
(19) United States
(12) Reissued Patent (10) Patent Number:

USOORE39763E

US RE39,763 E
Staats et al. (45) Date of Reissued Patent: * Aug. 7, 2007

(54) ISOCHRONOUS CHANNEL HAVING A 5,815,678 A * 9/1998 Hoffman et al. T10,305
LINKED LIST OF BUFFERS 6.243,783 B1 * 6/2001 Smyers et al. 710,310

RE38,641 E * 10/2004 Staats et al. 71Of 107
(75) Inventors: Erik Staats, Ben Lomond, CA (US);

Robin D. Lash, Milpitas, CA (US) OTHER PUBLICATIONS
(73) Assignee: Apple Computer, Inc., Cupertino, CA ISO/IEC 13213 ANSI/IEEE Standard 1212, “Information

(US) Technology—Microprocessor Systems—Control and Status
c - r is- Registers (CSR) Architecture For Microprocessor Buses'.

(*) Notice: spent is Subject to a terminal dis First Edition, pp. 1-125, (Oct. 5, 1994).*
Philips Electronics et al. Digital Interface for Consumer

(21) Appl. No.: 10/845,060 Ellis AiNS E. Palysis 2.0, IEEE 1-1. rade Association Meeting, pp. 1-47, Part 2 pp. 1-6, (22) Filed: May 12, 2004 (Oct. 1995).*
Related U.S. Patent Documents High Performance Serial Bus Working Group of the Micro

Reissue of: processor and Microcomputer Standards Committee,
(64) Patent No.: 5.940,600 “P1394 Standard for a High Performance Serial Bus”,

Issued: Aug. 17, 1999 P1394 Draft 8.0v3, pp. 1-364, (Oct. 16, 1995).*
Appl. No.: 08/625,993 Apple Computer, Inc., “Interim Draft, Designing PCI Cards
Filed: Apr. 1, 1996 and Drivers for Power MacIntosh Computers’. A8 Draft—

U.S. Applications:
(63) Continuation of application No. 09/932,846, filed on Aug.

17, 2001, now Pat. No. Re. 38,641.

(51) Int. Cl.
G06F 3/00 (2006.01)

(52) U.S. Cl. .. 710/107; 710/310
(58) Field of Classification Search 710/100,

710/107, 305, 306, 310: 370/464, 465,424,
370/3951

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,317,692 A * 5/1994 Ashton et al. 711/5
5,406,559 A * 4, 1995 Edem et al. 370,516
5,440,556 A * 8/1995 Edem et al. 370/465
5,452.420 A * 9/1995 Engdahl et al. T10/105
5,566,169 A * 10/1996 Rangan et al. 370,366
5,594,732 A * 1/1997 Bell et al. 370/401
5,594.734 A * 1/1997 Worsley et al. 370/395.53
5,617.418 A * 4, 1997 Shirani et al. 370/465
5,668,811 A * 9/1997 Worsley et al. 370,424
5,754,789 A * 5/1998 Nowatzyk et al. TO9,233

MONITOR

ENERNAL
ARD

KEYBOARD NODE
44 46

MOUSE

DRIVE 14

Preliminary Information, pp. 1–372, (Mar. 9, 1995).*
* cited by examiner
Primary Examiner Glenn A. Auve
(74) Attorney, Agent, or Firm Fenwick & West LLP
(57) ABSTRACT

A computer system consists of a plurality of nodes, each
with an associated local host, coupled together with a
plurality of point-to-point links. An isochronous data chan
nel is established within the computer system between a first
subset of the plurality of nodes. The isochronous data
channel includes a linked list of buffers which are used as
temporary storage locations for data transmitted on the
isochronous data channel. Each node which is part of the
isochronous data channel is configured as a sender or a
receiver and data transmissions are commenced. The pres
ence of isochronous data in the channel generates an inter
rupt which signals a central processing unit (CPU) that data
is available. The data is transferred to an associated location
within the linked list of buffers and the CPU then moves on
to other tasks. In other embodiments, data is transferred
using DMA techniques rather than interrupt driven events.
Buffers can also be used to transmit isochronous data.

18 Claims, 4 Drawing Sheets

WECAMERA

U.S. Patent Aug. 7, 2007 Sheet 2 of 4 US RE39,763 E

U.S. Patent Aug. 7, 2007 Sheet 3 of 4 US RE39,763 E

NEXT

BRANCH2 DATA BRANCH2 DATA BRANCH2 DATA

U.S. Patent Aug. 7, 2007 Sheet 4 of 4 US RE39,763 E

App: 102
CreatelsochChannellD(&channellD)

120 Camera Driver.
StartlocalisochPort(. . . , pisochChannelBuffer, . . .)

App: Tell camera driver to send
data over channellD and display

on monitor. 122
04 VCR Driver

Program VCR to start receiving.
Camera Driver. 106

AddisochClient(ChannetID, me, sender)
124

Camera Drive?. 108 - Service Routine: 124
AddisochClient(ChannelD, me, receiver) Tell sending client to start sending on Channell.D.

