
DE69909839T320091008
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 699 09 839 T3 2009.10.08

(12) Übersetzung der geänderten europäischen Patentschrift

(97) EP 1 143 337 B2
(21) Deutsches Aktenzeichen: 699 09 839.4
(96) Europäisches Aktenzeichen: 00 128 346.4
(96) Europäischer Anmeldetag: 09.02.1999
(97) Erstveröffentlichung durch das EPA: 10.10.2001
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 23.07.2003
(97) Veröffentlichungstag

des geänderten Patents beim EPA: 17.06.2009
(47) Veröffentlichungstag im Patentblatt: 08.10.2009

(51) Int Cl.8: G06F 9/50 (2006.01)
G06F 17/30 (2006.01)

Patentschrift wurde im Einspruchsverfahren geändert

(54) Bezeichnung: Optimierte Lokalisierung von Netzwerkbetriebsmittel

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.

(30) Unionspriorität:
21506 10.02.1998 US

(73) Patentinhaber:
Level 3 CDN International, Inc., Broomfield, Col.,
US

(74) Vertreter:
Patent- und Rechtsanwälte Bardehle, Pagenberg,
Dost, Altenburg, Geissler, 81679 München

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE

(72) Erfinder:
Farber, David A., Oak View, US; Greer, Richard E.,
Red Lodge, US; Swart, Andrew D, Westlake
Village, US; Balter, James A., Santa Barbara, US
1/30

DE 699 09 839 T3 2009.10.08
Beschreibung

1. Gebiet der Erfindung

[0001] Diese Erfindung betrifft die Nachbildung von
Ressourcen in Computernetzwerken.

2. Hintergrund der Erfindung

[0002] Das Aufkommen globaler Computernetzwer-
ke wie des Internets hat vollkommen neue und unter-
schiedliche Wege der Informationsgewinnung mit
sich gebracht. Ein Benutzer des Internets kann nun
auf Informationen überall in der Welt zugreifen, unab-
hängig davon, wo sich der Benutzer oder die Informa-
tionen befinden. Der Benutzer erlangt Zugriff auf In-
formationen durch die bloße Kenntnis einer Netzwer-
kadresse für die Information und die Eingabe dieser
Adresse in ein geeignetes Anwendungsprogramm,
etwa einen Netzwerkbrowser.

[0003] Der rasche Popularitätsgewinn des Internets
hat dem gesamten Netzwerk eine hohe Verkehrslast
auferlegt. Lösungen für Nachfrageprobleme (z. B.
bessere Erreichbarkeit. und schnellere Kommunikati-
onsverbindungen) erhöhen die Auslastung der Ver-
sorgungssysteme nur noch. Internet-Websites (hier
als "Publisher" bezeichnet) müssen permanent zu-
nehmende Bandbreitenbedürfnisse bewältigen, dy-
namische Belastungswechsel unterbringen und die
Leistung für entfernte Browsing-Clients verbessern,
insbesondere ausländische. Die Einführung Con-
tent-reicher Anwendungen, wie live Audio und Video,
hat das Problem noch zusätzlich verschärft.

[0004] Zur Erfüllung grundlegender Bandbreiten-
wachstumsbedürfnisse abonnniert ein Web-Publis-
her in der Regel zusätzliche Bandbreite bei einem In-
ternet Service Provider (ISP), sei es in Form größerer
oder zusätzlicher ”Pipes” (Datenaustauschkanäle)
oder Kanäle vom ISP zum Publisher-Gebäude oder
in Form großer Bandbreitenzuweisungen in der ent-
fernten Hosting Server Collection eines ISPs. Diese
inkrementellen Steigerungen sind nicht immer so
feinabgestimmt, wie es den Bedürfnissen des Publis-
hers entspricht, und nicht selten hinkt die Webseiten-
kapazität des Publishers aufgrund von Vorlaufzeiten
hinter der Nachfrage her.

[0005] Zur Bewältigung ernsthafterer Bandbreiten-
wachstumsprobleme können die Publisher komple-
xere und kostspieligere Individuallösungen entwi-
ckeln. Die Lösung für das allgemeinste Bedürfnis, d.
h. höhere Kapazität, basiert im allgemeinen auf der
Nachbildung von Hardwareressourcen und Site-Con-
tent (Stichwort ”Mirroring” – Spiegelung) und der Du-
plikation von Bandbreitenressourcen. Diese Lösun-
gen sind jedoch schwierig und teuer in der Installation
und im Betrieb. Folglich können sich diese nur die
größten Publisher leisten, weil nur diese Publisher

die Kosten über die hohe Kundenzahl (und Website-
zugriffe) amortisieren können.

[0006] Mehrere Lösungen wurden entwickelt, um
Nachbildungen und Mirroring weiter zu entwickeln.
Im allgemeinen sind diese Technologien zur Verwen-
dung durch eine einzelne Website vorgesehen und
besitzen keine Funktionen, anhand deren ihre Kom-
ponenten von vielen Websites gleichzeitig verwendet
werden können.

[0007] Einige Lösungsmechanismen bieten Nach-
bildungssoftware, mit deren Hilfe gespiegelte Server
auf dem neuesten Stand gehalten werden können.
Diese Mechanismen erstellen im allgemeinen eine
vollständige Kopie eines Dateisystems. Eines dieser
Systeme funktioniert so, dass mehrere Kopien eines
Dateisystems auf transparente Weise synchronisiert
gehalten werden. Ein anderes System bietet Mecha-
nismen zum expliziten und regelmäßigen Kopieren
von Dateien, die sich geändert haben. Datenbank-
systeme sind besonders schwer nachzubilden, zu-
mal sie sich kontinuierlich ändern. Mehrere Mecha-
nismen ermöglichen die Nachbildung von Datenban-
ken, obwohl keine Standardmethoden dafür vorlie-
gen. Einige Unternehmen, die Proxy-Caches anbie-
ten, beschreiben diese als Nachbildungs-Tools. Je-
doch unterscheiden sich Proxy-Caches insofern als
sie eher im Namen von Clients als von Publishers be-
trieben werden.

[0008] Wenn eine Website einmal von mehreren
Servern bereitgestellt wird, liegt eine Herausforde-
rung darin sicherzustellen, dass die Last unter den
Servern angemessen verteilt oder ausgeglichen wird.
Mit der Domainnamenserver-basierten Round-Ro-
bin-Adressauflösung werden unterschiedliche Cli-
ents zu unterschiedlichen Spiegeln geleitet.

[0009] Eine weitere Lösung, der Auslastungsaus-
gleich, berücksichtigt die Auslastung der einzelnen
Server (auf unterschiedliche Arten gemessen) bei
der Auswahl, welcher Server eine bestimmte Anfor-
derung abhandeln soll.

[0010] Auslastungsausgleicher setzen eine Reihe
unterschiedlicher Techniken ein, um die Anforderung
auf den entsprechenden Server zu lenken. Die meis-
ten dieser Auslastungsausgleichstechniken verlan-
gen, dass jeder Server eine exakte Abbildung der pri-
mären Website ist. Auslastungsausgleicher berück-
sichtigen die "Netzwerkdistanz" zwischen dem Client
und den Spiegelserverkandidaten nicht.

[0011] Unter der Voraussetzung, dass Client-Proto-
kolle nicht leicht veränderbar sind, ergeben sich in
der Einführung nachgebildeter Ressourcen zwei
Hauptprobleme. Das erste besteht in der Frage, wie
welche Kopie der zu verwendenden Ressource aus-
gewählt werden soll. Das heißt, wenn eine Anforde-
2/30

DE 699 09 839 T3 2009.10.08
rung nach einer Ressource an einen einzelnen Ser-
ver ergeht, wie sollte die Wahl einer Nachbildung des
Servers (oder dieser Daten) erfolgen? Wir bezeich-
nen dieses Problem als das "Rendezvous-Problem”.
Es gibt unterschiedliche Möglichkeiten, Clients zu
Rendezvous mit entfernten Spiegelservern zu brin-
gen. Diese Technologien müssen, wie Auslastungs-
ausgleicher, eine Anforderung zu einem geeigneten
Server leiten, doch zum Unterschied von Auslas-
tungsausgleichern berücksichtigen sie die Netz-
werkleistung und -topologie bei ihrer Entscheidung.

[0012] Mehrere Unternehmen bieten Produkte zur
Verbesserung der Netzwerkleistung durch Priorisie-
rung und Filterung von Netzwerkverkehr.

[0013] Proxy-Caches bieten eine Möglichkeit für Cli-
ent-Aggregatoren, ihren Netzwerkressourcenver-
brauch durch Speichern von Kopien beliebter Res-
sourcen nahe bei den Endbenutzern zu reduzieren.
Ein Client-Aggregator ist ein Internet Service Provi-
der oder eine andere Organisation, die eine große
Anzahl von Clients, die Browser betreiben, ins Inter-
net bringt. Client-Aggregatoren können mit Hilfe von
Proxy-Caches die Bandbreiten reduzieren, die nötig
sind, um diese Browser mit Web-Content zu versor-
gen. Traditionelle Proxy-Caches werden jedoch eher
im Namen von Web-Clients als im Namen von
Web-Publishers betrieben.

[0014] In Proxy-Caches werden die beliebtesten
Ressourcen von allen Publishers gespeichert, was
bedeutet, dass sie sehr groß sein müssen, um eine
angemessene Cache-Effizienz zu erzielen. (Die Effi-
zienz eines Cache ist definiert als die Zahl der Anfor-
derungen an Ressourcen, die bereits im Cache abge-
legt sind, dividiert durch die Gesamtanzahl an Anfor-
derungen).

[0015] Proxy-Caches sind von Cache-Steuerungs-
hinweisen abhängig, die mit den Ressourcen bereit-
gestellt werden, um zu entscheiden, wann die Res-
sourcen ersetzt werden sollten. Diese Hinweise sind
prädiktiv und notwendigerweise oft inkorrekt, wes-
halb Proxy-Caches häufig überholte Daten bereitstel-
len. In vielen Fällen instruieren Proxy-Cache-Betrei-
ber ihren Proxy, Hinweise zu ignorieren, um den Ca-
che effizienter zu machen, auch wenn dies zur häufi-
geren Bereitstellung überholter Daten führt.

[0016] Proxy-Caches verstecken die Aktivitäten von
Cleints vor den Publishers. Nachdem eine Ressour-
ce im Cache abgelegt ist, kann der Publisher nicht
wissen, wie oft darauf aus dem Cache zugegriffen
wurde.

[0017] Im WO 97/29423A wird ein Auslastungsaus-
gleich über ein Netzwerk von Servern nach der Ser-
verauslastung offenbart.

Zusammenfassung der Erfindung

[0018] Gemäß der vorliegenden Erfindung wird ein
System geschaffen wie in Anspruch 1 beansprucht.

[0019] Nach einem zweiten Aspekt der vorliegen-
den Erfindung wird ein Verfahren geschaffen wie in
Anspruch 6 beansprucht.

[0020] Diese Erfindung bietet Servern in einem
Computernetzwerk die Möglichkeit, ihre Verarbeitung
von Anforderungen für ausgewählte Ressourcen
durch Bestimmung eines anderen Servers (eines
”Repeaters”) für die Verarbeitung dieser Anforderun-
gen abzuladen. Die Auswahl der Repeater kann dy-
namisch auf der Grundlage von Informationen über
mögliche Repeater vorgenommen werden. Wenn
eine angeforderte Ressource Verweise auf andere
Ressourcen enthält, können einige oder alle dieser
Verweise durch Verweise auf Repeater ersetzt wer-
den.

[0021] Zuerst stellt ein Client eine Anforderung nach
einer bestimmten Ressource von einem Ausgangs-
server, wobei die Anforderung einen Ressour-
cen-Identifikator für die bestimmte Ressource ent-
hält, wobei der Ressourcen-Identifikator manchmal
einen Hinweis auf den Ausgangsserver einschließt.
Anforderungen, die beim Ausgangsserver ankom-
men, enthalten nicht immer einen Hinweis auf den
Ausgangsserver; da sie zum Ausgangsserver gesen-
det werden, müssen sie ihn nicht benennen. Ein als
Reflektor bezeichneter Mechanismus, der am selben
Standort wie der Ausgangsserver lokalisiert ist, fängt
die Anforderung vom Client zum Ausgangsserver ab
und entscheidet, ob die Anforderung reflektiert oder
lokal behandelt werden soll. Wenn der Reflektor ent-
scheidet, die Anforderung lokal zu behandeln, leitet
er sie an den Ausgangsserver weiter, ansonsten
wählt er einen "besten" Repeater zur Verarbeitung
der Anforderung. Wenn die Anforderung reflektiert
wird, wird dem Client ein modifizierter Ressour-
cen-Identifikator zur Bestimmung des Repeaters be-
reitgestellt.

[0022] Der Client bekommt den modifizierten Res-
sourcen-Identifikator vom Reflektor und stellt eine
Anforderung nach der bestimmten Ressource vom
Repeater, der im modifizierten Ressourcen-Identifi-
kator bestimmt ist.

[0023] Wenn der Repeater die Anforderung des Cli-
ents bekommt, reagiert er durch Übermittlung der an-
geforderten Ressource an den Client. Wenn der Re-
peater eine lokale Kopie der Ressource besitzt, über-
mittelt er diese Kopie, ansonsten leitet er die Anforde-
rung an den Ausgangsserver weiter, um die Ressour-
ce zu erhalten, und speichert eine lokale Kopie der
Ressource, um spätere Anforderungen bereitstellen
zu können.
3/30

DE 699 09 839 T3 2009.10.08
[0024] Die Auswahl eines geeigneten Repeaters
zur Behandlung der Anforderung durch den Reflektor
kann auf unterschiedliche Arten erfolgen. Im bevor-
zugten Ausführungsbeispiel erfolgt sie, indem das
Netzwerk zuerst in ”Kostengruppen” vorpartitioniert
wird und dann bestimmt wird, in welche Kostengrup-
pe der Client fällt. Als nächstes wird aus einer Mehr-
zahl von Repeater im Netzwerk eine Gruppe von Re-
peater ausgewählt, wobei die Mitglieder der Gruppe
im Vergleich zu der Kostengruppe, zu der der Client
gehört, niedrige Kosten aufweisen. Zur Feststellung
der niedrigsten Kosten wird eine Tabelle eingerichtet
und regelmäßig aktualisiert, um die Kosten zwischen
jeder Gruppe und jedem Repeater zu definieren.
Dann wird – vorzugsweise per Zufall – ein Mitglied
der Gruppe als bester Repeater ausgewählt.

[0025] Wenn die bestimmte angeforderte Ressour-
ce selbst Identifikatoren anderer Ressourcen enthal-
ten kann, kann die Ressource überschrieben werden
(bevor sie dem Client bereitgestellt wird). Insbeson-
dere wird die Ressource überschrieben, um mindes-
tens einige der darin enthaltenen Ressourcen-Identi-
fikatoren durch modifizierte Ressourcen-Identifikato-
ren zu ersetzen, die einen Repeater anstatt des Aus-
gangsservers bezeichnen. Wenn der Client andere
Ressourcen gemäß Identifikatoren in der spezifisch
angeforderten Ressource anfordert, so wird der Cli-
ent diese Anforderungen als Konsequenz dieses
Überschreibvorgangs direkt an den ausgewählten
Repeater richten und den Reflektor und Ausgangs-
server völlig umgehen.

[0026] Das Überschreiben von Ressourcen muss
von Reflektoren ausgeführt werden. Es kann auch
von Repeater ausgeführt werden, wenn sich die Re-
peater ”zusammentun” (”peer”) und Kopien von Res-
sourcen machen, die überschriebene Ressour-
cen-Identifikatoren enthalten, die einen Repeater be-
zeichnen.

[0027] In einem bevorzugten Ausführungsbeispiel
ist das Netzwerk das Internet, und der Ressour-
cen-Identifikator ist ein Uniform Resource Locator
(URL) zur Bezeichnung von Ressourcen im Internet,
und der modifizierte Ressourcen-Identifikator ist eine
URL, die den Repeater bezeichnet und auf den Aus-
gangsserver hinweist (wie in Schritt B3 unten be-
schrieben), und der modifizierte Ressourcen-Identifi-
kator wird dem Client mit Hilfe einer REDI-
RECT-Nachricht (Umleitung) bereitgestellt. Es ist zu
beachten, dass nur wenn der Reflektor eine Anforde-
rung ”reflektiert” der modifizierte Ressourcen-Identifi-
kator unter Verwendung einer REDIRECT-Nachricht
bereitgestellt wird.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0028] Die oben aufgeführten und andere Ziele und
Vorteile der Erfindung werden offensichtlich aus der

folgenden detaillierten Beschreibung im Zusammen-
hang mit den begleitenden Zeichnungen, in denen
die Bezugszeichen sich durchgehend auf gleiche Tei-
le beziehen:

[0029] Fig. 1 stellt einen Abschnitt einer Netzwer-
kumgebung gemäß der vorliegenden Erfindung dar;
und

[0030] Fig. 2–Fig. 6 sind Fließdiagramme der Aus-
führung der vorliegenden Erfindung.

