发明名称
检测以太网多播性能的实现方法

摘要
本发明涉及一种检测网络多播性能的实现方法。本发明主要包括：首先，在测试发起点构造并发送包含标识信息的多播性能测量请求报文；然后，在接收所述多播性能测量报文的各节点分别向测试发起点发送包含所述标识信息的性能测量响应报文；最后，在预定的时间内，测试发起点接收所述的性能测量响应报文，并根据接收报文中的标识信息测量多播性能参数。本发明对 Y.17ethoam 所定义的 OAM 帧格式改动较小，且本发明在实现过程中，在发送点和接收点的处理流程较为简单，并采用了基于原有单播性能测量的计算方法进行多播性能测量的计算方法。因此，本发明可以在以太网 OAM 中很好的实现 P2MP 多播性能参数测量，从而辅助 OAM 提供更为全面的网络性能评估。
1. 一种检测以太网多播性能的实现方法，其特征在于，包括：
 A. 在测试发起点构造并发送包含标识信息的多播性能测量请求报文；所述多播性能测量包括，帧丢失测量和 / 或帧延迟测量；
 具体地，当实现以太网操作管理和维护 OAM 进行帧丢失测量时，在测试发起点构造并
 发送采用多播媒体接入控制 MAC 地址的多播请求帧，所述请求帧中包含多播帧丢失测量请
 求操作码、前向发送帧计数器值信息及标识信息；当实现以太网操作管理和维护 OAM 进行
 帧延迟测量时，在测试发起点构造并发送采用多播媒体接入控制 MAC 地址的多播请求帧，
 所述请求帧中包含多播帧延迟测量请求操作码、前向发送时戳信息及标识信息；
 B. 接收所述多播性能测量报文的各节点分别向测试发起点发送包含所述标识信息的
 性能测量响应报文；
 C. 测试发起点接收所述的性能测量响应报文，并根据接收报文中的标识信息测量多播
 性能参数；
 具体地，当进行帧丢失测量时，测试发起点在预定的时间内，根据连续接收的同一标识
 信息的两个多播响应帧中的前向发送帧计数器值和前向接收帧计数器值计算帧丢失值；当
 进行帧延迟测量时，测试发起点在预定的时间内，根据接收到多播响应帧的时间，以及多播
 响应帧中的前向发送时戳信息、前向接收时戳信息和反向发送时戳信息计算帧延迟值。
 2. 根据权利要求 1 所述的检测以太网多播性能的实现方法，其特征在于，所述的标识
 信息包括：
 以太网 OAM 报文中的传输标识 Transaction ID。
 3. 根据权利要求 1 所述的检测以太网多播性能的实现方法，其特征在于，所述的步骤 B
 包括：
 B1. 当进行帧丢失测量时，在接收多播请求的节点构建多播响应帧，在响应帧中包含所
 述标识信息、多播帧丢失测量响应操作码、请求帧中的前向发送帧计数器值信息及接收节
 点的前向接收帧计数器值信息，并在延迟预定的随机延迟时间后发送该多播响应帧；
 和 / 或，
 B2. 当进行帧延迟测量时，在接收多播请求的节点构建多播响应帧，在响应帧中包含所
 述标识信息、多播帧延迟测量响应操作码、请求帧中的前向发送时戳信息及发送。
 4. 根据权利要求 3 所述的检测以太网多播性能的实现方法，其特征在于，所述的步骤
 B2 具体包括：
 当进行帧延迟测量时，在接收多播请求的节点构建多播响应帧，在响应帧中包含所述
 标识信息、多播帧延迟测量响应操作码、请求帧中的前向发送时戳信息及接收节点的前
 向接收时戳信息，并在延迟预定的随机延迟时间后，将接收节点的后向发送时戳写入多
 播响应帧中，发送。
 5. 根据权利要求 1 所述的检测以太网多播性能的实现方法，其特征在于，所述的步骤 C
 前还包括：
 在测试多播性能参数之前，初始化帧丢失值和 / 或帧延迟值。
 6. 根据权利要求 5 所述的检测以太网多播性能的实现方法，其特征在于，所述的帧丢
 失值包括最小帧丢失值、最大帧丢失值和 / 或总的帧丢失值，以及组播组大小的值；
和/或，
所列的帧延迟值包括：最小帧延迟值、最大帧延迟值和/或总的帧延迟值，以及组播组大小的值。

