（54）发明名称
基于谐波分量的不换位输电线路电容抗干扰测量方法
（57）摘要
本发明公开了一种基于谐波分量的不换位输电线路电容抗干扰测量方法，通过饱和变压器在测量线路中产生足够大的三次谐波，利用基于GPS技术的同步测量装置测量线路首末两端的三相电压和三相电流，并采用加权平滑的FFT插值算法对线路首末两端的电压和电流进行处理，得到首末两端的三相电压和三相电流的三次谐波分量。同时考虑到不换位线路两相之间互参数不相等，利用谐波分量和基于输电线路集中参数模型求解出所有相的自导纳和相同互导纳参数，进而得到所有电容参数，被发明专利消除了附近带电运行线路工频干扰对被测量线路电容参数的影响，极大地提高了测量精度，可满足实际工程测量的需要。
1.一种基于谐波分量的不换位输电线路电容抗干扰测量方法，定义待测量输电线路a、
正常运行并带来工频干扰的输电线路b，测量步骤包括：
步骤1，通过升压变压器，在被测量线路a首端施加三相工频电压，线路a末端开路，末端
电流为0；利用基于GPS技术的同步测量装置同步采集线路a首端的三相电压U_a^1, U_b^1, U_c^1
和末端的三相电压U_a^2, U_b^2, U_c^2，首端的三相电流I_a^1, I_b^1, I_c^1。
步骤2，交换首端三相电源中A相和B相与线路的接线位置，利用基于GPS技术的同步测
量装置同步采集线路a首端的三相电压U_a^2, U_b^2, U_c^2，末端的三相电压U_a^3, U_b^3, U_c^3
和首端的三相电流I_a^2, I_b^2, I_c^2。
步骤3，交换首端三相电源中A相和C相与线路的接线位置，利用基于GPS技术的同步测
量装置同步采集线路a首端的三相电压U_a^3, U_b^3, U_c^3，末端的三相电压U_a^4, U_b^4, U_c^4
和首端的三相电流I_a^3, I_b^3, I_c^3。
步骤4，对步骤1、步骤2和步骤3三种独立测量方式下得到的三组首末两端的三相电压
和三相电流数据，采用加汉宁窗的FFT插值算法处理，得到三组首末两端的三相电压和三相
电流的三次谐波分量，包括：
第一次测量下，线路a首端三相电压的三次谐波分量$U_a^{13}, U_b^{13}, U_c^{13}$，末端三相电压的
三次谐波分量$U_a^{23}, U_b^{23}, U_c^{23}$和首端三相电流的三次谐波分量$I_a^{13}, I_b^{13}, I_c^{13}$。
第二次测量下，线路a首端三相电压的三次谐波分量$U_a^{33}, U_b^{33}, U_c^{33}$，末端三相电压的
三次谐波分量$U_a^{43}, U_b^{43}, U_c^{43}$和首端三相电流的三次谐波分量$I_a^{23}, I_b^{23}, I_c^{23}$。
第三次测量下，线路a首端三相电压的三次谐波分量$U_a^{33}, U_b^{33}, U_c^{33}$，末端三相电压的
三次谐波分量$U_a^{43}, U_b^{43}, U_c^{43}$和首端三相电流的三次谐波分量$I_a^{33}, I_b^{33}, I_c^{33}$。