DETAILLIERTE BESCHREIBUNG DER DERZEIT
BEVORZUGTEN EXEMPLARISCHEN AUSFÜH-

RUNGSBEISPIELE

Überblick

[0031] In Fig. 1 ist ein Abschnitt einer Netzwerkum-
gebung 100 gemäß der vorliegenden Erfindung dar-
gestellt, wobei ein Mechanismus (Reflektor 108, wei-
ter unten detailliert beschrieben) an einem Server
(hier der Ausgangsserver 102) eine Anzahl teilweise
nachgebildeter Server oder Repeater 104a, 104b
und 104c verwaltet und nachverfolgt. Jeder Repeater
104a, 104b und 104c bildet einen Teil oder alle Infor-
mationen nach, die auf dem Ausgangsserver 102 be-
reitgestellt sind, sowie Informationen, die auf ande-
ren Ausgangsservern im Netzwerk 100 zur Verfü-
gung stehen. Der Reflektor 108 ist mit einem be-
stimmten Repeater verbunden, der als sein ”Kon-
takt”-Repeater bezeichnet wird (”Repeater B” 104b in
dem in Fig. 1 dargestellten System). Vorzugsweise
hält jeder Reflektor eine Verbindung mit einem einzel-
nen, als sein Kontakt bekannten Repeater, und jeder
Repeater hält Verbindung mit einem speziellen Re-
peater, der als sein Master-Repeater bekannt ist (z.
B. Repeater 104m für die Repeater 104a, 104b und
104c in Fig. 1).

[0032] Folglich kann ein Repeater als dedizierter
Proxy-Server betrachtet werden, der einen partiellen
oder spärlichen Spiegel des Ausgangsservers 102
verwaltet, indem er einen verteilten, kohärenten Ca-
che des Ausgangsservers implementiert. Ein Repea-
ter kann einen (partiellen) Spiegel von mehr als ei-
nem Ausgangsserver verwalten. In einigen Ausfüh-
rungsbeispielen ist das Netzwerk 100 das Internet,
und die Repeater spiegeln ausgewählte Ressourcen,
die von Ausgangsservern als Reaktion auf die HTTP
(Hypertext Transfer Protocol) und FTP (File Transfer
Protocol) Anforderungen der Clients bereitgestellt
werden.

[0033] Ein Client 106 schließt über das Netzwerk
100 an den Ausgangsserver 102 und möglicherweise
an einen oder mehrere Repeater 104a usw. an.

[0034] Der Ausgangsserver 102 ist ein Server, von
dem Ressourcen ausgehen. Allgemeiner gesagt, ist
4/30

DE 699 09 839 T3 2009.10.08
der Ausgangsserver 102 ein Prozess oder eine
Sammlung von Prozessen, die Ressourcen als Re-
aktion auf Anforderungen von einem Client 106 be-
reitstellen. Der Ausgangsserver 102 kann jeder han-
delsübliche Webserver sein. In einem bevorzugten
Ausführungsbeispiel ist der Ausgangsserver 102 ty-
pischerweise ein Webserver wie der Apache-Server
oder der EnterpriseTM Server der Netscape Commu-
nications Corporation.

[0035] Der Client 106 ist ein Prozessor, der im Na-
men eines Endbenutzers Ressourcen vom Aus-
gangsserver 102 anfordert. Der Client 106 ist typi-
scherweise ein Benutzer-Vermittlungsprogramm (z.
B. ein Webbrowser wie der NavigatorTM der Netscape
Communications Corporation) oder ein Proxy für ein
Benutzer-Vermittlungsprogramm. Andere Kompo-
nenten als der Reflektor 108 und die Repeater 104a,
104b usw. können unter Verwendung allgemein ver-
fügbarer Softwareprogramme implementiert werden.
Insbesondere funktioniert diese Erfindung mit jedem
HTTP-Client (z. B. einem Webbrowser), Proxy-Ca-
che und Webserver. Zudem könnte der Reflektor 108
voll in den Datenserver 112 (z. B. in einen Webser-
ver) integriert sein. Diese Komponenten könnten auf
Basis der Benutzung von Erweiterungsmechanismen
(wie etwa sogenannte Add-in-Module) lose integriert
werden oder durch Modifikation der Servicekompo-
nente zur spezifischen Unterstützung der Repeater
fest integriert werden.

[0036] Ressourcen, die vom Ausgangsserver 102
ausgehen, können statisch oder dynamisch sein.
Das heißt, die Ressourcen können fixiert sein, oder
sie können vom Ausgangsserver 102 spezifisch als
Reaktion auf eine Anforderung erstellt werden. Es ist
zu beachten, dass die Bezeichnungen ”statisch” und
”dynamisch” relativ sind, da eine statische Ressource
sich in regelmäßigen, wenn auch langen Intervallen
ändern kann.

[0037] Ressourcenanforderungen vom Client 106
an den Ausgangsserver 102 werden vom Reflektor
108 abgefangen, der sie für eine gegebene Anforde-
rung entweder an den Ausgangsserver 102 weiterlei-
tet oder bedingt auf einen Repeater 104a, 104b usw.
im Netzwerk 100 reflektiert. Das heißt, je nach der Art
der Anforderung durch den Client 106 an den Aus-
gangsserver 102 stellt der Reflektor 108 die Anforde-
rung lokal (am Ausgangsserver 102) bereit oder
wählt einen der Repeater (vorzugsweise den für die
Aufgabe besten Repeater) und reflektiert die Anfor-
derung auf den ausgewählten Repeater. Mit anderen
Worten, der Reflektor 108 bewirkt, dass vom Client
106 gestellte Anforderungen nach Ressourcen vom
Ausgangsserver 102 entweder lokal vom Ausgangs-
server 102 bereitgestellt oder transparent auf den
besten Repeater 104a, 104b usw. reflektiert werden.
Das Konzept eines besten Repeaters und die Art und
Weise, auf die der beste Repeater ausgewählt wird,

werden unten detailliert beschrieben.

[0038] Die Repeater 104a, 104b usw. sind Zwi-
schenprozessoren zur Bedienung von Clientanforde-
rungen, wobei die Leistung verbessert und die Kos-
ten auf die hier beschriebene Weise gesenkt werden.
In den Repeater 104a, 104b usw. finden Prozesse
oder Prozesssammlungen statt, die im Namen des
Ausgangsservers 102 Ressourcen an den Client 106
liefern. Ein Repeater kann einen Repeater-Cache
110 enthalten, der zur Vermeidung unnötiger Trans-
aktionen mit dem Ausgangsserver 102 benützt wird.

[0039] Der Reflektor 108 ist ein Mechanismus, vor-
zugsweise ein Softwareprogramm, der Anforderun-
gen abfängt, die normalerweise direkt zum Aus-
gangsserver 102 gesendet würden. In der Zeichnung
als getrennte Komponenten dargestellt, sind der Re-
flektor 108 und der Ausgangsserver 102 typischer-
weise zusammen auf einem bestimmten System an-
geordnet, etwa dem Datenserver 112. (Wie unten nä-
her erörtert, kann der Reflektor 108 sogar ein
”Plug-in”-Modul sein, das zu einem Teil des Aus-
gangsservers 102 wird).

[0040] In Fig. 1 ist nur ein Teil eines Netzwerks 100
gemäß dieser Erfindung dargestellt. Ein komplettes
Betriebsnetzwerk besteht aus einer beliebigen Zahl
von Clients, Repeatern, Reflektoren und Ausgangs-
servern. Die Reflektoren kommunizieren mit dem Re-
peater-Netzwerk, und die Repeater im Netzwerk
kommunizieren untereinander.

Uniform Resource Locators (URL)

[0041] Jeder Ort in einem Computernetzwerk be-
sitzt eine Adresse, die allgemein als Serie von Na-
men oder Zahlen spezifiziert werden kann. Um auf In-
formationen zuzugreifen, muss eine Adresse für die-
se Informationen bekannt sein. Beispielsweise ist im
World Wide Web (das ”Web”), einem Teilnetz des In-
ternets, das Verfahren zum Bereitstellen von Infor-
mationsadressorten in Form von Uniform Resource
Locators (URLs) standardisiert. URLs spezifizieren
den Ort von Ressourcen (Informationen, Dateien
usw.) im Netzwerk.

[0042] Das URL-Konzept wird um so nützlicher,
wenn Hypertextdokumente verwendet werden. Ein
Hypertextdokument ist eines, das im Dokument
selbst Verknüpfungen (Zeiger oder Verweise) auf das
Dokument selbst oder auf andere Dokumente ent-
hält. Beispielsweise kann in einem Onlinesystem für
juristische Recherchen jeder Fall als Hypertext-Do-
kument präsentiert werden. Wenn andere Fälle zitiert
werden, können Verknüpfungen zu diesen Fällen be-
reitgestellt werden. Wenn also eine Person einen Fall
studiert, kann sie den zitierten Verknüpfungen folgen,
um die entsprechenden Teile zitierter Fälle zu lesen.
5/30

DE 699 09 839 T3 2009.10.08
[0043] Im Fall des Internets im allgemeinen und des
World Wide Web im speziellen können Dokumente in
einer standardisierten Form erzeugt werden, die als
Hypertext Markup Language (HTML) bekannt ist. In
HTML besteht ein Dokument aus Daten (Text, Bilder,
Ton und ähnliches) einschließlich Verknüpfungen zu
anderen Abschnitten desselben Dokuments oder an-
derer Dokumente.

[0044] Die Verknüpfungen werden allgemein als
URLs bereitgestellt und können in relativer oder ab-
soluter Form vorliegen. Relative URLs lassen einfach
die Teile des URLs weg, die für das die Verknüpfung
enthaltende Dokument identisch sind, wie etwa die
Adresse des Dokuments (bei einer Verknüpfung zum
selben Dokument) usw. Im allgemeinen füllt ein
Browser-Programm fehlende Teile einer URL unter
Verwendung der entsprechenden Teile vom aktuellen
Dokument ein und erzeugt damit eine voll ausgebil-
dete URL einschließlich eines voll qualifizierten Do-
mainnamens usw.

[0045] Ein Hypertext-Dokument kann eine beliebige
Anzahl von Verknüpfungen zu anderen Dokumenten
enthalten, und jedes dieser anderen Dokumente
kann sich auf einem anderen Server in einem ande-
ren Teil der Welt befinden. Beispielsweise kann ein
Dokument Verknüpfungen zu Dokumenten in Russ-
land, Afrika, China und Australien besitzen. Ein Be-
nutzer, der dieses Dokument an einem bestimmten
Client betrachtet, kann jeder der Verknüpfungen auf
transparente Weise folgen (d. h. ohne zu wissen, wo
das Dokument, zu dem die Verknüpfung hergestellt
wird, sich eigentlich befindet). Demgemäß können
die Kosten (in Form von Zeit oder Geld oder Ressour-
cenzuteilung) des Verfolgen einer Verknüpfung im
Vergleich zu einer anderen erheblich sein.

[0046] URLs haben im allgemeinen folgende Form
(vgl. detaillierte Definition in T. Berners-Lee et al.,
Uniform Resource Locators (URL), Network Working
Group, Request for Comments: 1738, Category:
Standards Track, Dezember 1994, lokalisiert unter
http://ds.internic.net/rfc/rfc1738.txt):
schema://host[port]/url-pfad
wobei ”schema” ein Symbol sein kann, wie ”datei” (für
eine Datei im lokalen System), ”ftp” (für eine Datei auf
einem anonymen FTP-Dateiserver), ”http” (für eine
Datei in einer Datei in einem Webserver), und ”telnet”
(für einen Anschluss an einen Telnet-basierten
Dienst). Andere Schemata können ebenfalls benützt
werden, und von Zeit zu Zeit werden neue Schemata
hinzugefügt. Die Anzahl der Ports ist optional, wobei
das System eine Standard-Portzahl (anhängig vom
Schema) einsetzt, wenn keine vorgegeben wird. Das
”host”-Feld wird auf eine bestimmte Netzwerkadres-
se für einen bestimmten Computer abgebildet. Der
”url-pfad” ist abhängig von dem im ”host”-Feld ange-
gebenen Computer. Ein url-pfad ist typischerweise,
jedoch nicht notwendigerweise, der Pfadname eines

Datei in einem Webserver-Verzeichnis.

[0047] Folgendes ist beispielsweise eine URL, wel-
che eine Datei ”F” im Pfad ”A/B/C” auf einem Compu-
ter unter ”www.uspto.gov” identifiziert:
http.//www.uspto.gov/A/B/C/F

[0048] Um auf die von obigem URL spezifizierte Da-
tei ”F” (die Ressource) zuzugreifen, müsste ein auf
einem Benutzercomputer (d. h. einem Client-Compu-
ter) laufendes Programm (z. B. ein Browser) zuerst
den vom Hostnamen spezifizierten Computer (d. h.
einen Server-Computer) lokalisieren. D. h. das Pro-
gramm müsste den Server ”www.uspto.gov” lokali-
sieren. Dazu würde es auf einen Domainnamenser-
ver (DNS) zugreifen und dem DNS den Hostnamen
(”www.uspto.gov”) bereitstellen. Der DNS funktioniert
als eine Art zentralisiertes Verzeichnis zur Auflösung
von Adressen von Namen. Wenn der DNS feststellt,
dass es einen (entfernten Server-)Computer in Ent-
sprechung zum Namen www.uspto.gov gibt, stellt er
dem Programm eine aktuelle Computernetzwerkad-
resse für diesen Servercomputer bereit. Im Internet
wird diese als Internet Protocol (IP) Adresse bezeich-
net, und sie hat die Form ”123.345.456.678”. Das
Programm auf dem Computer des Benutzers (Client)
würde dann die aktuelle Adresse für den Zugriff auf
den entfernten (Server-)Computer nützen.

[0049] Das Programm öffnet eine Verbindung zum
HTTP-Server (Webserver) auf dem entfernten Com-
puter www.uspto.gov und benützt die Verbindung da-
zu, eine Anforderungsnachricht an den entfernten
Computer zu senden (unter Verwendung des
HTTP-Schemas). Die Nachricht ist typischerweise
eine HTTP GET Anforderung, die den URL-Pfad der
angeforderten Ressource ”A/B/C/F” enthält. Der
HTTP-Server empfangt die Anforderung und benützt
sie, um auf die vom url-Pfad ”A/B/C/F” spezifizierte
Ressource zuzugreifen. Der Server sendet die Res-
source über dieselbe Verbindung zurück.

[0050] So werden HTTP-Clientanforderungen nach
Webressourcen auf einem Ausgangsserver 102 kon-
ventionell wie folgt verarbeitet (vgl. Fig. 2) (Dies ist
eine Beschreibung des Verfahrens, wenn kein Re-
flektor 108 installiert ist):

A1. Ein Browser (z. B. Netscape Navigator) beim
Client empfangt einen Ressourcen-Identifikator
(eine URL) von einem Benutzer.
A2. Der Browser extrahiert den Host-(Ausgangs-
server)-Namen vom Ressourcen-Identifikator und
benützt einen Domainnamenserver (DNS) zum
Nachschlagen der Netzwerk-(IP)-Adresse des
entsprechenden Servers. Der Browser extrahiert
auch eine Portnummer, wenn eine solche vorhan-
den ist, oder verwendet eine vorgegebene Port-
nummer (die Standardportnummer für http-Anfor-
derungen ist 80).
A3. Der Browser bedient sich der Netzwerkadres-
6/30

DE 699 09 839 T3 2009.10.08
se und Portnummer des Servers, um eine Verbin-
dung zwischen dem Client 106 und dem Host-
oder Ausgangsserver 102 herzustellen.
A4. Der Client 106 sendet dann eine (GET) Anfor-
derung über die Verbindung, in der die angefor-
derte Ressource identifiziert wird.
A5. Der Ausgangsserver 102 empfängt die Anfor-
derung und
A6. lokalisiert die entsprechende Ressource oder
stellt sie zusammen.
A7. Der Ausgangsserver 102 sendet dann an den
Client 106 eine Antwort zurück, in der die angefor-
derte Ressource (oder eine Form von Fehleran-
zeige, wenn die Ressource nicht verfügbar ist)
enthalten ist. Die Antwort wird an den Client über
die selbe Verbindung gesendet wie die, auf dem
die Anforderung vom Client empfangen wurde.
A8. Der Client 106 empfängt die Antwort vom
Ausgangsserver 102.

[0051] Zu diesem Basismodell gibt es zahlreiche
Variationen. Z. B. kann der Ausgangsserver in einer
Variante, anstatt dem Client die Ressource bereitzu-
stellen, den Client informieren, die Ressource unter
einem anderen Namen erneut anzufordern. Dazu
sendet der Server 102 in A7 an den Client 106 eine
Antwort mit der Bezeichnung ”REDIRECT” zurück,
die eine neue URL enthält, welche den anderen Na-
men angibt. Der Client 106 wiederholt dann die ge-
samte Sequenz, normalerweise ohne irgendeine Be-
nutzerintervention, diesmal als Anforderung der mit
der neuen URL identifizierten Ressource.