Camera Drive?. 1 10 126
AllocateLocalisochPort(&portD, receiving) Camera Driver. -

Program camera to start sending on Channel.D.

App. Tell VCR driver to receive data on
112

Channel O.

VCR Driver: 4 Data?
AddisochClient(ChannellD, me, receiver) 128

Perform other .
tasks.

130
YES

App.
StartisochChannel(Channel.D)

6
15 Add data on Channel.D

to buffers,

Service Routine;
For each receiving client in ChannellD, tell

client to start receiving.
8

US RE39,763 E
1.

ISOCHRONOUS CHANNEL HAVING A
LINKED LIST OF BUFFERS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifi
cation; matter printed in italics indicates the additions
made by reissue.

This application is a continuation application of U.S.
Reissue application No. 09/932,846, filed Aug. 17, 2001,
now U.S. Pat. No. RE. 38,641, which is a reissue application
of U.S. Pat. No. 5,940,600, issued Aug. 17, 1999.

Notice. More than one reissue application has been filed
for the reissue of U.S. Pat. No. 5,940,600. The reissue
applications are application Nos. 10/845,060 (the present
application), filed on May 12, 2004, 09/932,292, filed on
Aug. 17, 2001, now RE 38,641, and II/503,541, filed Aug.
11, 2006.

FIELD OF THE INVENTION

This invention relates generally to data communications
and, more particularly, to data communications within a
computer bus architecture.

BACKGROUND

The components of a computer system are typically
coupled to a common bus for communicating information to
one another. Various bus architectures are known in the prior
art, and each bus architecture operates according to a com
munications protocol that defines the manner in which data
transfer between components is accomplished.
The Institute of Electrical and Electronic Engineers

(IEEE) has promulgated a number of different bus architec
ture standards including IEEE standards document 1394,
entitled Standard for a High Performance Serial Bus
(hereinafter “IEEE 1394 Serial Bus Standard”). A typical
serial bus having the IEEE 1394 standard architecture is
comprised of a multiplicity of nodes that are interconnected
via point-to-point links, such as cables, that each connect a
single node of the serial bus to another node of the serial bus.
Data packets are propagated throughout the serial bus using
a number of point-to-point transactions, wherein a node that
receives a packet from another node via a first point-to-point
link retransmits the received packet via other point-to-point
links. A tree network configuration and associated packet
handling protocol ensures that each node receives every
packet once. The serial bus of the IEEE 1394 Serial Bus
Standard may be used as an alternate bus for the parallel
backplane of a computer system, as a low cost peripheral
bus, or as a bus bridge between architecturally compatible
buses.

A communications protocol of the IEEE 1394 Serial Bus
Standards specifies two primary types of bus access: asyn
chronous access and isochronous access. Asynchronous
access may be either “fair or “cycle master'. Cycle master
access is used by nodes that need the next available oppor
tunity to transfer data. Isochronous access is used by nodes
that require guaranteedbandwidth, for example, nodes trans
mitting video data. The transactions for each type of bus
access are comprised of at least one 'subaction', wherein a
Subaction is a complete one-way transfer operation.

In the case of isochronous data transfers and computer
systems conforming to the IEEE 1394 Serial Bus Standard,
the prior art has attempted to manage the flow of data using
dedicated drivers. Drivers are software entities associated
with various components of a computer system and, among

10

15

25

30

35

40

45

50

55

60

65

2
other functions, operate to configure the components and
allow the components to be operable within the overall
system. The drivers of the prior art have allowed for the
transmission of video data from a digital video camera to a
monitor, but have not allowed for real time video transmis
sions in a multi-tasking environment. In particular, the
drivers of the prior art have required that a bus controller,
e.g., the computer system's CPU, listen to a data channel at
the exclusion of all other processes. As data arrives on the
channel, it is stored in a buffer for later transmission to a
frame buffer associated with a monitor. A new listen instruc
tion must be issued for each separate isochronous data
transmission. That is, if a single transmission corresponds to
data for a single scan line of the monitor, for a display of five
scan lines, five separate listen instructions are required.
Because the data is being sent in real time, this system
requires that the processor spend all of its time servicing the
isochronous data transmissions, even if no data is currently
being transmitted on the bus, without servicing any other
tasks. It would, therefore, be desirable to have a means and
method for a more efficient management of isochronous data
channels in a computer system.

