 < (R5+R6)/(R5-R6) < 1；藉此，有助於調配適當第三透鏡之屈折力，且可降低光學影像擷取鏡頭組對於誤差之敏感度。

另外，光學影像擷取鏡頭組可進一步滿足下列條件：0.2 < (R5+R6)/(R5-R6) < 0.9。

第二透鏡與第三透鏡於光軸上的間隔距離為 T23，第三透鏡與第四透鏡於光軸上的間隔距離為 T34，其滿足下列條件：0.1 < T23/T34 < 6.5；藉此，可適當調配透鏡間的距離，有助於縮短光學影像擷取鏡頭組的總長度及其組裝。

另外，光學影像擷取鏡頭組可進一步滿足下列條件：0.5 < T23/T34 < 3.1。
第二透鏡之物側表面曲率半徑為 R3，像側表面曲率半徑為 R4，其滿足下列條件：\(-3.5 < (R3+R4)/(R3-R4) < -1.0\)；藉此，第二透鏡的形狀有利於修正第一透鏡所產生的像差，且不至於使本身屈折力過大，亦有利於降低光學影像擷取鏡頭組的敏感度。

第四透鏡之物側表面曲率半徑為 R7，光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：\(-0.6 < R7/f < 0\)；藉此，可藉由調配物側表面曲率而使第四透鏡之屈折力界於適當之範圍，有助於光學影像擷取鏡頭組高階像差的修正。

第一透鏡之色散係數為 V1，第二透鏡之色散係數為 V2，其滿足下列條件：\(30 < V1-V2 < 42\)；藉此，有助於光學影像擷取鏡頭組色差的修正。

光學影像擷取鏡頭組之焦距為 f，第二透鏡之焦距為 f2，其滿足下列條件：\(-0.9 < f/f2 < -0.3\)；藉此，第二透鏡的屈折力有助於第一透鏡像差的修正。

第一透鏡之折射率為 N1，第二透鏡之折射率為 N2，其滿足下列條件：\(-0.25 < N1-N2 < 0\)；藉此，有利於第一透鏡與第二透鏡於光學塑膠材質的選擇上獲得較合適的匹配。

第三透鏡於光軸上的厚度為 CT3，光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：\(0.1 < CT3/f < 0.5\)；藉此，第三透鏡的厚度較為合適，其有利於透鏡的製造與整體光學影像擷取鏡頭組的小型化。

光學影像擷取鏡頭組之焦距為 f，第四透鏡之焦距為 f4，其滿足下列條件：\(-2.5 < f/f4 < -0.75\)；藉此，可藉由調
配第四透鏡之屈折力於適當之範圍，有助於光學影像擷取鏡頭組高階像差的修正。

第一透鏡之物側表面曲率半徑為 R1，光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：0.2 < R1/f < 1.0；若 R1/f 過小時，則第一透鏡正屈折力過強，易導致產生像差，當 R1/f 過大時，則會使得正屈折力不足，進而不易縮短光學影像擷取鏡頭組的總長度；藉此，將 R1/f 限制於此範圍內，可有效減少光學影像擷取鏡頭組的像差與縮短光學影像擷取鏡頭組的總長度。

第四透鏡之物側表面曲率半徑為 R7，像側表面曲率半徑為 R8，其滿足下列條件：-3.0 < (R7+R8)/(R7-R8) < -1.0；藉此，可藉由調配表面曲率而使第四透鏡之屈折力界於適當之範圍。

影像感測元件有效感測區域對角線長的一半為 ImgH，而第一透鏡之物側表面至成像面於光軸上之距離為 TTL，並滿足下列條件：TTL/ImgH < 1.95；藉此，可維持光學影像擷取鏡頭組的小型化，以搭載於輕薄可攜式的電子產品上。

本發明提供之光學影像擷取鏡頭組中，透鏡之材質可為塑膠或玻璃。當透鏡材質為塑膠，可以有效降低生產成本。另當透鏡的材質為玻璃，則可以增加光學影像擷取鏡頭組屈折力配置的自由度。此外，可於透鏡表面上設置非球面，非球面可以容易製作成球面以外的形狀，獲得較多的控制變數，用以消減像差，進而縮減透鏡使用的數目，因此可以有效降低本發明光學影像擷取鏡頭組的總長度。
再者，本發明提供光學影像擷取鏡頭組中，若透鏡表面係為凸面，則表示該透鏡表面於近軸處為凸面；若透鏡表面係為凹面，則表示該透鏡表面於近軸處為凹面。

另外，本發明光學影像擷取鏡頭組中，依需求可設置至少一光闇，以減少雜散光，有助於提昇影像品質。

本發明光學影像擷取鏡頭組中，光圈的配置可為前置光圈或中置光圈，其中前置光圈意即光圈設置於被攝物與第一透鏡間，中置光圈則表示光圈設置於第一透鏡與成像面間之位置。光圈若為前置光圈，可使光學影像擷取鏡頭組的出射瞳(exit pupil)與成像面產生較長的距離，使之具有遠心(telecentric)效果，並可增加影像感測元件的 CCD 或 CMOS 接收影像的效率；若為中置光圈，係有助於擴大系統的視場角，使光學影像擷取鏡頭組具有廣角鏡頭之優勢。

根據上述實施方式，以下提出具體實施例並配合圖式予以詳細說明。

<第一實施例>

請參照第 1 圖及第 2 圖，其中第 1 圖繪示依照本發明第一實施例的一種光學影像擷取鏡頭組之示意圖，第 2 圖由左至右依序為第一實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第 1 圖可知，第一實施例之光學影像擷取鏡頭組由物側至像側依序包含光圈 100、第一透鏡 110、第二透鏡 120、第三透鏡 130、第四透鏡 140、紅外線濾除濾光片(IR Filter)160 以及成像面 150。

第一透鏡 110 為塑膠材質，其具有正屈折力。第一透
鏡 110 之物側表面 111 及像側表面 112 皆為凸面，且皆為非球面。

第二透鏡 120 為塑膠材質，其具有負屈折力。第二透鏡 120 之物側表面 121 為凹面，像側表面 122 為凸面，且皆為非球面。

第三透鏡 130 為塑膠材質，其具有正屈折力。第三透鏡 130 之物側表面 131 及像側表面 132 皆為凸面，且皆為非球面。

第四透鏡 140 為塑膠材質，其具有負屈折力。第四透鏡 140 之物側表面 141 為凹面，像側表面 142 為凸面，且皆為非球面。

紅外線濾除濾光片 160 之材質為玻璃，其設置於第四透鏡 140 與成像面 150 之間，並不影響光學影像擷取鏡頭組的焦距。

上述各透鏡之非球面的曲線方程式表示如下：

\[X(Y) = \frac{(Y^2/R)}{[1 + \sqrt{1 - (1 + k) \times (Y/R)^2}]} + \sum(A_i) \times (Y') \]

其中：

\(X\): 非球面上距離光軸為 \(Y\) 的點，其與相切於非球面之光軸上頂點切面的相對高度；

\(Y\): 非球面曲線上的點與光軸的距離；

\(R\): 曲率半徑。

\(k\): 錐面係數；以及

\(A_i\): 第 \(i\) 階非球面係數。

第一實施例之光學影像擷取鏡頭組中，光學影像擷取
鏡頭組之焦距為 \(f \)，光學影像擷取鏡頭組之光圈值 (f-number) 為 \(F_{\text{no}} \)，光學影像擷取鏡頭組中最大視角的一半為 \(\text{HFOV} \)，
其數值如下：\(f = 4.47 \text{ mm} \); \(F_{\text{no}} = 2.82 \); 以及 \(\text{HFOV} = 32.2 \)度。

