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MULTIPARAMETRC CLASSIFICATION OF 
CARDOVASCULAR SOUNDS 

FIELD OF THE INVENTION 

0001. The present invention relates to methods and sys 
tems for classification of heart Sounds recorded from a living 
Subject into classes describing whether or not murmurs due to 
coronary artery Stenosis is present in the heart Sound. 

BACKGROUND OF THE INVENTION 

0002 Coronary artery disease is the single most common 
cause of death from cardiovascular disease in the western 
world. The heart muscle receives its blood supply through the 
coronary arteries, and atherosclerosis is the most common 
pathophysiologic process occurring in the coronary arteries 
giving rise to coronary artery disease (CAD). Atherosclerosis 
is a process that builds up plaques within the artery, and the 
blood flow can therefore be is reduced or even blocked by the 
plaque. The constantly working heart requires a continuous 
and efficient blood supply in order to work properly. Defects 
in the blood supply may be very severe and even fatal. 
Increasing degrees of luminal diameter reduction or Stenosis 
of the coronary artery will first limit reserve flow, then reduce 
flow at rest and may finally totally occlude the vessel. 
0003. There is a need for measuring/detecting coronary 
artery Stenosis for clinicians and other medical professionals 
to diagnose CAD. Once a diagnose has been made a cure/ 
treatment could be started. 
0004 Today several non-invasive techniques for measur 
ing/detecting the severity of a stenosis or its presence inside a 
coronary artery exist. This can be done by magnetic reso 
nance imaging (MRI), in vivo intravascular ultrasound 
(IVUS) or optical coherence tomography (OCT). However, 
the above-mentioned techniques are all rather complicated 
and expensive to use and therefore only patients with specific 
symptoms are offered such examinations. The consequence is 
that most patients have a critical Stenosis when examined. 
0005 Clinicians and other medical professionals have 
long relied on auscultatory Sounds to aid in the detection and 
diagnosis of physiological conditions. For instance, a clini 
cian may utilize a stethoscope to monitor and record heart 
sounds in order to detect heart valve diseases. Furthermore, 
the recorded heart sounds could be digitized, saved and stored 
as data files for later analysis. Devices have been developed 
that apply algorithms to electronically recorded auscultatory 
Sounds. One example is an automated blood-pressure moni 
toring device. Other examples include analysis systems that 
attempt to automatically detect physiological conditions 
based on the analysis of auscultatory Sounds. For instance, 
artificial neural networks have been discussed as one possible 
mechanism for analyzing auscultatory Sounds and providing 
an automated diagnosis or Suggested diagnosis. Using these 
conventional techniques, it is difficult to provide an auto 
mated device for diagnosis of coronary Stenosis using auscul 
tatory sounds. Moreover, it is often difficult to implement the 
conventional techniques in a manner that may be applied in 
real-time or pseudo real-time to aid the clinician. 

OBJECT AND SUMMARY OF THE INVENTION 

0006. The object of the present invention is to solve the 
above-mentioned problems. 
0007. This is achieved by a method for classifying a car 
diovascular sound recorded from a living subject. The method 
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comprises the step of extracting at least two signal parameters 
from said cardiovascular sound, said at least two signal 
parameters characterize at least two different properties of at 
least a part of said cardiovascular sound. The method further 
comprises the step of classifying said cardiovascular Sound 
using said at least two signal parameters in a multivariate 
classification method. 

0008 Hereby a simple method for classifying cardiovas 
cular sounds is achieved and the method is furthermore very 
robust since different properties of the cardiovascular sound 
is taken into account and used in a multivariate classification 
method. The cardiovascular sound related to turbulence con 
sists of at least two components: a broad band component 
caused by turbulent blood flow colliding with the arterial wall 
and a narrow banded component related to the resonance 
frequency of the artery wall, therefore different variables 
describing different properties are needed in order to perform 
a robust classification. The different properties describe dif 
ferent characteristics of the cardiovascular Sound and would 
therefore be uncorrelated and therefore provide different 
information of the cardiovascular sound. Different properties 
could for instance be the time duration of the diastolic seg 
ment of cardiovascular Sound, the time duration of the sys 
tolic cardiovascular sound, the most dominant frequency 
component of the sound, the bandwidth of different fre 
quency components, the energy in two frequency bands, the 
mobility of part of the signal, the complexity of the signal, the 
power ratio between different parts of the signal, e.g. two 
different segments or two different frequency bands, morpho 
logical characteristics such as correlation ratios between dif 
ferent segments or amplitude change over time. The method 
could easily be implemented in any kind of data processor 
unit and therefore be e.g. integrated in a Software program 
which clinicians and doctors could use in order to classify the 
cardiovascular sound. Furthermore, the method could be inte 
grated in a digital stethoscope and the stethoscope could 
therefore be used in order to classify a patient's cardiovascu 
lar sound. Since doctors and other clinicians are familiar with 
a stethoscope, they could easily be taught to use the stetho 
Scope to classify the cardiovascular sound. The result is that 
the classification could assist the doctor or other clinicians to 
diagnose whether or not the patient suffers from CAD. 
0009. In another embodiment of the method, at least one of 
said at least two signal parameters is a frequency parameter 
describing a property in the frequency domain of at least a 
part of said cardiovascular sound. Hereby the frequency com 
ponents of the cardiovascular sound could be used as a param 
eter in the multivariable classification method. Frequency 
parameters are very good parameters for classifying whether 
or not murmurs due to Stenosis are present in a cardiovascular 
Sound because the Stenosis would change the frequency com 
ponents of the cardiovascular sound. 
0010. In another embodiment of the method, at least one of 
said at least two signal parameters describes a property in the 
time domain of at least a part of said cardiovascular sound. 
Hereby time properties of the cardiovascular sound could be 
used as a parameter in the multivariable classification 
method. Time properties like the mobility or number of turn 
ing points are good indicators, whether or not murmurs due to 
Stenosis are present in cardiovascular sound. Furthermore, by 
using both time and frequency parameters a very robust clas 
sification of the cardiovascular is achieved since time and 
frequency properties are often uncorrelated. 
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0011. In another embodiment of the method, at least one of 
said frequency is parameters is a frequency level parameter 
describing a frequency level property of at least a part of said 
cardiovascular sound. Hereby it is achieved that a frequency 
level property of the cardiovascular sound is used in the 
multivariable classification method. The murmurs would 
typically change the frequency level of the cardiovascular 
Sound, and by using parameters describing the frequency 
level of the sound a robust classification of the cardiovascular 
sound could be achieved. 
0012. In another embodiment of the method, at least one of 
said at least two signal parameters is a frequency bandwidth 
parameter describing a frequency bandwidth property of at 
least a part of said cardiovascular sound. Hereby the band 
width of for instance, dominating frequency components 
could be used in the multivariable classification method. The 
advantage of using a frequency bandwidth property of the 
cardiovascular Sound is that murmurs often has a limited 
frequency bandwidth, and the frequency bandwidth param 
eter would therefore be a good indicator of whether or not 
murmurs due to Stenosis are present in the cardiovascular 
Sound. 