Systembetrieb

[0052] In dieser Erfindung nimmt der Reflektor 108
effektiv den Platz eines gewöhnlichen Webservers
oder Ausgangsservers 102 ein. Der Reflektor 108 un-
ternimmt dies, indem er die IP-Adresse und Portnum-
mer des Ausgangsservers übernimmt. Wenn ein Cli-
ent versucht, eine Verbindung mit dem Ausgangsser-
ver 102 herzustellen, schließt er automatisch an den
Reflektor 108 an. Der Ausgangs-Webserver (oder
Ausgangsserver 102) muss dann Anforderungen an
einer unterschiedlichen Netzwerk-(IP)-Adresse an-
nehmen, oder an der selben IP-Adresse, aber auf ei-
ner unterschiedlichen Portnummer. Bei Anwendung
dieser Erfindung ist folglich der in A3–A7 genannte
Server in Wahrheit ein Reflektor 108.

[0053] Es ist zu beachten, dass es auch möglich ist,
die Netzwerkadresse des Ausgangsservers so zu be-
lassen, wie sie ist, und den Reflektor an einer unter-
schiedlichen Adresse oder auf einem anderen Port
zu betreiben. Auf diese Weise fängt der Reflektor kei-
ne an den Ausgangsserver gesendete Anforderun-
gen ab, sondern es können vielmehr nach wie vor di-
rekt an den Reflektor adressierte Anforderungen ver-
sendet werden. So kann das System getestet und
konfiguriert werden, ohne dass sein normaler Betrieb

unterbrochen wird.

[0054] Der Reflektor 108 unterstützt die Verarbei-
tung wie folgt (vgl. Fig. 3):
Nach Empfang einer Anforderung

B1. analysiert der Reflektor 108 die Anforderung,
um zu bestimmen, ob die Anforderung reflektiert
werden soll oder nicht. Dazu legt der Reflektor zu-
erst fest, ob der Absender (Client 106) ein Brow-
ser oder ein Repeater ist. Anforderungen, die von
Repeatern ausgegeben werden, müssen lokal
vom Ausgangsserver 102 bereitgestellt werden.
Diese Bestimmung kann vorgenommen werden,
indem die Netzwerk-(IP)-Adresse des Absenders
in einer Liste bekannter Repeater-Netz-
werk-(IP)-Adressen nachgeschlagen wird. Als Al-
ternative könnte diese Bestimmung auch vorge-
nommen werden, indem Informationen an eine
Anforderung geheftet werden, um anzuzeigen,
dass die Anforderung von einem spezifischen Re-
peater stammt, oder Repeater können Ressour-
cen von einem speziellen Port anfordern, der sich
von dem für gewöhnliche Clients verwendeten
Port unterscheidet.
B2. Stammt die Anforderung nicht von einem Re-
peater, schlägt der Reflektor die angeforderte
Ressource in einer Tabelle (genannt die ”Regel-
basis”) nach, um festzustellen, ob die angeforder-
te Ressource ”repetierbar” ist. Auf der Grundlage
dieser Feststellung reflektiert der Reflektor entwe-
der die Anforderung (B3, Beschreibung unten)
oder stellt die Anforderung lokal bereit (B4, Be-
schreibung unten).
Die Regelbasis ist eine Liste von Regelausdrü-
cken und der zugehörigen Attribute. (Regelaus-
drücke sind in der Computerwissenschaft gut be-
kannt. Eine kleine Bibliografie ihrer Verwendung
findet sich in Abo, et al., ”Compilers, Principles,
techniques and tools”, Addison-Wesley, 1986, pp.
157–158). Der Ressourcen-Identifikator (URL) für
eine gegebene Anforderung wird in der Regelba-
sis nachgeschlagen, indem sie sequenziell mit je-
dem Regelausdruck verglichen wird. Die erste
Übereinstimmung identifiziert die Attribute für die
Ressource, also repetierbar oder lokal. Findet
sich in der Regelbasis keine Übereinstimmung,
wird ein Standardattribut verwendet. Jeder Re-
flektor besitzt seine eigene Regelbasis, die vom
Reflektor-Operatir manuell konfiguriert wird.
B3. Um eine Anforderung zu reflektieren (für die
lokale Bereitstellung einer Anforderung vgl. B4),
wie in Fig. 4 dargestellt, bestimmt (B3-1) der Re-
flektor den besten Repeater, zu dem die Anforde-
rung reflektiert werden kann, wie weiter unten im
Detail beschrieben. Der Reflektor erzeugt (B3-2)
dann einen neuen Ressourcen-Identifikator (URL)
(unter Verwendung der angeforderten URL und
des besten Repeaters), der die selbe Ressource
am ausgewählten Repeater identifiziert.
Es ist erforderlich, dass der Reflektierungsschritt
7/30

DE 699 09 839 T3 2009.10.08
eine einzelne URL erzeugt, welche die URL der
ursprünglichen Ressource sowie die Identität des
ausgewählten Repeaters enthält. Zur Bereitstel-
lung dieser Informationen wird eine Sonderform
einer URL erzeugt. Dies erfolgt durch nachste-
hend beschriebene Erzeugung einer neuen URL:
D1. Unter Angabe eines Repeaternamens, Sche-
mas, Ausgangsservernamens und Pfads wird
eine neue URL erzeugt. Wenn das Schema ”http”
ist, benützt das bevorzugte Ausführungsbeispiel
folgendes Format:

http://<repeater>/<server>/<pfad>
Wenn die benützte Form eine andere als ”http” ist,
benützt das bevorzugte Ausführungsbeispiel fol-
gendes Format:

http://<repeater>/<server>@proxy=<sche-
ma>@/<pfad>
Der Reflektor kann an die Anforderung auch einen
MIME-Typ anhängen, um den Repeater zu veran-
lassen, diesen MIME-Typ mit dem Ergebnis be-
reitzustellen. Dies ist nützlich, weil viele Protokolle
(wie FTP) keine Möglichkeit bieten, an eine Res-
source einen MIME-Typ anzuhängen. Das Format
ist

http://<repeater>/<server>@proxy=<sche-
ma>:<typ>@/<pfad>
Diese URL wird nach Empfang durch den Repea-
ter interpretiert.
Der Reflektor sendet dann (B3-3) eine REDI-
RECT-Antwort, welche diese neue URL enthält,
zu dem anfordernden Client. Der HTTP REDI-
RECT-Befehl ermöglicht dem Reflektor, dem
Browser eine einzelne URL zu senden, um die
Anforderung erneut zu versuchen.
B4. Um eine Anforderung lokal bereitzustellen,
wird die Anforderung vom Reflektor an den Aus-
gangsserver 102 gesendet (”weitergeleitet”). In
diesem Modus fungiert der Reflektor als umge-
kehrter Proxy-Server. Der Ausgangsserver 102
verarbeitet die Anforderung auf die normale Wei-
se (A5–A7). Der Reflektor empfängt dann die Ant-
wort des Ausgangsservers auf die Anforderung,
die er daraufhin untersucht, ob die angeforderte
Ressource ein HTML-Dokument ist, d. h. ob die
angeforderte Ressource eine ist, die ihrerseits
Ressourcen-Identifikatoren enthält.
B5. Wenn die Ressource ein HTML-Dokument ist,
überschreibt der Reflektor das HTML-Dokument
durch Modifizierung der darin enthaltenen Res-
sourcen-Identifikatoren (URLs), wie unten be-
schrieben. Die Ressource, möglicherweise nach
Modifikation durch Überschreiben, wird dann in ei-
ner Antwort an den anfordernden Client 106 zu-
rückgesendet.
Wenn der anfordernde Client ein Repeater ist,
kann der Reflektor vorübergehend allfällige Ca-
che-Kontrollmodifikatoren, die der Ausgangsser-

ver an die Antwort geheftet hat, deaktivieren. Die-
se deaktivierten Cache-Kontrollmodifikatoren
werden später reaktiviert, wenn der Content vom
Repeater bereitgestellt wird. Dieser Mechanismus
ermöglicht es dem Ausgangsserver, das Ablegen
von Ressourcen in normalen Proxy-Caches zu
verhindern, ohne das Verhalten des Cache am
Repeater zu beeinträchtigen.
B6. Unabhängig davon, ob die Anforderung re-
flektiert oder lokal behandelt wird, werden Details
über die Transaktion, wie aktuelle Zeit, Adresse
des Anforderungsprogramms, angeforderte URL
und der Typ der generierten Antwort, vom Reflek-
tor in eine lokale Protokolldatei geschrieben.

[0055] Durch Verwendung einer Regelbasis (B2) ist
es möglich, Ressourcen selektiv zu reflektieren. Es
gibt eine Reihe von Gründen dafür, dass bestimmte
Ressourcen nicht effektiv repetiert werden können
(und deshalb nicht reflektiert werden sollten), zum
Beispiel:
– die Ressource wird für jede Anforderung eigens
zusammengestellt;
– die Ressource beruht auf einem sogenannten
Cookie (Browser senden keine Cookies zu Re-
peatern mit anderen Domainnamen);
– die Ressource ist eigentlich ein Programm (wie
etwa ein Java Applet), das auf dem Client läuft
und an einen Dienst angeschlossen werden
möchte (Java verlangt, dass der Dienst auf der
selben Maschine läuft, die auch das Applet bereit-
stellt).

[0056] Außerdem kann der Reflektor 108 so konfi-
guriert werden, dass Anforderungen von bestimmten
Netzwerkadressen (z. B. Anforderungen von Clients
auf dem selben Local Area Network wie der Reflektor
selbst) nie reflektiert werden. Auch kann der Reflek-
tor sich entscheiden, Anforderungen nicht zu reflek-
tieren, weil der Reflektor seine gebundene aggregier-
te Informationsrate überschreitet, wie unten be-
schrieben.

[0057] Eine Anforderung, die reflektiert wird, wird
automatisch am Repeater gespiegelt, wenn der Re-
peater die Anforderung empfängt und verarbeitet.

[0058] Die Kombination des hier beschriebenen Re-
flexionsverfahrens und des unten beschriebenen Ca-
ching-Verfahrens schafft auf wirksame Weise ein
System, in dem repetierbare Ressourcen zum aus-
gewählten Reflektor migriert und an diesem gespie-
gelt werden, während nicht-repetierbare Ressourcen
nicht gespiegelt werden.

Alternativmethode

[0059] Die Platzierung des Ausgangsservernamens
in der reflektierten URL ist im allgemeinen eine gute
Strategie, sie kann allerdings aus ästhetischen oder
8/30

DE 699 09 839 T3 2009.10.08
(z. B. im Fall von Cookies) bestimmten technischen
Gründen als unerwünscht betrachtet werden.

[0060] Es ist möglich, die Notwendigkeit zu vermei-
den, sowohl den Repeaternamen wie auch den Ser-
vernamen in der URL zu platzieren. Stattdessen kann
eine Namens-”Familie” für einen gegebenen Aus-
gangsserver geschaffen werden, wobei jeder Name
einen von diesem Server benützten Repeater identi-
fiziert.

[0061] Wenn beispielsweise www.beispiel.com der
Ausgangsserver ist, könnten Namen für drei Repea-
ter erzeugt werden:
wr1.beispiel.com
wr2.beispiel.com
wr3.beispiel.com

[0062] Der Name ”wr1.beispiel.com” wäre ein Alias-
name für Repeater 1, der auch unter anderen Namen
bekannt sein könnte, wie ”wr1.anderesBeispiel.com”
und ”wr1.beispiel.edu”.

[0063] Wenn der Repeater bestimmen kann, unter
welchem Namen er adressiert wurde, kann er diese
Informationen (zusammen mit einer Tabelle, in der
Repeater-Aliasnamen mit Ausgangsservernamen
assoziiert werden) dazu verwenden, zu bestimmen,
welcher Ausgangsserver adressiert wird. Zum Bei-
spiel, wenn Repeater 1 als wr1.beispiel.com adres-
siert wird, ist der Ausgangsserver ”www.bei-
spiel.com”; wird er als ”wr1.anderesBeispiel.com”
adressiert, ist der Ausgangsserver ”www.anderes-
Beispiel.com.”

[0064] Der Repeater kann zwei Mechanismen be-
nützen, um festzustellen, von welchem Aliasnamen
er adressiert wird:

1. Jeder Aliasname kann mit einer anderen
IP-Adresse assoziiert werden.
Leider lässt sich diese Lösung nicht gut ausbau-
en, da IP-Adressen zur Zeit spärlich sind und die
Anzahl der benötigten IP-Adressen mit dem Pro-
dukt von Ausgangsservern und Repeater wächst.
2. Der Repeater kann versuchen, den verwende-
ten Aliasnamen zu bestimmen, indem er den
”Host”-Tag im HTTP-Header der Anforderung un-
tersucht. Leider hängen einige noch in Gebrauch
befindliche alte Browser den ”Host”-Tag nicht an
eine Anforderung an. Reflektoren müssten solche
Browser identifizieren (die Identität des Browsers
ist ein Teil jeder Anforderung) und diese Form der
Reflexion vermeiden.

Wie ein Repeater eine Anforderung behandelt

[0065] Wenn ein Browser eine REDIRECT-Antwort
erhält (wie in B3 produziert), gibt er unter Verwen-
dung des neuen Ressourcen-Identifikators (URL)
(A1–A5) eine erneute Anforderung nach der Res-

source aus. Da sich der neue Identifikator auf einen
Repeater anstatt auf den Ausgangsserver bezieht,
sendet der Browser jetzt eine Anforderung nach der
Ressource an den Repeater der eine Anforderung
wie folgt bearbeitet (vgl. Fig. 5):

C1. Zuerst analysiert der Repeater die Anforde-
rung, um die Netzwerkadresse des anfordernden
Client und den Pfad der angeforderten Ressource
festzustellen. Im Pfad enthalten ist ein Ausgangs-
servername (wie oben mit Bezug auf B3 beschrie-
ben).
C2. Der Repeater benützt eine interne Tabelle, um
zu prüfen, ob der Ausgangsserver einem bekann-
ten ”Subscriber” gehört. Ein Subscriber ist ein
Rechtssubjekt (z. B. ein Unternehmen), das Res-
sourcen (z. B. Dateien) über einen oder mehrere
Ausgangsserver veröffentlicht. Sobald das
Rechtssubjekt sich als Subscriber anmeldet, ist es
zur Nutzung des Repeater-Netzwerks berechtigt.
Die unten beschriebenen Subscriber-Tabellen
enthalten die Informationen, die verwendet wer-
den, Reflektoren mit Subscribern zu verknüpfen.
Wenn die Anforderung nicht nach einer Ressour-
ce von einem bekannten Subscriber ist, wird sie
abgelehnt. Um eine Anforderung abzulehnen,
sendet der Repeater eine Antwort des Inhalts zu-
rück, die angeforderte Ressource existiere nicht.
C3. Der Repeater stellt dann fest, ob die angefor-
derte Ressource lokal im Cache abgelegt ist.
Wenn die angeforderte Ressource im Cache des
Repeaters ist, wird sie abgerufen. Wenn sich im
Cache des Repeaters allerdings keine gültige Ko-
pie der angeforderten Ressource befindet, modifi-
ziert der Repeater die ankommende URL und er-
zeugt eine Anforderung, die er direkt an den Aus-
gangsreflektor ausgibt, der sie verarbeitet (wie in
B1–B6). Da diese Anforderung an den Ausgangs-
reflektor von einem Repeater kommt, gibt der Re-
flektor immer die angeforderte Ressource aus an-
statt die Anforderung zu reflektieren. (Man ver-
gesse nicht, dass Reflektoren Anforderungen von
Repeatern immer lokal behandeln). Wenn der Re-
peater die Ressource vom Ausgangsserver erhal-
ten hat, legt der Repeater die Ressource lokal in
den Cache.
Wenn eine Ressource nicht lokal im Cache ist,
kann der Cache seine ”Peer-Caches” abfragen,
um festzustellen, ob einer von diesen die Res-
source enthält, bevor oder während er die Res-
source vom Reflektor/Ausgangsserver abfragt.
Wenn ein Peer-Cache innerhalb einer begrenzten
Zeitspanne (vorzugsweise in einem kleinen Se-
kundenbruchteil) positiv antwortet, wird die Res-
source aus dem Peer-Cache abgerufen.
C4. Der Repeater konstruiert dann eine Antwort
einschließlich der angeforderten Ressource (die
aus dem Cache oder dem Ausgangsserver abge-
rufen wurde) und sendet diese Antwort an den an-
fordernden Client.
C5. Details über die Transaktion, wie der assozi-
9/30

DE 699 09 839 T3 2009.10.08
ierte Reflektor, die aktuelle Zeit, die Adresse des
Anforderers, die angeforderte URL und der Typ
der generierten Antwort werden in eine lokale Pro-
tokolldatei beim Repeater geschrieben.

[0066] Es ist zu beachten, dass sich die untere Zeile
der Fig. 2 auf einen Ausgangsserver oder Reflektor
oder Repeater bezieht, je nach dem, was die URL in
Schritt A1 identifiziert.

Auswahl des besten Repeaters

[0067] Wenn der Reflektor 108 festlegt, dass er die
Anforderung reflektieren wird, muss er den besten
Repeater zur Behandlung dieser Anforderung aus-
wählen (vgl. Schritt B3-1). Diese Auswahl wird durch
den hier beschriebenen Best Repeater Selector
(BRS) Mechanismus getroffen.