第一實施例之光學影像擷取鏡頭組中，第一透鏡 110 之色散係數為 \(V_1 \)，第二透鏡 120 之色散係數為 \(V_2 \)，其關係如下：\(V_1 - V_2 = 32.4 \)。

第一實施例之光學影像擷取鏡頭組中，第一透鏡 110 之折射率為 \(N_1 \)，第二透鏡 120 之折射率為 \(N_2 \)，其關係如下：\(N_1 - N_2 = -0.103 \)。

第一實施例之光學影像擷取鏡頭組中，第三透鏡 130 於光軸上的厚度為 \(CT_3 \)，光學影像擷取鏡頭組之焦距為 \(f \)，其關係如下：\(CT_3 / f = 0.14 \)。

第一實施例之光學影像擷取鏡頭組中，第二透鏡 120 與第三透鏡 130 於光軸上的間隔距離為 \(T_{23} \)，第三透鏡 130 與第四透鏡 140 於光軸上的間隔距離為 \(T_{34} \)，其關係如下：\(T_{23} / T_{34} = 0.78 \)。

第一實施例之光學影像擷取鏡頭組中，光學影像擷取鏡頭組之焦距為 \(f \)，第一透鏡 110 之物側表面 111 曲率半徑為 \(R_1 \)，第二透鏡 120 之物側表面 121 曲率半徑為 \(R_3 \)、像側表面 122 曲率半徑為 \(R_4 \)，第三透鏡 130 之物側表面 131 曲率半徑為 \(R_5 \)、像側表面 132 曲率半徑為 \(R_6 \)，第四透鏡 140 之物側表面 141 曲率半徑為 \(R_7 \)、像側表面 142 曲率半徑為 \(R_8 \)，其關係如下：\(R_1 / f = 0.43 \); \(R_7 / f = -0.14 \); \(R_5 / R_6 = -3.75 \); \((R_3 + R_4) / (R_3 - R_4) = -2.65 \); \((R_5 + R_6) / (R_5 - R_6) = 0.58 \);
以及 \((R7+R8)/(R7-R8) = 4.35\)。

第一實施例之光學影像擷取鏡頭組中，光學影像擷取鏡頭組之焦距為 \(f\)，第二透鏡 120 之焦距為 \(f_2\)，第四透鏡 140 之焦距為 \(f_4\)，其關係如下：\(f/f_2 = -0.78\)；以及 \(f/f_4 = -0.81\)。

第一實施例之光學影像擷取鏡頭組中，影像感測元件有效感測區域對角線長的一半為 \(ImgH\)，而第一透鏡 110 之物側表面 111 至成像面 150 於光軸上之距離為 \(TTL\)，其關係如下：\(TTL/ImgH = 1.79\)。

再配合參照下列表一以及表二。

表一

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被攝物</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>-0.120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透鏡</td>
<td>1.922470 (ASP)</td>
<td>0.678</td>
<td>塑業</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>3</td>
<td>-4.750900 (ASP)</td>
<td>0.323</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透鏡</td>
<td>-1.737190 (ASP)</td>
<td>0.698</td>
<td>塑業</td>
<td>1.633</td>
<td>23.4</td>
</tr>
<tr>
<td>5</td>
<td>-3.845100 (ASP)</td>
<td>0.601</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透鏡</td>
<td>12.254900 (ASP)</td>
<td>0.639</td>
<td>塑業</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>7</td>
<td>-3.267400 (ASP)</td>
<td>0.769</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透鏡</td>
<td>-0.612750 (ASP)</td>
<td>0.462</td>
<td>塑業</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>9</td>
<td>-0.978240 (ASP)</td>
<td>0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>紅外線濾除</td>
<td>平面</td>
<td>0.200</td>
<td>玻璃</td>
<td>1.516</td>
<td>64.1</td>
</tr>
<tr>
<td>11</td>
<td>濾光片</td>
<td>平面</td>
<td>0.476</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>成像面</td>
<td>平面</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

註

参考波長為 d-line 587.6 nm
表二

表一為第1圖第一實施例詳細的結構數據，其中曲率半徑、厚度及焦距的單位為mm，且表面0-12依次表示由物側至像側的表面。表二為第一實施例中的非球面數據，其中，k表非球面曲線方程式中的錐面係數，A1-A12則表示各表面第1-12階非球面係數。此外，以下各實施例表格乃對應各實施例之示意圖與像差曲線圖，表格中數據之定義皆與第一實施例之表一及表二的定義相同，在此不加贅述。

<第二實施例>

請參照第3圖及第4圖，其中第3圖繪示依照本發明第二實施例的一種光學影像擷取鏡頭組之示意圖，第4圖由左至右依序為第二實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第3圖可知，第二實施例之光
學影像擷取鏡頭組由物側至像側依序包含光圈 200、第一透鏡 210、第二透鏡 220、第三透鏡 230、第四透鏡 240、紅外線濾除濾光片 260 以及成像面 250。

第一透鏡 210 為塑膠材質，其具有正屈折力。第一透鏡 210 之物側表面 211 為凸面、像側表面 212 為凹面，且皆為非球面。

第二透鏡 220 為塑膠材質，其具有負屈折力。第二透鏡 220 之物側表面 221 為凹面、像側表面 222 為凸面，且皆為非球面。

第三透鏡 230 為塑膠材質，其具有正屈折力。第三透鏡 230 之物側表面 231 及像側表面 232 皆為凸面，且皆為非球面。

第四透鏡 240 為塑膠材質，其具有負屈折力。第四透鏡 240 之物側表面 241 為凹面、像側表面 242 為凸面，且皆為非球面。

紅外線濾除濾光片 260 之材質為玻璃，其設置於第四透鏡 240 與成像面 250 之間，並不影響光學影像擷取鏡頭組的焦距。

請配合參照下列表三及表四。

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>鏡片</td>
<td>鏡片</td>
<td>鏡片</td>
<td>薄片</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透鏡</td>
<td>1.523180 (ASP)</td>
<td>0.600</td>
<td>塑料</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>3</td>
<td>第二透鏡</td>
<td>9.17200 (ASP)</td>
<td>0.241</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f(焦距) = 4.54 \text{ mm}, \quad Fno(光圈值) = 2.80, \quad HFOV(半視角) = 32.1 \text{ deg.} \]
表三
非球面係數