SUMMARY OF THE INVENTION

A computer implemented method of managing isochro
nous data channels in a computer system is described. In one
embodiment, the computer system conforms to the IEEE
1394 Serial Bus Standard. An isochronous channel is estab
lished within the computer system and includes a linked list
of buffers. The linked list of buffers corresponds to display
locations on a display which is part of the computer system.
Once the linked list of buffers has been established, the
computer system executes instructions which allow for the
transmission of isochronous data across the channel. Each
time a sender node, a video camera in one embodiment, is
ready to transmit data, an interrupt is generated which causes
the processor to execute instructions to manage the flow of
data from the sender. The processor transfers the data
transmitted by the camera to a storage location within the
linked list of buffers. Ultimately, this data is transferred to a
frame buffer associated with a display. This interrupt driven
management allows the processor to perform other tasks
when no data is being transmitted over the isochronous
channel.

In another embodiment, the data transfer is DMA driven
rather than interrupt driven. For this embodiment, the iso
chronous channel, including the linked list of buffers, is
established and the process is initiated. Data transmitted by
the video camera is transferred to memory locations within
the linked list of buffers by the DMA hardware and then
ultimately transferred to a frame buffer for display.

In yet another embodiment, the central processing unit
(CPU) for the computer system establishes an isochronous
channel between a sender node and one or more receiver
nodes, not including the CPU itself. For this embodiment, no
linked list of buffers is required as data from the sender node
is transferred directly to the receiver node.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:

FIG. 1 illustrates a computer system having a serial bus
made up of a number of nodes;

FIG. 2 shows a display Screen of a monitor of a computer
system having an open window for the display of video
information;

US RE39,763 E
3

FIG. 3 shows a linked list of buffers in accordance with
one embodiment;

FIG. 4 shows a linked list of buffers which support
conditional branching according to one embodiment; and

FIG. 5 is a flow diagram illustrating the management of
an isochronous data channel in a computer system according
to one embodiment.

DETAILED DESCRIPTION

As described herein, a method and apparatus for manag
ing isochronous data channels in a computer system is
provided. FIG. 1 shows a computer system 5 utilizing a
serial bus incorporating the methods and apparatus of the
present invention. The serial bus may generally be con
structed in accordance with the IEEE 1394 Serial Bus
Standard.
The computer system 5 of FIG. 1 comprises a central

processing unit (CPU) 10, a monitor 18, a printer 26, a video
camera 32, a video cassette recorder (VCR) 36, a keyboard
42, and a mouse 46. The CPU 10 includes an internal hard
drive 14 and a memory (not shown). Each of the devices of
the computer system is coupled to a local node of the serial
bus. In general, the device to which a node is coupled acts
as the “local host” for that node. For example, the CPU 10
is the local host for the CPU node 12; the monitor 18 is the
local host for the monitor node 16; the printer 26 is the local
host for the printer node 24; the video camera 32 is the local
host for the video camera node 30; the VCR 36 is the local
host for the VCR node 34; the keyboard 42 is the local host
for the keyboard node 40; the mouse 46 is the local host for
the mouse node 44; and the internal hard drive 14 is the local
host for the internal hard drive node 15. Those skilled in the
art will appreciate that it is not always necessary for every
node to have a local host, nor is it necessary that the local
host always be powered.
A point-to-point link Such as cable 20 is used to connect

two nodes to one another. CPU node 12 is coupled to internal
hard drive node 15 by an internal link 21, to monitor node
16 by cable 20, and to keyboard node 40 by a cable 20e. The
keyboard node 40 is coupled to the mouse node 44 by a cable
20f. The monitor node 16 is coupled to the nodes of the other
peripherals (not shown) by cable 20a and to the printer node
24 by cable 20b. The printer node 24 is coupled to the video
camera node 30 by cable 20c and to the VCR node 34 by
cable 20d. Each of the cables 20–20 fand the internal link 21
may be constructed in accordance with the IEEE 1394 Serial
Bus Standard and may include a first differential signal pair
for conducting a first signal, a second differential signal pair
for conducting a second signal, and a pair of power lines.

Each of the nodes 12, 15, 16, 24, 32, 34, 40 and 44 may
have identical construction, although some of the nodes,
Such as mouse node 44, can be simplified because of their
specified functions. Thus, the nodes can be modified to meet
the needs of a particular local host. For example, each node
may have one or more ports, the number of which is
dependent upon its needs. For example, CPU node 12, as
illustrated, has 3 ports, while the mouse node 44 has only 1
port.

Referring now to FIG. 2, one example of the transfer of
isochronous data within computer system 5 will be
described. Upon review of the entire specification, those
skilled in the art will appreciate that this example is used to
describe the methods of the present invention and is only one
of many applications of the process described below. FIG. 2
shows the display screen of monitor 18. Within display
screen 48, a window 50 is shown. Window 50 is imple

10

15

25

30

35

40

45

50

55

60

65

4
mented using programming techniques well known in the art
and is used for the display of real-time video data in
accordance with the methods of the present invention. In
particular, window 50 defines the boundary within which the
real-time video data will be displayed on display screen 48.
As shown in FIG. 2, window 50 consists of five scan lines,
each having an arbitrary length L. Those skilled in the art
will appreciate that window sizes of other dimensions could
be used.