0013. In another embodiment of the method, at least one of 
said frequency level properties characterizes the most pow 
erful frequency component of at least a part of said cardio 
vascular Sound. This parameter is a very useful parameter as 
the murmurs due to Stenosis typically have a dominating 
frequency component between 200-800 Hz. And if the most 
powerful frequency component is inside this interval, it 
would be a good indication of the presence of murmurs due to 
Stenosis. 

0014 Inanother embodiment of the method, at least one of 
said frequency bandwidth properties characterizes the band 
width of the most powerful frequency component of at least a 
part of said cardiovascular sound. Hereby the bandwidth of 
the most powerful frequency component could be used in the 
multivariable classification method. This bandwidth would 
most likely depend on whether or not murmurs due to Stenosis 
are present in the cardiovascular sound. 
0.015 Inanother embodiment of the method, at least one of 
said time parameters is a property characterizing the mobility 
of at least a part of said cardiovascular sound. The mobility is 
a good indicator of whether or not murmurs due to Stenosis 
are present in the cardiovascular sound. The mobility 
describes the variance of the sound, and since murmurs would 
cause larger variance in the Sound the mobility would be a 
good indicator. 
0016. In another embodiment of the method, the method 
further comprises the step of dividing said cardiovascular 
Sound into at least one Sub-segment and at least one of said 
signal parameters is extracted from said at least one Sub 
segment. Hereby it is achieved that the cardiovascular sound 
could be divided into Sub-segments, e.g. into a systolic part 
and a diastolic part. Thereby relevant Sub-segments could be 
used to extract the above-described different parameters. 
0017. In another embodiment of the method, the method 
further comprises the step of modelling at least a part of said 
cardiovascular sound and at least one of said signal param 
eters is extracted from said model. Hereby time models and 
frequency models of the cardiovascular Sound or Sub-seg 
ments of the sound could e.g. be used to extract the above 
described parameters. The advantage of using models is that 
the models could enhance the signal properties, e.g. by using 
an envelope function or an autoregressive model. Further 
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more, models would simplify and optimize the calculation 
process when the method is implemented in a data processor. 
0018. In another embodiment of the method, the multi 
variate classification method is a discriminant function. 
Hereby a simple and fast implementation of the classification 
method is achieved. Furthermore, any number of parameters 
could be used in the discriminant function, and the different 
parameters could also be weighted differently depending on 
the parameters significance. The discriminant function could 
also be trained using cardiovascular test Sounds is recorded 
from patients Suffering from Stenosis and healthy patients. 
Thereby the weights of the different parameters could be 
optimized to experimental data. 
0019. The invention further relates to a system for classi 
fying a cardiovascular sound recorded from a living Subject, 
said system comprises processing means for extracting at 
least two signal parameters from said cardiovascular sound, 
said at least two signal parameters characterizes at least two 
different properties of at least a part of said cardiovascular 
Sound; processing means for classifying said cardiovascular 
Sound using said at least two signal parameters using a mul 
tivariate classification method. Hereby a system for classify 
ing a cardiovascular sound can be constructed and hereby the 
same advantages as described above are achieved. 
0020. In a further embodiment of the system, said process 
ing means for extracting at least two signal parameters from 
said cardiovascular sound is adapted to extract at least one 
frequency parameter describing a property in the frequency 
domain of at least a part of said cardiovascular Sound. Hereby 
the same advantages as described above are achieved. 
0021. In a further embodiment of the system, said process 
ing means for extracting at least two signal parameters from 
said cardiovascular sound is adapted to extract at least one 
time parameter describing a property in the time domain of at 
least a part of said cardiovascular sound. Hereby the same 
advantages as described above are achieved. 
0022. In a further embodiment of the system, said process 
ing means adapted to extract at least one of said frequency 
parameters are further adapted to extract at least one fre 
quency level parameter describing a frequency level property 
of at least a part of said cardiovascular sound. Hereby the 
same advantages as described above are achieved. 
0023. In a further embodiment of the system, said process 
ing means adapted to extract at least one frequency parameter 
is further adapted to extract at least one frequency bandwidth 
parameter describing a frequency bandwidth property of at 
least a part of said cardiovascular sound. Hereby the same 
advantages as described above are achieved. 
0024. In a further embodiment of the system, said process 
ing means adapted to extract at least one frequency level 
property is further adapted to extract the most powerful fre 
quency component of at least a part of said cardiovascular 
Sound. Hereby the same advantages as described above are 
achieved. 

0025 Inafurther embodiment of the system, said process 
ing means adapted to extract at least one of said frequency 
bandwidth properties are further adapted to extract the band 
width of the most powerful frequency component of at least a 
part of said cardiovascular sound. Hereby the same advan 
tages as described above are achieved. 
0026 Inafurther embodiment of the system, said process 
ing means for extracting at least one time parameter are 
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further adapted to extract the mobility of at least a part of said 
cardiovascular sound. Hereby the same advantages as 
described above are achieved. 

0027. In a further embodiment of the system, said system 
further comprises processing means for dividing said cardio 
vascular sound into at least one sub-segment and at least one 
of said signal parameters is extracted from said at least one 
Sub-segment. Hereby the same advantages as described above 
are achieved. 

0028. In a further embodiment of the system, said system 
further comprises processing means for modelling at least a 
part of said cardiovascular sound and in that said processing 
means for extracting at least two signal parameters from said 
cardiovascular Sound are further adapted to extract at least 
one of said parameters from said model. Hereby the same 
advantages as described above are achieved. 
0029. In a further embodiment of the system, said multi 
variate classification method used by said processing means 
for classification of said cardiovascular sound is a discrimi 
nant function. Hereby the same advantages as described 
above are achieved. 

0030 The invention further relates to a computer-readable 
medium having stored therein instructions for causing a pro 
cessing unit to execute a method as described above. Hereby 
the same advantages as described above are achieved. 
0031. The invention further relates to a stethoscope com 
prising recording means adapted to record a cardiovascular 
Sound from a living Subject, storing means adapted to store 
said recorded cardiovascular sound, a computer-readable 
medium and a processing unit, said computer-readable 
medium having Stored therein instructions for causing said 
processing unit to execute a method according to claims 1-12 
and thereby classify said recorded cardiovascular Sound. 
Hereby the method according to the present invention can be 
implemented in a stethoscope and the above-described 
advantages are achieved. 
0032. The invention further relates to a server device con 
nected to a communication network comprising receiving 
means adapted to receive a cardiovascular sound recorded 
form a living Subject through said communication network, 
storing means adapted to store said received cardiovascular 
Sound, a computer-readable medium and a processing unit, 
said computer-readable medium having stored therein 
instructions for causing said processing unit to execute a 
method as described above and thereby classify said received 
cardiovascular sound. Hereby the method according to the 
present invention can be implemented in a server connected to 
a communication network. The server could then perform the 
above-described method and the above-described advantages 
are achieved. 