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-5.41267E-01</td>
<td>-1.79395E+01</td>
<td>1.06770E+01</td>
<td>1.79481E+02</td>
</tr>
<tr>
<td>A4</td>
<td>2.79529E-02</td>
<td>-3.45710E-02</td>
<td>-4.86287E-02</td>
<td>-1.21020E-02</td>
</tr>
<tr>
<td>A6</td>
<td>5.40160E-03</td>
<td>-5.87117E-02</td>
<td>-3.65322E-02</td>
<td>4.33628E-02</td>
</tr>
<tr>
<td>A8</td>
<td>4.11123E-02</td>
<td>8.93090E-02</td>
<td>1.40625E-01</td>
<td>-6.60412E-03</td>
</tr>
<tr>
<td>A10</td>
<td>-4.74664E-02</td>
<td>-1.68990E-01</td>
<td>-1.67385E-01</td>
<td>2.57722E-02</td>
</tr>
<tr>
<td>A12</td>
<td>1.59605E-03</td>
<td>-1.41694E-03</td>
<td>-5.18903E-04</td>
<td>-1.72299E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-2.00000E+01</td>
<td>7.64142E-01</td>
<td>-1.57920E+00</td>
<td>-2.50088E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-5.23345E-02</td>
<td>-3.57901E-02</td>
<td>1.18216E-02</td>
<td>9.32042E-02</td>
</tr>
<tr>
<td>A6</td>
<td>-1.30897E-02</td>
<td>-1.93007E-02</td>
<td>8.60935E-03</td>
<td>-2.18315E-02</td>
</tr>
<tr>
<td>A8</td>
<td>7.54020E-04</td>
<td>1.96426E-02</td>
<td>3.53890E-03</td>
<td>1.37442E-05</td>
</tr>
<tr>
<td>A10</td>
<td>-4.44574E-03</td>
<td>-6.48706E-03</td>
<td>-2.10258E-03</td>
<td>4.37451E-04</td>
</tr>
<tr>
<td>A12</td>
<td>1.09749E-03</td>
<td>1.12394E-03</td>
<td>2.56223E-04</td>
<td>-3.86123E-05</td>
</tr>
</tbody>
</table>

表四
第二實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL以及ImgH之定義皆與第一實施例相同，在此不加以贅述。

配合表三可推算出下列數據：
第二實施例

<table>
<thead>
<tr>
<th></th>
<th>f(mm)</th>
<th>R7/f</th>
<th>-0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fno</td>
<td>4.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td>2.80</td>
<td>R5/R6</td>
<td>-3.73</td>
</tr>
<tr>
<td>V1-V2</td>
<td>(R3+R4)/(R3-R4)</td>
<td>-1.45</td>
<td></td>
</tr>
<tr>
<td>N1-N2</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT3/f</td>
<td>32.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T23/T34</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1/f</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<第三實施例>

請參照第 5 圖及第 6 圖，其中第 5 圖繪示依照本發明第三實施例的一種光學影像擷取鏡頭組之示意圖，第 6 圖由左至右依序為第三實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第 5 圖可知，第三實施例之光學影像擷取鏡頭組由物側至像側依序包含第一透鏡 310、光圈 300、第二透鏡 320、第三透鏡 330、第四透鏡 340、紅外線濾除濾光片 360 以及成像面 350。

第一透鏡 310 為塑膠材質，其具有正屈折力。第一透鏡 310 之物側表面 311 為凸面、像側表面 312 為凹面，且皆為非球面。

第二透鏡 320 為塑膠材質，其具有負屈折力。第二透鏡 320 之物側表面 321 為凹面、像側表面 322 為凸面，且皆為非球面。

第三透鏡 330 為塑膠材質，其具有正屈折力。第三透鏡 330 之物側表面 331 及像側表面 332 皆為凸面，且皆為非球面。
第四透鏡 340 為塑膠材質，其具有負屈折力。第四透鏡 340 之物側表面 341 為凹面、像側表面 342 為凸面，且皆為非球面。

紅外線濾除濾光片 360 之材質為玻璃，其設置於第四透鏡 340 與成像面 350 之間，並不妨影響光學影像擷取鏡頭組的焦距。

請配合參照下列表五及表六。

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被觀物</td>
<td>平面</td>
<td>無限</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>1</td>
<td>第一透鏡</td>
<td>1.644710 (ASP)</td>
<td>0.660</td>
<td>塑膠</td>
<td>1.633</td>
<td>23.4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.477100 (ASP)</td>
<td>0.030</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>3</td>
<td>光圈</td>
<td>平面</td>
<td>0.183</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>4</td>
<td>第二透鏡</td>
<td>-3.014200 (ASP)</td>
<td>0.362</td>
<td>塑膠</td>
<td>1.633</td>
<td>23.4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-9.259300 (ASP)</td>
<td>1.047</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>6</td>
<td>第三透鏡</td>
<td>12.254900 (ASP)</td>
<td>0.755</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-2.322520 (ASP)</td>
<td>0.783</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>8</td>
<td>第四透鏡</td>
<td>-0.511910 (ASP)</td>
<td>0.350</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.771510 (ASP)</td>
<td>0.300</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>10</td>
<td>紅外線濾除</td>
<td>平面</td>
<td>0.200</td>
<td>玻璃</td>
<td>1.516</td>
<td>64.1</td>
</tr>
<tr>
<td>11</td>
<td>濾光片</td>
<td>平面</td>
<td>0.487</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>12</td>
<td>成像面</td>
<td>平面</td>
<td>-</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
</tbody>
</table>

注：參考波長為 d-line 587.6 nm

<table>
<thead>
<tr>
<th>表五</th>
</tr>
</thead>
</table>

非球面係數

<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-4.16658E-01</td>
<td>-1.32537E+01</td>
<td>1.15755E+01</td>
<td>3.46475E+01</td>
</tr>
<tr>
<td>A4</td>
<td>3.24472E-02</td>
<td>-1.09285E-02</td>
<td>1.45810E-02</td>
<td>4.12377E-02</td>
</tr>
<tr>
<td>A6</td>
<td>-2.83450E-02</td>
<td>-6.76472E-02</td>
<td>1.70327E-01</td>
<td>2.30880E-02</td>
</tr>
<tr>
<td>A8</td>
<td>4.22812E-02</td>
<td>1.15310E-01</td>
<td>-3.26067E-01</td>
<td>8.42943E-03</td>
</tr>
<tr>
<td>表六</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>3.66356E-02</td>
<td>-1.33886E-01</td>
<td>3.56218E-01</td>
<td>-5.99071E-03</td>
</tr>
<tr>
<td>A12</td>
<td>-5.27920E-02</td>
<td>-1.41611E-03</td>
<td>-5.18087E-04</td>
<td>7.68091E-03</td>
</tr>
<tr>
<td>表面</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>k</td>
<td>6.02055E+00</td>
<td>9.57150E+01</td>
<td>-1.45772E+00</td>
<td>-2.01770E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-5.97230E-02</td>
<td>-5.51631E-02</td>
<td>2.05557E-02</td>
<td>1.21808E-01</td>
</tr>
<tr>
<td>A6</td>
<td>-3.27261E-03</td>
<td>-1.06461E-02</td>
<td>1.49015E-02</td>
<td>-3.04517E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-4.69127E-03</td>
<td>2.10422E-02</td>
<td>3.54236E-03</td>
<td>6.93535E-04</td>
</tr>
<tr>
<td>A10</td>
<td>2.73767E-04</td>
<td>-5.48755E-03</td>
<td>-2.26692E-03</td>
<td>4.70054E-04</td>
</tr>
<tr>
<td>A12</td>
<td>-7.50415E-04</td>
<td>1.35302E-03</td>
<td>2.38317E-04</td>
<td>-3.97141E-05</td>
</tr>
</tbody>
</table>

第三實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL以及ImgH之定義皆與第一實施例相同，在此不加以贅述。