In general, window 50 will be generated by an application
program running on computer system 5. An example of Such
an application program is the QuickTime R program avail
able from Apple Computer, Inc. of Cupertino, Calif. In such
a case, computer system 5 may comprise the familiar
Macintosh(R) computer system also available from Apple
Computer, Inc. The video data to be displayed in window 50
on display screen 48 will generally be obtained from a frame
buffer (not shown) associated with monitor 18. The tech
niques for displaying data stored in a frame buffer on the
display screen of a monitor are well-known in the art.

In accordance with the methods of the present invention,
real-time video data from video camera 32 is to be displayed
within window 50 on display screen 48. The real-time video
data generated by Video camera 32 will comprise isochro
nous data packets in accordance with the IEEE 1394 Serial
Bus Standard. Each of these isochronous data packets will
include header information and payload information. The
header information is used for routing the video data to the
monitor 18 and for error detection and correction. The
payload data comprises the video data to be displayed within
window 50.
As indicated above, the prior art has attempted to manage

this flow of isochronous data from video camera 32 to
monitor 18 as follows. Once the application program has
generated window 50 within display screen 48, CPU 10
executes instructions which cause it to listen on one of its
associated ports. These instructions are typically stored on
hard drive 14 and are loaded into system memory (not
shown) upon initialization. When the video camera 32 has
data to transmit, the video camera node 30 generates the
isochronous data packets and transmits them over the serial
bus in accordance with the IEEE 1394 Serial Bus Standard.
CPU node 12 detects the presence of the isochronous data
packets and strips the payload information from these pack
ets. The payload information is placed in a buffer in the
computer memory for later transmission to the frame buffer
associated with monitor 18. If, for example, one transmis
sion from video camera node 30 corresponded to data for a
single scan line of window 50, five separate listen operations
would be required to receive the video data associated with
one frame to be displayed within window 50. To accommo
date the real-time transmission nature of the video data, CPU
10 would be required to constantly listen to the bus for
isochronous data transmissions from Video camera node 30.
That is, CPU 10 could not undertake to execute additional
tasks, for example menu level tasks, as is common in
multi-tasking environments.
To overcome this problem of the prior art, the present

invention uses a linked list of buffers such as those shown in
FIG. 3. FIG. 3 shows a linked list of buffers which reside in
computer memory. In keeping with the above described
example, five buffers comprise the linked list, one for each
scan line of window 50. Each of the buffers contains a
pointer, next, which points to the address of the following
buffer in the linked list. It will be appreciated that these
addresses correspond to memory locations within computer
system 5. Each of the buffers also contains an address

US RE39,763 E
5

“buffer n”. This address corresponds to the start of a scan
line of window 50. The address of buffer 1 corresponds to
the start of scan line 1 and so on. Each of the buffers in the
linked list also contains a length parameter which corre
sponds to the scan line length of window 50.
An exemplary structure of these isochronous channel

buffers is shown below:

typedef struct IsochChannelBufferStruct IsochChannelBuffer
*IsochChannel BufferPtr;

Struct IsochChannelBufferStruct

{
IsochChannelBuffer Ptr pBranchChannel Buffer,
Pir buffer
UInt32 ength;

);
pBranchChannelBuffer Branch pointer to next

channel buffer. When a
branch condition is met, its
corresponding branch pointer
is used to select the next
buffer.

buffer Pointer to buffer memory.
length Length of above

buffer.

The linked list of buffers corresponds to a particular
isochronous channel. The isochronous channel is identified
by a channel identification number (channel ID). The chan
nel ID is maintained in a data record stored in the computer
system 5 memory and is used by the various application
programs and driver routines as described below. The use of
a common channel ID allows the interoperation of applica
tion programs, driver routines, and other software routines
which otherwise may not be capable of operating together.
One example of the use of a linked list of buffers

according to the methods of the present invention as shown
in FIG. 3 will now be described. The example is presented
with reference to process 100 illustrated in FIG. 5 and
assumes that real-time video data is to be transmitted from
camera 32 and displayed within a window 50 on monitor 18.
To accommodate the transmission of the real-time video
(i.e., isochronous) data, at step 102 an application program
running on computer system 5 issues instructions which
cause CPU 10 to create an isochronous data channel iden
tified by “channel ID'.
Upon receiving the instruction to create the isochronous

channel ID, the CPU 10 will execute instructions to create
Such a channel. This may include a channel bandwidth and
a preferred speed. An exemplary instruction is shown below.