0033. In another embodiment of the server, said receiving 
means are further adapted to receive said cardiovascular 
Sound from a client connected to said communication net 
work. Hereby a clinician/doctor could send a cardiovascular 
Sound to the server using a client device Such as a laptop. The 
server could thereafter classify the received cardiovascular 
sound. The above-described advantages are hereby achieved. 
0034. In another embodiment of the server, the server 
device further comprises means for sending said classifica 
tion of said cardiovascular sound to at least one client unit 
connected to said communication network. Hereby the result 
of the classification can be sent back to a client, and the 
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clinician/doctor can therefore receive the result of the classi 
fication. The above-described advantages are hereby 
achieved. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0035 FIG. 1 illustrates a graph of a typical heart sound, 
0036 FIG. 2 illustrates a fluid dynamic model of an arte 
rial Stenosis, 
0037 FIG. 3 illustrates an overview in form of a flow 
diagram of the method according to the present invention, 
0038 FIG. 4 illustrates an embodiment of the system 
according to the present invention, 
0039 FIG. 5 illustrates another embodiment of the 
method according to the present invention, 
0040 FIG. 6 illustrates a flow diagram of the segmentation 
method, 
0041 FIG. 7 illustrates for a heart sound the relationship 
between the envelope autocorrelation of a cardiac cycle and 
the cardiac cycle, 
0042 FIG. 8 illustrates the implementation of a Bayesian 
network used to calculate the probability of a sound being an 
S1, S2 and noise sound. 

DESCRIPTION OF EMBODIMENTS 

0043 FIG. 1 illustrates a graph of a typical heart sound 
recorded by a stethoscope and shows the amplitude (A) of the 
Sound pressure at the y-axis and time (t) at the X-axis. The 
heart sounds reflect events in the cardiac cycle: the decelera 
tion of blood, turbulence of the blood flow and the closing of 
valves. The closing of the valves is typically represented by 
two different heart sounds, the first (S1) and the second (S2) 
heart sound. The first and second heart sounds are illustrated 
in the figure, and S1 marks the beginning of systole which is 
the part of the cardiac cycle in which the heart muscle con 
tracts, forcing the blood into the main blood vessels, and the 
end of the diastole which is the part of the heart cycle during 
which the heart muscle relaxes and expands. During diastole, 
blood fills the heart chambers. The duration of systolic seg 
ments is nearly constant around 300 ms for healthy subjects. 
Given a pulse of 60 beats per minute the duration of a cardiac 
cycle will be one second on average, and the duration of the 
diastole will be 700 ms. However, the diastolic durations are 
not constant, but will vary depending on the Subject's pulse. 
In addition, smaller variations of the diastolic duration are 
introduced due to neural regulation and the effects of respi 
ration. 
0044 FIG. 2 illustrates a fluid dynamic model of an arte 
rial stenosis and shows an artery (201) with a stenotic lesion 
(202). The arrows (203) indicate the blood flow through the 
artery. Vortices (204) will occur when high velocity blood 
exits a stenotic lesion (202). These vortices collide with the 
arterial wall (205) and are transformed into pressure vibra 
tions that cause the arteries to vibrate at their resonance fre 
quencies. The result is that soundwaves in the form of mur 
mers (206) with a frequency corresponding to the aterial 
wall's resonance frequencies are created and emitted from the 
arterial wall. Resonance frequencies in the arterial segment 
are increased if a stenosis is present and their frequencies 
depend on the diameter of the Stenotic segment compared to 
the diameter of the artery. As the severity of a stenosis 
increases, so does the resonance frequency. The resonance 
frequency of a partial occluded Stenotic artery is most likely 
between 200 Hz to 1100 Hz. The intensity of the vortice 
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fluctuations depends on the blood flow so that murmurs from 
the left coronary arteries are most intense during diastole, 
when the blood flow through these arteries is highest. Mur 
murs from the right coronary arteries are most intense during 
diastole if there is a stenosis in branches of the right coronary 
artery Supplying the right-sided cavities, whereas the murmur 
more likely will be systolic from those branches of the right 
coronary artery giving arterial blood to the left ventricle. The 
intensity of murmurs not only depends on the blood flow, but 
also on the frequency content of a murmur. High murmur 
frequencies are more Suppressed by the chest wall compared 
to low frequencies. The murmurs caused by the arterial vibra 
tions would affect the graph of a heart Sound recorded by e.g. 
a stethoscope. 
004.5 FIG. 3 illustrates an overview in form of a flow 
diagram of the method according to the present invention. 
The method could for instance be implemented as a software 
program running on a computer or on a microcontroller 
implemented in a stethoscope. In short, the method starts with 
an initialization (301), receiving a test signal (302), dividing 
the test signal into relevant segments (306), filtering the rel 
evant segments (307); calculating/developing a model of the 
signal (308) in relevant segments; extracting different param 
eters from the signal and the model (309), performing an 
analysis of the signal (310) using the extracted parameters 
and classifying the relevant segments into two groups: one 
indicating that the signal contains murmurs due to Stenosis 
(311), and one indicating that the signal does not contain 
murmurs due to stenosis (312). 
0046. After the method has been initialized (301) the 
method receives the test signal (302) as a data file (303). The 
test signal would be the heart sound from a person (304) 
recorded and digitalized into a data file, e.g. by a digital 
stethoscope (305). The test signal would be similar to the 
heart sound illustrated in FIG. 1, however, the duration of the 
test signal would typically be 5-15 times longer than the 
signal shown in FIG.1. Once the test signal has been received 
(302), segmentation (306) is performed in order to detect and 
divide the test signal into segments. The segmentation pro 
cess would typically detect the heart sounds S1 and S2 and 
thereafter divide the test signal into systolic and diastolic 
parts. Hereafter the test signal is filtered (307), and the filtra 
tion process includes an autoregressive filter that reduces 
white noise in the signal and a band pass filter that only lets 
frequencies between 450-1100 Hz pass. The test signal would 
thereafter contain the frequencies caused by the vibrations of 
the arterial wall when stenosis is present in the artery. The 
autoregressive filter could be implemented as a Kalman filter 
that is a powerful estimator of past, present and future States 
and it can do so even when the precise nature of the modelled 
system is unknown. This is a desirable feature in the present 
application when reducing the effects of noise since the exact 
composition of a murmur is unknown. A first order Kalman 
filter can reduce the effects of white noise and smooth the 
noisy heart Sound recordings for further processing. The band 
pass filter could be implemented as a wavelet filter. In another 
embodiment the Kalman filter is omitted in order to simplify 
the implementation of the method in e.g. a microprocessor 
and further to reduce the number of calculations performed 
by the microprocessor. 
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0047. When the signal has been filtered (307), relevant 
segments are selected for further analysis. In one embodiment 
a part of the diastolic segment is selected for further analysis 
as the murmur due to stenosis is most likely to be audible in 
the diastolic segment. 
0048. A mathematical model of the signal in the selected 
segment is hereafter calculated/developed (308) using the 
sampled heart sound in the data file. The model is used to 
extract parameters that characterize the Sound in the segment 
and could be used to categorize whether or not the murmurs 
due to Stenosis exist in the Sound segment. In the present 
embodiment an autoregressive all-pole parametric estimation 
(AR-model) is used to model the signal. In the AR-model the 
sampled sound signal, y, from the data file is modelled as a 
linear combination of M past values of the signal and the 
present input, u, driving the Sound generating process. The 
model can be described by the following equation: 