[0068] Das Ziel des BRS ist die rasche und heuristi-
sche Auswahl eines geeigneten Repeaters für einen
gegebenen Client unter Vorgabe nur der Netzwerka-
dresse des Clients. Ein geeigneter Repeater ist einer,
der nicht zu überlastet ist und gerechnet in einem be-
stimmten Maßstab für die Netzwerkdistanz nicht zu
weit von Client entfernt ist. Der hier benützte Mecha-
nismus beruht auf spezifischen, kompakten, vorbe-
rechneten Daten für eine schnelle Entscheidung. An-
dere, dynamische Lösungen können ebenfalls ver-
wendet werden, um einen geeigneten Repeater aus-
zuwählen.

[0069] Der BRS beruht auf drei vorberechneten Ta-
bellen, namentlich der Gruppenreduzierungstabelle,
der Verknüpfungskostentabelle und der Auslastung-
stabelle. Diese drei (unten beschriebenen) Tabellen
werden offline berechnet und auf jeden Reflektor mit-
tels dessen Kontakts im Repeaternetzwerk herunter-
geladen. Die Gruppenreduzierungstabelle platziert
jede Netzwerkadresse in einer Gruppe, mit dem Ziel,
dass die Adressen in einer Gruppe die relativen Kos-
ten teilen, so dass sie unter variierenden Umständen
den selben besten Repeater haben würden (d. h. der
BRS ist über die Mitglieder der Gruppe betrachtet in-
variabel).

[0070] Die Verknüpfungskostentabelle ist eine zwei-
dimensionale Matrix, in der die aktuellen Kosten zwi-
schen jedem Repeater und jeder Gruppe aufgeführt
sind. Anfänglich werden die Verknüpfungskosten
zwischen einem Repeater und einer Gruppe definiert
als ”normalisierte Verknüpfungskosten” zwischen
dem Repeater und der Gruppe definiert, wie weiter
unten definiert. Im Laufe der Zeit wird die Tabelle mit
Messungen aktualisiert, welche die relativen Kosten
der Übertragung einer Datei zwischen dem Repeater
und einem Mitglied der Gruppe präziser wiederge-
ben. Das Format der Verknüpfungskostentabelle ist
<GruppenID><GruppenID><Verknüpfungskosten>,
wobei die Gruppen-IDs als AS-Nummern angegeben

werden.

[0071] Die Auslastungstabelle ist eine eindimensio-
nale Tabelle, welche die aktuelle Auslastung an je-
dem Repeater identifiziert. Da Repeater unterschied-
liche Kapazitäten haben können, ist die Auslastung
ein Wert, der die Fähigkeit eines gegebenen Repea-
ters darstellt, zusätzliche Arbeit anzunehmen. Jeder
Repeater sendet seine aktuelle Auslastung in regel-
mäßigen Intervallen zu einem zentralen Master-Re-
peater, vorzugsweise mindestens einmal pro Minute.
Der Master-Repeater sendet die Auslastungstabelle
über den Kontakt-Repeater an jeden Reflektor im
Netzwerk.

[0072] Ein Reflektor enthält Einträge in der Auslas-
tungstabelle nur für solche Repeater, deren Nutzung
ihm zugeteilt ist. Die Zuteilung von Repeatern zu Re-
flektoren erfolgt zentral durch einen Repeater-Netz-
werk-Operator am Master-Repeater. Diese Zuteilung
ermöglicht die Modifizierung des Serviceniveaus ei-
nes bestimmten Reflektors. Beispielsweise kann ein
sehr aktiver Reflektor viele Repeater verwenden, wo-
hingegen ein relativ inaktiver Reflektor nur wenige
Repeater benützen kann.

[0073] Die Tabellen können auch so konfiguriert
werden, dass den Subscribern auf andere Weise se-
lektive Repeater-Dienste bereitgestellt werden, z. B.
für ihre Clients in spezifischen geografischen Regio-
nen, wie etwa in Europa oder Asien.

Messen der Auslastung

[0074] In den gegenwärtig bevorzugten Ausfüh-
rungsbeispielen wird die Repeaterauslastung in zwei
Dimensionen gemessen, nämlich:

1. Vom Repeater empfangene Anforderungen pro
Zeitintervall (RRPT), und
2. Vom Repeater gesendete Bytes pro Zeitinter-
vall (BSPT).

[0075] Für jede dieser Dimensionen wird eine Maxi-
malkapazität festgelegt. Die Maximalkapazität zeigt
den Punkt an, an dem der Repeater als voll ausgelas-
tet betrachtet wird. Eine höhere RRPT-Kapazität ver-
weist allgemein auf einen schnelleren Prozessor, wo-
hingegen eine höhere BSPT-Kapazität allgemein auf
eine breitere Netzwerkleitung verweist. Diese Art der
Auslastungsmessung geht davon aus, dass ein be-
stimmter Server der Aufgabe des Repetierens zuge-
wiesen ist.

[0076] Jeder Repeater berechnet regelmäßig sei-
nen aktuellen RRPT und BSPT durch Akkumulieren
der Anzahl der über ein kurzes Zeitintervall empfan-
genen Anforderungen und gesendeten Bytes. Diese
Messungen werden dazu verwendet, die Auslastung
des Repeaters in jeder dieser Dimensionen zu be-
stimmen. Wenn die Auslastung eines Repeaters sei-
10/30

DE 699 09 839 T3 2009.10.08
ne konfigurierte Kapazität überschreitet, wird an den
Netzwerkadministrator des Repeaters eine Warnmel-
dung gesendet. Die beiden aktuellen Auslastungs-
komponenten werden zu einem einzigen Wert zu-
sammengefasst, der für die Gesamtauslastung steht.
Gleichermaßen werden die beiden Maximalkapazi-
tätskomponenten zu einem einzigen Wert zusam-
mengefasst, der für die maximale Gesamtkapazität
steht. Die Komponenten werden wie folgt zusam-
mengefasst:

Aktuelle Auslastung = B × aktueller RRPT + (1 – B) ×
aktueller BSPT

Maximalauslastung = B × max RRPT + (1 – B) × max
BSPT

[0077] Der Faktor B, ein Wert zwischen 0 und 1, er-
möglicht die Anpassung der relativen Gewichte von
RRPT und BSPT, wodurch die Berücksichtigung von
Verarbeitungsleistung oder Bandbreite begünstigt
wird.

[0078] Die Werte der aktuellen Gesamtauslastung
und der maximalen Gesamtkapazität werden perio-
disch von jedem Repeater zum Master-Repeater ge-
sendet, wo sie in der Auslastungstabelle addiert wer-
den, einer Tabelle, welche die Gesamtauslastung al-
ler Repeater zusammenfasst. Änderungen in der
Auslastungstabelle werden automatisch an jeden
Reflektor verteilt.

[0079] Im bevorzugten Ausführungsbeispiel wird
zwar ein zweidimensionales Maß für die Repea-
ter-Auslastung verwendet, es kann aber auch jedes
andere Auslastungsmaß verwendet werden.

Kombination von Verknüpfungskosten und Auslas-
tung

[0080] Der BRS berechnet die Kosten der Bedie-
nung eines bestimmten Client von jedem in Frage
kommenden Repeater aus. Die Berechnung der Kos-
ten erfolgt durch Kombination der verfügbaren Kapa-
zität des Repeaterkandidaten mit den Kosten der
Verknüpfung zwischen diesem Repeater und dem
Client. Die Verknüpfungskosten werden durch einfa-
ches Nachschlagen in der Verknüpfungskostentabel-
le errechnet.

[0081] Die Kosten werden anhand folgender Formel
bestimmt:

Schwelle = K·max-Auslastung

Kapazität = max(max Auslastung – aktuelle-Auslas-
tung, e)

Kapazität = min(Kapazität, Schwelle)

Kosten = Verknüpfungskosten·Schwelle/Kapazität

[0082] In dieser Formel ist e eine sehr kleine Zahl
(Epsilon) und K ein Abstimmungsfaktor, der anfäng-
lich auf 0,5 gestellt ist. Diese Formal verursacht den
Anstieg der Kosten für einen bestimmten Repeater
mit einer durch K definierten Rate, wenn seine Kapa-
zität unter eine konfigurierbare Schwelle abfällt.

[0083] Anhand der Kosten jedes Repeaterkandida-
ten wählt der BRS alle Repeater in einem Deltafaktor
des besten Wertes. Aus dieser Gruppe wird das Er-
gebnis per Zufall ausgewählt.

[0084] Der Deltafaktor hindert den BRS daran, bei
ähnlichen Punktwerten wiederholt einen einzelnen
Repeater auszuwählen. Er ist allgemein erforderlich,
da die verfügbaren Informationen über Auslastungen
und Verknüpfungskosten im Laufe der Zeit an Ge-
nauigkeit einbüßen. Dieser Faktor ist abstimmbar.

Best Repeater Selector (BRS)

[0085] Der BRS funktioniert wie folgt (vgl. Fig. 6):
Gegeben sind eine Clientnetzwerkadresse und die
drei oben beschriebenen Tabellen:

E1. Anhand der Gruppenreduzierungstabelle fest-
stellen, in welcher Gruppe sich der Client befindet.
E2. Für jeden Repeater in der Verknüpfungskos-
tentabelle und Auslastungstabelle die kombinier-
ten Kosten dieses Repeaters wie folgt feststellen:
E2a. Maximal- und aktuelle Auslastung auf dem
Repeater bestimmen (Verwendung der Auslas-
tungstabelle);
E2b. Die Verknüpfungskosten zwischen dem Re-
peater und der Gruppe des Client bestimmen
(Verwendung der Verknüpfungskostentabelle);
E2c. Kombinierte Kosten wie oben beschrieben
bestimmen.
E3. Eine kleine Gruppe von Repeater mit den
niedrigsten Kosten auswählen.
E4. Ein zufälliges Mitglied der Gruppe auswählen.

[0086] Vorzugsweise werden die Ergebnisse des
BRS-Verfahrens in einem lokalen Cache am Reflek-
tor 108 verwaltet. Wenn deshalb der beste Repeater
kürzlich für einen bestimmten Client (d. h. für eine be-
stimmte Netzwerkadresse) bestimmt worden ist,
kann der beste Repeater rasch wiederverwendet
werden, ohne erneut bestimmt werden zu müssen.
Da die oben beschriebene Berechnung auf stati-
schen, vorberechneten Tabellen beruht, besteht kein
Bedürfnis, den besten Repeater erneut zu bestim-
men, sofern sich die Tabellen nicht geändert haben.

Bestimmung der Gruppenreduzierungs- und Ver-
knüpfungskostentabellen.

[0087] Die im BRS-Verfahren benützte Gruppenre-
duzierungstabelle und Verknüpfungskostentabelle
11/30

DE 699 09 839 T3 2009.10.08
werden in einem unabhängigen Verfahren erzeugt
und regelmäßig aktualisiert, das hier als NetMap be-
zeichnet wird. Das NetMap-Verfahren wird je nach
Bedarf mittels Absolvierung unterschiedlicher (weiter
unten beschriebener) Phasen ausgeführt.

[0088] Die hier verwendete Bezeichnung Gruppe
bezieht sich auf eine IP-”Adressengruppe”.

[0089] Der Ausdruck Repeater-Gruppe bezieht sich
auf eine Gruppe, welche die IP-Adresse eines Re-
peaters enthält.

[0090] Der Ausdruck Verknüpfungskosten bezieht
sich auf statisch bestimmte Kosten zur Übertragung
von Daten zwischen zwei Gruppen. In einer gegen-
wärtig bevorzugten Implementierung ist dies das Mi-
nimum der Summen der Kosten der Verknüpfungen
entlang jedem Pfad zwischen den beiden. Die hier
hauptsächlich interessierenden Verknüpfungskosten
sind Verknüpfungskosten zwischen einer Gruppe
und einer Repeatergruppe.

[0091] Der Ausdruck relative Verknüpfungskosten
bezieht sich auf die Verknüpfungskosten in Relation
zu anderen Verknüpfungskosten für die selbe Grup-
pe, die berechnet werden durch Subtrahieren der mi-
nimalen Verknüpfungskosten von einer Gruppe zu ir-
gendeiner Repeatergruppe von jeder ihrer Verknüp-
fungskosten zu einer Repeatergruppe.

[0092] Der Ausdruck Kostenset bezieht sich auf ein
Set von Gruppen, die bezüglich der Best Repeater
Selection äquivalent sind. Das heißt, dass angesichts
der verfügbaren Informationen für jede der selbe Re-
peater gewählt würde.

[0093] Das NetMap-Verfahren verarbeitet zuerst
Eingabedateien, um eine interne Datenbank mit der
Bezeichnung ”Gruppenregister” zu erstellen. Diese
Eingabedateien beschreiben Gruppen, die IP-Adres-
sen innerhalb von Gruppen und Verknüpfungen zwi-
schen den Gruppen; sie kommen aus unterschiedli-
chen Quellen, darunter öffentlich verfügbaren Inter-
net Routing Registry (IRR) Datenbanken, BGP Rou-
tertabellen und Testservices, die an unterschiedli-
chen Punkten im Internet lokalisiert sind und öffent-
lich verfügbare Tools benützen (wie etwa ”Tracerou-
te”), um Datenpfade zu sampeln. Nach Abschluss
dieser Verarbeitung enthält das Gruppenregister we-
sentliche Informationen für die weitere Verarbeitung,
namentlich (1) die Identität jeder Gruppe, (2) die Se-
rie von IP-Adressen in einer bestimmten Gruppe, (3)
die Anwesenheit von Verknüpfungen zwischen Grup-
pen mit Hinweis auf Pfade, über die Informationen
gehen können, und (4) die Kosten der Versendung
von Daten über eine bestimmte Verknüpfung.

[0094] Die folgenden Prozesse werden dann mit der
Gruppenregisterdatei durchgeführt.

Berechnung der Repeatergruppenverknüpfungskos-
ten

[0095] Das NetMap-Verfahren berechnet ”Verknüp-
fungskosten” zur Übertragung von Daten zwischen
jeder Repeatergruppe und jeder Gruppe im Gruppen-
register. Diese gesamten Verknüpfungskosten wer-
den definiert als die Minimalkosten eines Pfades zwi-
schen den beiden Gruppen, wobei die Kosten eines
Pfads gleich der Summe der Kosten der einzelnen
Verknüpfungen im Pfad sind. Der weiter unten prä-
sentierte Verknüpfungskostenalgorithmus ist im we-
sentlichen der selbe wie der Algorithmus #562 aus
dem ACM-Journal Transactions an Mathematical
Software: ”Shortest Path From a Specific Node to All
Other Nodes in a Network” by U. Pape, ACM TOMS
6 (1980), pp. 450–455, http://www.net-
lib.org/toms/562.

[0096] In dieser Verarbeitung bezieht sich der Aus-
druck ”Repeatergruppe” auf eine Gruppe, die die
IP-Adresse eines Repeaters enthält. Eine Gruppe ist
eine Nachbarin einer anderen Gruppe, wenn das
Gruppenregister anzeigt, dass eine Verknüpfung zwi-
schen den beiden Gruppen besteht.

Für jede Ziel-Repeatergruppe T:

• Die Verknüpfungskosten zwischen T und ihr
selbst auf Null initialisieren.
• Die Verknüpfungskosten zwischen T und jeder
anderen Gruppe auf Unendlich initialisieren.
• Eine Liste L erstellen, die Gruppen enthält, wel-
che sich in Äquidistanz von der Ziel-Repeater-
gruppe T befinden.
• Die Liste L initialisieren, dass sie nur die Ziel-Re-
peatergruppe T selbst enthält.
• Bei nicht leerer Liste L:
– Eine leere Liste L' von Nachbarn von Mitgliedern
der Liste L erstellen.
– Für jede Gruppe G in der Liste L:
– Für jede Gruppe N, die eine Nachbarin von G ist:
• Sollen sich die Kosten auf die Summe der Ver-
knüpfungskosten zwischen T und G und der Ver-
knüpfungskosten zwischen G und N beziehen.
Die Kosten zwischen T und G wurden im vorher-
gehenden Algorithmusdurchgang bestimmt, die
Verknüpfungskosten zwischen G und N kommen
aus dem Gruppenregister.
• Wenn die Kosten weniger sind als die Verknüp-
fungskosten zwischen T und N:
– Die Verknüpfungskosten zwischen T und N auf
Kosten einstellen.
– N zu L' hinzufügen, wenn es nicht bereits dort
ist.
• L auf L' setzen.

Kostensets berechnen.

[0097] Ein Kostenset ist eine Serie von Gruppen,
12/30

DE 699 09 839 T3 2009.10.08
die bezüglich Best Repeater Selection äquivalent
sind. Das heißt, angesichts der verfügbaren Informa-
tionen würde der selbe Repeater für jede davon ge-
wählt.

[0098] Das ”Kostenprofil” einer Gruppe G ist hier de-
finiert als das Set von Kosten zwischen G und jedem
Repeater. Von zwei Kostenprofilen wird behauptet,
sie seien äquivalent, wenn die Werte in einem Profil
sich von den entsprechenden Werten im anderen
Profil um einen konstanten Betrag unterscheiden.