步骤5，由三组线路首末两端的三次谐波电压和三次谐波电流，以及线路模型，得：
$$
\begin{bmatrix}
 j_{a3}^1 & i_{a3}^1 & j_{a3}^2 \\
 j_{b3}^1 & i_{b3}^1 & j_{b3}^2 \\
 j_{c3}^1 & i_{c3}^1 & j_{c3}^2 \\
\end{bmatrix} = Y_3 \begin{bmatrix}
 U_{a3}^{13} + U_{a3}^{43} & U_{a3}^{23} + U_{a3}^{33} & U_{a3}^{33} + U_{a3}^{43} \\
 U_{b3}^{13} + U_{b3}^{43} & U_{b3}^{23} + U_{b3}^{33} & U_{b3}^{33} + U_{b3}^{43} \\
 U_{c3}^{13} + U_{c3}^{43} & U_{c3}^{23} + U_{c3}^{33} & U_{c3}^{33} + U_{c3}^{43} \\
\end{bmatrix}
$$
其中，Y_3为线路三次谐波频率下的导纳矩阵：
$$
Y_3 = \begin{bmatrix}
 Y_{a3} & Y_{ab3} & Y_{ac3} \\
 Y_{ab3} & Y_{b3} & Y_{bc3} \\
 Y_{ac3} & Y_{bc3} & Y_{c3} \\
\end{bmatrix}
$$
Y_{a3}为被测量线路A相三次谐波频率下的导纳，Y_{b3}为被测量线路B相三次谐波频率下的导
纳，Y_{c3}为被测量线路C相三次谐波频率下的导纳，$Y_{ab3}, Y_{ac3}, Y_{bc3}$为被测量线路不同两相之间
三次谐波频率下的互导纳；
解方程求得导纳矩阵Y_3；
步骤6，将被测量线路三次谐波频率下的相导纳矩阵转换为基波频率下的序电容矩阵，
同时除以线路长度l，得到每千米的电容参数；包括零序电容C_0、正序电容C_1、负序电容C_2、以
及不同两相之间的互电容$C_{01}, C_{02}, C_{10}, C_{12}, C_{20}, C_{21}$；
\[
\begin{bmatrix}
C_0 & C_{01} & C_{02} \\
C_{10} & C_1 & C_{12} \\
C_{20} & C_{21} & C_2
\end{bmatrix} = \frac{1}{j3wl} \begin{bmatrix}
1 & 1 & 1 \\
1 & e^{j240^\circ} & e^{j120^\circ} \\
1 & e^{j120^\circ} & e^{j240^\circ}
\end{bmatrix}^{-1} \begin{bmatrix}
1 & 1 & 1 \\
1 & e^{j240^\circ} & e^{j120^\circ} \\
1 & e^{j120^\circ} & e^{j240^\circ}
\end{bmatrix}
\]