(0049) where M represents the model order, A, the AR 
coefficients and n the sample number. The AR coefficients are 
determined through an autocorrelation and by minimizing the 
error associated with the model. 

0050. The AR model in this embodiment is used to extract 
frequency parameters describing the heart sound. A second 
order model M=2 is preferred because it makes a better sepa 
ration between the frequency parameters extracted from a 
heart Sound with murmurs present and the frequency param 
eters extracted from a heart sound with murmurs present. 
0051. Thereafter different parameters are extracted (309) 
from the sampled signal and the AR model using signal pro 
cessing techniques. Some parameters could be extracted from 
the selected segments. Each parameter characterize the heart 
Sound in the selected segments and could therefore be used to 
categorize the heart sound, e.g. whether or not murmurs due 
to Stenosis are present in the heart sound. The parameters can 
in this embodiment be the number of turnings points per 
signal length, TP; the mobility of the signal, MB; pole mag 
nitude, PM; normalized AR-peak frequency, NF; and AR 
spectral ratio, SR. 
0.052 The number of turning points TP is extracted from 
the sampled signal in the time domain, and it is found by 
calculating the number of turns the signal performs in the time 
domain per unit time. This could be done by determining the 
amount of local maxima in a time period. Thus: 

number of turns 3.2 
signal length 

0053. The mobility MB is extracted from the sampled 
signal in the time domain and found by calculating the vari 
ance, O, of the signal in the time domain and the variance of 
the signal's first derivative, o, . The mobility is hereafter 
found by: 
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0054) The pole magnitude PM is found by transforming 
the AR-model into the Z-domain and calculating the magni 
tude of the poles in Z-domain described by the AR-spectrum. 
0055. The normalized AR peak frequency NF is based on 
the assumption that murmurs due to stenosis are more likely 
to be found in the diastolic segment than in the systolic 
segment. The NF is found by calculating the angle of the poles 
in the AR-spectrum in the Z-plane and transforming this into 
a frequency of both a diastolic segment and a systolic seg 
ment. If the absolute difference between the two is less than 
25 Hz, which is typical in cases where no murmurs due to 
Stenosis are present, then 25 Hz is subtracted from the dias 
tolic peak frequency. If the average diastolic frequency is 
more than 50 Hz greater than the average systolic peak fre 
quency, which is typical when murmurs due to stenosis are 
present, then 25 Hz is added to the average peak diastolic 
frequency. 
0056. The AR spectral ratio SR is found by calculating the 
ratio of the energy in the frequency rang 200-500 Hz to the 
energy in the frequency range 500-1000 Hz of a diastolic 
Segment. 
0057 The extracted parameters are thereafter used in a 
multiparametric discriminant function in order to classify 
whether or not the sound segment contains murmurs due to 
Stenosis (310). In this embodimentalinear discriminant func 
tion is used to classify the sound segments. The linear dis 
criminant function combines weighted features into a dis 
criminant score g(x) and could be described by: 

where x is the feature vector consisting of the extracted 
parameters, k represents the number of features, i represents 
the classes and w is a weight vector that holds the discrimi 
nant coefficients. In the case where only two classes must be 
separated, a single discriminant function is used. A two class 
classifier is called a dichotomizer. A dichotomizer normally 
classifies the feature vectors with the decisions boarder g(x) 
=0 (due to the constant wo). If the discriminant score g(x) is 
greater than Zero the segment is assigned to class 1, otherwise 
it is assigned to class 2. Since g is a linear function g(x)=0 it 
defines a hyperplane decision surface, dividing the multi 
dimensional space into two half subspaces. The discriminant 
score g(x) is the algebraic distance to the hyper-plane. The 
discriminant function needs to be trained in order to find the 
weights values, w, and make a safe and robust classification of 
the sound segments. The discriminant training procedure 
needs to be performed before using the system, and the pur 
pose of the procedure is to find the optimal weights values of 
W So that the hyper plane separates the feature vectors opti 
mally. The training procedure is in one embodiment carried 
out by using 18 test sounds recorded from 18 test persons 
where nine test persons have coronary stenosis and nine test 
persons do not have coronary stenosis. The discriminant 
training procedure is performed by using the statistical soft 
ware program SPSS V.12.0 for windows (SPSS inc., Chicago 
Ill., USA). The above-mentioned parameters are extracted 
from the 18 training sounds and used as statistical inputs to 
the Software program. The resulting discriminant could be: 

g(x)=164.709MB-0.061 NF-78.027PM+27,188SR+ 
91.878TP+33,712 3.5) 
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where MB is the mobility of the signal, NF the AR-peak 
frequency, PM the pole magnitude, SR the AR spectral ratio 
and TP the number of turning point. 
0058 If the result of the discriminant function is larger 
than Zero (g(x)>0) then the sound segment does not contain 
murmurs due to stenosis (312). On the other hand, if the 
discriminant function is smaller than Zero (g(x)<0) then the 
Sound segment contains murmurs due to stenosis (311). 
I0059. The discriminant function could by a person skilled 
in the art easily be adjusted to include additional or fewer 
parameters in order to develop a proper discriminant function 
that can be used to classify the heart sound. Further param 
eters could for instance be: 

0060. The Complexity, CP, of the sampled signal in the 
time domain. This parameter is based on the ratio of the 
mobility of the first derivative of the signal to the mobility of 
the signal itself where y" is the second derivative of the 
filtered heart sound signal. The complexity measure is rela 
tively sensitive to noisy signals since it is based on the second 
derivative. 

