(74) 专利代理机构 广州天河互易知识产权代理事务所（普通合伙）44294

代理人 鲍子玉

(51) Int. Cl.

BO1L 1/00 (2006.01)
G01N 33/15 (2006.01)

(56) 对比文件
CN 102049323 A, 2011.05.11, 全文。
CN 201168607 Y, 2008.12.24, 全文。

(54) 发明名称
一种步入式样品稳定性试验箱

(57) 摘要
本发明属于实验室领域，公开了一种步入式样品稳定性试验箱，包括一个密闭箱体及箱体外附属设备。密闭箱体为步入式箱体，密闭箱体内部设有温湿度控制系统，包含一个加热器和一个加热器。箱体外附属设备分别有一台大功率除湿机，一台小功率除湿机，一台冷却管，电加热器，温湿度传感器及一套处理风均匀分配风管系统，多台分风循环风机等。所有这些功能部件分别与温湿度控制系统连接，并控制开停及过程中的变量输出。箱体外附属设备分别配有电极式加湿器及冷却机组，通过温湿度控制系统中的 PID 调节器，可以准确的调节温度和湿度。本发明的目的是在于提供一种容积大、温湿度调节精度高、温湿度均匀性好，能耗非常低的步入式样品稳定性试验箱。
1. 一种步入式样品稳定性试验箱，其特征在于，包括一个步入式箱体，所述箱体外部设置有一台电极式加湿器以及一台冷水机组；
所述箱体内部分为药品存放区以及回风夹道区；所述回风夹道区分为两个部分，第一部分为风机处理区，第二部分为循环送风区；
所述风机处理区下部进风口处设置有一个冷却盘管；所述风机处理区从下到上依次设置有除湿机、加湿喷气管、电加热管、风处理离心风机以及处理风均匀分配风管系统；
所述循环送风区内设置有回风百叶风口、循环送风离心风机及出风百叶风口；所述回风百叶风口设置在循环送风区的下部，一端与风机处理区下部的冷却盘管相连接，另一端与药品存放区相连通；所述循环送风机的一端与所述出风百叶风口相连接，另一端与所述风机处理区内的处理风均匀分配风管系统相连接；所述出风百叶风口的另一端与药品存放区相连通；
所述电极式加湿器上连接有一个第一电动三通阀，所述第一电动三通阀与所述加湿喷气管相连接；
所述冷水机组上设置有一个第二电动三通阀，所述第二电动三通阀与所述冷却盘管相连接；
所述箱体内还设置有温湿度控制系统，所述温湿度控制系统与所述第一电动三通阀以及第二电动三通阀连接。

2. 根据权利要求1所述的一种步入式样品稳定性试验箱，其特征在于，所述温湿度控制系统内设置有PID调节器。

3. 根据权利要求1所述的一种步入式样品稳定性试验箱，其特征在于，所述风机处理区下部设置有一台大功率一体式除湿机以及一台小功率一体式除湿机。

4. 根据权利要求1所述的一种步入式样品稳定性试验箱，其特征在于，所述循环送风区内设置有至少两个送风百叶口以及与送风百叶口数量相对应的循环送风机，所述送风区内还设置有至少两个回风百叶口。

5. 根据权利要求1所述的一种步入式样品稳定性试验箱，其特征在于，所述温湿度控制系统内还设置有数据记录报警功能模块，与所述温湿度控制系统连接设置有两个温湿度探头，其中一个探头设置在所述箱体顶部靠近所述送风百叶口处，另一个设置在所述箱体内部药品存放区。
一种入式样品稳定性试验箱

技术领域
[0001] 本发明涉及实验箱领域，尤其涉及一种入式样品稳定性试验箱。

背景技术
[0002] 医药企业在药品的有效期内必须观察药品的性质是否改变，也就是说必须做药品性能稳定性实验。稳定性试验的目的是考察原料药或药物制剂在温度、湿度、光线的影响下随时间变化的规律，为药品的生产、包装、贮存、运输条件提供科学依据，同时通过试验建立药品的有效期。

[0003] 按照中国药典的要求，制药企业生产出来的每个批次的药品都必须在企业内部进行留样，并对药品进行稳定性实验考察。随着产品的品种和批次越来越多，目前在使用的入式样品稳定性试验箱越来越不适应生产和经营要求。这些入式样品稳定性试验箱的突出特点如下：

[0004] 1. 每台设备都是成套系统，箱内体积较小，大部分产品容积都不超过 1m³，可以保存的留样药品量较少，如果量大就需要增加设备。

[0005] 2. 每台设备适应的环境范围较大（增加具体数据），而实际应用却不必要这么大的调节范围。比如按照药典要求，长期留样要求为稳定在温度 25±2°C，相对湿度 60%±10% 这个条件。

[0006] 3. 由于运行方式的原因，为了达到准确的温湿度调节精度，每台设备需要频繁启停，导致能耗较大，使用成本太高。

发明内容
[0007] 为了解决上述技术问题，本发明的目的在于提供一种容积大、温湿度处理方式先进、温湿度控制精度高、温湿度均匀性好、能耗非常低的入式样品稳定性恒温恒湿试验箱。