上式中，l为线路长度，w = 2\pi f，f为电网频率。

2. 根据权利要求1所述的基于谐波分量的不换位输电线路电容抗干扰测量方法，特征在于：所述步骤1、2、3、4中，通过升压变压器在测量线路中产生的三次谐波，利用基于GPS技术的同步测量装置测量线路首末两端的三相电压和三相电流，采用加汉宁窗的FFT插值算法对线路首末两端的电压和电流处理，得到首末两端的三相电压和三相电流的三次谐波分量，利用谐波分量进行计算。

3. 根据权利要求1所述的基于谐波分量的不换位输电线路电容抗干扰测量方法，特征在于：所述步骤5和步骤6中，考虑到不换位线路两相之间互参数不相等，利用谐波分量求解出所有相的自导纳和相间互导纳，进而得到所有序电容参数。
基于谐波分量的不换位输电线路电容抗干扰测量方法

技术领域
【0001】本发明涉及一种输电线路电容参数精确测量方法，内容为基于谐波分量的不换位输电线路电容抗干扰测量方法。

背景技术
【0002】输电线路参数是电力系统中潮流计算、功率损耗计算、短路计算、故障分析和继电保护整定计算的重要基础数据。没有准确的线路参数，便无法保证上述计算的精确性，进而可能导致继电保护装置和其他自动装置的不动作或误动作。因此，准确地获取输电线路的参数对电力系统的正常运行有着十分重要的意义。
【0003】随着近年来电力系统的飞速发展，由于输电走廊拥挤和线路杆塔建造费用高昂，耦合输电线路的数量不断增加，使得线路间的电磁干扰愈加深重，给精确测量输电线路参数带来了很大的困难。
【0004】目前，关于输电线路的计算和测量已经取得了一定的成果。获取输电线路参数的主要方法包括理论计算方法和实际测量方法。而由于大地的土壤电阻率会随着下方的地理环境条件变化而改变，且计算法忽略了电源和附近线路的电磁干扰对线路参数的影响，尤其是对零序参数的影响。因此，需要对输电线路参数进行实际测量。
【0005】然而在实际测量中，200km以下输电线路多为不换位线路，导致不换位线路之间的干扰增强，因为附近其他不换位线路的三相线路在测量线路上的感应电压相等和不为零。尤其是强干扰环境下，附近的耦合线路会在测量线路上感应出较大的工频电压，即工频干扰，会给线路工频参数测量带来很大的误差。
【0006】由于干扰电压会随着附近线路潮流变化而改变，且由干扰电压引起的干扰电流无法测量，因此，实际中将干扰电压和干扰电流纳入计算公式是很难实现的。在绝大多数的电容参数实际测量中，均采用了并未考虑干扰的测量方法，导致测量误差较大，无法满足实际工程测量需求。

发明内容
【0007】本发明主要是解决现有技术中存在的由于不换位线路带来较弱工频干扰而导致测量误差较大的问题，提供了一种基于谐波分量的不换位输电线路电容抗干扰测量方法，该方法能消除工频干扰带来的影响，精确测量出线路所有的电容参数，包括零序电容、正序电容、负序电容以及不同序之间的互电容等参数。
【0008】本发明的上述技术问题主要是通过下述技术方案得以解决的。
【0009】基于谐波分量的不换位输电线路电容抗干扰测量方法，其特征在于，定义输电线路由停电的被测线路a和带电运行的线路b组成，且每回线路均由三相线路构成。测量步骤包括：
【0010】步骤1，通过升压变压器（空载下能饱和的变压器），在测量线路a首端施加三相工频电压，线路a末端三相开路（末端电流为0）。利用基于GPS技术的同步测量装置同步采集线
路a首端的三相电压 $U_{as}^1, U_{bs}^1, U_{cs}^1$，末端的三相电压 $U_{ae}^1, U_{be}^1, U_{ce}^1$ 和首端的三相电流 $I_{as}^1, I_{bs}^1, I_{cs}^1$。

[0011] 步骤2，交换首端三相电源中A相和B相与被测线路的接线位置，利用基于GPS技术的同步测量装置同步采集线路a首端的三相电压 $U_{as}^2, U_{bs}^2, U_{cs}^2$，末端的三相电压 $U_{ae}^2, U_{be}^2, U_{ce}^2$ 和首端的三相电流 $I_{as}^2, I_{bs}^2, I_{cs}^2$。

[0012] 步骤3，交换首端三相电源中A相和C相与被测线路的接线位置，利用基于GPS技术的同步测量装置同步采集线路a首端的三相电压 $U_{as}^3, U_{bs}^3, U_{cs}^3$，末端的三相电压 $U_{ae}^3, U_{be}^3, U_{ce}^3$ 和首端的三相电流 $I_{as}^3, I_{bs}^3, I_{cs}^3$。

[0013] 步骤4，对步骤1、步骤2和步骤3三种独立测量方式下得到的三组首末两端的三相电压和三相电流数据，采用加汉宁窗的FFT（快速傅里叶变换）插值算法处理，得到三组首末两端的三相电压和三相电流的三次谐波分量，包括：

[0014] 第一次测量下，线路a首端三相电压的三次谐波分量 $U_{as3}^1, U_{bs3}^1, U_{cs3}^1$，末端三相电压的三次谐波分量 $U_{ae3}^1, U_{be3}^1, U_{ce3}^1$ 和首端三相电流的三次谐波分量 $I_{as3}^1, I_{bs3}^1, I_{cs3}^1$。

[0015] 第二次测量下，线路a首端三相电压的三次谐波分量 $U_{as3}^2, U_{bs3}^2, U_{cs3}^2$，末端三相电压的三次谐波分量 $U_{ae3}^2, U_{be3}^2, U_{ce3}^2$ 和首端三相电流的三次谐波分量 $I_{as3}^2, I_{bs3}^2, I_{cs3}^2$。