7. 根据权利要求6所述的检测以太网多播性能的实现方法，其特征在于，所述的步骤C还包括：
C1. 当进行帧丢失测量时，根据得到的所述帧丢失值更新最小帧丢失值、最大帧丢失值
和/或总的帧丢失值以及组播组大小的值；
和/或，
C2. 当进行帧延迟测量时，根据得到的所述帧延迟值更新最小帧延迟值、最大帧延迟值
和/或总的帧延迟值以及组播组大小的值。

8. 根据权利要求7所述的检测以太网多播性能的实现方法，其特征在于，所述的步骤C1包括：
帧丢失值等于连续接收的同一标识信息的两个多播响应帧中的前向发送帧计数器值
的差值减去两个多播响应帧中的前向接收帧计数器值的差值，并且：
当所述的帧丢失值小于最小帧丢失值时，将最小帧丢失值更新为该帧丢失值；
和/或，
当所述的帧丢失值大于最大帧丢失值时，将最大帧丢失值更新为该帧丢失值；
和/或，
总的帧丢失值等于当前的总的帧丢失值与所述帧丢失值的和，且组播组大小的值需要
加一。

9. 根据权利要求7所述的检测以太网多播性能的实现方法，其特征在于，所述的步骤C2包括：
帧延迟值等于接收多播响应帧的时间与前向发送时间戳信息的差值减去前向接收时间
戳信息与反向发送时间戳信息的差值，并且：
当所述的帧延迟值小于最小帧延迟值时，则将所述帧延迟值作为最小帧延迟值；
和/或，
当所述的帧延迟值大于最大帧延迟值时，则将所述的帧延迟值作为最大帧延迟值；
和/或，
总的帧延迟值等于当前的总的帧延迟值与所述帧延迟值的和，且组播组大小的值加
一。

10. 根据权利要求1至4任一项所述的检测以太网多播性能的实现方法，其特征在于，
执行所述的步骤C之前还包括：
C0. 测试发起点接收所述的多播性能测量响应报文后，当其中的标识信息为正确的标
识信息时，则执行步骤C。

11. 根据权利要求10所述的检测以太网多播性能的实现方法，其特征在于，所述的步
骤C0还包括：
根据保存的有效的标识信息确定接收的多播性能测量响应报文中的标识信息是否正
确。
检测以太网多播性能的实现方法

技术领域
[0001] 本发明涉及网络通信技术领域，尤其涉及一种以太网 OAM (操作管理和维护) 中的多播性能检测技术。

背景技术
[0002] 随着网络通信技术的发展，Ethernet（以太网）技术凭借其高性价比的优势逐渐由局域网/广域网发展，其端口速率也从 10M 发展到 10G。在以太网向城域网发展过程中，要求 Ethernet 技术必须满足电信级网络要求。其中，OAM 便是电信级网络对各种技术的基本要求。相应的 OAM 主要包括网络故障管理机制和网络性能管理机制。
[0003] 目前，针对 ETH 网络的故障 / 性能管理机制包括：
[0004] 基于 ETH-CC（以太网连接性检查）连续性检测功能，用于检测 ETHMEP 之间连通性；
[0005] 基于 ETH-LB（以太网环回）环回功能，用于 MEP（维护域端点）和 MIP（维护域中间节点）/MEP 之间连通性检测，以及性能参数中的帧延迟和帧延迟抖动测量；
[0006] ETH-LT（以太链路跟踪）功能，用于故障定位；
[0007] 基于 ETH-AIS（以太网告警指示信号）和 ETH-RDI（以太网端口退激活）的告警指示功能，用于故障警报前向 / 反向抑制；
[0008] ETH-LM（以太网帧丢失测量）功能，用于测量性能参数中的帧丢失率；
[0009] ETH-DM（以太网帧延迟测量）功能，用于测量性能参数中的延迟。
[0010] 在 Y.17etheroam(Y.17 以太网 OAM) 故障管理中，ETH-CC 和 ETH-LB 功能可以以多播方式实现，但 ETH-LT 功能的多播实现难度较大，因此，目前还没有定义多播的 ETH-LT。
[0011] 而且，在 Y.17etheroam 性能管理中，如 FLR（帧丢失率）、FD（帧延迟）和 FDV（帧延迟抖动）等网络性能参数的定义和测量都是基于单播点对点 (Point to Point, P2P) 的，对于多播的性能参数和测量尚无法实现。
[0012] 随着以太网技术的发展，某些类型的以太网（如 IEEE 802.3）所固有的适合组播的优点，使得基于以太网的多播业务将逐渐广泛应用于以太网中，为此，需要对以太网组播性能参数的测量以衡量以太网的多播性能。
[0013] 在 MEF10-Ethernet Service Attribute（域以太网论坛 10- 以太网业务属性）的 Draft 4（草案 4）中，定义了多点之间的性能参数，具体表示为一个向量，向量的每一个元素表示多点组中某一对节点之间的性能参数。
[0014] 目前，还有一种采用多条单播路径的性能参数的集合表示多点之间的性能参数的实现方法。
[0015] 例如，假设网络中有 3 个节点，a、b 和 c，则在多点网络中的多点之间的网络性能参数以向量表示为：
[0016] (1) \{FLR(a, b), FLR(c, b), FLR(a, c)\} 表示了该网络的多点之间的帧丢失性能；
本发明的目的是提供一种检测以太网多播性能的实现方法，从而可以有效检测确定以太网中点到多点的多播网络性能参数，辅助以太网 OAM 提供全面的网络性能评估。