配合表五可推算出下列數據：

<table>
<thead>
<tr>
<th>第三實施例</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f(mm)</td>
<td>4.41</td>
<td>R7/f</td>
<td>-0.12</td>
</tr>
<tr>
<td>Fno</td>
<td>2.72</td>
<td>R5/R6</td>
<td>-5.28</td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td>32.1</td>
<td>(R3+R4)/(R3-R4)</td>
<td>-1.97</td>
</tr>
<tr>
<td>V1-V2</td>
<td>32.5</td>
<td>(R5+R6)/(R5-R6)</td>
<td>0.68</td>
</tr>
<tr>
<td>N1-N2</td>
<td>-0.089</td>
<td>(R7+R8)/(R7-R8)</td>
<td>-4.94</td>
</tr>
<tr>
<td>CT3/f</td>
<td>0.17</td>
<td>f/f2</td>
<td>-0.61</td>
</tr>
<tr>
<td>T23/T34</td>
<td>1.34</td>
<td>f/f4</td>
<td>-0.82</td>
</tr>
<tr>
<td>R1/f</td>
<td>0.37</td>
<td>TTL/ImgH</td>
<td>1.80</td>
</tr>
</tbody>
</table>

<第四實施例>

請參照第7圖及第8圖，其中第7圖繪示依照本發明第四實施例的一種光學影像擷取鏡頭組之示意圖，第8圖由左至右依序為第四實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第7圖可知，第四實施例之光
學影像擷取鏡頭組由物側至像側依序包含光圈 400、第一透鏡 410、第二透鏡 420、第三透鏡 430、第四透鏡 440、紅外線濾除濾光片 460 以及成像面 450。

第一透鏡 410 為塑膠材質，其具有正屈折力。第一透鏡 410 之物側表面 411 為凸面、像側表面 412 為凹面，且皆為非球面。

第二透鏡 420 為塑膠材質，其具有負屈折力。第二透鏡 420 之物側表面 421 為凹面、像側表面 422 為凸面，且皆為非球面。

第三透鏡 430 為塑膠材質，其具有正屈折力。第三透鏡 430 之物側表面 431 及像側表面 432 皆為凸面，且皆為非球面。

第四透鏡 440 為塑膠材質，其具有負屈折力。第四透鏡 440 之物側表面 441 為凹面、像側表面 442 為凸面，且皆為非球面。

紅外線濾除濾光片 460 之材質為玻璃，其設置於第四透鏡 440 與成像面 450 之間，並不影響光學影像擷取鏡頭組的焦距。

請配合參照下列表七及表八。

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被攝物</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>0.190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透鏡</td>
<td>1.612360 (ASP)</td>
<td>0.625</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>13.477100 (ASP)</td>
<td>0.357</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表七
非球面係數

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-6.96700E-01</td>
<td>6.63067E+00</td>
<td>2.09961E+00</td>
<td>6.27084E+00</td>
</tr>
<tr>
<td>A4</td>
<td>2.16327E-02</td>
<td>-5.56811E-02</td>
<td>-3.39280E-02</td>
<td>-3.59175E-03</td>
</tr>
<tr>
<td>A6</td>
<td>-3.48686E-02</td>
<td>-1.07224E-01</td>
<td>3.08997E-02</td>
<td>4.98750E-02</td>
</tr>
<tr>
<td>A8</td>
<td>8.45450E-02</td>
<td>2.89332E-02</td>
<td>4.20019E-02</td>
<td>2.97319E-02</td>
</tr>
<tr>
<td>A10</td>
<td>-1.18608E-01</td>
<td>-4.95659E-02</td>
<td>6.62167E-02</td>
<td>3.47707E-02</td>
</tr>
<tr>
<td>A12</td>
<td>1.59520E-03</td>
<td>-1.41754E-03</td>
<td>-5.19517E-04</td>
<td>-7.48993E-03</td>
</tr>
<tr>
<td>k</td>
<td>4.13705E+00</td>
<td>-2.62461E+00</td>
<td>-1.62426E+00</td>
<td>-2.32671E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-6.39515E-02</td>
<td>-4.62482E-02</td>
<td>1.35250E-02</td>
<td>9.53140E-02</td>
</tr>
<tr>
<td>A6</td>
<td>1.23186E-04</td>
<td>-2.54651E-02</td>
<td>1.20152E-02</td>
<td>-2.04111E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-8.21483E-03</td>
<td>2.19546E-02</td>
<td>3.86916E-03</td>
<td>-1.00582E-04</td>
</tr>
<tr>
<td>A10</td>
<td>-1.46453E-03</td>
<td>-8.68056E-03</td>
<td>-2.17725E-03</td>
<td>3.47033E-04</td>
</tr>
<tr>
<td>A12</td>
<td>6.31550E-04</td>
<td>8.12357E-04</td>
<td>2.47604E-04</td>
<td>-1.30068E-05</td>
</tr>
</tbody>
</table>

表八

第四實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL以及ImgH之定義皆與第一實施例相同，在此不加以贅述。配合表七可推算出下列數據：

22
第四實施例

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f(mm)</td>
<td>4.34</td>
<td>R7/f</td>
<td>-0.12</td>
</tr>
<tr>
<td>Fno</td>
<td>2.69</td>
<td>R5/R6</td>
<td>-2.28</td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td>33.1</td>
<td>(R3+R4)/(R3-R4)</td>
<td>-2.99</td>
</tr>
<tr>
<td>V1-V2</td>
<td>32.5</td>
<td>(R5+R6)/(R5-R6)</td>
<td>0.39</td>
</tr>
<tr>
<td>N1-N2</td>
<td>-0.089</td>
<td>(R7+R8)/(R7-R8)</td>
<td>-4.49</td>
</tr>
<tr>
<td>CT3/f</td>
<td>0.20</td>
<td>f/f2</td>
<td>-0.68</td>
</tr>
<tr>
<td>T23/T34</td>
<td>0.84</td>
<td>f/f4</td>
<td>-0.92</td>
</tr>
<tr>
<td>R1/f</td>
<td>0.37</td>
<td>TTL/ImgH</td>
<td>1.79</td>
</tr>
</tbody>
</table>

<第五實施例>

請參照第9圖及第10圖，其中第9圖繪示依照本發明第五實施例的一種光學影像擷取鏡頭組之示意圖，第10圖由左至右依序為第五實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第9圖可知，第五實施例之光學影像擷取鏡頭組由物側至像側依序包含光圈 500、第一透鏡 510、第二透鏡 520、第三透鏡 530、第四透鏡 540、紅外線濾除濾光片 560 以及成像面 550。

第一透鏡 510 為塑膠材質，其具有正屈折力。第一透鏡 510 之物側表面 511 為凸面，像側表面 512 為凹面，且皆為非球面。

第二透鏡 520 為塑膠材質，其具有負屈折力。第二透鏡 520 之物側表面 521 為凹面，像側表面 522 為凸面，且皆為非球面。

第三透鏡 530 為塑膠材質，其具有正屈折力。第三透鏡 530 之物側表面 531 及像側表面 532 皆為凸面，且皆為非球面。
第四透鏡 540 為塑膠材質，其具有負屈折力。第四透鏡 540 之物側表面 541 為凹面、像側表面 542 為凸面，且皆為非球面。