OSStatus AllocateIsochronousChannelID (
IsochChannelD pIsochChannelID,
UInt32 bandwidth,
UInt32 preferredSpeed);

<-- pIsochChannelID Returned reference to this channel for use
is subsequent isochronous service calls.

--> bandwidth Bandwidth required for this channel.
--> preferredspeed Preferred speed for this channel.

This instruction creates an isochronous channel ID that is
used by the various isochronous service routines described
below. The channel is initialized with the required band
width and the preferred speed. The actual channel speed may
be less than the preferred speed depending on the maximum
speed of the devices that are later attached to the channel.
The isochronous channel is a data path between nodes which
will be added as channel clients as described below.

10

15

25

30

35

40

45

50

55

60

65

6
Once a channel has been established, the application

program can issue instructions in order to add interested
clients to the isochronous channel specified by channel ID.
These clients are typically software driver routines associ
ated with the devices, such as video camera 32, which take
part in the display of the real-time video data to be trans
ferred. The client software will take part in and be notified
of all events associated with the given isochronous channel
specified by the channel ID. Accordingly, at step 104, the
application program instructs the driver associated with
video camera 32 to send real-time video data over the
channel identified by “channel ID' and display the data
within window 50 on monitor 18.

In response to the instructions issued by the application
program, the camera driver will configure the camera 32
such that the camera 32 will transmit video data over the
channel specified by “channel ID'. The camera driver will
also establish a linked list of buffers, as described above, and
assign the buffers to “channel IID. The linked list of buffers
will act as storage locations for the video data to be
transmitted by camera 32.
An exemplary instruction for adding clients to “channel

ID is shown below

OSStatus AddIsochronousChannelClient (
IsochChannelD isochChannelID,
DriverID driverID,
Boolean clientIsTalker);

--> isochChannelD Reference to the isochronous
channel to add the given client to.

--> driverID Reference to the driver client to
add to the given channel.

--> clientIsTalker If the given client will be a sender
node (i.e., a node that will be doing
the talking in IEEE 1394 pirlance)
this should be set to true. Otherwise
it should be set to false (i.e., if the
node will be a listener).

This instruction adds the driver specified by “DriverID' as
a client to the isochronous channel specified by IsochChan
nel ID'. The client will be called to perform its role in
initializing, starting and stopping the given isochronous
channel. The client will also be informed of all channel
events such as bus resets.

For the example of FIG. 5, at step 106 the video camera
driver adds the video camera as a sender client for the
isochronous channel specified by channel ID. Then, at step
108, the camera is added as a receiver (listener) client of the
channel specified by channel ID. The camera driver is added
as both a talker and a listener so that the driver can both start
the camera sending data and set up the CPU to receive the
data for display.

Next, at step 110, the camera driver sets up the linked list
of buffers described above. Once this is accomplished, a port
on CPU node 12 can be set to listen to the isochronous
channel. An exemplary routine for this procedure is shown
below.

OSStatus AllocateLocalIsochronousPort (
ReferenceID referenceID,
IsochPortID “pIsochPortID,
UInt32 ChannelNum,
UInt32 speed,
Boolean talking);

Reference used to indicate which
node to allocate port on.

--> referenceID

US RE39,763 E
7

-continued

pIsochPortID Returned reference to this prot for use
in Subsequent port service calls.
Channel number for this port.
Speed for this port.
If false, allocate a port for listening,
otherwise allocate a port for talking.

channelNum
speed
talking

FIG. 5 illustrates the case where a user also wishes to
record video data transmitted by camera 32 for a later
playback. To accommodate this, at step 112 the application
program issues instructions to establish the VCR driver as a
receiver client of the channel specified by “channel ID'. In
response, the VCR driver adds itself as a channel client at
step 114.
Once all of the clients have been added to the isochronous

channel specified by channel ID, a start instruction can be
issued at step 116. This instruction, an example of which is
given below, calls all of the given isochronous channels
clients (i.e., the driver software associated with the various
devices) to start the given isochronous channel. Each lis
tening client is first instructed to listen to the channel. Once
all of the listeners are ready, the sender client is instructed to
start the transmission of data.

OSStatus
IsochChannelD

isochChannelD

StartIsochronousChannel (
isochChannelID);

Reference to the isochronous channel to
Start.

As shown in FIG. 5 then, once the start command is issued
by the application program, a service routine calls each
channel client at step 118. At step 120, the camera driver
configures the local port on CPU node 12 to start listening
to the isochronous channel specified by channel ID. An
exemplary instruction is shown below.