[0016] 第三次测量下，线路a首端三相电压的三次谐波分量 $U_{as3}^3, U_{bs3}^3, U_{cs3}^3$，末端三相电压的三次谐波分量 $U_{ae3}^3, U_{be3}^3, U_{ce3}^3$ 和首端三相电流的三次谐波分量 $I_{as3}^3, I_{bs3}^3, I_{cs3}^3$。

[0017] 步骤5，由以上三组线路首末两端的三次谐波电压和三次谐波电流，以及线路模型，可得：

$$
\begin{bmatrix}
I_{a3}^1 & I_{b3}^1 & I_{c3}^1 \\
I_{a3}^2 & I_{b3}^2 & I_{c3}^2 \\
I_{a3}^3 & I_{b3}^3 & I_{c3}^3
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
Y_{a3} & Y_{ab3} & Y_{ac3} \\
Y_{ab3} & Y_{b3} & Y_{bc3} \\
Y_{ac3} & Y_{bc3} & Y_{c3}
\end{bmatrix} \begin{bmatrix}
U_{a3}^1 + U_{a3}^2 + U_{a3}^3 \\
U_{b3}^1 + U_{b3}^2 + U_{b3}^3 \\
U_{c3}^1 + U_{c3}^2 + U_{c3}^3
\end{bmatrix}
$$

[0019] 其中，Y_{a3}为线路在三次谐波频率下的导纳矩阵：

$$
Y_{a3} = \begin{bmatrix}
Y_{a3} & Y_{ab3} & Y_{ac3} \\
Y_{ab3} & Y_{b3} & Y_{bc3} \\
Y_{ac3} & Y_{bc3} & Y_{c3}
\end{bmatrix}
$$

[0021] Y_{a3}为被测量线路A相三次谐波频率下的导纳，Y_{b3}为被测量线路B相三次谐波频率下的导纳，Y_{c3}为被测量线路C相三次谐波频率下的导纳，$Y_{ab3}, Y_{ac3}, Y_{bc3}$为被测量线路不同两相之间三次谐波频率下的互导纳。

[0022] 解方程求得导纳矩阵Y_{a3}。
步骤6：将被测量线路三次谐波频率下的相导纳矩阵转换为基波频率下的相导纳矩阵，由于线路电导参数极小，因此忽略不计。同时除以线路长度L，得到每千米的电容参数，包括零序电容C_0、正序电容C_1、负序电容C_2以及不同两序之间的互电容C_{01}、C_{02}、C_{10}、C_{12}、C_{20}、C_{21}。

\[
\begin{bmatrix}
 C_0 & C_{01} & C_{02} \\
 C_{10} & C_1 & C_{12} \\
 C_{20} & C_{21} & C_2
\end{bmatrix} = \frac{1}{j3\omega L} \begin{bmatrix}
 1 & 1 & 1 \\
 1 & e^{j240^\circ} & e^{j120^\circ} \\
 1 & e^{j120^\circ} & e^{j240^\circ}
\end{bmatrix}^{-1} \begin{bmatrix}
 1 & 1 & 1 \\
 1 & e^{j240^\circ} & e^{j120^\circ} \\
 1 & e^{j120^\circ} & e^{j240^\circ}
\end{bmatrix}
\]

上式中，l为线路长度，w = 2\pi f，f为电网频率。本发明所提供技术方案提出了基于谐波分量的不换位输电线路电容抗干扰测量方法，通过空载下饱和变压器在被测量线路中产生的三次谐波，利用基于GPS技术的同步测量装置测量线路首端两相的三相电压和相相电流，采用加权平均的FFT插值算法对线路首端两相的电压和电流处理，得到首端两相的三相电压和相相电流的三次谐波分量。同时考虑到不换位线路两相之间互参数不相等，利用谐波分量求解出所有相的自导纳和相间互导纳，进而得到被测量线路的所有序电容参数。

本发明具有以下特点:

(1) 利用谐波分量计算，将谐波“变害为利”，测除了附近线路工频干扰对测量的影响，极大地提高了线路电容的测量精度；

(2) 利用电源换相分别加压得到三相测量数据，操作十分便捷；

(3) 利用线路三相的电压和三相电流数据，能一次性测量出所有序电容参数；

(4) 不仅适用于附近有回线路干扰的情况，也适用于附近有多回线路干扰的情况；

(5) 本发明方法在强干扰环境下的实现输电线路电容参数的精确测量，提高电力系统继电保护整定的准确性和提高供电可靠性具有积极作用。

附图说明

附图1为超高压同塔四回/双回双极输电线路等效示意图。

附图2为超高压同塔四回输电线路的分布参数模型示意图。

附图3为超高压同塔四回输电线路空间位置平面示意图。

具体实施方式

下面通过实施例，并结合附图，对本发明的技术方案作进一步具体的说明。

实施例：

实施例1：

以下结合附图和实施例详细说明本发明技术方案。

实施例2：

1. 基于谐波分量的不换位输电线路电容抗干扰测量，实施例包括以下步骤：

步骤1，选择被测量的停电线路a，附近带电运行的线路b。

步骤4，参见图1所示，通过升压变压器（空载下能饱和变压器），在被测量线路a首端施加三相工频电压，线路a末端开路（末端电流为0）。利用GPS的授时功能获得误差小于1微秒的时间基准，在GPS时间同步下，实施例同时采集线路a首端的三相电压U_a^k、U_b^k、U_c^k，未端
的三相电压 $U_{aM}^1, U_{bM}^1, U_{cM}^1$ 和首端的三相电流 $i_{aS}^1, i_{bS}^1, i_{cS}^1$，并以文件的方式将测量数据保存。

[0041] 步骤2，交换首端三相电源中A相和B相与线路的接线位置，利用GPS的授时功能获得误差小于1微秒的时间基准，在GPS时间同步下，实施例同时采集线路a首端的三相电压 $U_{aS}^2, U_{bS}^2, U_{cS}^2$，末端的三相电压 $U_{aM}^2, U_{bM}^2, U_{cM}^2$ 和首端的三相电流 $i_{aS}^2, i_{bS}^2, i_{cS}^2$，并以文件的方式将测量数据保存。

[0042] 步骤3，交换首端三相电源中A相和C相与线路的接线位置，利用GPS的授时功能获得误差小于1微秒的时间基准，在GPS时间同步下，实施例同时采集线路a首端的三相电压 $U_{aS}^3, U_{bS}^3, U_{cS}^3$，末端的三相电压 $U_{aM}^3, U_{bM}^3, U_{cM}^3$ 和首端的三相电流 $i_{aS}^3, i_{bS}^3, i_{cS}^3$。

[0043] 步骤4，将三种独立测量方式下所得测量数据保存成的文件汇总到一台计算机中，在各独立测量方式下，首末两端均取线路加压后若干时间（例如0.2秒至0.4秒间）的测量数据，加汉宁窗的FFT插值算法处理，得到三组首末两端的三相电压和三相电流的三次谐波分量，包括：

[0044] 第一次测量下，线路a首端三相电压的三次谐波分量 $U_{aS}^{1}, U_{bS}^{1}, U_{cS}^{1}$，末端三相电压的三次谐波分量 $U_{aM}^{1}, U_{bM}^{1}, U_{cM}^{1}$ 和首端三相电流的三次谐波分量 $i_{aS}^{1}, i_{bS}^{1}, i_{cS}^{1}$。

[0045] 第二次测量下，线路a首端三相电压的三次谐波分量 $U_{aS}^{2}, U_{bS}^{2}, U_{cS}^{2}$，末端三相电压的三次谐波分量 $U_{aM}^{2}, U_{bM}^{2}, U_{cM}^{2}$ 和首端三相电流的三次谐波分量 $i_{aS}^{2}, i_{bS}^{2}, i_{cS}^{2}$。