MBy cry foy 3.6) 
CP- MB, or for, 

0061 Further, the AR-peak frequency (PF) could be 
extracted and used in the discriminant function. The AR-peak 
frequency could be found by calculating the angle of the AR 
poles in the Z-plane. 
0062. The parameters used in the discriminant function 
could be extracted from different segments of the heart sound, 
e.g. a number of different diastolic segments where a number 
of parameters is extracted from each diastolic segment. 
Thereafter an average value of each parameter could be cal 
culated and used as input in the discriminant function. 
0063 FIG. 4a illustrates an embodiment of the system 
according to the present invention where a server (401) is 
programmed to execute the method described in FIG. 3. Fur 
thermore, the server is connected to a network (402), e.g. the 
Internet and adapted to on request to receive and analyze heart 
Sound. Clinicians or other medical professionals would 
record the heart sound from a patient by a digital stetoscope 
(305) and thereafter transmit the digitalized heart sound to a 
personal computer (403). The clinician can hereafter send a 
request to the server in order to have the heart sound analyzed. 
Once the server has analyzed the heart sound the result is 
automatically sent back to the clinician. FIG. 4b illustrates a 
flow diagram of the process and the communication between 
the personal computer (403) and the server. The left hand side 
represents the client side (410) and the right hand side repre 
sents the server side (411). First the client sends a heart sound 
in digital form to the server (412). Thereafter the server per 
forms the method illustrated in FIG. 3 and sends (413) the 
result of the analysis back to the client where it is displayed 
(414) to the clinician. The clinician could hereafter evaluate 
the result in order to choose the right treatment of the patient. 
0064. The system according to the present invention could 
also be implemented as an all in one digital stethoscope. The 
stethoscope would therefore automatically perform the 
analysis described in FIG. 3 when a heart sound has been 
recorded. This means that the method described in FIG. 3 
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needs to be implemented in stethoscopes processing means, 
and the result of the analysis could e.g. be displayed on a 
Small LCD integrated in the stethoscope. An advantage of this 
embodiment is that most clinicians are familiar with a digital 
stethoscope and could therefore easily learn to use the stetho 
Scope to diagnose whether or not the patient has a coronary 
Stenosis. 
0065 FIG. 5 illustrates another embodiment of the 
method described in FIG. 3. When the signal has been filtered 
(307), relevant segments are selected for further analysis. In 
one embodiment a part of the diastolic segment is selected for 
further analysis as the murmur due to Stenosis is most likely to 
be audible in the diastolic segment. In this embodiment the 
diastolic segment comprising respiration Sounds is discarded 
(501). This is done by calculating the energy level of the 
diastolic segment in the frequency band 200-440 Hz and 
comparing this energy level with the median energy level of 
the entire diastolic segment. The diastolic segment would be 
discarded if the energy level of the 200-440 Hz frequency 
band is a factor 1.1 larger than the energy level in the entire 
diastolic segment. 
0066. The remaining diastolic segments are hereafter 
divided into sub-segments (502) with a duration of 37.5ms or 
300 samples. This is done because the blood flow in the 
coronary artery is not constant during a diastole, and the 
murmurs due to Stenosis would therefore not be constant. 
0067. The variance of the signal in all sub-segments is then 
calculated and the Sub-segments with a variance larger than 
1.3 of the median variance of all sub-segments are then dis 
carded (503). Hereby sub-segments comprising high noise 
spikes are removed. 
0068. Thereafter (504) none stationary sub-segments are 
removed. This is done by dividing the Sub-segment into Sub 
sub-segments with a duration of 3.75 ms or 30 samples and 
then calculate the variance of each Sub-Sub-segments. 
Thereby an outline of the variance throughout the sub-seg 
ment is constructed. The variance of the outline is then cal 
culated and the sub-segment is removed if the variance of the 
outline is larger than 1. 
0069. At this point a number of sub-segments have been 
discarded in order to remove noisy and none stationary Sub 
segments. This would typically result in 30-50 sub-segments 
from a cardiovascular recording of approximately 10 sec 
onds. 
0070 The remaining sub-segments are thereafter used in 
step (308) and (309) as described in FIG.3 in order to extract 
parameters describing different properties of the cardiovas 
cular signal. Thereafter the median of each parameter is cal 
culated using the values of the parameter form each Sub 
segment (505). The median of each parameter is thereafter 
used in the multiparametric discriminant function as 
described in FIG.3. In this embodiment the following param 
eters are used: the mobility, the power-ratio and the pole 
amplitude of a 3 pole in an AR model of order 6. 
0071 FIG. 6 illustrates a flow diagram of the segmentation 
method (306) according to the present invention used to auto 
matic divide a heart sound (601) into sub-segments. The heart 
sound (601) has been recorded by a stethoscope and the signal 
has been digitized in order to digitally process the signal. The 
graph shows the amplitude (A) of the sound intensity as a 
function of time (t). The heart sounds reflect events in the 
cardiac cycle; the deceleration of blood, turbulence of the 
blood flow and the closing of valves. The closing of the valves 
is typically represented by two different heart sounds, the first 
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(S1) and the second (S2) heart sound. The first and second 
heart sounds are illustrated in the figure, and (S1) marks the 
beginning of systole, which is the part of cardiac cycle in 
which the heart muscle contracts, forcing the blood into the 
main blood vessels, and the end of the diastole which is the 
part of the heart cycle during which the heart muscle relaxes 
and expands. During diastole, blood fills the heart chambers. 
0072 The purpose of the segmentation method is to clas 
Sify the recorded heart Sound into Systolic, diastolic and noise 
segments. The illustrated method includes steps of noise 
reduction (602) followed by envelope creation (603). The 
noise reduction could be implemented as a high-pass filer 
followed by removal of high amplitude friction noise spikes 
due to external noise like movement of the stethoscope during 
recording and thereafter a low pass filter. The purpose of the 
envelope creation is to enhance the trend of the signal. The 
envelope is in this embodiment created by calculating the 
Shannon energy of the signal: 

where X is the signal and Se is the Shannon energy. The high 
amplitude components in the signal are weighted higher than 
low amplitude components when calculating the Shannon 
energy. The envelope (613) of the heart sound (601) calcu 
lated by using the Shannon energy is shown in figure (613), 
and it can be seen that the heart sounds S1 and S2 are 
enhanced. 
0073. In order to classify the detected sounds into systolic 
segments, diastolic segments and noise components based on 
intervaldurations on either side of the heart sounds S1 and S2, 
it is necessary to know how long the intervals between S1’s 
and S2's are. Therefore, the durations of the heart cycles 
(systolic and diastolic intervals) are extracted from an auto 
correlation of the envelope (604). This process is described in 
detail in FIG. 7. 