OSStatus StartLocal IsochronousPort (
IsochPortAction Params.Ptr plsochPortAction Params);
pIsochPortAction Params Pointer to parameter block.

controlFlags Flags used to control the request.
Status Current status of request.
completionProc Procedure to call upon comple

tion of request.
Data to be used by
completionProc.
Reference to local port to start.
Isochronous channel buffer chain
to talk listen into from.
Sync event to start on.

completionProcData

isochPortID
pIsochChannelBuffer

actionSync

This instruction causes the local port specified by isoch
PortID to start listening (for the example of FIG. 5) on its
isochronous channel using the buffer chain previously estab
lished and specified by pisochChannelBuffer (i.e., the start
ing address of Buffer 1 in FIG. 3).

Similarly, at step 122 the VCR driver programs the VCR
36 to start listening to the isochronous channel specified by
channel ID. Once this is completed, the service routine
issues instructions telling the camera driver to program
camera 32 to start sending data over the isochronous chan
nel. At step 126, the camera driver does so.

At this point, CPU 10 may continue with other instruc
tions as indicated by step 130. For example, CPU 10 may
respond to menu level instructions initiated by a user or

10

15

25

30

35

40

45

50

55

60

65

8
execute commands for a selected foreground application.
When video camera 32 transmits data on the isochronous
channel specified by a channel ID, the CPU receiving the
data generates an interrupt. The interrupt is recognized at
step 128 and procedure 100 moves to step 132 where the
interrupt causes the CPU 10 to execute instructions which
transfer the incoming isochronous data into an appropriate
buffer within the linked list. The CPU 10 then returns from
the interrupt to complete or continue with any tasks. For the
second embodiment described above, a DMA transfer is
initiated to transfer the data without interrupting the CPU 10.
Subsequently, data is transferred from the buffers which
comprise the linked list to a frame buffer associated with
monitor 18 for eventual display on display screen 48 within
window 50. This process continues until an isochronous
channel stop instruction is issued.

Stopping the transmission of isochronous data is similar
to the starting process. This time, however, a stop command
is issued which calls all of the given channel's clients as
follows. First, the stop command calls the sending client to
stop sending data on the channel. Once the sender stops, the
stop command calls each of the listening clients to stop
listening.

Those skilled in the art will recognize that the simple
linked list configuration shown in FIG. 3 is subject to certain
errors. For example, the linked list shown in FIG. 3 has
buffer 1 corresponding to scan line 1 of window 50, buffer
2 corresponding to scan line 2 of window 50, and so on.
Under normal operating conditions, the real-time video data
intended for the top of the frame in window 50 will be stored
in buffer 1, corresponding to scan line 1. Typically, the
top-of-frame (ToF) data is tagged to indicate it as such.
However, when errors in the video data stream occur, for
example a garbled transmission, using the linked list
approach of FIG. 3 it is possible that one line worth of data
could be missed and, for example, the top-of-frame data
could then be placed in the buffer corresponding to scan line
5. In such a case, the ultimate picture displayed within
window 50 would appear with the top-of-frame data at the
bottom of the screen instead of the top of the screen. Such
a condition is generally unacceptable.
To account for these types of errors, a more complex

linked list of buffers is used. This more complex scheme is
shown in FIG. 4. The linked list of buffers shown in FIG. 4
Support conditional branching. That is, the linked list con
tains pointers which do not necessarily correspond to the
succeeding buffer in the chain. Instead, the linked list
supports pointers (next1) which point back to the first
address of the first buffer in the linked list (or, potentially,
any other buffer, as desired and depending upon the branch
condition described below). Associated with the pointer
next1 is a data field cond1. The data field cond1 may, for
example, correspond to a top-of-frame indication. Thus,
when real-time video data is received over the isochronous
channel, if the data indicates that it is meant for the top-of
frame in window 50, the linked list will point to the starting
address of the buffer associated with scan line 1. In this way,
top-of-frame data will always be displayed at the top of
window 50.

Where the video data received does not have a top-of
frame indication, the linked list will point to the next buffer
in the chain. In this way, the situation described above where
the data is displayed with the top-of-frame at the bottom of
the window is avoided. Those skilled in the art will appre
ciate that other branching conditions, such as branch on fill
or branch on synch, can also be implemented.

US RE39,763 E
9

An exemplary structure of these isochronous channel
buffers is shown below:

typedefstruct IsohChannel BufferStruct IsochChannelBuffer
structIsochChannelBufferStruct *IsochChannel BufferPtr;
{

sochChannelBufferPtr pBranchChannelBuffer;
sochChannelBufferPtr pBranch2ChannelBuffer;
Pr buffer:
UInt32 length;
UInt32 offset:
UInt32 status;
UInt32 branch1Conditionals:
UInt32 branch1Data:
UInt32 branch1 State:
UInt32 branch2Conditionals:
UInt32 branch2Data:
UInt32 branch2State:
sochChannelHandlerProcPtr isochChannelHandler;
UInt32 isochChannelHandlerData:

);
pBranch1ChannelBuffer Branch1 pointer to next channel

buffer. When a branch condition is
met, its corresponding branch pointer
is used to select the next buffer. If
both branch conditions are met
simultaneously, branch1 will take

(CeCelC6.