[0046] 第三次测量下，线路a首端三相电压的三次谐波分量 $U_{aS}^{3}, U_{bS}^{3}, U_{cS}^{3}$，末端三相电压的三次谐波分量 $U_{aM}^{3}, U_{bM}^{3}, U_{cM}^{3}$ 和首端三相电流的三次谐波分量 $i_{aS}^{3}, i_{bS}^{3}, i_{cS}^{3}$。

[0047] 本发明中的电压单位均未伏特，电流单位均未安培。

[0048] 加汉宁窗的FFT插值算法为现有技术，本发明不予赘述。

[0049] 步骤5，参见图2所示线路模型，将三组线路首末两端的三次谐波电压和三次谐波电流代入式（A1），

$$
\begin{bmatrix}
i_{aS}^1 & i_{aS}^2 & i_{aS}^3 \\
i_{bS}^1 & i_{bS}^2 & i_{bS}^3 \\
i_{cS}^1 & i_{cS}^2 & i_{cS}^3
\end{bmatrix} = \frac{1}{2} Y_3 \begin{bmatrix}
U_{aS}^1 + U_{aM}^1 & U_{aS}^2 + U_{aM}^2 & U_{aS}^3 + U_{aM}^3 \\
U_{bS}^1 + U_{bM}^1 & U_{bS}^2 + U_{bM}^2 & U_{bS}^3 + U_{bM}^3 \\
U_{cS}^1 + U_{cM}^1 & U_{cS}^2 + U_{cM}^2 & U_{cS}^3 + U_{cM}^3
\end{bmatrix}
$$

(A1)

[0050] 求解式（A1）得到线路三次谐波频率下的导纳矩阵 Y_3。

[0051] 其中，

$$
Y_3 = \begin{bmatrix}
Y_{aa} & Y_{ab} & Y_{ac} \\
Y_{ba} & Y_{bb} & Y_{bc} \\
Y_{ca} & Y_{cb} & Y_{cc}
\end{bmatrix}
$$

(A2)

[0052] 步骤6，将 Y_3 代入式 (A3)。
解得到所有电容参数，包括零序电容C_0、正序电容C_1、负序电容C_2，以及不同两序之间的互电容C_{01}、C_{02}、C_{12}、C_{02}。电容参数单位均为nF/km。

为说明本发明效果起见，以同塔双回220kV耦合输电线路a、b为例，输电线路a为被测量的线路，输电线路b为带电运行的线路，其空间位置分布参见图3。

输电线路a的理论电容参数如下所示。

$$
\begin{bmatrix}
C_0 & C_{01} & C_{02} \\
C_{10} & C_1 & C_{12} \\
C_{20} & C_{21} & C_2
\end{bmatrix} = \frac{1}{j\beta w_l} \begin{bmatrix}
1 & 1 & 1 \\
e^{j2\pi/3} & e^{j4\pi/3} & e^{j2\pi/3} \\
e^{j2\pi/3} & e^{j4\pi/3} & e^{j2\pi/3}
\end{bmatrix}^{-1} \begin{bmatrix}
1 & 1 & 1 \\
e^{j2\pi/3} & e^{j4\pi/3} & e^{j2\pi/3} \\
e^{j2\pi/3} & e^{j4\pi/3} & e^{j2\pi/3}
\end{bmatrix} \quad (A3)
$$

外加三相电压为10kV，线路a长度为50km时，利用基波分量进行计算的传统方法测量得到的电容参数为

$$
\begin{bmatrix}
7.4154 & -2.5044+j0.8425 & -2.5044-j0.8425 \\
-2.5044+j0.8425 & 10.927 & 0.1618+j1.8199 \\
-2.5044+j0.8425 & 0.1618+j1.8199 & 10.927
\end{bmatrix} \quad (A5)
$$

外加三相电压为10kV，线路a长度为50km时，本发明方法测量结果为

$$
\begin{bmatrix}
6.4379 & 0.0448+j0.3539 & 0.0448-j0.3539 \\
0.0448-j0.3539 & 9.4269 & -0.3075-j0.3875 \\
0.0448+j0.3539 & -0.3075+j0.3875 & 9.4269
\end{bmatrix} \quad (A6)
$$