本发明提供了一种检测以太网多播性能的实现方法，包括：

A. 在测试发送端构造并发送包含标识信息的多播性能测量请求报文；所述多播性能测量包括：帧丢失测量和/或帧延迟测量；

B. 接收所述多播性能测量报文的各节点分别向测试发送端发送包含所述标识信息的性能测量响应报文；
C. 测试发起点接收所述的性能测量响应报文，并根据接收报文中的标识信息测量多播性能参数；

具体地，当进行帧丢失测量时，测试发起点在预定的时间内，根据连续接收的同一标识信息的两个多播响应帧中的前向发送帧计数器值和前向接收帧计数器值计算帧丢失值；当进行帧延迟测量时，测试发起点在预定的时间内，根据接收到多播响应帧的时间，以及多播响应帧中的前向发送时间戳信息、前向接收时间戳信息和反向发送时间戳信息计算帧延时值。

所述的标识信息包括：
以太网 OAM 报文中的传输标识 Transaction ID。

所述的步骤 B 包括：
B1. 当进行帧丢失测量时，在接收多播请求的节点构建多播响应帧，在响应帧中包含所述标识信息、多播帧丢失测量响应操作码、请求帧中的前向发送帧计数器值信息及接收节点的前向接收帧计数器值信息，并在延迟预定的随机延迟时间后发送该多播响应帧；

和 / 或，
B2. 当进行帧延迟测量时，在接收多播请求的节点构建多播响应帧，在响应帧中包含所述标识信息、多播帧延迟测量响应操作码、请求帧中的前向发送时间戳信息及接收节点的前向接收时间戳信息，并在延迟预定的随机延迟时间后，将接收节点的后向发送时间戳写入多播响应帧中，并发送。