Branch2 pointer to next channel
e.

pBranch2ChannelBuffer

buffer Pointer to buffer memory.
length Length of above buffer.
offset Current offset into above buffer.
Status Status of this buffer.
branch1Conditionals Conditions to meet to take branch1.
branch1Data Data to use to further specify

branch1 conditions.
Conditions to meet to take branch2. branch2Conditionals

branch2Data Data to use to take branch2
conditions.

branch2State Current state of branch2 condition.
isochChannelHandler Handler to call when a branch is

aken.
isochChannelHandlerData Data for above handler to use for its

own purposes.

The channel handler field within each of the buffers of the
linked list provides a means of accommodating data con
version. For example, video camera 32 may transmit video
data in YUV format However, monitor 18 may require the
data in RGB format. Thus, a conversion would be required
to change the YUV data to RGB data before display. The
channel handler can be a set of software instructions to be
called whenever a particular channel branch is taken so that
after a buffer is filled, the data stored in the buffer can be
converted from YUV data to RGB data for display. Thus, the
channel handler would specify an address which corre
sponds to instructions for performing a conversion routine.

Another example of when such a channel handler may be
required is when compressed data is being transmitted over
the serial bus. Before display, the data would need to be
decompressed. The channel handler routine could be used to
decompress the data in the manner described for the YUV to
RGB translation described above. Other examples of the use
of such channel handlers will be apparent to those skilled in
the art.

Thus far, the present invention has been described with
the assumption that the CPU 10 will manipulate data trans
ferred across the isochronous channel (i.e., the CPU trans
fers the data to the linked list of buffers within system
memory for later transfer to a frame buffer). This need not,
however, be the case. In other embodiments, the CPU 10 can
establish the isochronous channel without becoming part of
the channel. For example, in the situation where a user

10

15

25

30

35

40

45

50

55

60

65

10
wishes to record video data produced by camera 32 on a
Video cassette, the isochronous channel can be established
between only video camera 32 and VCR36. In this example,
one driver might be associated with the video camera 32 and
a second driver might be associated with the VCR 36. The
camera driver would establish the channel ID and add the
camera 32 as a sender client in the manner described above.
The camera driver would then call the VCR driver and
would pass a reference to the channel ID. The VCR driver
would add the VCR 36 as a listener client as described
above. Once all of the clients have been added to the
channel, the “start” instruction can be issued as described
above. No linked list of buffers is required because the VCR
36 can record the video data directly (it need not be in
frames). Now, isochronous data (i.e., video data) will be
transmitted from the camera 32 to the VCR 36 without
interrupting the CPU 10 (which is not a client of the
isochronous channel). Those skilled in the art will appreciate
that any number of clients can be added to the isochronous
channel in this fashion to accommodate the required data
transfer.

Although the methods of the present invention have been
described with reference to the use of a linked list of buffers
at the receiving node, those skilled in the art will appreciate
that a similar configuration of buffers could be used at the
sending node. In such an embodiment, isochronous data
would be stored in a linked list of buffers similar to that
described above and transmitted over the isochronous chan
nel as network conditions permit.

Thus a system and method for managing isochronous data
channels within a computer system has been described. In
the foregoing specification, the invention has been described
with reference to specific exemplary embodiments thereof.
It will, however, be appreciated by those skilled in the art
that various modifications and changes may be made thereto
without departing from the broader spirit and scope of the
invention as set forth in the appended claims. The specifi
cation and drawings are accordingly, to be regarded in an
illustrative rather than a restrictive sense.
What is claimed is:
1. A method comprising:
configuring an isochronous channel within a computer

system to include a linked list of buffers configured to
receive isochronous data transmitted within said com
puter system, each buffer comprising a data field for
storing the isochronous data and a condition field for
storing condition data to be evaluated:

adding a sender client configured to transmit said isoch
ronous data to said isochronous channel, said sender
client being a software driver routine associated with
a sender node of said computer system, and providing
said sender client with a channel identifier; and

adding a listener client to said isochronous channel, said
listener client being a software driver routine associ
ated with a listener node of said computer system, by
providing said listener client with said channel iden

tifier said listener client loading the isochronous data
into the linked list of buffers, and evaluating the con
dition data in the condition field to determine a next one
of the buffers from which to next access isochronous
data.

2. The method of claim 1 further comprising adding said
sender client as a further listener client.

3. The method of claim 1 wherein configuring said
isochronous channel comprises executing computer read
able instructions on a central processing unit of said com
puter system.