[0099] Nachdem eine Client-Gruppe bekannt ist,
greift der Algorithmus der Best Repeater Selection für
Informationen über die Gruppe auf das Kostenprofil
zurück. Wenn zwei Kostenprofile äquivalent sind,
würde der BRS-Algorithmus bei beiden Profilen den
selben Repeater wählen.

[0100] Ein Kostenset ist dann ein Set von Gruppen,
die äquivalente Kostenprofile besitzen.

[0101] Die Effektivität dieser Methode lässt sich bei-
spielsweise in dem Fall ersehen, bei dem alle Pfade
zu einem Repeater von einer Gruppe A durch eine
andere Gruppe B führen. Die beiden Gruppen haben
äquivalente Kostenprofile (und sind deshalb im sel-
ben Kostenset), da welcher Repeater auch immer am
besten für die Gruppe A ist, auch am besten für die
Gruppe B sein wird, unabhängig davon, welcher Pfad
zwischen den zwei Gruppen eingeschlagen wird.

[0102] Durch die Normalisierung von Kostenprofilen
können äquivalente Kostenprofile identisch gemacht
werden. Ein normalisiertes Kostenprofil ist ein Kos-
tenprofil, bei dem die Minimalkosten den Wert Null
haben. Ein normalisiertes Kostenprofil wird berech-
net durch das Auffinden der Minimalkosten im Profil
und Subtraktion dieses Werts von jedem Kosten-
punkt im Profil.

[0103] Die Kostensets werden dann unter Anwen-
dung des folgenden Algorithmus berechnet:
• Für jede Gruppe G:
– das normalisierte Kostenprofil für G berechnen;
– ein Kostenset mit dem selben normalisierten
Kostenprofil suchen;
– Wenn ein solches Set gefunden ist, G zum be-
stehenden Kostenset addieren;
– ansonsten ein neues Kostenset mit dem berech-
neten normalisierten Kostenprofil erzeugen, das
nur G enthält.

[0104] Der Algorithmus zum Suchen von Kosten-
sets verwendet eine Hash-Tabelle zur Reduzierung
der Zeit, die notwendig ist, um zu bestimmen, ob das
gewünschte Kostenset bereits existiert. Die Hash-Ta-
belle benützt einen aus dem Kostenprofil von G be-
rechneten Hash-Wert.

[0105] Jedes Kostenset wird dann mit einer eindeu-
tigen Kostenset-Indexnummer nummeriert. Die Kos-
tensets werden dann auf geradlinige Weise dazu ver-
wendet, die Verknüpfungskostentabelle zu generie-
ren, welche die Kosten von jedem Kostenset zu je-
dem Repeater wiedergeben.

[0106] Wie unten beschrieben, bildet die Gruppen-
reduzierungstabelle jede IP-Adresse auf einem die-
ser Kostensets ab.

Aufbau der IP-Abbildung

[0107] Die IP-Abbildung (IP Map) ist eine sortierte
Liste mit Einträgen, die IP-Adressenbereiche auf
Verknüpfungskostentabellenschlüsseln abbilden.
das Format der IP-Abbildung ist:

<Ausgangs-IP-Adresse><max IP-Adres-
se><Verknüpfungskostentabellenschlüssel>
wobei die IP-Adressen derzeit durch 32-bit-Ganzzah-
len dargestellt werden. Die Einträge sind nach abstei-
gender Ausgangsadresse und ansteigender Maxima-
ladresse unter gleichen Ausgangsadressen und nach
aufsteigendem Verknüpfungskostentabellenschlüs-
sel unter gleichen Ausgangsadressen und Maximal-
adressen sortiert. Die Bereiche können auch über-
lappen.

[0108] Das NetMap-Verfahren erzeugt eine Zwi-
schen-IP-Abbildung mit einer Abbildung zwischen
IP-Adressenbereichen und Kostensetnummern wie
folgt:
• Für jedes Kostenset S:
– Für jede Gruppe G in S:
• Für jeden IP-Adressenbereich in G:
• Ein Dreifaches (niedrige Adresse; hohe Adresse;
Kostensetnummer von S) zu der IP-Abbildung
hinzufügen.

[0109] Die IP-Abbildungsdatei wird dann sortiert
nach abnehmender Ausgangsadresse und nach an-
steigender Maximaladresse unter gleichen Aus-
gangsadressen, und nach ansteigender Kostenset-
nummer unter gleichen Ausgangsadressen und Ma-
ximaladressen. Die Sortierreihenfolge für die Aus-
gangsadresse und die Maximaladresse minimiert die
Zeit zum Aufbau der Gruppenreduzierungstabelle
und produziert die richtigen Ergebnisse für überlap-
pende Einträge.

[0110] Schließlich erzeugt das NetMap-Verfahren
die Gruppenreduzierungstabelle durch Verarbeitung
der sortierten IP-Abbildung. Die Gruppenreduzie-
rungstabelle bildet (nach Bereichen spezifizierte)
IP-Adressen in Kostensetnummern ab. Eine speziel-
le Verarbeitung der IP-Abbildungsdatei ist erforder-
lich, um überlappende Adressenbereiche zu entde-
cken und angrenzende Adressenbereiche zu ver-
schmelzen, um die Größe der Gruppenreduzierung-
13/30

DE 699 09 839 T3 2009.10.08
stabelle zu minimieren.

[0111] Eine geordnete Liste von Adressenbereichs-
egmenten wird verwaltet, wobei jedes Segment aus
einer Ausgangsadresse B und einer Kostensetnum-
mer N besteht, sortiert nach der Ausgangsadresse B.
(Die Maximaladresse eines Segments ist die Aus-
gangsadresse des nächsten Segments minus eins).
Folgender Algorithmus wird verwendet:
• Die Liste mit den Elementen [–unendlichkeit,
NOGROUP], [+unendlichkeit, NOGROUP] initiali-
sieren;
– Für jeden Eintrag in der IP-Abbildung in sortier-
ter Reihenfolge, bestehend aus (b, m, s),
– (b, m, s) in die Liste einsetzen (Erinnerung:
IP-Abbildungseinträge haben die Form (niedrige
Adresse, hohe Adresse, Kostensetnummer von
S)).
– Für jeden reservierten LAN-Adressenbereich (b,
m): (b, m, LOCAL) in die Liste einsetzen.
– Für jeden Repeater an Adresse a: (a, a, REPEA-
TER) in die Liste einsetzen.
– Für jedes Segment S in der geordneten Liste:
– S mit den folgenden Segmenten mit dem selben
Kostenset verschmelzen;
– Einen Eintrag in die Gruppenreduzierungstabel-
le mit Ausgangsadresse von der Ausgangsadres-
se von S erstellen,
• Max Adresse = Ausgangsadresse d. nächsten
Segments –1
• Gruppen-ID = Kostensetnummer von S.

[0112] Ein reservierter LAN-Adressenbereich ist ein
Adressenbereich, der zur Nutzung durch LANs reser-
viert ist, die nicht als globale Internetadresse erschei-
nen sollten. LOCAL ist ein besonderer Kostensetin-
dex, der sich von allen anderen unterscheidet und
darauf verweist, dass der Bereich auf einen Client ab-
bildet, der nie reflektiert werden sollte. REPEATER ist
ein besonderer Kostensetindex, der sich von allen
anderen unterscheidet und darauf verweist, dass der
Adressenbereich auf einen Repeater abbildet. NO-
GROUP ist ein besonderer Kostensetindex, der sich
von allen anderen unterscheidet und darauf verweist,
dass dieser Adressenbereich keine bekannte Abbil-
dung besitzt.

[0113] Bei gegebenen (B, M, N) ist ein Eintrag in die
geordnete Adressenliste wie folgt zu erstellen:
Das letzte Segment (AB, AN) suchen, für das AB klei-
ner oder gleich B ist. Wenn AB kleiner als B ist, nach
(AB, AN) ein neues Segment (B, N) einfügen. Das
letzte Segment (YB, YN) suchen, für das YP kleiner
oder gleich M ist. Jedes Segment (XB, NOGROUP),
für das XB größer als B und kleiner als YB ist, durch
(XB, N) ersetzen.
Wenn YN nicht N ist und entweder YN NOGROUP ist
oder YB kleiner oder gleich B ist, Sei (ZB, ZN) das
Segment, welches auf (YB, YN) folgt.
Wenn M + 1 kleiner als ZB ist, ein neues Segment (M

+ 1, YN) vor (ZB, ZN) einfüngen.
(YB, YN) durch (YB, N) ersetzen.

Überschreiben von HTML-Ressourcen

[0114] Wie oben unter Bezugnahme auf Fig. 3 (B5)
erklärt, wird, wenn ein Reflektor oder Repeater eine
Ressource bereitgestellt, die ihrerseits Ressour-
cen-Identifikatoren (z. B. eine HTML-Ressource) ent-
hält, diese Ressource modifiziert (überschrieben),
um Ressourcen-Identifikatoren (URLs) repetierbarer
Ressourcen, die in der Ressource erscheinen, vorzu-
reflektieren. Das Überschreiben gewährleistet, dass
wenn ein Browser repetierbare Ressourcen anfor-
dert, die durch die angeforderte Ressource identifi-
ziert werden, er diese von einem Repeater erhält,
ohne zum Ausgangsserver zurück zu gehen, doch
wenn er nicht-repetierbare Ressourcen anfordert, die
durch die angeforderte Ressource identifiziert wer-
den, er direkt zum Ausgangsserver zurückgeht.
Ohne diese Optimierung würde der Browser entwe-
der alle Anforderungen am Ausgangsserver stellen
(wodurch das Verkehrsaufkommen am Ausgangs-
server vergrößert würde und wesentlich mehr Umlei-
tungen vom Ausgangsserver nötig wären) oder alle
Anforderungen am Repeater stellen (wodurch der
Repeater zu redundanten Anforderungen und zum
Kopieren von Ressourcen veranlasst würde, die nicht
im Cache abgelegt werden könnten, wodurch sich
der Verwaltungsaufwand für die Bereitstellung sol-
cher Ressourcen vergrößern würde).

[0115] Das Überschreiben setzt voraus, dass ein
Repeater ausgewählt wurde (wie oben unter Bezug-
nahme auf den Best Repeater Selector beschrieben).
Das Überschreiben erfolgt unter Verwendung einer
sogenannten BASE-Anweisung. Die BASE-Anwei-
sung lässt die HTML einen anderen Ausgangsserver
identifizieren. (Die Ausgangsadresse ist normaler-
weise die Adresse der HTML-Ressource).

[0116] Das Überschreiben geht wie folgt vor sich:
F1. Eine BASE-Anweisung wird am Anfang der
HTML-Ressource hinzugefügt oder wenn nötig
modifiziert. Normalerweise interpretiert ein Brow-
ser relative URLs als relativ zu der voreingestell-
ten Ausgangsadresse, namentlich der URL der
HTML-Ressource (Seite), in der sie zusammen-
treffen. Die hinzugefügte BASE-Adresse spezifi-
ziert die Ressource am Reflektor, der die Res-
source ursprünglich bereitgestellt hat. Dies be-
deutet, dass unbearbeitete relative URLs (wie die
von JavascriptTM-Programmen generierten) als re-
lativ zum Reflektor interpretiert werden. Ohne die-
se BASE-Adresse würden Browser relative
Adressen mit Repeaternamen kombinieren, um
URLs zu schaffen, die nicht in der von den Repea-
tern geforderten Form waren (gemäß Beschrei-
bung oben in Schritt D1).
F2. Der Überschreiber identifiziert Anweisungen,
14/30

DE 699 09 839 T3 2009.10.08
wie eingebettete Bilder und Verweisstichwörter,
welche URLs enthalten. Wenn der Überschreiber
in einem Reflektor läuft muss er die HTML-Datei
parsen (analysieren), um diese Anweisungen zu
identifizieren.
Wenn er in einem Repeater läuft, kann der Über-
schreiber Zugriff auf vorberechnete Informationen
haben, welche den Standort jeder URL (die im
Schritt F4 in der HTML-Datei platziert wurden)
identifizieren.
F3. Für jede URL, die in der zu überschreibenden
Ressource angetroffen wird, muss der Über-
schreiber bestimmen, ob die URL repetierbar (wie
in den Schritten B1–B2) ist. Wenn die URL nicht
repetierbar ist, wird sie nicht modifiziert. Ist die
URL aber repetierbar, wird sie so modifiziert, dass
sie sich auf den ausgewählten Repeater bezieht.
F4. Nachdem alle URLs identifiziert und modifi-
ziert wurden, wird, wenn die Ressource einem
Repeater bereitgestellt wird, am Anfang der Res-
source eine Tabelle angehängt, in der der Ort und
Inhalt jeder in der Ressource anzutreffenden URL
identifiziert wird. (Dies ist ein Optimierungsschritt,
der das Bedürfnis zum Parsen der HTML-Res-
sourcen am Repeater eliminiert).
F5. Nachdem alle Änderungen identifiziert wur-
den, wird eine neue Länge für die Ressource (Sei-
te) berechnet. Die Länge wird in den HTTP-Hea-
der eingefügt, bevor die Ressource bereitgestellt
wird.

[0117] Zur Zeit wird eine Erweiterung der HTML un-
ter der Bezeichnung XML entwickelt. Das Verfahren
des Überschreibens von URLs wird für XML ähnlich
sein, mit einigen Unterschieden im Mechanismus,
der die Ressource analysiert (Parsing) und eingebet-
tete URLs identifiziert.

Bearbeitung von Nicht-HTTP-Protokollen

[0118] Diese Erfindung ermöglicht die Reflexion von
Verweisen zu Ressourcen, die von anderen Protokol-
len als HTTP bereitgestellt werden, beispielsweise
vom File Transfer Protocol (FTP) und Audio-/Video-
stromprotokollen. Allerdings bieten viele Protokolle
nicht die Fähigkeit, Anforderungen umzuleiten. Es ist
jedoch möglich, Verweise vor der Ausführung von
Anforderungen durch Überschreiben von URLs, die
in HTML-Seiten eingebettet sind, umzuleiten. Mit fol-
genden Modifizierungen an den obenstehenden Al-
gorithmen wird diese Fähigkeit unterstützt.

[0119] In F4 überschreibt der Überschreiber URLs
für Server, wenn diese Server in einer konfigurierba-
ren Tabelle kooperierender Ausgangsserver oder so-
genannter Co-Server erscheinen. Der Operator des
Reflektors kann diese Tabelle so definieren, dass sie
FTP-Server und andere Server enthält. Ein über-
schriebenes URL, das auf eine Nicht-HTTP-Ressour-
ce verweist, hat folgende Form:

http://<repeater>/<ausgangsserver>@proxy=<sche-
ma>[:<typ>]@/ressource
wobei <schema> ein unterstützter Protokollname ist,
wie ”ftp”. Dieses URL-Format ist eine Alternative zu
der in B3 dargestellten Form.

[0120] In C3 sucht der Repeater ein Protokoll, das in
die ankommende Anforderung eingebettet ist. Wenn
ein Protokoll präsent ist und die angeforderte Res-
source nicht bereits im Cache abgelegt ist, verwendet
der Repeater das ausgewählte Protokoll statt dem
Standard-HTTP-Protokoll zur Anforderung der Res-
source, wenn er diese bereitstellt und im Cache spei-
chert.

Systemkonfiguration und Verwaltung

[0121] Zusätzlich zu der oben beschriebenen Verar-
beitung verlangt das Repeater-Netzwerk unter-
schiedliche Mechanismen für Systemkonfiguration
und Netzwerkverwaltung. Einige dieser Mechanis-
men werden hier beschrieben.

[0122] Reflektoren ermöglichen ihren Operators,
Repeater-Caches mittels der Durchführung von Pub-
lishing-Operationen zu synchronisieren. Wie Repea-
ter-Caches synchronisiert gehalten werden, wird un-
ten beschrieben. Publishing zeigt an, dass eine Res-
source oder Sammlung von Ressourcen sich geän-
dert hat.

[0123] Repeater und Reflektoren nehmen an unter-
schiedlichen Arten von Protokollverarbeitungen teil.
Die Ergebnisse von Protokollen, die an Repeatern
gesammelt wurden, werden gesammelt und mit Pro-
tokollen verschmolzen, die an Reflektoren gesam-
melt wurden, wie unten beschrieben.

Hinzufügen von Subscribern zum Repeater-Netz-
werk

[0124] Wenn ein neuer Subscriber zum Netzwerk
hinzugefügt wird, werden die Informationen über den
Subscriber in eine Subscriber-Tabelle beim Mas-
ter-Repeater eingegeben und an alle Repeater im
Netzwerk verteilt. Zu diesen Informationen gehören
die Committed Aggregate Information Rate (CAIR –
Gebundene aggregierte Informationsrate) für Server,
die dem Subscriber gehören, und eine Liste von Re-
peatern, die von Servern benützt werden können, die
zum Subscriber gehören.

Hinzufügen von Reflektoren zum Repeater-Netzwerk

[0125] Wenn ein neuer Repeater zum Netzwerk hin-
zugefügt wird, verbindet er sich einfach mit einem
Kontaktrepeater und meldet sich bei diesem an, wo-
für er vorzugsweise ein sicher verschlüsseltes Zertifi-
kat einschließlich des Subscriber-Identifikators des
15/30

DE 699 09 839 T3 2009.10.08
Repeaters verwendet.