(0074 Candidates S1’s and S2's are then detected (605) 
using the time intervals extracted above and a threshold (614) 
on the envelope (613). To reduce the number of detected noise 
spikes, a minimum requirement is applied to the candidate 
segments, which effectively removes some of the erroneously 
detected noise spikes. In some recordings there is a big dif 
ference between the intensity of S1 and S2 sounds. This 
causes a problem since some of the low intensity sounds may 
be missed by the threshold. As a result the segmentation 
method performs a test for missing S1 and S2 sounds (606). If 
it can be determined that some segments are missing, the 
threshold procedure is rerun (607) using lower local thresh 
olds. 
0075. Once the signal has been divided into segments as 
described above interval parameters and frequency param 
eters for each segment are then extracted (608). The param 
eters aid in the classification of the Sounds into Systolic seg 
ments and diastolic segments. 
0076. The interval parameters are four Boolean param 
eters extracted for each Sound by comparing the time duration 
to the previous sound and to the next sound with the time 
intervals extracted using the autocorrelation. The parameters 
a. 

0077. AfterDia: Is true if the sound is succeeded by a 
second Sound after a period corresponding to the dura 
tion of a diastole, 

0078. AfterSys: Is true if the sound is succeeded by a 
second Sound after a period corresponding to the dura 
tion of a systole, 
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0079. BeforeDia: Is true if the sound follows a second 
Sound after a period corresponding to the duration of a 
diastole, 

0080. BeforeSys: Is true if the sound follows a second 
Sound after a period corresponding to the duration of a 
systole. 

0081. The frequency parameter divides the sounds into 
low frequency and high frequency Sounds by calculating the 
median frequency of the Sound. This is useful information as 
the first heart Sound is expected to be a low frequency Sound 
and the second heart Sound is expected to be a high frequency 
Sound. 
0082. The parameters are parsed into a Bayesian network 
where the probability of a segment being a S1, S2 and noise 
sound is computed (609). The figure illustrates a bar chart 
(615) of the probability calculated for each sound in the heart 
signal (601). Each sound would typically have one dominat 
ing probability indicating the type (S1, S2 or noise) of the 
sound. Thereby all sounds are classified into S1, S2 and noise 
sounds. However, the probability of the three types would in 
Some cases be more or less equal and in Such cases it is not 
possible to classify the sound into a S1, S2 or noise sound 
using the Bayesian network. 
I0083. The probabilities are used in the last step (610) to 
divide and verify the heart signal into systole and diastole 
segments. This is done by using the position of the identified 
S1 and S2 sounds to mark the beginning of a systolic and 
diastolic sound segment respectively 
I0084. The final result of the method (611) is the begin 
nings and ends of all identified systoles and diastoles. There 
fore a “train” (616) of alternating systoles (617) and diastoles 
(618) can be created. Once the systoles and diastoles have 
been identified they can be used in further data handling, e.g. 
to extract further parameters from these segments and there 
after use the parameters to classify the medical condition of 
the recorded heart sound. 
I0085 FIG. 7 illustrates the relationship between the enve 
lope autocorrelation and the cardiac cycle, and how the inter 
vals between heart sounds S1 and S2 can be found from the 
autocorrelation. 
I0086 FIG. 7a illustrates the envelope autocorrelation with 
the normalized autocorrelation at the y-axis (NA) and the 
displacement (m) of the shifted envelope at the x-axis. 
I0087 FIG.7b illustrates the displacement (m1) when the 
shifted envelope (701) is displaced by the duration of the 
systole corresponding to the unshifted envelope (702). The 
y-axis shows the amplitude (A) of the envelope and the X-axis 
the time (t). The S1’s in the displaced envelope are multiplied 
by the S2's in the unshifted envelopes resulting in the first 
peak (703) seen in the autocorrelation. 
I0088 FIG. 7c illustrates the displacement (m2) when the 
shifted envelope (701) is displaced by the duration of the 
diastole corresponding to the unshifted envelope (702). The 
displaced S2's are multiplied by the S1’s in the unshifted 
envelope resulting in the second peak (704) seen in the auto 
correlation. 
I0089 FIG. 6b illustrates the displacement (m3) when the 
shifted envelope (701) is displaced by the duration of the 
cardiac cycle corresponding to the unshifted envelope (702). 
The S1’s in the displaced envelope are multiplied by the S1’s 
in the unshifted envelope, and the S2's in the displaced enve 
lope are multiplied by the S2's in the unshifted envelope. 
When this occurs the dominating peak (705) in the autocor 
relation is produced. 

Jun. 10, 2010 

0090. The interval between the heart sounds could there 
fore be found by measuring the distance between the peaks in 
the autocorrelation as described above. 
(0091 FIG. 8 illustrates the implementation of the Baye 
sian network used to calculate the probability of a sound of 
being an S1, S2 and noise sound in step (809). The basic 
concept in the Bayesian network is the conditional probabil 
ity and the posterior probability. The conditional probability 
describes the probability of the event a given the event b. 

0092. If the above equation describes the initial condi 
tional probability, the posterior probability would be: 

0093. According to Bayes' rule the relation between the 
posterior probability and the conditional probability is: 

where P(a) is the prior probability for the eventa, and P(b) is 
the prior probability for the event b. Equation 8.3 only 
describes the relation between one parent and one child, but 
since the event a can be the combination of several events {a, 
as , , , a, the equation can be expanded to: 

P(b | a1, a2, , , , , an.) = Pa1, a2, , , , , a b)P(b) 8.4 
Pa1, a2, , , , , (in) 

0094 Since the goal is to find the probability for the dif 
ferent states ofb whena and a are known, P(a, a , , , a) is 
just a normalizing constant k and 7.4 can be simplified to: 

P(bla, a2, , , a) kiP(a,a2, , , a,b) P(b) (8.5) 

I0095. If child events (a.a...a) are conditionally inde 
pendent, equation 8.5 can be generalized to: 