所述的步骤 C 前还包括：
在测试多播性能参数之前，初始化帧丢失值和 / 或帧延迟值。

所述的帧丢失值包括：最小帧丢失值、最大帧丢失值和 / 或总的帧丢失值，以及组播组大小的值；

和 / 或，
所述的帧延迟值包括：最小帧延迟值、最大帧延迟值和 / 或总的帧延迟值，以及组播组大小的值。

所述的步骤 C 还包括：
C1. 当进行帧丢失测量时，根据得到的所述帧丢失值更新最小帧丢失值、最大帧丢失值和 / 或总的帧丢失值以及组播组大小的值；

和 / 或，
C2. 当进行帧延迟测量时，根据得到的所述帧延迟值更新最小帧延迟值、最大帧延迟值和 / 或总的帧延迟值以及组播组大小的值。

所述的步骤 C1 包括：
帧丢失值等于连续接收的同一标识信息的两个多播响应帧中的前向发送帧计数器值的差值减去两个多播响应帧中的前向接收帧计数器值的差值，并且；

当所述的帧丢失值小于最小帧丢失值时，将最小帧丢失值更新为该帧丢失值；
当所述的帧丢失值大于最大帧丢失值时, 将最大帧丢失值更新为该帧丢失值；
和 / 或,
总的帧丢失值等于当前的总的帧丢失值与所述帧丢失值的和, 且组播组大小的值
需要加一。
所述的步骤 C2 包括:
帧延迟值等于接收多播响应帧的时间与向前发送时间戳信息的差值减去前向接
收时间戳信息与反向发送时间戳信息的差值, 并且:
当所述的帧延迟值小于最小帧延迟值时, 则将所述帧延迟值作为最小帧延迟值；
和 / 或,
当所述的帧延迟值大于最大帧延迟值时, 则将所述的帧延迟值作为最大帧延迟
值；
和 / 或,
总的帧延迟值等于当前的总的帧延迟值与所述帧延迟值的和, 且将组播组大小的
值加一。
本发明中, 执行所述的步骤 C 之前还包括:
CO、测试发起点接收所述的多播性能测量响应报文后, 当其中的标识信息为正确
的标识信息时, 则执行步骤 C。
所述的步骤 CO 还包括:
根据保存的有效的标识信息确定接收的多播性能测量响应报文中的标识信息是
否正确。
由上述本发明提供的技术方案可以看出, 本发明是以多播路径为基础定义以太网
OAM 中的多播性能参数, 并提供了相应的多播性能参数检测方法。本发明对 Y.17ethoam 所定
义的 OAM 帧格式改动不大, 具体只需要增加 4 个消息操作码, 对于帧延迟测量只要响应帧
带回前向接收时间戳和后向发送时间戳, 二者之差包含接收点所做的随机延迟即可。
而且, 本发明在实现过程中, 在发送点和接收点的处理流程较为简单, 且采用的计
算方法为基于原有单播性能测量的计算方法。
因此, 本发明可以在以太网 OAM 中很好的实现 P2MP 多播性能测量, 从而辅助
OAM 提供更为全面的网络性能评估。
图 1a 为单播报文传送过程示意图；
图 1b 为多播报文传送过程示意图；
图 2 为本发明所述的方法总的具体实现过程示意图；
图 3 为本发明所述的方法的具体实现过程一；
图 4 为本发明所述的方法的具体实现过程二。

具体实施方式
本发明的核心是基于多播路径定义 Ethernet 中的 P2MP 多播性能参数, 在 Ethernet OAM 中提供 P2MP 多播性能测量支持, 从而能够象单播性能参数一样, 在 OAM 平面
从帧丢失率、帧延迟、帧延迟变化评估 Ethernet 的 P2MP 多播性能。

[0080] 为便于对本发明的理解，下面将对本发明的具体实现方式进行说明。

[0081] 本发明在具体实现过程中首先需要对 P2MP 多播性能参数进行定义，以便于后续过程中可以根据定义的内容进行相应的性能参数的测量。

[0082] 定义 P2MP 多播性能参数也从帧丢失、帧延迟和帧延迟变化三个方面实现。所述的 P2MP 多播性能参数是基于组播路径的性能参数，即相应的 OAM 的目的地址必须是组播地址，在定义过程中需要考虑组播组的大小 Z，同时还需要考虑测量的等待时间 T。相应的每条组播路径的性能参数包括：各性能参数的 Max（最大）、Min（最小）以及 Average（平均）值情况，在实际测量各性能参数过程中可以根据需要测量相应的 Max、Min 以及 Average 中的任一项或多项。

[0083] 对于组播路径的性能参数，只有一点到多点即点到组播组方向的参数值有意义，而反方向则因为其实质为单播方式而无意义。但是，在测量时，通常可以使用 two-way（双向）方式测量，即可能计算过程中包含了反方向的测量值，但这对组播性能评估并无大的影响。

[0084] 本发明中定义的 P2MP 多播性能参数具体如下：

[0085] (1) P2MP-FLR，定义为 P2MP 各条多播路径 FLR 的 (Max, Min, Average)Z, T；

[0086] (2) P2MP-FD，定义为 P2MP 各条多播路径 FD 的 (Max, Min, Average)Z, T；

[0087] (3) P2MP-FDV，定义为 P2MP 各条多播路径 FDV 的 (Max, Min, Average)Z, T；

[0088] 在上述各性能参数中，下标 Z 表示组播组大小，具体表示的是实时测量时所体现的组播组大小，即多播路径的条数，本发明中假设组播组大小是不可预知的。因此，对于 two-way 方式的测量，由测量发起点设置等待时间经验值 T，如果回复报文在 T 时间内到达，测量有效，如果超过等待时间 T 仍然能收到测量回复报文，则发出告警，具体是用 OAM 报文中的 TransactionID（传输标识）实现的。