[0126] Der Kontaktrepeater bestimmt, ob die Re-
flektornetzwerkadresse für diesen Subscriber zuge-
lassen ist. Ist dies der Fall, akzeptiert der Kontaktre-
peater die Verbindung und aktualisiert den Reflektor
mit allen notwendigen Tabellen (unter Verwendung
von Versionsnummern zur Feststellung, welche Ta-
bellen veraltet sind).

[0127] Der Reflektor verarbeitet während dieser Zeit
Anforderungen, ist aber nicht ”aktiviert” (zur Reflexi-
on von Anforderungen befugt), bevor alle seine Ta-
bellen aktuell sind.

Die Repeater-Caches synchronisiert halten

[0128] Repeater-Caches sind kohärent in dem Sinn,
dass wenn ein Reflektor eine Änderung an einer Res-
source identifiziert, alle Repeater-Caches verständigt
werden und die Änderung in einer einzigen Transak-
tion akzeptieren.

[0129] Nur der Identifikator der veränderten Res-
source (und nicht die gesamte Ressource) wird auf
die Repeater übertragen; der Identifikator wird dazu
verwendet, die entsprechende im Cache abgelegte
Ressource am Repeater wirksam zu annullieren. Die-
ses Verfahren ist wesentlich effizienter als den Inhalt
der veränderten Ressource an jeden Repeater zu
senden.

[0130] Ein Repeater lädt die frisch modifizierte Res-
source bei deren nächster Anforderung.

[0131] Eine Ressourcenänderung wird am Reflektor
entweder manuell durch den Operator oder über ein
Skript, wenn Dateien auf dem Server installiert wer-
den, oder automatisch durch einen Änderungsdetek-
tionsmechanismus (z. B. ein separates Verfahren,
das regelmäßig auf Änderungen prüft) identifiziert.

[0132] Eine Ressourcenänderung veranlasst den
Reflektor, eine ”Annuliert”-Nachricht an seinen Kon-
taktrepeater zu senden, der die Nachricht an den
Master-Repeater weiterleitet. Die Annulliert-Nach-
richt enthält eine Liste von Ressourcen-Identifikato-
ren (oder regulären Ausdrücken, die Muster von Res-
sourcen-Identifikatoren identifizieren), die sich geän-
dert haben. (Reguläre Ausdrücke werden verwendet,
ein Verzeichnis oder einen gesamten Server zu an-
nullieren). Das Repeaternetzwerk verwendet ein
zweiphasiges Bindungsverfahren, um sicherzustel-
len, dass alle Repeater eine gegebene Ressource
korrekt annullieren.

[0133] Das Annullierungsverfahren funktioniert wie
folgt:
Der Master sendet eine ”Phase 1”-Annullierungsan-
forderung an alle Repeater mit Angabe der Ressour-

cen und regulären Ausdrücke, in denen zu annullie-
rende Ressourcen-Serien beschrieben werden.

[0134] Wenn ein Repeater die Phase 1 Nachricht
erhält, platziert er zuerst die Ressourcen-Identifikato-
ren oder regulären Ausdrücke in eine Liste von Res-
sourcen-Identifikatoren, die auf eine Annullierung
warten.

[0135] Eine (in C3) angeforderte Ressource, die in
der Annullierungswarteliste ist, kann aus dem Cache
nicht bereitgestellt werden. Dies hindert den Cache
daran, die Ressource von einem Peer-Cache anzu-
fordern, der möglicherweise keine Annullierungs-
nachricht erhalten hat. Würde er auf diese Weise
eine Ressource anfordern, könnte diese die frisch an-
nullierte Ressource durch dieselben, nun veralteten,
Daten ersetzen.

[0136] Der Repeater vergleicht dann den Ressour-
cen-Identifikator jeder Ressource in seinem Cache
mit den Ressourcen-Identifikatoren und regulären
Ausdrücken in der Liste.

[0137] Jede Übereinstimmung wird annulliert, in-
dem sie als veraltet markiert und optional aus dem
Cache entfernt wird. Dies bedeutet, dass eine zu-
künftige Anforderung nach der Ressource sie dazu
bringt, eine neue Kopie der Ressource vom Reflektor
abzurufen.

[0138] Wenn der Repeater die Annullierung abge-
schlossen hat, sendet er eine Bestätigung an den
Master. Der Master wartet, bis alle Repeater die An-
nullierungsanforderung bestätigt haben.

[0139] Wenn ein Repeater nicht innerhalb eines be-
stimmten Zeitraums bestätigt, wird er vom Mas-
ter-Repeater getrennt. Wenn er sich wieder an-
schließt, wird er aufgefordert, seinen gesamten Ca-
che zu entleeren, wodurch jegliches Inkonsistenzpro-
blem beseitigt wird. (Um das Entleeren des gesamten
Cache zu vermeiden, könnte der Master ein nach Da-
tum sortiertes Protokoll aller durchgeführten Annullie-
rungen anlegen und nur solche Dateien entleeren,
die annulliert wurden, seit der wiederanschließende
Repeater zum letzten Mal erfolgreich eine Annullie-
rung durchgeführt hat. In den gegenwärtig bevorzug-
ten Ausführungsbeispielen wird dies nicht durchge-
führt, weil angenommen wird, dass es selten zu Tren-
nungen von Repeater kommt).

[0140] Wenn alle Repeater die Annullierung bestä-
tigt haben (oder nach Zeitablauf), sendet der Repea-
ter eine ”Phase 2”-Annullierungsanforderung an alle
Repeater. Dies veranlasst die Repeater dazu, die
entsprechenden Ressourcen-Identifikatoren und re-
gulären Ausdrücke von der Liste der eine Annullie-
rung erwartenden Ressourcen-Identifikatoren zu ent-
fernen.
16/30

DE 699 09 839 T3 2009.10.08
[0141] In einem anderen Ausführungsbeispiel wird
die Annullierungsanforderung so erweitert, dass ein
”Server-Schub” möglich wird. Wenn in solchen Anfor-
derungen die Phase 2 des Annullierungsverfahrens
abgeschlossen ist, fordert der die Annullierungsan-
forderung erhaltende Repeater sofort eine neue Ko-
pie der annullierten Ressource zur Ablage in seinem
Cache an.

Protokoll und Protokollverarbeitung

[0142] Webserver-Aktivitätsprotokolle sind funda-
mental für die Überwachung der Aktivitäten auf einer
Website. Diese Erfindung schafft ”verschmolzene
Protokolle”, die die Aktivität an Reflektoren mit der
Aktivität an Repeatern kombinieren, so dass am Aus-
gangsserver ein einziges Aktivitätsprotokoll er-
scheint, in dem sämtliche Webressourcenanforde-
rungen enthalten sind, die im Namen dieser Site an
einem Repeater vorgenommen wurden.

[0143] Dieses verschmolzene Protokoll kann von
Standardverarbeitungs-Tools verarbeitet werden, so
als ob es lokal generiert worden wäre.

[0144] Der Master-Repeater (oder dessen Delegier-
ter) sammelt in periodischen Abständen Protokolle
von jedem Repeater. Die gesammelten Protokolle
werden verschmolzen, nach Ressourcen-Identifika-
tor und Zeitstempel sortiert und in einer datierten Da-
tei auf Reflektorbasis gespeichert. Das verschmolze-
ne Protokoll für einen bestimmten Reflektor reprä-
sentiert die Aktivität aller Repeater im Namen dieses
Reflektors. Ein Reflektor kontaktiert auf periodischer
Grundlage, wie vom Reflektor-Operator vorgegeben,
den Master-Repeater, um seine verschmolzenen
Protokolle anzufordern. Er lädt diese herunter und
verschmilzt sie mit seinen lokal verwalteten Protokol-
len, nach Zeitstempel sortierend. Das Ergebnis ist ein
verschmolzenes Protokoll, das alle Aktivitäten im Na-
men von Repeater und dem gegebenen Reflektor
darstellt.

[0145] Aktivitätsprotokolle werden optional erweitert
mit Informationen, die für das Repeater-Netzwerk
wichtig sind, wenn der Reflektor vom Operator des
Reflektors dazu konfiguriert wird. Insbesondere zeigt
ein ”erweiterter Statuscode” Informationen über jede
Anforderung an, wie etwa:

1. Anforderung wurde von einem Reflektor lokal
bereitgestellt;
2. Anforderung wurde zu einem Repeater reflek-
tiert;*
3. Anforderung wurde von einem Reflektor einem
Repeater bereitgestellt;*
4. Anforderung nach nicht-repetierbarer Ressour-
ce wurde vom Repeater bereitgestellt;*
5. Anforderung wurde von einem Repeater aus
dem Cache bereitgestellt;
6. Anforderung wurde von einem Repeater nach

Auffüllen des Cache
bereitgestellt;
7. Auf Annullierung wartende Anforderung wurde
von einem Repeater bereitgestellt.

[0146] (Die mit * markierten Aktivitäten stellen Zwi-
schenstadien einer Anforderung dar und erscheinen
normalerweise nicht in einem fertigen Aktivitätsproto-
koll).

[0147] Zusätzlich enthalten Aktivitätsprotokolle eine
Dauer und erweiterte Präzisionszeitstempel. Die
Dauer ermöglicht die Analyse der zum Bereitstellen
einer Ressource benötigten Zeit, der benützten
Bandbreite, der Anzahl der zu einem bestimmten
Zeitpunkt parallel bearbeiteten Anforderungen und
anderer nützlicher Informationen. Der erweiterte Prä-
zisionszeitstempel ermöglicht die präzise Verschmel-
zung von Aktivitätsprotokollen.

[0148] Repeater benützen das Network Time Proto-
col (NTP), um synchronisierte Uhren zu verwalten.
Reflektoren können entweder das NTP benützen
oder eine Zeitasymmetrie berechnen, um einigerma-
ßen präzise Zeitstempel relativ zu ihrem Kontaktre-
peater bereitzustellen.

Durchsetzung der Gebundenen Aggregierten Infor-
mationsrate

[0149] Das Repeater-Netzwerk überwacht und limi-
tiert die aggregierte Rate, mit der Daten im Namen ei-
nes gegebenen Subscribers von allen Repeater be-
reitgestellt werden. Dieser Mechanismus bietet fol-
gende Vorteile:

1. stellt ein Mittel zur Preisgestaltung von Repea-
ter-Dienstleistungen bereit;
2. stellt ein Mittel zur Einschätzung und Reservie-
rung von Kapazitäten bei Repeatern bereit;
3. stellt ein Mittel bereit, um Clients einer belegten
Site davon abzuhalten, den Zugriff auf andere Si-
tes zu beschränken.

[0150] Für jeden Subscriber wird ein ”Schwellwert
für die aggregierte Informationsrate” (TAIR – Thres-
hold Aggregate Information Rate) konfiguriert und am
Master-Repeater verwaltet. Dieser Schwellwert ist
nicht notwendigerweise die gebundene Rate, sie
kann ein Vielfaches dieser Rate sein, basierend auf
einer Preispolitik.

[0151] Jeder Repeater misst periodisch (typischer-
weise etwa einmal pro Minute) die Informationsraten-
komponente jedes Reflektors, für den er Ressourcen
bereitgestellt, indem er die Anzahl der im Namen die-
ses Reflektors übertragenen Bytes bei jeder Über-
bringung einer Anforderung aufzeichnet. Die so er-
zeugte Tabelle wird einmal pro Zeitintervall zum Mas-
ter-Repeater gesendet. Der Master-Repeater kombi-
niert die Tabellen von jedem Repeater und summiert
17/30

DE 699 09 839 T3 2009.10.08
die gemessenen Informationen jedes Reflektors über
alle Repeater hinweg, welche Ressourcen für diesen
Reflektor bereitstellen, um die ”gemessene aggre-
gierte Informationsrate” (MAIR – Measured Aggrega-
ted Information Rate) jedes Reflektors zu ermitteln.

[0152] Wenn die MAIR eines gegebenen Reflektors
größer ist als die TAIR für diesen Reflektor, wird die
MAIR vom Master auf alle Repeater und zum ent-
sprechenden Reflektor gesendet.

[0153] Wenn ein Reflektor eine Anforderung erhält,
stellt er fest, ob seine zuletzt berechnete MAIR grö-
ßer ist als seine TAIR. Ist dies der Fall, entscheidet
der Reflektor nach dem Wahrscheinlichkeitsprinzip,
ob er die Reflexion unterdrückt, indem er die Anforde-
rung lokal bereitstellt (in B2). Die Wahrscheinlichkeit
einer Unterdrückung der Reflexion steigt exponentiell
mit der Differenz zwischen MAIR und CAIR.

[0154] Die lokale Abgabe einer Anforderung wäh-
rend einer Spitzenperiode kann den lokalen Aus-
gangsserver belasten, doch hindert sie diesen Sub-
scriber daran, mehr als die zugeteilte Bandbreite aus
dem gemeinsamen Repeater-Netzwerk zu beanspru-
chen.

[0155] Wenn ein Repeater eine Anforderung nach
einem gegebenen Subscriber erhält (in C2), stellt er
fest, ob der Subscriber nahe an seinem Schwellwert
für die aggregierte Informationsrate läuft. Ist dies der
Fall, entscheidet er nach dem Wahrscheinlichkeits-
prinzip, ob er seine Auslastung durch Umleiten der
Anforderung zum Reflektor zurück reduzieren soll.
Die Wahrscheinlichkeit steigt exponentiell mit der An-
näherung der aggregierten Informationsrate des Re-
flektors an ihr Limit.

[0156] Wenn eine Anforderung zurück zu einem Re-
flektor reflektiert wird, wird an den Ressourcen-Iden-
tifikator eine besondere Zeichenfolge angehängt, so
dass der empfangende Reflektor nicht versucht, sie
erneut zu reflektieren. Im aktuellen System hat die
Zeichenfolge die Form:

”src=overload”.

[0157] Der Reflektor prüft in B2 auf diese Zeichen-
folge.

[0158] Der oben beschriebene Mechanismus zur Li-
mitierung der aggregierten Informationsrate ist ziem-
lich grob. Er limitiert auf der Ebene von Sessions mit
Clients (zumal wenn ein Client zu einem bestimmten
Repeater reflektiert worden ist, das Überschreibver-
fahren dazu neigt, den Client zur Rückkehr zu diesem
Repeater zu bewegen) und bestenfalls einzelnen An-
forderungen nach Ressourcen. Ein feinerer Mecha-
nismus zur Durchsetzung von TAIR-Grenzwerten in
Repeatern funktioniert mittels Senkung des Band-

breitenverbrauchs eines belegten Subscribers, wenn
andere Subscriber um Bandbreite konkurrieren.

[0159] Der feine Mechanismus ist eine Form von
Daten-”Ratenformung”. Er erweitert den Mechanis-
mus, der Ressourcendaten in eine Verbindung ko-
piert, wenn eine Antwort an einen Client gesendet
wird. Wenn zu dem Zeitpunkt, zu dem eine Anforde-
rung empfangen wird, ein Ausgabekanal eingerichtet
ist, identifiziert der Repeater in C2, für welchen Sub-
scriber der Kanal tätig ist, und trägt den Subscriber in
ein mit dem Kanal assoziiertes Datenfeld ein. Jedes-
mal wenn eine ”Schreib”-Operation zum Kanal bevor-
steht, untersucht der Gemessene Ausgabestrom zu-
erst die oben berechneten aktuellen Werte der MAIR
und der TAIR für den gegebenen Subscriber. Wenn
die MAIR größer ist als die TAIR, unterbricht der Me-
chanismus kurz, bevor er die Schreiboperation
durchführt. Die Länge der Pause ist proportional zu
der Menge, um die die MAIR die TAIR übersteigt. Die
Pause stellt sicher, dass Aufgaben, die andere Res-
sourcen an andere Clients senden, vielleicht im Na-
men anderer Subscriber, eine Gelegenheit erhalten,
ihre Daten zu senden.

Elastizität des Repeater-Netzwerks

[0160] Das Repeater-Netzwerk ist in der Lage, sich
zu erholen, wenn eine Repeater- oder Netzwerkver-
bindung ausfällt.

[0161] Ein Repeater kann nur funktionieren, wenn
er an den Master-Repeater angeschlossen ist. Der
Master-Repeater tauscht kritische Informationen mit
anderen Repeater aus, darunter Informationen über
Repeaterauslastung, aggregierte Informationsrate,
Subscriber und Verbindungskosten.

[0162] Wenn ein Master ausfällt, stellt ein ”Nachfol-
ge”-Prozess sicher, dass ein anderer Repeater die
Rolle des Masters übernimmt und das Netzwerk als
Ganzes funktionsfähig bleibt. Wenn ein Master aus-
fällt oder eine Verbindung zu einem Master infolge ei-
nes Netzwerkproblems ausfallt, entdeckt jeder Re-
peater, der versucht, mit dem Master zu kommunizie-
ren, den Ausfall entweder durch einen Hinweis vom
TCP/IP oder durch Zeitablauf von einer regulären
”Herzschlag”-Nachricht, die er zu dem Master sen-
det.