由以上计算结果可知，传统方法序电容的测量误差很大，零序、正序电容(负序电容等于正序电容)测量误差也较大，而本发明方法能精确地测量所有序电容参数。

表1提供了分别采用本发明方法和传统方法测量得到的线路零序电容、正序电容(负序电容等于正序电容)参数测量误差与输电线路长度关系。

<table>
<thead>
<tr>
<th>线路长度(km)</th>
<th>15</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0 测量值 (nF/km)</td>
<td>7.1910</td>
<td>7.4154</td>
<td>7.6968</td>
<td>8.1079</td>
<td>8.3309</td>
</tr>
<tr>
<td>相对误差 (%)</td>
<td>12.186</td>
<td>15.687</td>
<td>20.077</td>
<td>26.490</td>
<td>29.969</td>
</tr>
<tr>
<td>C_1 测量值 (nF/km)</td>
<td>10.607</td>
<td>10.927</td>
<td>11.295</td>
<td>11.669</td>
<td>11.948</td>
</tr>
<tr>
<td>相对误差 (%)</td>
<td>12.891</td>
<td>16.297</td>
<td>20.213</td>
<td>24.194</td>
<td>27.163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>线路长度(km)</th>
<th>15</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0 测量值 (nF/km)</td>
<td>6.4166</td>
<td>6.4379</td>
<td>6.4582</td>
<td>6.4846</td>
<td>6.5177</td>
</tr>
<tr>
<td>相对误差 (%)</td>
<td>0.1045</td>
<td>0.4368</td>
<td>0.7535</td>
<td>1.1654</td>
<td>1.6818</td>
</tr>
<tr>
<td>C_1 测量值 (nF/km)</td>
<td>9.4084</td>
<td>9.4269</td>
<td>9.4627</td>
<td>9.5171</td>
<td>9.5582</td>
</tr>
<tr>
<td>相对误差 (%)</td>
<td>0.1341</td>
<td>0.3310</td>
<td>0.7120</td>
<td>1.2910</td>
<td>1.7284</td>
</tr>
</tbody>
</table>
从表1可以看出，两种方法的测量误差均会随着线路长度的增加而增大，但200km以上的线路均会采用三相换位使得三相对称，干扰较小，故200km以上线路测量不予考虑。

传统方法测量该线路的电容参数，线路长度从15km到200km变化时，零序电容测量误差从12.186%增加到29.969%，正序电容测量误差则由12.891%增加到27.163%，因此传统测量方法无法满足测量精度的要求。

用本发明方法测量该线路的电容参数，线路长度从15km到200km变化时，零序电容测量误差从0.1045%增加到1.6818%，正序电容测量误差则由0.1341%增加到1.7284%，可以满足工程测量要求。

本文中所描述的具体实施例仅仅是针对发明精神作举例说明。本发明另属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代，但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
图1

A相
\[U_{aS} \rightarrow i_{aS} \rightarrow \frac{1}{2} Y_a \rightarrow \frac{1}{2} Y_{ab} \rightarrow \frac{1}{2} Y_{ac} \rightarrow Z_a \rightarrow \frac{1}{2} Y_{bc} \rightarrow \frac{1}{2} Y_{cb} \rightarrow U_{aM} \rightarrow i_{aM} \]

B相
\[U_{bS} \rightarrow i_{bS} \rightarrow \frac{1}{2} Y_b \rightarrow \frac{1}{2} Y_{bc} \rightarrow Z_b \rightarrow \frac{1}{2} Y_{cb} \rightarrow \frac{1}{2} Y_{bc} \rightarrow U_{bM} \rightarrow i_{bM} \]

C相
\[U_{cS} \rightarrow i_{cS} \rightarrow \frac{1}{2} Y_c \rightarrow \frac{1}{2} Y_{bc} \rightarrow Z_c \rightarrow \frac{1}{2} Y_{cb} \rightarrow \frac{1}{2} Y_{bc} \rightarrow U_{cM} \rightarrow i_{cM} \]

图2

图3