紅外線濾除濾光片 560 之材質為玻璃，其設置於第四透鏡 540 與成像面 550 之間，並不影響光學影像擷取鏡頭組的焦距。

請配合参照下列表九及表十。

<table>
<thead>
<tr>
<th>第五實施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(焦距) = 3.88 mm, Fno(光圈值) = 2.57, HFOV(半視角) = 36.1 deg.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被攝物</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>光圈</td>
<td>平面</td>
<td>-0.165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>第一透鏡</td>
<td>1.657330 (ASP)</td>
<td>0.599</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>11.559900 (ASP)</td>
<td>0.321</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透鏡</td>
<td>-2.074230 (ASP)</td>
<td>0.711</td>
<td>塑膠</td>
<td>1.634</td>
<td>23.8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-6.957200 (ASP)</td>
<td>0.161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透鏡</td>
<td>5.848000 (ASP)</td>
<td>0.850</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-1.769790 (ASP)</td>
<td>0.942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透鏡</td>
<td>-0.571110 (ASP)</td>
<td>0.544</td>
<td>塑膠</td>
<td>1.634</td>
<td>23.8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.875510 (ASP)</td>
<td>0.400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>紅外線濾除</td>
<td>平面</td>
<td>0.200</td>
<td>玻璃</td>
<td>1.516</td>
<td>64.1</td>
</tr>
<tr>
<td>11</td>
<td>濾光片</td>
<td>平面</td>
<td>0.448</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>成像面</td>
<td>平面</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：參考波長為 d-line 587.6 nm

<table>
<thead>
<tr>
<th>表九</th>
</tr>
</thead>
<tbody>
<tr>
<td>非球面係數</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-4.00865E-01</td>
<td>1.18667E+01</td>
<td>1.76855E+00</td>
<td>2.71049E+01</td>
</tr>
<tr>
<td>A4</td>
<td>2.31089E-02</td>
<td>-2.71596E-02</td>
<td>-9.46983E-02</td>
<td>-1.28146E-01</td>
</tr>
<tr>
<td>A6</td>
<td>-4.24326E-03</td>
<td>-1.14517E-01</td>
<td>8.37322E-03</td>
<td>7.35707E-02</td>
</tr>
<tr>
<td>A8</td>
<td>4.21379E-02</td>
<td>9.40399E-02</td>
<td>-1.38986E-01</td>
<td>-1.11766E-02</td>
</tr>
</tbody>
</table>
表十

第五實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL以及ImgH之定義皆與第一實施例相同，在此不加以贅述。

配合表九可推算出下列數據：

<table>
<thead>
<tr>
<th>第五實施例</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f(mm)</td>
<td>3.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fno</td>
<td>2.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td>36.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1-V2</td>
<td>32.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-N2</td>
<td>-0.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT3/f</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T23/T34</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1/f</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R7/f, R5/R6</td>
<td>-0.15, -3.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R3+R4)/(R3-R4)</td>
<td>-1.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R5+R6)/(R5-R6)</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R7+R8)/(R7-R8)</td>
<td>-4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f/f2</td>
<td>-0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f/f4</td>
<td>-0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL/ImgH</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<第六實施例>

請參照第11圖及第12圖，其中第11圖繪示依照本發明第六實施例的一種光學影像擷取鏡頭組之示意圖，第12圖由左至右依序為第六實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第11圖可知，第六實施例之光
學影像擷取鏡頭組由物側至像側依序包含第一透鏡 610、光圈 600、第二透鏡 620、第三透鏡 630、第四透鏡 640、紅外線濾除濾光片 660 以及成像面 650。

第一透鏡 610 為塑膠材質，其具有正屈折力。第一透鏡 610 之物側表面 611 為凸面、像側表面 612 為凹面，且皆為非球面。

第二透鏡 620 為塑膠材質，其具有負屈折力。第二透鏡 620 之物側表面 621 為凹面、像側表面 622 為凸面，且皆為非球面。

第三透鏡 630 為塑膠材質，其具有正屈折力。第三透鏡 630 之物側表面 631 及像側表面 632 皆為凸面，且皆為非球面。

第四透鏡 640 為塑膠材質，其具有負屈折力。第四透鏡 640 之物側表面 641 為凹面、像側表面 642 為凸面，且皆為非球面。

紅外線濾除濾光片 660 之材質為玻璃，其設置於第四透鏡 640 與成像面 650 之間，並不影響光學影像擷取鏡頭組的焦距。

請配合參照下列表十一及表十二。

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被攝物</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>第一透鏡</td>
<td>1.644050 (ASP)</td>
<td>0.653</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13.477100 (ASP)</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>光圈</td>
<td>平面</td>
<td>0.226</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f(焦距) = 4.36 \text{ mm}, \quad Fno(光圈值) = 2.74, \quad HFOV(半視角) = 32.2 \text{ deg.} \]
表十一

非球面係數

<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-3.97882E-01</td>
<td>1.42328E+01</td>
<td>1.18257E+01</td>
<td>4.55832E+01</td>
</tr>
<tr>
<td>A4</td>
<td>3.23448E-02</td>
<td>3.37887E-03</td>
<td>-1.89157E-03</td>
<td>2.76627E-02</td>
</tr>
<tr>
<td>A6</td>
<td>-1.74693E-02</td>
<td>-4.94509E-02</td>
<td>1.65693E-01</td>
<td>-4.40089E-03</td>
</tr>
<tr>
<td>A8</td>
<td>4.61583E-02</td>
<td>5.12269E-02</td>
<td>-3.87712E-01</td>
<td>2.64364E-02</td>
</tr>
<tr>
<td>A10</td>
<td>2.36955E-02</td>
<td>-1.02771E-01</td>
<td>4.08921E-01</td>
<td>-8.12320E-03</td>
</tr>
<tr>
<td>A12</td>
<td>-5.27921E-02</td>
<td>-1.41578E-03</td>
<td>-5.17754E-04</td>
<td>7.68124E-03</td>
</tr>
<tr>
<td>表面</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>k</td>
<td>1.82423E+01</td>
<td>2.97683E-01</td>
<td>-1.08037E+00</td>
<td>2.46004E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-7.07037E-02</td>
<td>-4.10600E-02</td>
<td>1.22857E-02</td>
<td>5.28734E-02</td>
</tr>
<tr>
<td>A6</td>
<td>3.89685E-03</td>
<td>-1.83585E-03</td>
<td>1.84041E-02</td>
<td>-1.76464E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-3.22849E-03</td>
<td>2.12350E-02</td>
<td>3.28635E-03</td>
<td>1.15583E-03</td>
</tr>
<tr>
<td>A10</td>
<td>1.12245E-04</td>
<td>-6.53066E-03</td>
<td>-2.34833E-03</td>
<td>2.85897E-04</td>
</tr>
<tr>
<td>A12</td>
<td>-5.00956E-04</td>
<td>7.86800E-04</td>
<td>2.34242E-04</td>
<td>-3.96548E-05</td>
</tr>
</tbody>
</table>

表十二

第六實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL以及ImgH之定義皆與第一實施例相同，在此不加以赘述。

配合表十一可推算出下列數據：
第六实施例

<table>
<thead>
<tr>
<th>f(mm)</th>
<th>4.36</th>
<th>R7/f</th>
<th>-0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fno</td>
<td>2.74</td>
<td>R5/R6</td>
<td>-5.27</td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td>32.2</td>
<td>(R3+R4)/(R3-R4)</td>
<td>-2.21</td>
</tr>
<tr>
<td>V1-V2</td>
<td>32.5</td>
<td>(R5+R6)/(R5-R6)</td>
<td>0.68</td>
</tr>
<tr>
<td>N1-N2</td>
<td>0.089</td>
<td>(R7+R8)/(R7-R8)</td>
<td>-1.50</td>
</tr>
<tr>
<td>CT3/f</td>
<td>0.17</td>
<td>f/f2</td>
<td>-0.55</td>
</tr>
<tr>
<td>T23/T34</td>
<td>2.07</td>
<td>f/f4</td>
<td>-1.60</td>
</tr>
<tr>
<td>R1/f</td>
<td>0.38</td>
<td>TTL/ImgH</td>
<td>1.80</td>
</tr>
</tbody>
</table>