[0163] Wenn ein Repeater von seinem Master ge-
trennt wird, versucht er auf Basis einer konfigurierba-
ren Datei, die als seine ”Nachfolgeliste” bezeichnet
wird, sofort sich einer Serie potenzieller Master anzu-
schließen.

[0164] Der Repeater versucht hintereinander jedes
System in der Liste, bis ein erfolgreicher Anschluss
an einen Master hergestellt ist. Wenn er in diesem
Verfahren auf seinen eigenen Namen trifft, über-
18/30

DE 699 09 839 T3 2009.10.08
nimmt er die Rolle des Masters und akzeptiert An-
schlüsse von anderen Repeater. Wenn ein Repeater,
der nicht an der Spitze der Liste ist, zum Master wird,
wird er als ”Provisorischer Master” bezeichnet.

[0165] Eine Netzwerkpartition kann zwei Gruppen
von Repeater jeweils zur Wahl eines Masters veran-
lassen. Wenn die Partition korrigiert ist, ist es erfor-
derlich, dass der übergeordnete Master das Netz-
werk übernimmt. Wenn also ein Repeater als provi-
sorischer Master fungiert, versucht er regelmäßig,
sich an irgendeinen höhergestellten Master in der
Nachfolgeliste anzuschließen. Ist er erfolgreich,
trennt er sofort die Verbindungen zu allen an ihn an-
geschlossenen Repeatern. Wenn diese erneut ihre
Nachfolgelisten versuchen, schließen sie sich dem
übergeordneteren Master-Repeater an.

[0166] Um Datenverluste zu vermeiden, akzeptiert
ein provisorischer Master keine Konfigurationsände-
rungen und verarbeitet keine Protokolldateien. Um
diese Aufgaben übernehmen zu können, muss er
mittels manueller Manipulation seiner Nachfolgeliste
informiert werden, dass er ein primärer Master ist. Je-
der Repeater lädt regelmäßig seine Nachfolgeliste
neu, um festzustellen, ob er seine Vorstellung davon,
wer der Master ist, ändern solle.

[0167] Wenn ein Repeater vom Master getrennt
wird, muss er seinen Cache neu synchronisieren,
wenn er sich wieder an den Master anschließt. Der
Master kann eine Liste neuester Cache-Annullierun-
gen verwalten und alle Annullierungen, die er wäh-
rend der Verbindungstrennung nicht verarbeiten
konnte, an den Repeater senden. Wenn diese Liste
aus irgendeinem Grund nicht verfügbar ist (beispiels-
weise weil der Reflektor zu lange getrennt war), muss
der Reflektor seinen gesamten Cache annullieren.

[0168] Ein Reflektor darf Anforderungen nur dann
reflektieren, wenn er mit einem Repeater verbunden
ist. Der Reflektor ist für kritische Informationen von
seinem Kontaktrepeater abhängig, etwa für Auslas-
tungs- und Verknüpfungskostentabellen und die ak-
tuelle aggregierte Informationsrate. Ein Reflektor, der
nicht mit einem Repeater verbunden ist, kann weiter-
hin Anforderungen empfangen und lokal behandeln.

[0169] Wenn ein Reflektor seine Verbindung mit ei-
nem Repeater aufgrund eines Repeaterausfalls oder
eines Netzwerkausfalls verliert, bleibt er weiterhin in
Betrieb, während er versucht, die Verbindung zu ei-
nem Repeater herzustellen. Jedesmal wenn ein Re-
flektor versucht, die Verbindung zu einem Repeater
herzustellen, verwendet er DNS zur Identifizierung
einer Serie von Repeaterkandidaten mit einem Do-
mainnamen, der das Repeater-Netzwerk repräsen-
tiert. Der Reflektor probiert jeden Repeater in dieser
Serie, bis er einen erfolgreichen Kontakt herstellt. Bis
ein erfolgreicher Kontakt hergestellt ist, stellt der Re-

flektor sämtliche Anforderungen lokal bereit. Wenn
sich ein Reflektor mit einem Repeater verbindet,
kann ihn der Repeater beauftragen, die Kontaktie-
rung eines anderen Repeaters zu versuchen; so
kann das Repeater-Netzwerk sicherstellen, dass kein
einzelner Repeater zu viele Kontakte hat.

[0170] Wenn der Kontakt hergestellt ist, stellt der
Reflektor seinem Kontaktrepeater die Versionsnum-
mern jeder seiner Tabellen bereit. Der Repeater ent-
scheidet dann, welche Tabellen aktualisiert werden
sollten, und sendet entsprechende Aktualisierungen
an den Reflektor. Nachdem alle Tabellen aktualisiert
wurden, verständigt der Repeater den Reflektor,
dass dieser nunmehr mit dem Reflektieren von Anfor-
derungen beginnen kann.

Verwendung eines Proxy-Caches in einem Repeater

[0171] Repeater sind absichtlich so angelegt, dass
jeder Proxy-Cache als darin enthaltene Komponente
verwendet werden kann. Dies ist deshalb möglich,
weil der Repeater HTTP-Anforderungen erhält und
diese in eine Form konvertiert, die von dem Pro-
xy-Cache erkannt wird.

[0172] Anderseits sind mehrere Modifikationen an
einem Standard-Proxy-Cache als Optimierungen
vorgenommen worden bzw. können vorgenommen
werden. Dies umfasst insbesondere die Fähigkeit,
eine Ressource passend zu annullieren, die Fähig-
keit, Cache-Quoten zu unterstützen, und die Fähig-
keit, das Herstellen einer Zusatzkopie jeder Ressour-
ce zu vermeiden, wenn diese vom Proxy-Cache
durch den Repeater zum Anforderungsprogramm
geht.

[0173] In einem bevorzugten Ausführungsbeispiel
wird ein Proxy-Cache dazu verwendet, C3 zu imple-
mentieren. Der Proxy-Cache ist für die ausschließli-
che Benützung durch einen oder mehrere Repeater
dediziert. Jeder Repeater, der eine Ressource vom
Proxy-Cache anfordert, konstruiert eine Proxy-Anfor-
derung von der ankommenden Ressourcenanforde-
rung. Eine normale HTTP GET Anforderung an einen
Server enthält nur den Pfadnamensteil der URL –
Schema und Servername sind impliziert. (In einer
HTTP GET Anforderung an einen Repeater enthält
der Pfadnamensteil der URL den Namen des Aus-
gangsservers, in dessen Auftrag die Anforderung er-
folgt, wie oben beschrieben). Allerdings benötigt eine
Proxy Agent GET Anforderung eine vollständige
URL. Deshalb muss der Repeater eine Proxy-Anfor-
derung konstruieren, welche die gesamte URL vom
Pfadabschnitt der URL, die er empfängt, enthält. Ins-
besondere wenn die ankommende Anforderung die
Form

GET/<Ausgangsserver>/<pfad>
annimmt, konstruiert der Repeater eine Proxy-Anfor-
19/30

DE 699 09 839 T3 2009.10.08
derung der Form:

GET http://<Ausgangsserver>/<pfad>
und wenn die ankommende Anforderung die Form:

GET <Ausgangsserver>@proxy=<sche-
ma>:<typ>@/<pfad>
annimmt, konstruiert der Repeater eine Proxy-Anfor-
derung der Form:

GET <schema>://<Ausgangsserver>/<pfad>

Cache-Kontrolle

[0174] HTTP-Antworten enthalten Anweisungen,
die als Cache-Kontrollanweisungen bezeichnet wer-
den. Sie zeigen einem Cache an, ob die angehängte
Ressource in den Cache gelegt werden kann, und
wenn dies der Fall ist, wann sie ablaufen sollte. Ein
Website-Administrator konfiguriert die Website, so
dass entsprechende Anweisungen angehängt wer-
den. Vielfach weiß ein Administrator nicht, wie lange
eine Seite frisch ist, und er muss eine kurze Ablauf-
zeit definieren, um zu verhindern, dass Caches veral-
tete Daten bereitstellen. In vielen Fällen gibt ein Web-
site-Operator nur deshalb eine kurze Ablaufzeit an,
um die Anforderungen (oder Zugriffe) zu erhalten, die
ansonsten durch die Präsenz eines Cache maskiert
würden. Dies ist in der Branche als ”Cache-Busting”
bekannt. Zwar halten einige Cache-Betreiber das Ca-
che-Busting für unhöflich, doch Werbetreibende, die
von solchen Informationen abhängig sind, betrachten
es möglicherweise als unverzichtbar.

[0175] Wenn eine Ressource in einem Repeater ge-
speichert wird, können ihre Cache-Anweisungen
vom Repeater ignoriert werden, weil der Repeater
explizite Annullierungsereignisse erhält, um festzu-
stellen, wann eine Ressource veraltet ist. Wenn als
Cache am Repeater ein Proxy-Cache verwendet
wird, können die zugehörigen Cache-Anweisungen
vorübergehend deaktiviert werden. Sie müssen aller-
dings reaktiviert werden, wenn die Ressource vorn
Cache einem Client bereitgestellt wird, um die Ca-
che-Kontrollpolitik (einschließlich allenfalls Ca-
che-Busting) wirksam werden zu lassen.

[0176] Die vorliegende Erfindung enthält Mechanis-
men, mit denen der Proxy-Cache in einem Repeater
daran gehindert wird, Cache-Kontrollanweisungen zu
befolgen; es ist aber zulässig, dass die Anweisungen
vom Repeater bereitgestellt werden.

[0177] Wenn ein Reflektor eine Ressource einem
Repeater in B4 bereitstellt, ersetzt er alle Cache-An-
weisungen durch modifizierte Anweisungen, die vom
Repeater-Proxy-Cache ignoriert werden. Er stellt
dazu eine bestimmte Zeichenfolge, wie etwa ”wr-”, an
den Anfang des HTTP-Tags. So wird ”läuft ab” zu
”wr-läuft ab”, und aus ”Cache-Kontrolle” wird ”wr-Ca-

che-Kontrolle”. Auf diese Weise wird der Proxy-Ca-
che selbst an der Befolgung der Anweisungen gehin-
dert. Wenn ein Repeater eine Ressource in C4 be-
reitstellt und der anfordernde Client kein anderer Re-
peater ist, sucht er die HTTP-Tags, die mit ”wr-” be-
ginnen und entfernt das ”wr-”. So kann der Client die
Ressource abrufen, um die Anweisungen zu befol-
gen.

Revalidierung der Ressource

[0178] Es gibt mehrere Fälle, in denen eine Res-
source so lange im Cache sein kann, wie der Aus-
gangsserver jedes Mal bei ihrer Bereitstellung kon-
sultiert wird. In einem Fall wird die Anforderung nach
der Ressource an ein sogenanntes ”Cookie” ange-
hängt. Dem Ausgangsserver muss das Cookie über-
mittelt werden, um die Anforderung aufzuzeichnen
und zu bestimmen, ob die im Cache befindliche Res-
source bereitgestellt werden kann oder nicht. In ei-
nem anderen Fall ist die Anforderung nach der Res-
source an einen Authentizierungs-Header (der das
Anforderungsprogramm mit Benutzer-ID und Pass-
wort identifiziert) angehängt. Jede neue Anforderung
nach der Ressource muss am Ausgangsserver ge-
prüft werden, um sicherzustellen, dass das Anforde-
rungsprogramm für den Zugriff auf die Ressource au-
torisiert ist.

[0179] Die HTTP 1.1 Spezifikation definiert einen
Antwort-Header mit dem Titel ”Must-Revalidate”, der
einem Ausgangsserver ermöglicht, einen Proxy-Ca-
che anzuweisen, eine Ressource jedes Mal, wenn
eine Anforderung empfangen wird, zu ”revalidieren”.
Normalerweise wird dieser Mechanismus verwendet,
um festzustellen, ob eine Ressource noch frisch ist.
In der vorliegenden Erfindung ermöglicht es
Must-Revalidate, einen Ausgangsserver zu ersu-
chen, eine Anforderung zu validieren, die ansonsten
von einem Repeater bereitgestellt wird.

[0180] Die Reflektor-Regelbasis enthält Informatio-
nen, die festlegen, welche Ressourcen repetiert wer-
den können, aber bei jeder Bereitstellung revalidiert
werden müssen. Für jede solche Ressource hängt
der Reflektor in B4 einen Must-Revalidate-Header
an. Jedes Mal wenn an einen Repeater eine Anforde-
rung nach einer Ressource im Cache kommt, die mit
einem Must-Revalidate-Header markiert ist, wird die
Anforderung zum Reflektor zur Validierung weiterge-
leitet, bevor die angeforderte Ressource bereitge-
stellt wird.

Cache-Quoten

[0181] Die Cache-Komponente eines Repeaters ist
jenen Subscribern gemeinsam, die Clients zu diesem
Repeater reflektieren. Um den Subscribern einen fai-
ren Zugriff auf die Speichereinrichtungen zu erlau-
ben, kann der Cache zur Unterstützung von Quoten
20/30

DE 699 09 839 T3 2009.10.08
erweitert werden.

[0182] Normalerweise kann ein Proxy-Cache mit ei-
nem Plattenplatz-Schwellwert T konfiguriert werden.
Immer wenn mehr als T Bytes im Cache gespeichert
sind, versucht der Cache, zu eliminierende Ressour-
cen zu finden.

[0183] Typischerweise verwendet ein Cache den
Least-recently-used-Algorithmus (LRU-Algorithmus;
der Algorithmus nach dem Prinzip der am weitesten
zurückliegenden Verwendung), um festzustellen,
welche Ressource eliminiert werden soll; anspruchs-
vollere Caches benützen andere Algorithmen. Ein
Cache kann auch mehrere Schwellwerte unterstüt-
zen, beispielsweise einen tieferen Schwellwert, der,
sobald er erreicht ist, ein Low-Priority-Hintergrund-
verfahren zum Entfernen von Einträgen aus dem Ca-
che auslöst, und einen höheren Schwellwert, der, so-
bald er erreicht ist, Ressourcen daran hindert, im Ca-
che abgelegt zu werden, bis ausreichend freier Plat-
tenplatz gewonnen wurde.

[0184] Wenn zwei Subscriber A und B einen Cache
teilen und während einer Zeitperiode auf mehr Res-
sourcen des Subscribers A zugegriffen wird als auf
Ressourcen des Subscribers B, sind weniger der
Ressourcen Bs im Cache, wenn neue Anforderungen
eintreffen. Es ist möglich, dass infolge des Verhaltens
von A die Ressourcen von B nie in den Cache kom-
men, wenn sie angefordert werden. In der vorliegen-
den Erfindung ist dieses Verhalten nicht wünschens-
wert. Um dieses Problem zu bekämpfen, erweitert die
Erfindung den Cache an einem Repeater zur Unter-
stützung von Cache-Quoten.

[0185] Der Cache zeichnet die von jedem Subscri-
ber in DS benützte Platzmenge auf und unterstützt
eine konfigurierbare Schwelle TS für jeden Subscri-
ber.

[0186] Immer wenn eine Ressource zum Cache hin-
zugefügt wird (in C3), wird der Wert DS für den die
Ressource bereitstellenden Subscriber aktualisiert.
Wenn DS größer ist als TS, versucht der Cache, aus
den mit dem Subscriber S assoziierten Ressourcen
zu eliminierende Ressourcen zu finden. Der Cache
wird wirksam in getrennte Bereiche für jeden Subscri-
ber partitioniert.

[0187] Der ursprüngliche Schwellwert T wird noch
immer unterstützt. Wenn die Summe reservierter
Segmente für jeden Subscriber kleiner ist als der ge-
samte im Cache reservierte Platz, so ist der restliche
Bereich ”allgemein” und unterliegt dem Wettbewerb
zwischen den Subscribern.

[0188] Es ist zu beachten, dass dieser Mechanis-
mus implementiert werden könnte, indem der oben
erörterte, bestehende Proxy-Cache modifiziert wird,

oder er könnte auch implementiert werden, ohne
dass der Proxy-Cache modifiziert wird – wenn der
Proxy-Cache zumindest einem externen Programm
ermöglicht, eine Liste von Ressourcen im Cache zu
erhalten und eine gegebene Ressource aus dem Ca-
che zu entfernen.

Überschreiben von Repeatern

[0189] Wenn ein Repeater eine Anforderung nach
einer Ressource abruft, kann sein Proxy-Cache so
konfiguriert sein, dass er feststellt, ob ein Peer-Cache
die angeforderte Ressource enthält. Ist dies der Fall,
erhält der Proxy-Cache die Ressource vom Peer-Ca-
che, was schneller sein kann als sie vom Ausgangs-
server (dem Reflektor) zu erhalten. Eine Folge dar-
aus ist jedoch, dass überschriebene, vom Peer-Ca-
che abgerufene HTML-Ressourcen, den falschen
Repeater identifizieren würden. Um kooperierende
Proxy-Caches zu erlauben, werden deshalb Res-
sourcen vorzugsweise am Repeater überschrieben.

[0190] Wenn eine Ressource für einen Repeater
überschrieben wird, wird ein spezielles Tag an den
Anfang der Ressource gesetzt. Bei der Konstruktion
einer Antwort untersucht der Repeater das Tag, um
festzustellen, ob die Ressource anzeigt, dass zusätz-
liches Überschreiben erforderlich ist. Ist dies der Fall,
modifiziert der Repeater die Ressource, indem er
Verweise auf den alten Repeater durch Verweise auf
den neuen Repeater ersetzt.