[0089] 假如 OAM 功能实现在硬件中，Average 的计算可能需要除法，这对于硬件来说非常困难，因此，可以用 (Max, Min, Total（测量值的和）)Z, T 来表示，其中 Total 表示各个多播路径性能参数测量值之和，这种方法与前面描述的表示方式的含义基本相同。此时，Total 的存储空间必须足够大，通常需要 64bit。

[0090] 基于上述各多播性能参数的定义，对应的多播性能参数测量过程如下：

[0091] 首先，在最新的 Y.1760 OAM Draft, Nov., 2005 上，定义的以太网 OAM 通用帧头格式如表 1 所示：

[0092] 表 1

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM EtherType</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME Level</td>
<td>Version</td>
<td>OpCode</td>
<td></td>
</tr>
<tr>
<td>HdrLength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpCode Specific Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
在现有技术中，对于单播性能测量，定义了帧丢失测量和帧延迟测量操作码，具体如下：

LMM，帧丢失测量请求操作码；
LRM，帧丢失测量响应操作码；
DMM，帧延迟测量请求操作码；
DMR，帧延迟测量请求操作码。

基于上述单播性能测量的操作码，本发明设置了多播性能测量的操作码，具体如下：

P2MP-LMM，P2MP 多播帧丢失测量请求操作码；
P2MP-LRM，P2MP 多播帧丢失测量响应操作码；
P2MP-DMM，P2MP 多播帧延迟测量请求操作码；
P2MP-DMR，P2MP 多播帧延迟测量响应操作码。

在进行多播性能参数测量过程中测量帧中包括的字段如下：

(1) 对于帧丢失测量

单播 LMM 帧必须包含 TxFcF 字段，即前向发送帧计数器值，P2MP-LMM 帧要求与此相同；

单播 LRM 帧必须包含 TxFcF、Rx FCF 和 TxFcF 字段，即前向发送帧计数器；前向接收帧计数器值和后向帧发送计数器，其中 TxFcF 字段就是从 LMM 帧中的拷贝过来的，P2MP-LMM 帧要求与此相同，但实际上是仅使用 TxFcF、Rx FCF。

(2) 对于帧延迟测量

单播 DMM 帧必须包含前向发送时间戳 TксTstamp，在 P2MP-DMM 帧要求与此相同；

单播 DMR 帧必须包含前向发送时间戳 TксTstamp，即从 DMM 帧中的拷贝过来的，对于 P2MP-DMM 帧，DMR 还需要前向接收时间戳 RxTsTstamp 和后向发送时间戳 TксTstamp，并且 TксTstamp 和 RxTsTstamp 之差必须含有接收点所做的随机延迟。

另外，和单播性能测量比较，P2MP 多播性能测量中的 Two-way 方式的测量，面临两个问题：

(1) 多点回流过大，为此，要求测量发起点必须以非常低的速率发送测量请求报文，按照 Y.17ethoam，因为每个发送报文分配一个 TransactionID，报文发出后，Transaction ID 保留一段时间，用于关联回复报文，保留时间其实和报文发送速率是统一的，保留时间按照经验配置，例如缺省为 5s；