8.6 

where N is the number of known events a. Equation 8.6 is 
useful in determining the probability of the event b if the 
states of all a events are known and if all a events are condi 
tionally independent. A Bayesian network based on equation 
8.6 is called a naive Bayesian network because it requires 
conditional independency of the children. 
0096. The task for the Bayesian network is to evaluate the 
type of each detected sound above the detection threshold. 
For each of these sounds, the posterior probability of being an 
S1 sound, an S2 sound or a noise component is calculated and 
the Bayesian network is constructed using one parent and five 
children. The parent is a sound above the envelope threshold 
(801), and the children are the five parameters described 
above: Frequency (802). AfterSys (803). AfterDia (804), 
BeforeSys (805) and BeforeDia (806). When determining the 
posterior probability for the type of a particular sound, the 
prior probability for the different states of a sound type P(S) 
and the conditional probabilities must be known, i.e. the 
conditional probabilities that “AfterSys” is in a given state 
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when S is a given type, P(AfterSysIS). This posterior prob 
ability requires definition of P(S), P(AfterSysIS), 
P(AfterDiaS), P(BeforeSysIS), P(BeforeDiaS) and 
P(Frequency|S) before the equation 8.6 can be used to cal 
culate the posterior probability of a sound being a particular 
type of Sound. 
0097. The prior probability that a sound is an S1, S2 or a 
noise component changes between recordings. In the optimal 
recording, where no noise components are detected, the prior 
probability for noise is zero, P(S)=0. If this is the case 
and an equal number of S1’s and S2's are detected, the prior 
probability that the detected sound is an S1 is 50%, and 
similar for S2. Therefore, P(S_s)=P(S)=0.5 if P(S) 
=0. However, this optimal condition cannot be assumed for 
real signals, and noise sounds would be detected. This will 
increase the prior probability that a given sound is noise. 
0098. The exact probability of a detected sound being 
noise, P(S) can be defined if the number of detected 
noise Sounds, N, and the total number of detected Sounds, 
N are known. For instance, if it is known that four noise 
Sounds are detected, N, 4, and the total number of 
detected sounds is 20, the probability that the sound being 
examined is a noise sound is P(S)-4/20. However, in 
most signals N is unknown and an estimate of N is 
therefore necessary, and this estimate can be based on already 
available information since the duration of a heart cycle is 
known from the envelope autocorrelation (804). The 
expected number of cardiac cycles in one recording can there 
fore be calculated by dividing the length of the recording with 
the length of the cardiac cycles. The number of S1’s and S2's 
in a recording is therefore twice the number of cardiac cycles 
in a recording. The prior probability of the sound type would 
therefore be: 

Nnoise 8.7 
PS noise) = W ind Sii 

and the prior probability that the detected sound is an S1 or 
S2: 

1 -= P(Soise 8.8 P(S) = P(S2) = |- a 8.8 

0099. The conditional probability that an S1 is followed 
by an S2 sound after an interval corresponding to the duration 
of a systole, P(AfterSysISs), depends on several factors. 
The S1 sounds will normally be followed by S2 sounds after 
an interval of duration equal to the systole. Deviations from 
this can also occur, e.g. when S1 is the last Sound in the 
recording, or if S2 is missing because it is not detected by the 
threshold. It may also occur that a weak (below threshold) S2 
is detected because noise occurs in the tolerance window 
associated with those sounds. The probability that “AfterSys’ 
is false if the sound is an S1 sound may thus be calculated as 

P(AfterSysIS si)=P(EndSoundUSinglesound), 
NoiseInWin) 8.9 

where “EndSound is an event describing that the sound is the 
last sound in the recording. “SingleSound describes that S1 
is not followed by S2 as the next S2 sound is not detected due 
to sub-threshold amplitude. “NoiselnWin’ describes noise 
occurrence in the window, where the S2 sound was expected. 
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The conditional probability that “AfterSys’ is true given that 
the examined sound is an S1 Sound is given by: 

P(AfterSys 

0100 If the examined sound is an S2 sound it is not likely 
that any Sound occurs after an interval corresponding to the 
systolic duration since the next S1 sound will occur after the 
duration of the diastole. An exception is if a noise Sound 
occurs in the window P(Noisen Win) or if the systole and 
diastole durations are equal. If the duration of the diastole is 
equal to the duration of the systole, the S1 sound which 
follows the S2 sound after the duration of a diastole occurs in 
both the systole tolerance window and in the diastole toler 
ance window. This will happen if the heart rate of the subject 
is high. The probability that a sound occurs in both tolerance 
windows (overlap) is equal to the degree of the overlap 
between the systole and diastole tolerance window. This 
probability is termed P(Overlap). Therefore, the conditional 
probability that a sound occurs in the window after systole 
duration if the examined Sound is an S2 sound is: 

|S_s)=1-P(AfterSysteS si) 8.10 

P(AfterSys S sa)=P(OverlapUNoiseInWin) 8.11 

0101 The conditional probability that a sound does not 
occur after a systole duration, if the examined Sound is an S2, 
is the opposite of the conditional probability that it does 
OCCU 

P(AfterSysIS s2)=1-P(AfterSys ISs2) 8.12) 

0102 The conditional probability that a detected noise 
sound is followed by another sound after the systole duration 
is based on the probability that a sound of any kind is present 
in a segment with the length of the used tolerance window. 
This can be estimated from the ratio of the tolerance window 
length multiplied by the number of detected sounds minus 
one to recording length. 

P(SoundinWin|Ss)=1-P(AfterSys LS 82) 8.12) 

0103) The conditional probability that a detected noise 
sound is followed by another sound after the systole duration, 
P(AfterSysIS), is based on the probability that a sound 
of any kind is present in a segment with the length of the used 
tolerance window. This can be estimated from the ratio of the 
tolerance window length multiplied by the number of 
detected Sounds minus one to recording length. The condi 
tional probability that a noise sound is followed by another 
sound after a systole duration is therefore: 

P(AfterSys Soise) = P(Soundin Win) 8.13 

(Nsound - 1): 2 Syst 
RecLength 

0104 where N is the number of sounds within the 
recording, Sys, is the duration of a systole and RecLength is 
the length of the recording. The conditional probability that a 
noise is not followed by another sound after the systole inter 
Val is the opposite: 

P(AfterSyste.I.S.)=1-P(Sound Inwin) 8.14 

0105. The conditional probabilities for P(AfterDialS), 
P(BeforeSysIS) and P(BeforeDialS) are based on the same 
assumptions used to define P(AfterSysIS). These conditional 
probabilities can be found in the tables below: 
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P(AfterSysIS) 

S1 P((EndSound USingleSound), NoiseInWin) 

S2 - P(Overlap U NoiseInWin) 
Noise - P(Sound InWin) 
P(AfterDiaIS) 

S1 - P(Overlap U NoiseInWin) 
S2 P((EndSound USingleSound), NoiseInWin 

Noise - P(Sound InWin) P(Sound InWin) 
P(AfterSysIS) 

S1 - P(Overlap U NoiseInWin) 
S2 P((EndSound USingleSound), NoiseInWin 

Noise - P(Sound InWin) P(Sound InWin) 
P(AfterDiaIS) 

S1 P((EndSound USingleSound), NoiseInWin) 

S2 - P(Overlap U NoiseInWin) 
Noise - P(Sound InWin) P(Sound InWin) 

0106. It has previously been found that the frequency 
parameter classified 86% of the S1 sounds as low frequent 
and 80% of the S2 sounds as high frequent. 85% of all noise 
Sounds were classified as high frequent. This information was 
used as the conditional probabilities between the frequency 
parameter P(Frequency|S): 

P(Frequency|S) Low High 

S1 O.86 O.14 
S2 O.20 O.80 
Noise O.15 O.85 

0107. When all conditional probabilities are found, equa 
tion (8.6) is used by the Bayesian network to calculate the 
posterior probabilities for all detected sounds. This way, three 
probabilities are calculated for each sound that reflect how 
likely it is that the current Sound is a given type. 
0108. It should be noted that the above-mentioned 
embodiments rather illustrate than limit the invention, and 
that those skilled in the art will be able to suggest many 
alternative embodiments without departing from the scope of 
the appended claims. 