<第七实施例>

請參照第13圖及第14圖，其中第13圖繪示依照本發明第七實施例的一種光學影像擷取鏡頭組之示意圖，第14
圖由左至右依序為第七實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第13圖可知，第七實施例之光
學影像擷取鏡頭組由物側至像側依序包含第一透鏡710、
光圈700、第二透鏡720、第三透鏡730、第四透鏡740、
紅外線濾除濾光片760以及成像面750。

第一透鏡710為塑膠材質，其具有正屈折力。第一透
鏡710之物側表面711及像側表面712皆為凸面，且皆為
非球面。

第二透鏡720為塑膠材質，其具有負屈折力。第二透
鏡720之物側表面721為凹面，像側表面722為凸面，且
皆為非球面。

第三透鏡730為塑膠材質，其具有正屈折力。第三透
鏡730之物側表面731及像側表面732皆為凸面，且皆為
非球面。
第四透鏡 740 為塑膠材質，其具有負屈折力。第四透
鏡 740 之物側表面 741 為凹面，像側表面 742 為凸面，且
皆為非球面。

紅外線濾除濾光片 760 之材質為玻璃，其設置於第四
透鏡 740 與成像面 750 之間，並不影響光學影像擷取鏡頭
組的焦距。

請配合參照下列表十三及表十四。

第七實施例

\[
f(焦距) = 3.87 \text{ mm}, \quad \text{Fno(光圈值)} = 2.80, \quad \text{HFOV(半視角)} = 35.8 \text{ deg.}
\]

<table>
<thead>
<tr>
<th>表面</th>
<th>曲率半徑</th>
<th>厚度</th>
<th>材質</th>
<th>折射率</th>
<th>色散係數</th>
<th>焦距</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>被攝物</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>第一透鏡</td>
<td>1.833060 (ASP)</td>
<td>0.469</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-8.483600 (ASP)</td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>光圈</td>
<td>平面</td>
<td>0.201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>第二透鏡</td>
<td>-2.831620 (ASP)</td>
<td>0.273</td>
<td>塑膠</td>
<td>1.640</td>
<td>23.3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-11.958900 (ASP)</td>
<td>0.973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>第三透鏡</td>
<td>18.624700 (ASP)</td>
<td>1.021</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-1.089080 (ASP)</td>
<td>0.341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>第四透鏡</td>
<td>-0.811760 (ASP)</td>
<td>0.325</td>
<td>塑膠</td>
<td>1.530</td>
<td>55.8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-16.041100 (ASP)</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>紅外線濾除</td>
<td>平面</td>
<td>0.300</td>
<td>玻璃</td>
<td>1.516</td>
<td>64.1</td>
</tr>
<tr>
<td>11</td>
<td>濾光片</td>
<td>平面</td>
<td>0.302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>成像面</td>
<td>平面</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：參考波長為 d-line 587.6 nm

表十三

非球面係數

<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-1.46177E+00</td>
<td>3.46612E+01</td>
<td>3.63166E+00</td>
<td>1.39508E+02</td>
</tr>
<tr>
<td>A4</td>
<td>3.62995E-03</td>
<td>-1.74871E-02</td>
<td>1.65721E-01</td>
<td>1.85233E-01</td>
</tr>
<tr>
<td>A6</td>
<td>-2.59800E-02</td>
<td>-6.32788E-02</td>
<td>-4.06903E-02</td>
<td>-7.91308E-02</td>
</tr>
<tr>
<td>A8</td>
<td>-1.02655E-02</td>
<td>-6.02635E-02</td>
<td>-1.94399E-01</td>
<td>2.06423E-02</td>
</tr>
</tbody>
</table>
表十四

第七實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL以及ImgH之定義皆與第一實施例相同，在此不加以贅述。

配合表十三可推算出下列數據：

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>第七實施例</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f(mm)</td>
<td>R7/f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fno</td>
<td></td>
<td>R5/R6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.8</td>
<td></td>
<td>(R3+R4)/(R3-R4)</td>
<td></td>
<td>-1.62</td>
</tr>
<tr>
<td>V1-V2</td>
<td></td>
<td>(R5+R6)/(R5-R6)</td>
<td></td>
<td>0.89</td>
</tr>
<tr>
<td>N1-N2</td>
<td></td>
<td>(R7+R8)/(R7-R8)</td>
<td></td>
<td>-1.11</td>
</tr>
<tr>
<td>CT3/f</td>
<td></td>
<td>f/f2</td>
<td></td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f/f4</td>
<td>-2.38</td>
</tr>
<tr>
<td>T23/T34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1/f</td>
<td></td>
<td>TTL/ImgH</td>
<td></td>
<td>1.64</td>
</tr>
</tbody>
</table>

<第八實施例>

請參照第15圖及第16圖，其中第15圖繪示依照本發明第八實施例的一種光學影像擷取鏡頭組之示意圖，第16圖由左至右依序為第八實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。由第15圖可知，第八實施例之光
學影像擷取鏡頭組由物側至像側依序包含第一透鏡 810、光圈 800、第二透鏡 820、第三透鏡 830、第四透鏡 840、紅外線濾除濾光片 860 以及成像面 850。