(2) 多点回流过于集中，可以通过令接收点在响应之前延迟一个随机时间（即随机延迟）来克服，所述随机延迟是有一定范围的，该范围也是可配置的，例如缺省为 1s。

无论是测量帧丢失还是帧延迟，从总体上看，对于多播测量来说都遵循大致相同的处理过程，相应的过程如图 2 所示：

首先，发送端发送多播测量请求帧，包括测量操作码、报文标识信息以及发送端发送的参数值，比如测量帧丢失所需要的前向发送帧计数值，测量帧延迟所需要的前向发送时间戳；

其次，接收端收到多播测量请求帧之后，进行回复，包括测量操作回应码、报文表示信息以及接收端接收时刻的参数值以及回复发送时刻的参数值，比如测量帧丢失所需要
的前向接收所需要的前向接收帧计数值，测量帧延迟所需要的前向接收时间戳、后向发送时间戳，并且还要将收到的参数值拷贝到回复报文中返回。比如测量帧丢失所需要的前向发送帧计数值，测量帧延迟所需要的前向发送时间戳；
【0117】最后，发送端收到回复报文之后，首先验证报文的有效性，主要是验证报文 ID 是否有效，然后提取报文中的参数值，计算该路径上的参数值；最后利用该路径上的参数值；计算更新多播性能参数，包括具体的性能参数值；组播组的性能参数值总和，以及组播组大小、最大值和/or 小值；其中所述的性能参数值包括帧丢失值和帧延迟值。
【0118】针对帧丢失值的测量和帧延迟值的测量的不同之处在于：在发送端收到回复报文之后，计算单条路径上帧丢失和帧延迟的计算公式是不一样的，具体将以后续的针对图 3 和图 4 的描述中进行相应的说明。
【0119】下面将结合图 3 和图 4 对各个多播性能参数的测量过程进行详细的说明。
【0120】（一）P2MP 多播帧丢失测量（P2MP-LM）
【0121】为便于对帧丢失测量过程的描述，首先进行如下假设：
【0122】假设在发送端发送测量报文的发送间隔为时间 T，即本地 Transaction ID 保留时间，当发送报文超过时间 T 时，将保存的 Transaction ID 删除，之后，若再收到带有该 Transaction ID 的帧，则认为不合法，可以发出警告；
【0123】假设接收点收到多播测量帧后随机延迟范围，即所述随机延迟为 R；
【0124】假设本次测量的多播组的大小为 Z；
【0125】假设各条多播路径的帧丢失累计为 Total，最小帧丢失为 Min，最大帧丢失为 Max。
【0126】其次，基于上述假设，相应的帧丢失测量的过程如下：
【0127】（1）在测量发起点，构建 P2MP-LM 请求帧，具体需要使用多播 MAC 地址和 P2MP-LMM 操作码，为当前帧分配一个 Transaction ID，将当前前向发送帧计数器值填写到请求帧的 TxFcF 字段中，其他字段可以不关心；
【0128】（2）测量发起点发送构建的请求帧，并启动 Transaction ID 保留定时器，超时长为 T，同时清除 Z、Total、Min、Max 值。
【0129】（3）在接收点，即多播组中某一个点收到帧丢失测量请求帧后，构建 P2MP-LMR 响应帧，具体流程，就是以源 MAC 地址作为目的地址，以本地 MAC 地址作为源地址，响应操作码为 P2MP-LMR，将 Transaction ID 和 TxFcF 拷贝到响应帧中，并将本地前向接收帧计数器值填写到响应帧的 TxFcF 字段中，其他字段不关心；
【0130】（4）在时间 R 范围内做一个随机延迟，即延迟时间 R 后发送响应帧；
【0131】（5）测量发起点是依据两个 P2MP-LMR 帧来计算某条路径上的帧丢失的，在采用两个计数器值相减的时候需要考虑溢出；假设前一个响应帧的计数器值 TxFcF1、RxFcF1，当前收到的响应帧的计数器值为 TxFcF2、RxFcF2，则相应的处理流程如图 3 所示，具体为：
【0132】步骤 31：根据测量发起点中保留的 Transaction ID 值判断接收的响应帧中的 Transaction ID 是否一致，即 Transaction ID 是否有效，如果是，则执行步骤 33，否则，执行步骤 32，即产生警告；
【0133】步骤 33：计算帧丢失值 FL 为 (TxFcF2-TxFcF1) - (RxFcF2-RxFcF1)；
【0134】步骤 34：计算总的帧丢失值 Total 为当前的 Total 值加上该 FL 值，且令 Z 值加 1；
【0135】步骤 35：判断当前的帧丢失的最小值 Min 是否大于 FD 值，如果是，则令 Min = FD，
否则，执行步骤 36；

步骤 36：判断当前的帧丢失的最大 Max 是否小于 FD 值，如果是，则令 Max = FD，否则，过程结束。

基于上述步骤 31 至步骤 36 的处理过程，在测量发起点上持续 T 的时间内一直等待接收返回的同一 Transaction ID 的响应帧，并进行上述处理。当到达时间 T 后获得帧丢失的多播性能参数的值。

（二）P2MP 多播帧延迟测量（P2MP-DM）

同样，为便于对帧延迟测量过程的描述，首先进行如下假设：

假设在发送端发送测量报文的发送间隔为时间 T，即本地 Transaction ID 保留时间，当发送报文后超过时间 T 时，将保存的 Transaction ID 删除，之后，再发收到带有该 Transaction ID 的帧，则认为不合法，可以发出警告。