1. A method for classifying a cardiovascular Sound 
recorded from a living Subject, said method comprises the 
steps of: 

extracting at least two signal parameters from said cardio 
vascular sound, said at least two signal parameters char 
acterizes at least two different properties of at least a part 
of said cardiovascular sound, 

classifying said cardiovascular sound using said at least 
two signal parameters in a multivariate classification 
method. 

2. A method according to claim 1 characterized in that at 
least one of said at least two signal parameters is a frequency 
parameter describing a property in the frequency domain of at 
least a part of said cardiovascular Sound. 
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P((EndSound USingleSound), NoiseInWin) 
P(Overlap U NoisenWin) 
P(Sound InWin) 

P(Overlap U NoisenWin) 

P((EndSound USingleSound), NoiseInWin) 

P(Overlap U NoisenWin) 

P((EndSound USingleSound), NoiseInWin) 

P((EndSound USingleSound), NoiseInWin) 
P(Overlap U NoisenWin) 

3. A method according to claim 1 characterized in that at 
least one of said at least two signal parameters describing a 
property in the time domain of at least a part of said cardio 
vascular sound. 

4. A method according to claim 2 characterized in that at 
least one of said frequency parameters is a frequency level 
parameter describing a frequency level property of at least a 
part of said cardiovascular Sound. 

5. A method according to claim 2 characterized in that at 
least one of said at least two signal parameters is a frequency 
bandwidth parameter describing a frequency bandwidth 
property of at least a part of said cardiovascular Sound. 

6. A method according to claim 4 characterized in that at 
least one of said frequency level properties characterizes the 
most powerful frequency component of at least a part of said 
cardiovascular sound. 

7. A method according to claim 5 characterized in that at 
least one of said frequency bandwidth properties character 
izes the bandwidth of the most powerful frequency compo 
nent of at least a part of said cardiovascular sound. 

8. A method according to claim 3 characterized in that at 
least one of said time parameters is a property characterizing 
the mobility of at least a part of said cardiovascular Sound. 

9. A method according to claim 1 characterized in that said 
method further comprises the step of dividing said cardiovas 
cular sound into at least one sub-segment and at least one of 
said signal parameters is extracted from said at least one 
Sub-segment. 

10. A method according to claim 1 characterized in that 
said method further comprises the step of modelling at least a 
part of said cardiovascular sound and at least one of said 
signal parameters is extracted from said model. 

11. A method according to claim 1 characterized in that 
said multivariate classification method is a discriminant func 
tion. 

12. A system for classifying a cardiovascular Sound 
recorded from a living Subject, said system comprises: 
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processing means for extracting at least two signal param 
eters from said cardiovascular Sound, said at least two 
signal parameters characterizes at least two different 
properties of at least a part of said cardiovascular Sound, 

processing means for classifying said cardiovascular 
Sound using said at least two signal parameters using a 
multivariate classification method. 

13. A system according to claim 12 characterized in that 
said processing means for extracting at least two signal 
parameters from said cardiovascular sound is adapted to 
extract at least one frequency parameter describing a property 
in the frequency domain of at least a part of said cardiovas 
cular sound. 

14. A system according to claim 12 characterized in that 
said processing means for extracting at least two signal 
parameters from said cardiovascular sound is adapted to 
extractat least one time parameter describing a property in the 
time domain of at least a part of said cardiovascular sound. 

15. A system according to claim 13 characterized in that 
said processing means adapted to extract at least one of said 
frequency parameters are further adapted to extract at least 
one frequency level parameter describing a frequency level 
property of at least a part of said cardiovascular Sound. 

16. A system according to claim 13 characterized in that 
said processing means adapted to extract at least one fre 
quency parameter are further adapted to extract at least one 
frequency bandwidth parameter describing a frequency band 
width property of at least a part of said cardiovascular Sound. 

17. A system according to claim 13 characterized in that 
said processing means adapted to extract at least one fre 
quency level property are further adapted to extract the most 
powerful frequency component of at least a part of said car 
diovascular sound. 

18. A system according to claim 13 characterized in that 
said processing means adapted to extract at least one of said 
frequency bandwidth properties are further adapted to extract 
the bandwidth of the most powerful frequency component of 
at least a part of said cardiovascular sound. 

19. A system according to claim 14 characterized in that 
said processing means for extracting at least one time param 
eters are further adapted to extract the mobility of at least a 
part of said cardiovascular Sound. 

20. A system according to claim 12 characterized in that 
said system further comprises processing means for dividing 
said cardiovascular sound into at least one Sub-segment and at 
least one of said signal parameters is extracted from said at 
least one sub-segment. 
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21. A system according to claim 12 characterized in that 
said system further comprises processing means for model 
ling at least a part of said cardiovascular sound and in that said 
processing means for extracting at least two signal parameters 
from said cardiovascular sound are further adapted to extract 
at least one of said parameters from said model. 

22. A system according to claim 12 characterized in that 
said multivariate classification method used by said process 
ing means for classification of said cardiovascular sound is a 
discriminant function. 

23. A computer-readable medium having stored therein 
instructions for causing a processing unit to execute a method 
according to claim 1. 

24. A stethoscope comprising: 
recording means adapted to record a cardiovascular Sound 

from a living Subject, 
storing means adapted to store said recorded cardiovascu 

lar Sound, 
a computer-readable medium and a processing unit, said 

computer-readable medium having stored therein 
instructions for causing said processing unit to execute a 
method according to claim 1 and thereby classify said 
recorded cardiovascular sound. 

25. A server device connected to a communication network 
comprising: 

receiving means adapted to receive a cardiovascular Sound 
recorded from a living Subject through said communi 
cation network, 

storing means adapted to store said received cardiovascular 
Sound, 

a computer-readable medium and a processing unit, said 
computer-readable medium having stored therein 
instructions for causing said processing unit to execute a 
method according to claim 1 and thereby classify said 
received cardiovascular sound. 

26. A server device according to claim 25 characterized in 
that said receiving means are further adapted to receive said 
cardiovascular sound from a client connected to said commu 
nication network. 

27. A server device according to claim 25 characterized in 
that said server device further comprises means for sending 
said classification of said cardiovascular sound to at least one 
client unit connected to said communication network. 

c c c c c 