第一透鏡 810 為塑膠材質，其具有正屈折力。第一透鏡 810 之物側表面 811 及像側表面 812 皆為凸面，且皆為非球面。

第二透鏡 820 為塑膠材質，其具有負屈折力。第二透鏡 820 之物側表面 821 為凹面、像側表面 822 為凸面，且皆為非球面。

第三透鏡 830 為塑膠材質，其具有正屈折力。第三透鏡 830 之物側表面 831 及像側表面 832 皆為凸面，且皆為非球面。

第四透鏡 840 為塑膠材質，其具有負屈折力。第四透鏡 840 之物側表面 841 為凹面、像側表面 842 為凸面，且皆為非球面。

紅外線濾除濾光片 860 之材質為玻璃，其設置於第四透鏡 840 與成像面 850 之間，並不影響光學影像擷取鏡頭組的焦距。

請配合參照下列表十五及表十六。

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>表面</td>
<td>曲率半徑</td>
<td>厚度</td>
<td>材質</td>
<td>折射率</td>
<td>色散係數</td>
<td>焦距</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>被攝物</td>
<td>平面</td>
<td>無限</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>第一透鏡</td>
<td>2.481010 (ASP)</td>
<td>0.452</td>
<td>塑膠</td>
<td>1.544</td>
<td>55.9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-3.797000 (ASP)</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>光圈</td>
<td>平面</td>
<td>0.135</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
(f(焦距)) = 3.65 \text{ mm}, \quad \text{Fno(光圈值)} = 2.80, \quad \text{HFOV(半視角)} = 36.1 \text{ deg.}
\]
<table>
<thead>
<tr>
<th>表面</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>-1.87192E+00</td>
<td>-3.62045E+01</td>
<td>-1.86367E+00</td>
<td>9.99150E+00</td>
</tr>
<tr>
<td>A4</td>
<td>1.23940E-03</td>
<td>1.13078E-02</td>
<td>2.04438E-01</td>
<td>1.37504E-01</td>
</tr>
<tr>
<td>A6</td>
<td>-1.05364E-02</td>
<td>1.64290E-02</td>
<td>-9.82662E-02</td>
<td>-1.14949E-01</td>
</tr>
<tr>
<td>A8</td>
<td>2.63231E-02</td>
<td>-4.92519E-02</td>
<td>-2.35686E-01</td>
<td>1.39176E-02</td>
</tr>
<tr>
<td>A10</td>
<td>-1.13445E-02</td>
<td>-2.83581E-02</td>
<td>2.33035E-01</td>
<td>-4.22944E-03</td>
</tr>
<tr>
<td>A12</td>
<td>-3.73396E-02</td>
<td>-1.12494E-03</td>
<td>-1.33896E-02</td>
<td>1.61670E-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表面</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>9.99694E+00</td>
<td>-8.23274E-01</td>
<td>-9.21792E-01</td>
<td>-1.00000E+00</td>
</tr>
<tr>
<td>A4</td>
<td>-4.33619E-02</td>
<td>2.99948E-02</td>
<td>3.08283E-02</td>
<td>-1.29220E-02</td>
</tr>
<tr>
<td>A6</td>
<td>-5.74402E-03</td>
<td>-3.34294E-02</td>
<td>-1.32170E-02</td>
<td>-3.72086E-03</td>
</tr>
<tr>
<td>A8</td>
<td>8.38488E-03</td>
<td>2.45732E-02</td>
<td>6.51375E-03</td>
<td>-7.02680E-05</td>
</tr>
<tr>
<td>A10</td>
<td>-3.69761E-03</td>
<td>-8.54797E-03</td>
<td>-6.14730E-04</td>
<td>9.96589E-05</td>
</tr>
<tr>
<td>A12</td>
<td>-1.47195E-04</td>
<td>1.37755E-03</td>
<td>-2.21461E-04</td>
<td>-4.26718E-06</td>
</tr>
</tbody>
</table>

第八實施例中，非球面的曲線方程式表示如第一實施例的形式。此外，f、Fno、HFOV、V1、V2、N1、N2、CT3、
T23、T34、R1、R3、R4、R5、R6、R7、R8、f2、f4、TTL
以及 ImgH 之定義皆與第一實施例相同，在此不加以赘述。

配合表十五可推算出下列數據：
<table>
<thead>
<tr>
<th>第八實施例</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f(mm)</td>
<td>3.65</td>
<td>R7/f</td>
<td>-0.27</td>
</tr>
<tr>
<td>Fno</td>
<td>2.80</td>
<td>R5/R6</td>
<td>-11.10</td>
</tr>
<tr>
<td>HFOV(deg.)</td>
<td>36.1</td>
<td>(R3+R4)/(R3-R4)</td>
<td>-1.76</td>
</tr>
<tr>
<td>V1-V2</td>
<td>29.3</td>
<td>(R5+R6)/(R5-R6)</td>
<td>0.83</td>
</tr>
<tr>
<td>N1-N2</td>
<td>-0.063</td>
<td>(R7+R8)/(R7-R8)</td>
<td>-1.10</td>
</tr>
<tr>
<td>CT3/f</td>
<td>0.33</td>
<td>f/f2</td>
<td>-0.63</td>
</tr>
<tr>
<td>T23/T34</td>
<td>2.32</td>
<td>f/f4</td>
<td>-2.06</td>
</tr>
<tr>
<td>R1/f</td>
<td>0.68</td>
<td>TTL/ImgH</td>
<td>1.79</td>
</tr>
</tbody>
</table>

雖然本發明已以實施方式揭露如上，然其並非用以限定本發明，任何熟習此技藝者，在不脫離本發明之精神和範圍內，當可作各種之更動與潤飾，因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

【圖式簡明說明】

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂，所附圖式之說明如下：

第1圖繪示依照本發明第一實施例的一種光學影像擷取鏡頭組之示意圖。

第2圖由左至右依序為第一實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。

第3圖繪示依照本發明第二實施例的一種光學影像擷取鏡頭組之示意圖。

第4圖由左至右依序為第二實施例的光學影像擷取鏡頭組之球差、像散及歪曲曲線圖。

第5圖繪示依照本發明第三實施例的一種光學影像擷取鏡頭組之示意圖。
第 6 圖由左至右依序為第三實施例的光學影像擷取鏡
頭組之球差、像散及歪曲曲線圖。

第 7 圖繪示依照本發明第四實施例的一種光學影像擷
取鏡頭組之示意圖。

第 8 圖由左至右依序為第四實施例的光學影像擷取鏡
頭組之球差、像散及歪曲曲線圖。

第 9 圖繪示依照本發明第五實施例的一種光學影像擷
取鏡頭組之示意圖。

第 10 圖由左至右依序為第五實施例的光學影像擷取
鏡頭組之球差、像散及歪曲曲線圖。

第 11 圖繪示依照本發明第六實施例的一種光學影像
擷取鏡頭組之示意圖。

第 12 圖由左至右依序為第六實施例的光學影像擷取
鏡頭組之球差、像散及歪曲曲線圖。

第 13 圖繪示依照本發明第七實施例的一種光學影像
擷取鏡頭組之示意圖。

第 14 圖由左至右依序為第七實施例的光學影像擷取
鏡頭組之球差、像散及歪曲曲線圖。

第 15 圖繪示依照本發明第八實施例的一種光學影像
擷取鏡頭組之示意圖。

第 16 圖由左至右依序為第八實施例的光學影像擷取
鏡頭組之球差、像散及歪曲曲線圖。

【主要元件符號說明】
光圈：100、200、300、400、500、600、700、800
第一透鏡：110、210、310、410、510、610、710、810
物側表面：111、211、311、411、511、611、711、811
像側表面：112、212、312、412、512、612、712、812
第二透鏡：120、220、320、420、520、620、720、820
物側表面：121、221、321、421、521、621、721、821
像側表面：122、222、322、422、522、622、722、822
第三透鏡：130、230、330、430、530、630、730、830
物側表面：131、231、331、431、531、631、731、831
像側表面：132、232、332、432、532、632、732、832
第四透鏡：140、240、340、440、540、640、740、840
物側表面：141、241、341、441、541、641、741、841
像側表面：142、242、342、442、542、642、742、842
成像面：150、250、350、450、550、650、750、850
紅外線濾除濾光片：160、260、360、460、560、660、760、860

f：光學影像擷取鏡頭組之焦距
Fno：光學影像擷取鏡頭組之光圈值
HFOV：光學影像擷取鏡頭組中最大視角的一半
V1：第一透鏡之色散係數
V2：第二透鏡之色散係數
N1：第一透鏡之折射率
N2：第二透鏡之折射率
CT3：第三透鏡於光軸上的厚度
T23：第二透鏡與第三透鏡於光軸上的間隔距離
T34：第三透鏡與第四透鏡於光軸上的間隔距離
R1：第一透鏡之物側表面曲率半徑
R3：第二透鏡之物側表面曲率半徑
R4：第二透鏡之像側表面曲率半徑
R5：第三透鏡之物側表面曲率半徑
R6：第三透鏡之像側表面曲率半徑
R7：第四透鏡之物側表面曲率半徑
R8：第四透鏡之像側表面曲率半徑
f2：第二透鏡之焦距
f4：第四透鏡之焦距
TTL：第一透鏡之物側表面至成像面於光軸上之距離
ImgH：影像感測元件有效感測區域對角線長的一半
七、申請專利範圍：