US RE39,763 E
11

4. The method of claim 1 wherein said isochronous
channel comprises a data path within said computer system.

5. The method of claim 1 further comprising transmitting
isochronous data from said sender client to said linked list of
buffers across said isochronous channel.

6. The method of claim 5 further comprising receiving
said isochronous data at said linked list of buffers.

7. The method of claim 6 wherein said receiving com
prises interrupting a central processing unit of said com
puter system and transferring said isochronous data from a
port coupled to said central processing unit to said linked list
of buffers.

8. A sequence of computer-readable instructions embod
ied on a computer-readable medium comprising instructions
arranged to cause a processor to configure an isochronous
channel within a computer system including said processor
to include a linked list of buffers configured to receive
isochronous data transmitted within said computer system,
each buffer comprising a data field for storing the isochro
nous data and a condition field for storing condition data to
be evaluated, and to cause said processor to add a sender
client to said isochronous channel and to cause said proces
Sor to add a listener client to said isochronous channel, and
said listener client loading the isochronous data into the
linked list of buffers and evaluating the condition data in the
condition field of each buffer to determine a next one of the
buffers from which to next access isochronous data.

9. A computer system, comprising:
an isochronous channel having a linked list of buffers

configured to receive isochronous data transmitted
within said computer system, each buffer comprising a
data field for storing the isochronous data and a
condition field for storing condition data to be evalu
ated

a sender client associated with said isochronous channel
and configured to transmit said isochronous data, said
sender client being a software driver routine associ
ated with a sender node of said computer system; and

a listener client associated with said isochronous channel
and configured to receive said isochronous data, said
listener client being a software driver routine associ
ated with a listener node of said computer system, and
said listener client loading the isochronous data into
the linked list of buffers and evaluating the condition
data in the condition field of each buffer to determine
a next buffer from which to next access isochronous
data, and

wherein said sender client has an associated channel
identifier that is provided to said listener client.

10. The computer system of claim 9 wherein said sender
client comprises a further listener client.

11. The computer system of claim 9 wherein said isoch
ronous channel comprises a data path within said computer
system.

12. The method of claim I, wherein each buffer further
comprises a first pointer field for storing a first pointer to
One of the buffers from which isochronous data is to be next
accessed in response to the condition data, and a second
pointerfield for storing a second pointer to One of the buffers
from which isochronous data is to be next accessed in
response to the condition data, and wherein said evaluating
comprises using either the first pointer or the second pointer

12
to next access isochronous data from One of the buffers in
response to the condition data.

13. A computer readable medium for handling of real time
data transmitted on an isochronous channel within a com

5 puter system, the computer readable medium comprising:
a program, executable on the computer system, for con

figuring a linked list of buffers, each buffer comprising
a data field for storing the isochronous data, a condi
tion field for storing condition data to be evaluated a

10 first pointerfield for storing a first pointer to one of the
buffers from which isochronous data is to be next
accessed in response to the condition data satisfying
the condition, and a second pointer field for storing a
second pointer to One of the buffers from which isoch

15 ronous data is to be next accessed in response to the
condition data not satisfying the condition, and

a program, executable on the computer system for receiv
ing the isochronous data from a source device, loading
the isochronous data into the linked list of buffers,
evaluating the condition data in the condition field and
responsively using either the first pointer or the second
pointer to next access isochronous data from One of the
buffers.

14. The computer readable medium of claim 13, wherein
each buffer further comprises: 25

a pointer to a channel handler for performing a procedure
On the buffer data prior to output of the data from the
computer system.

15. The computer readable medium of claim 14 wherein
the channel handler converts the isochronous data in the
buffer from a first color space to a second color space.

16. The computer readable medium of claim 14 wherein
the channel handler compresses the isochronous data in the
buffer.

17. The computer readable medium of claim 13 wherein
the computer system comprises.

30

35

a frame buffer for receiving from the program the isoch
ronous data read from the buffers in accordance with

40 the evaluation of the condition fields, for display of the
isochronous data on a display device.

18. A computer implemented method for handling of real
time data transmitted on an isochronous channel within a
computer system, the method comprising:

45 establishing a linked list of buffers for receiving isochro
nous data from a source device, each buffer comprising
a data field for storing the isochronous data, a condi
tion field, a first pointerfield for storing a first pointer
to one of the buffers from which isochronous data is to

50 be next accessed in response to the condition data, and
a second pointer field for storing a second pointer to
One of the buffers from which isochronous data is to be
next accessed in response to the condition data,

receiving the isochronous data from the source device,
55 loading the isochronous data into the linked list of buffers,

accessing the data in the linked list of buffers for output
to a client device, and

responsive to an evaluation of the condition data, using
60 the first pointer or second pointer to access a next

buffer.