假设接收点收到多播测量帧后随机延迟范围，即所述随机延迟为 R；

假设本次测量的多播组的大小为 Z；

假设各条多播路径的帧丢失累计为 Total，最小帧丢失为 Min，最大帧丢失为 Max。

其次，基于上述假设，相应的帧延迟测量的处理过程如下：

（1）在测量发起点，构建 P2MP-DM 请求帧，具体需要使用多播 MAC 地址和 P2MP-DM 请求操作码，为当前帧分配一个 Transaction ID，将当前帧向发送时间戳填写到请求帧的 TxTimeStamp 字段中，其他字段可以不关心；

（2）在测量发起点发送请求帧，并启动 Transaction ID 保留定时器，超时长为 T，同时清零 Z、Total、Min、Max 值。

（3）在接收点，即多播组中某一帧收到帧丢失测量请求帧后，构建 P2MP-DMR 响应帧，具体来说，就是以源 MAC 地址作为目的地址，以本地 MAC 地址作为源地址，响应操作码为 P2MP-DMR，将 Transaction ID 和 TxTimeStamp 拷贝到响应帧中，并且将本地前向接收时间戳填写到响应帧的 RxTimeStamp 字段；

（4）在接收点，在时间 R 范围内做一个随机延迟，即延迟 R 时间后，将向发送时间戳填写到响应帧的 TxTimeStamp 字段中立即发送响应帧；

（5）所述的测量发起点收到响应帧后，设收到时间为 RxTimeb，则相应的处理流程如图 4 所示，具体包括：

步骤 41：根据测量发起点中保留的 Transaction ID 值判断接收的响应帧中的 Transaction ID 是否一致，即 Transaction ID 是否有效，如果是，则执行步骤 43，否则，执行步骤 42，即产生警告；

步骤 43：计算帧延迟时间 FD 为 RxTimeb-TxTimeStamp-(RxTimeStamp-TxTimeStamp)；

步骤 44：计算总的帧延迟时间 Total 为当前的 Total 值加上该 FD 值，且令 Z 值加 1；

步骤 45：判断当前的帧延迟时间的最小值 Min 是否大于 FD 值，如果是，则令 Min = FD，否则，执行步骤 46；

步骤 46：判断当前的帧延迟时间的最大值 Max 是否小于 FD 值，如果是，则令 Max = FD，否则，过程结束。
[0155] 基于上述步骤 41 至步骤 46 的处理过程，在测量发点点上持续 T 的时间内一直等待接收返回的同一 Transaction ID 的响应帧，并进行上述处理，当到达时间 T 后获得帧延迟的多播性能参数的值。

[0156] 综上所述，本发明提供的以多播路径为基础定义以太网 OAM 中的多播性能参数进而进行以太网多播性能参数检测的实现方法对 Y.17ethoam 所定义的 OAM 帧格式改动不大，只要求增加 4 个消息码，对于帧延迟测量只要响应帧带回前向接收时间戳和后向发送时间戳，二者之差包含接收到帧所做的随机延迟即可。发送点和接收点的处理流程也不复杂，并且基于现有单播性能测量的计算方法。因此，利用本发明可以在以太网 OAM 中良好的实现 P2MP 多播性能参数测量。

[0157] 以上所述，仅为本发明较佳的具体实施方式，但本发明的保护范围并不局限于此，任何熟悉本技术领域的技术人员在本发明揭露的技术范围内，可轻易想到的变化或替换，都应涵盖在本发明的保护范围之内。因此，本发明的保护范围应该以权利要求的保护范围为准。
发送端初始化所测参数的最大值、最小值和/或合计值以及组播组大小，向组播组发送测量报文，带有测量操作码、报文标识信息、测量发送端参数值。

组播组内的接收端向发送端回复测量报文，带有测量操作回复码、报文标识信息、测量接收端参数值。

发送端收到测量回复报文后，提取回复报文中的参数值，执行如下操作。

- 报文标识有效？
 - Y：无效ID，告警
 - N：根据发送端参数值和接收端参数值计算该报文所对应路径上的参数值
 - 计算该参数在各条路径上的合计值，组播组大小也增加1
 - 该路径上的参数值小于最小值？
 - Y：更新最小值
 - N：该路径上的参数值小于最大值？
 - Y：更新最大值
 - N：

图2
图3
图4

Transaction Id有效？

Y

FD=RxTimeb-TxTimeStampf-(RxTimeStamp-TxTimeStampb)

Total=Total+FD，Z++

Min>FD？

Y

Min=FD

N

Max<FD？

Y

Max=FD

告警

结束