1. 一種光學影像撷取鏡頭組，由物側至像側依序包含四枚獨立非黏合透鏡:

 一第一透鏡，具有正屈折力，其物側表面為凸面;
 一第二透鏡，具有負屈折力，其物側表面為凹面、像側表面為凸面;
 一第三透鏡，具有正屈折力且為塑膠材質，其物側表面及像側表面皆為凸面且皆為非球面；以及
 一第四透鏡，具有負屈折力並為塑膠材質，其物側表面為凹面、像側表面為凸面，且其物側表面及像側表面皆為非球面；

 其中，該第三透鏡之物側表面曲率半徑為 R5、像側表面曲率半徑為 R6，該第二透鏡與該第三透鏡於光軸上的間隔距離為 T23，該第三透鏡與該第四透鏡於光軸上的間隔距離為 T34，該第二透鏡之物側表面曲率半徑為 R3、像側表面曲率半徑為 R4，其滿足下列條件：

 -20 < R5/R6 < -1.4；
 0.1 < T23/T34 < 6.5；以及
 -3.5 < (R3+R4)/(R3-R4) < -1.0。

2. 如請求項 1 所述之光學影像撷取鏡頭組，其中該第二透鏡為塑膠材質，且該第二透鏡之物側表面及像側表面中至少有一表面為非球面。

3. 如請求項 2 所述之光學影像撷取鏡頭組，其中該第四透鏡之物側表面曲率半徑為 R7，該光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：

 37
-0.6 < R7/f < 0。

4. 如需求項3所述之光學影像擷取鏡頭組，其中該第一透鏡之色散係數為 V1，該第二透鏡之色散係數為 V2，其滿足下列條件：
 \[30 < V1 - V2 < 42 \]。

5. 如需求項3所述之光學影像擷取鏡頭組，其中該光學影像擷取鏡頭組之焦距為 f，該第二透鏡之焦距為 f2，其滿足下列條件：
 \[-0.9 < f/f2 < -0.3 \]。

6. 如需求項3所述之光學影像擷取鏡頭組，其中該第一透鏡之折射率為 N1，該第二透鏡之折射率為 N2，其滿足下列條件：
 \[-0.25 < N1 - N2 < 0 \]。

7. 如需求項3所述之光學影像擷取鏡頭組，其中該第三透鏡於光軸上的厚度為 CT3，該光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：
 \[0.1 < CT3/f < 0.5 \]。

8. 如需求項7所述之光學影像擷取鏡頭組，其中該光學影像擷取鏡頭組之焦距為 f，該第四透鏡之焦距為 f4，其滿足下列條件：
 \[-2.5 < f/f4 < -0.75 \]。

9. 如需求項2所述之光學影像擷取鏡頭組，其中該第一透鏡之物側表面曲率半徑為 R1，該光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：
0.2 < R1/f < 1.0。

10. 如請求項 2 所述之光學影像擷取鏡頭組，其中該第二透鏡與該第三透鏡於光軸上的間隔距離為 T23，該第三透鏡與該第四透鏡於光軸上的間隔距離為 T34，其滿足下列條件：

 0.5 < T23/T34 < 3.1。

11. 如請求項 2 所述之光學影像擷取鏡頭組，其中該第四透鏡之物側表面曲率半徑為 R7，像側表面曲率半徑為 R8，其滿足下列條件：

 -3.0 < (R7+R8)/(R7-R8) < -1.0。

12. 如請求項 2 所述之光學影像擷取鏡頭組，更包含：一影像感測元件，其設置於一成像面上，該影像感測元件有效感測區域對角線長的一半為 ImgH，而該第一透鏡之物側表面至該成像面上之距離為 TTL，並滿足下列條件：

 TTL/ImgH < 1.95。

13. 一種光學影像擷取鏡頭組，由物側至像側依序包含四枚獨立非黏合透鏡：

 一第一透鏡，具有正屈折力，其物側表面為凸面；

 一第二透鏡，具有負屈折力，其物側表面為凹面、像側表面為凸面；

 一第三透鏡，具有正屈折力並為塑膠材質，其物側表面及像側表面皆為凸面且皆為非球面；以及

 一第四透鏡，具有負屈折力並為塑膠材質，其物側表
面為凹面、像側表面為凸面，且其物側表面及像側表面皆為非球面；

其中，該第一透鏡之折射率為 N1，該第二透鏡之折射率為 N2，該第三透鏡之物側表面曲率半徑為 R5、像側表面曲率半徑為 R6，該第二透鏡之物側表面曲率半徑為 R3、像側表面曲率半徑為 R4，其滿足下列條件：

-0.25 < N1-N2 < 0；
-0.1 < (R5+R6)/(R5-R6) < 1；以及
-3.5 < (R3+R4)/(R3-R4) < -1.0。

14. 如請求項 13 所述之光學影像擷取鏡頭組，其中該第三透鏡之物側表面曲率半徑為 R5、像側表面曲率半徑為 R6，其滿足下列條件：

0.2 < (R5+R6)/(R5-R6) < 0.9。

15. 如請求項 13 所述之光學影像擷取鏡頭組，其中該光學影像擷取鏡頭組之焦距為 f，該第二透鏡之焦距為 f2，其滿足下列條件：

-0.9 < f/f2 < -0.3。

16. 如請求項 13 所述之光學影像擷取鏡頭組，其中該第四透鏡之物側表面曲率半徑為 R7，該光學影像擷取鏡頭組之焦距為 f，其滿足下列條件：

-0.6 < R7/f < 0。

17. 如請求項 16 所述之光學影像擷取鏡頭組，其中該第一透鏡之物側表面曲率半徑為 R1，該光學影像擷取鏡頭組焦距為 f，其滿足下列條件：
0.2 < R1/f < 1.0。

18. 如請求項 16 所述之光學影像擷取鏡頭組，其中該第二透鏡與該第三透鏡於光軸上的間隔距離為 T23，該第三透鏡與該第四透鏡於光軸上的間隔距離為 T34，其滿足下列條件：

 0.5 < T23/T34 < 3.1。
第 4 圖

球差
LONGITUDINAL SPHERICAL ABER.

像散
ASTIGMATIC FIELD CURVES

歪曲
DISTORTION
第 6 圖

球差
LONGITUDINAL SPHERICAL ABER.

像散
ASTIGMATIC FIELD CURVES

歪曲
DISTORTION

FOCUS (MILLIMETERS)
焦點（偏移量）

FOCUS (MILLIMETERS)
焦點（偏移量）

% DISTORTION
歪曲率
球差
LONGITUDINAL SPHERICAL ABER.

像散
ASTIGMATIC FIELD CURVES

歪曲
DISTORTION

第 8 圖
球差
LONGITUDINAL SPHERICAL ABER.

像散
ASTIGMATIC FIELD CURVES
IMG HT 像高

歪曲
DISTORTION
IMG HT 像高

第10図
球差
LONGITUDINAL SPHERICAL ABER.

像散
ASTIGMATIC FIELD CURVES

歪曲
DISTORTION

第 14 图