[0191] Diese Überschreibung ist nur dann erforder-
lich, wenn eine Ressource dem Proxy-Cache an ei-
nem anderen Repeater bereitgestellt wird.

Repeater-Seiten-Einbezug (Repeater-Side Include)

[0192] Manchmal konstruiert ein Ausgangsserver
eine individualisierte Ressource für jede Anforderung
(beispielsweise wenn eine Werbung auf der Grundla-
ge der Biografie des anfordernden Clients einge-
schoben wird). In so einem Fall muss diese Ressour-
ce lokal bereitgestellt anstatt repetiert werden. Im all-
gemeinen enthält eine individualisierte Ressource
zusammen mit den individuellen Informationen Text
und Verweise auf andere, repetierbare Ressourcen.

[0193] Das Verfahren, mit dem eine ”Seite” von ei-
ner Textressource und möglicherweise einer oder
mehreren Bildressourcen zusammengestellt wird,
wird vom Webbrowser unter Lenkung von HTML aus-
geführt. Es ist jedoch nicht möglich, HTML dazu zu
verwenden, einen Browser zur Zusammenstellung
einer Seite unter Verwendung von Text oder Anwei-
sungen von einer getrennten Ressource zu veranlas-
sen. Deshalb enthalten individualisierte Ressourcen
oftmals notwendigerweise große Mengen statischen
Texts, der ansonsten repetierbar wäre.
21/30

DE 699 09 839 T3 2009.10.08
[0194] Um diese potenzielle Ineffizienz aufzulösen,
erkennen Repeater eine spezielle Anweisung mit der
Bezeichnung ”Repeater-Seiten-Einbezug”. Diese An-
weisung ermöglicht es dem Repeater, unter Verwen-
dung einer Kombination repetierbarer und lokaler
Ressourcen eine individualisierte Ressource zusam-
menzustellen. Auf diese Weise kann der statische
Text repetierbar gemacht werden, und nur die spezi-
elle Anweisung muss lokal vom Reflektor bereitge-
stellt werden.

[0195] Beispielsweise könnte eine Ressource X aus
individualisierten Anweisungen bestehen, die eine
Werbeleiste auswählen, gefolgt von einem großen
Textartikel. Um diese Ressource repetierbar zu ma-
chen, muss der Website-Administrator eine zweite
Ressource Y nutzbar machen, um die Leiste zu wäh-
len. Die Ressource X ist so modifiziert, dass sie eine
Repeater-Seiten-Einbezug-Anweisung enthält, in der
die Ressource Y zusammen mit dem Artikel identifi-
ziert wird. Die Ressource Y wird geschaffen und ent-
hält nur die individualisierten Anweisungen, welche
eine Werbeleiste auswählen. Jetzt ist die Ressource
X repetierbar, und nur die Ressource Y, die relativ
klein ist, ist nicht repetierbar.

[0196] Wenn ein Repeater eine Antwort konstruiert,
legt er fest, ob die bereitgestellte Ressource eine
HTML-Ressource ist, und ist dies der Fall, sucht er
sie nach Repeater-Seiten-Einbezug-Anweisungen
ab. Jede solche Anweisung enthält eine URL, die der
Repeater auflöst und anstelle der Anweisung ein-
setzt. Die gesamte Ressource muss zusammenge-
stellt werden, bevor sie bereitgestellt wird, um ihre
endgültige Größe zu bestimmen, da die Größe in ei-
nen Antwort-Header vor der Ressource aufgenom-
men ist.

[0197] So wird eine Methode und eine Vorrichtung
zur dynamischen Nachbildung ausgewählter Res-
sourcen in Computernetzwerken geschaffen. Fach-
personen erkennen, dass die vorliegende Erfindung
auch in anderen als den beschriebenen Ausfüh-
rungsbeispielen ausgeführt werden kann, die hier nur
aus illustrativen Gründen dargestellt werden und kei-
nen einschränkenden Charakter haben. Die vorlie-
gende Erfindung wird nur durch die angehängten Pa-
tentansprüche eingeschränkt.

Patentansprüche

1. Ein in einem Computernetzwerk (100) betrie-
benes System, in welchem Clients (106) mit einem
Ausgangsserver (102) Verbindung aufnehmen, wo-
bei das System beinhaltet:
eine Serie von Repeaterservern (104a ...), die vom
Ausgangsserver (102) verschieden sind und als Host
für mindestens einige der eingebetteten Objekte von
Webseiten dienen, die normalerweise vom Aus-
gangsserver (102) als Host verwaltet werden;

einen Reflektor (108), in dem enthalten ist:
eine Routine, die mindestens eine URL eines einge-
betteten Objekts einer Webseite so modifiziert, dass
sie zu einem Server in der Serie von Repeaterser-
vern anstatt zum Ausgangsserver aufgelöst wird; und
der Reflektor weiter enthält:
einen Server-Auswahlmechanismus, der so aufge-
baut und angepasst ist, dass er auf eine bestimmte
Client-Anforderung hin einen geeigneten Repeater-
server aus der Serie von Repeaterservern identifi-
ziert,
wobei als Reaktion auf Anforderungen nach der
Webseite, die von den Clients erzeugt werden, die
Webseite einschließlich der modifizierten URL des
eingebetteten Objekts vom Reflektor bereitgestellt
wird, wobei der Reflektor Teil des Ausgangsservers
ist und das eingebettete Objekt, das durch die modi-
fizierte URL des eingebetteten Objekts identifiziert
wird, von einem gegebenen der vom Server-Aus-
wahlmechanismus identifizierten Repeaterserver be-
reitgestellt wird,
dadurch gekennzeichnet,
dass der Server-Auswahlmechanismus einen Re-
peaterserver anhand der Netzwerkadresse des an-
fordernden Clients und anhand von Daten identifi-
ziert, die sich auf Netzwerkverbindungs-Kosten be-
ziehen, wobei die genannten Verbindungskosten Da-
ten enthalten, die bestimmt wurden unter Verwen-
dung von Sondendiensten, die Datenpfade im Netz-
werk abfragen, um Messungen zu erhalten, die die
relativen Kosten der Übertragung von Daten von Re-
peaterservern zu anderen Lokationen im Netzwerk
reflektieren.

2. System nach Anspruch 1, in welchem bei ei-
nem Ausfall eines der Repeaterserver (104a ...) ein
anderer Repeaterserver die Rolle eines ausgefalle-
nen Servers übernimmt.

3. System nach Anspruch 1, in welchem der Ser-
ver-Auswahlmechanismus außerdem einen Repea-
terserver in Abhängigkeit von der Auslastung der Re-
peaterserver identifiziert.

4. System nach Anspruch 1, in welchem der Ser-
ver-Auswahlmechanismus eine Netzwerkübersicht
beinhaltet, anhand derer eine von einem Client er-
zeugte Anforderung nach dem eingebetteten Objekt
zielgerichtet versandt werden kann.

5. System nach Anspruch 1, in dem weiter ent-
halten ist:
mindestens ein DNS-Server, um eine Na-
men-zu-Adresse Auflösung von Hostnamen in URLs
von eingebetteten Objekten zur Verfügung zu stellen.

6. Verfahren zum Bereitstellen einer auf einem
Ausgangsserver unterstützten Seite, wobei das Ver-
fahren zur Nutzung eines in einem Computernetz-
werk betriebenen Systems dient und das System fol-
22/30

DE 699 09 839 T3 2009.10.08
gendes beinhaltet:
eine Serie von Repeaterservern (104a ...), die vom
Ausgangsserver (102) verschieden sind und als
Hostsystem für mindestens einige der eingebetteten
Objekte von Webseiten dienen, die normalerweise
vom Ausgangsserver als Host verwaltet werden; und
einen Reflektor (108), in dem enthalten ist:
eine Routine, die bewirkt, dass mindestens eine URL
eines eingebetteten Objekts einer Webseite zu einem
Server in der Serie von Repeaterservern anstatt zum
Ausgangsserver aufgelöst wird; und der Reflektor
weiter enthält:
einen Server-Auswahlmechanismus, der so aufge-
baut und angepasst ist, dass er auf eine bestimmte
Client-Anforderung hin einen geeigneten Repeater-
server aus der Serie von Repeaterservern identifi-
ziert;
wobei der Server-Auswahlmechanismus einen Re-
peaterserver anhand der Netzwerkadresse des an-
fordernden Clients und anhand von Daten identifi-
ziert, die sich auf Netzwerk-Verbindungskosten be-
ziehen, wobei die genannten Verbindungskosten Da-
ten enthalten, die unter Verwendung von Sonden-
diensten bestimmt wurden, die Datenpfade im Netz-
werk abtasten, um Messungen zu erhalten, die rela-
tive Kosten der Übertragung von Daten von Repea-
terservern zu anderen Lokationen im Netzwerk re-
flektieren,
wobei die Seite ein Basisdokument beinhaltet, wel-
chem eingebettete Objekte zugeordnet sind, von de-
nen jedes durch eine URL (Uniform Resource Loca-
tor) identifiziert wird, wobei das Verfahren Folgendes
beinhaltet:
Modifizieren der URL eines eingebetteten Objekts
zur Erzeugung einer modifizierten URL mit einem zu-
sätzlichen neuen Hostnamen, der auf einen Repea-
terserver in der Serie der Repeaterserver verweist,
entsprechend der Identifikation durch den Serveraus-
wahl-Mechanismus;
Bereitstellen der Seite mit der modifizierten URL vom
Reflektor als Reaktion auf eine Anforderung zum Be-
reitstellen der Seite;
Versuch zum Bereitstellen des eingebetteten Objekts
von einem durch den neuen Host-Namen identifizier-
ten Repeaterserver aus;
Abrufen des eingebetteten Objekts durch den Re-
peaterserver vom Ausgangsserver, wenn eine Kopie
des eingebetteten Objekts auf dem Repeaterserver
nicht verfügbar ist.

7. Verfahren nach Anspruch 6, wobei das Modifi-
zieren der URL das Hinzufügen eines neuen Hostna-
mens zur ursprünglichen URL beinhaltet.

8. Verfahren nach Anspruch 7, wobei der ur-
sprüngliche Hostname als Bestandteil der modifizier-
ten URL beibehalten wird.

9. Verfahren nach Anspruch 6, wobei die ur-
sprüngliche URL einen Ausgangsserver-Namen und

einen Pfad beinhaltet, und wobei die modifizierte
URL einen Repeaterserver-Namen beinhaltet.

10. Verfahren nach Anspruch 9, wobei die ur-
sprüngliche URL die Form hat
„http://<server>/<pfad>“,
wobei „<server>“ der Ausgangsservername ist, wo-
bei <pfad> ein Pfad ist, der zu der durch die URL an-
gegebenen Ressource führt, und wobei die modifi-
zierte URL die Form hat
“http://<repeater>/<server>/<pfad>“,
wobei ‘<repeater>“ der Hostname des Repeaterser-
vers ist.

11. Verfahren nach Anspruch 9, wobei die ur-
sprüngliche URL die Form hat
‘http://<server>/<pfad>‘,
wobei ‘<server>“ der Ausgangsserver-Name ist, wo-
bei “<pfad>“ ein Pfad ist, der zu der durch die URL
angegebenen Ressource führt, und wobei die modifi-
zierte URL die Form hat
”http://<repeater>/<server>/<pfad>”,
wobei ‘<repeater>“ ein Hostname einer Serie von Re-
peaterservern ist.

12. Verfahren nach Anspruch 7, wobei
das Modifizieren der URL die Schritte beinhaltet, die
URL für das eingebettete Seitenobjekt so zu modifi-
zieren, dass sie einen Hostnamen enthält, der einem
vom Ausgangsserver bereitgestellten Domainnamen
und Pfad vorangestellt ist;
das Bereitstellen der Seite das Bereitstellen der Seite
mit der modifizierten URL vom Ausgangsserver ge-
genüber dem Browser eines Clients beinhaltet,
das Verfahren weiterhin Folgendes beinhaltet:
Zurücksenden einer IP-Adresse des identifizierten
Repeaterservers an den Browser des Clients, so
dass der Browser in die Lage versetzt wird, einen
Versuch zum Abrufen des Objekts von diesem Re-
peaterserver zu unternehmen.

13. Verfahren nach Anspruch 12, wobei Kopien
des eingebetteten Seitenobjekts auf einer Untermen-
ge der Serie von Repeaterservern gespeichert sind.

14. Verfahren nach Anspruch 6, wobei das Modi-
fizieren der URL des eingebetteten Objekts bewirkt,
dass die Adresse des eingebetteten Objekts auf der
Seite zu einer anderen Adresse als einer Ausgangs-
server-Adresse aufgelöst wird, indem einer vom Aus-
gangsserver bereitgestellten Adresse vorgegebene
Daten hinzugefügt werden, um so eine Alternativa-
dresse zu erzeugen.

15. Verfahren nach Anspruch 14, wobei das
Computernetzwerk das Internet ist und die Adresse
des Objekts eine URL (Uniform Resource Locator)
ist.

16. Verfahren nach Anspruch 15, wobei die Alter-
23/30

DE 699 09 839 T3 2009.10.08
nativadresse gebildet wird, indem die gegebenen Da-
ten einem Teil der vom Ausgangsserver bereitgestell-
ten Adresse vorangestellt werden.

17. Verfahren nach einem oder mehreren der An-
sprüche 14 bis 16, wobei das Auflösen der Alternativ-
adresse den Schritt beinhaltet:
unter Verwendung der Netzwerkadresse eines anfor-
dernden Clients sowie von Daten im Zusammenhang
Internet-Verbindungskosten den Repeaterserver zu
identifizieren.

18. Verfahren nach Anspruch 6, wobei das Ver-
fahren weiterhin das Nachbilden einer Serie von Sei-
tenobjekten über ein Weitverkehrsnetz von Repea-
terservern beinhaltet.

19. Verfahren nach Anspruch 6, wobei das Ver-
fahren weiterhin für jede modifizierte URL eines ein-
gebetteten Objekts das Identifizieren mindestens ei-
nes Repeaterservers beinhaltet, von welchem aus
das eingebettete Objekt abgerufen werden kann.

20. Verfahren nach Anspruch 19, wobei das Iden-
tifizieren das Auflösen einer Anforderung nach einem
eingebetteten Objekt als Funktion der Netzwerkad-
resse eines anfordernden Clients beinhaltet.

21. Verfahren nach Anspruch 19, wobei das Iden-
tifizieren das Auflösen einer Anforderung nach einem
eingebetteten Objekt als Funktion der Netzwerkad-
resse eines anfordernden Clients sowie der dann ak-
tuellen Internet-Verbindungskosten beinhaltet.

22. Verfahren nach Anspruch 6, wobei das Ver-
fahren weiterhin als Reaktion auf eine Anforderung
nach dem eingebetteten Objekt das Auflösen des
Hostnamens zu einer IP-Adresse eines bestimmten
Repeaterservers beinhaltet.

23. Verfahren nach Anspruch 22, wobei das Auf-
lösen des Hostnamens das Identifizieren einer Unter-
menge von Repeaterservern (104a, ...) beinhaltet,
die in der Lage sein können, das eingebettete Objekt
bereitzustellen, sowie das Identifizieren des be-
stimmten Repeaterservers aus der identifizierten Un-
termenge von Repeaterservern.

24. Verfahren nach Anspruch 23, wobei das Iden-
tifizieren des bestimmten Repeaterservers anhand
der Netzwerkadresse der Client-Maschine und der
Internet-Verbindungskosten erfolgt.

25. Verfahren nach Anspruch 6, wobei das Ver-
fahren weiterhin beinhaltet:
Verteilen einer Serie von Seitenobjekten über ein
Netzwerk von Repeaterservern (104a, ...), wobei das
Netzwerk von Repeaterservern als Serie von Repea-
tergruppen organisiert ist,
als Reaktion auf eine Client-Anforderung nach einem

eingebetteten Objekt einer Seite
Auflösen der Client-Anforderung als Funktion einer
Netzwerkadresse des Clients sowie der Internet-Ver-
bindungskosten zum Identifizieren einer gegebenen
Repeatergruppe;
Zurücksenden einer IP-Adresse eines bestimmten
Repeaterservers innerhalb der gegebenen Repeater-
gruppe an den Client.

26. System nach Anspruch 1, in welchem die
Routine zum Modifizieren eine URL so modifiziert,
dass sie einen Hostnamen enthält, der einem Do-
mainnamen und Pfad vorangestellt ist.

27. System nach Anspruch 1, in welchem die
Routine zum Modifizieren der ursprünglichen URL ei-
nen neuen Hostnamen hinzufügt.

Es folgen 6 Blatt Zeichnungen
24/30

DE 699 09 839 T3 2009.10.08
Anhängende Zeichnungen
25/30

DE 699 09 839 T3 2009.10.08
26/30

DE 699 09 839 T3 2009.10.08
27/30

DE 699 09 839 T3 2009.10.08
28/30

DE 699 09 839 T3 2009.10.08
29/30

DE 699 09 839 T3 2009.10.08
30/30

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