[0008] 本发明的完整技术方案是，一种入式样品稳定性试验箱，包括一个入式箱体，所述箱体内部为药品存放区以及回风夹袋区；所述回风夹袋区分为两个部分，第一部分为风处理区，第二部分为循环送风区；

[0009] 所述风处理区下部进风口处设置有一个冷却盘管；所述风处理区从下到上依次设置有除湿机，加湿喷气管，电加热管，风处理离心风机以及处理风均匀分配风管系统；

[0010] 所述循环送风区内设置有回风百叶风口、循环送风离心风机及出风百叶风口；所述回风百叶风口设置在循环送风区的下部，一端与风处理区下部的冷却盘管相连接，另一端与药品存放区相连通；所述循环送风机的一端与所述出风百叶风口相连接，另一端与所述风处理区内的处理风均匀分配分管系统相连接；所述出风百叶风口的另一端与药品存放区相连通；

[0011] 所述电加湿器上连接有一个第一电动三通阀，所述第一电动三通阀与所述加
湿喷气管连接；
[0013]所述冷水机组上设置有一个第二电动三通阀，所述第二电动三通阀与所述冷却盘管相连接；
[0014]所述箱体内还设置有温湿度控制系统，所述温湿度控制系统与所述第一电动三通阀及第二电动三通阀连接。
[0015]所述温湿度控制系统内设置有PID调节器。
[0016]所述风处理区下部设置有一台大功率一体式除湿机以及一台小功率一体式除湿机。
[0017]所述循环送风区内设置有两个送风百叶口以及与送风百叶口相对应的循环送风机，所述送风区内还设置有至少两个回风百叶口。
[0018]所述湿温度控制系统内还设置有数据记录报警功能模块，与所述湿温度控制系统连接设置有两个湿温度探头，其中一个探头设置在所述箱体顶部靠近所述送风百叶口处，另一个设置在所述箱体内药品存放区。
[0019]由上可见，本发明与现有技术相比有如下有益效果；
[0020]本发明一种步入式样品稳定性试验箱，箱体由原来的箱式改为步入式，解决了箱式留样环境容量小的问题；本发明中加湿机、冷水机组与风处理区之间均设置有一个电动三通阀，电三通阀与湿温度控制系统相连接，湿温度控制系统内设置有PID调节器，使的温湿度调节精度很高，降低了能耗；同时风处理区与循环送风区出风口的连接处设置有处理风均匀分配风管系统及多台循环送风离心风机，保证箱体内各点空气温度在相同时间点上非常均匀。

附图说明
[0021]此处所说明的附图用来提供对本发明的进一步理解，构成本申请的一部分，并不构成对本发明的不当限定，在附图中；
[0022]图1为本发明整体结构示意图；
[0023]图2为本发明风处理区结构示意图；
[0024]图3为本发明正面结构示意图。

具体实施方式
[0025]下面将结合附图以及具体实施例来详细说明本发明，在此本发明的示性性实施例以及说明用来解释本发明，但并不作为对本发明的限定。
[0026]实施例1：
[0027]本实施例一种步入式样品稳定性试验箱，包括一个步入式密闭保温的彩钢板箱体1，箱体1外部设置有一台电极式加湿器2以及一台冷水机组3；箱体1内部为药品存放区以及回风夹道区；回风夹道区分为两个部分，第一部分为风处理区，第二部分为循环送风区；风处理区下部进风口处设置有一个冷却盘管4；风处理区从下到上依次设置有一个大功率一体式除湿机5、一台小功率一体式除湿机6、加湿喷气管7、电加热管8、风处理离心风机9以及处理风均匀分配风管系统10；循环送风区内设置有回风百叶风口11、循环送风离心风机12及出风百叶风口13；回风百叶风口11设置在循环送风区的下部，一端与风处理
区下部的冷却盘管 4 相连接，另一端与药品存放区相连通；循环送风离心机 12 的一端与出
风百叶风口 13 相连接，另一端与风处理区内的处理风均匀分配分管系统 10 相连接；出风百
叶风口 13 的另一端与药品存放区相连通；电极式加湿器 2 上连接有一个第一电动三通阀，
第一电动三通阀通过一根加湿器软管 14 与加湿喷气管 7 连接；冷水机组 3 内设置有冷冻
水箱 15 以及循环水泵 16，冷水机组 3 的出水口处设置有一个第二电动三通阀，第二电动三
通阀与冷却盘管 4 进水口相连，冷水盘管 4 出水口与电动三通阀泄流口连接后就返回冷水
机组与冷水机组 3 进水口连接；箱体 1 内还设置有湿湿度控制系统，湿湿度控制系统包括
有 PID 调节器、数据记录报警功能模块以及两个湿度检测头；湿湿度控制系统与第一电动
三通阀以及第二电动三通阀连接；两个探头其中一个设置在箱体顶部靠近送风百叶口处，
另一个设置在箱体内药品存放区。

[0028] 加湿方式：
[0029] 加湿过程中为保证加湿量快速准确，同时切断湿源对箱体内空气湿度的影响，所述
箱体外配置的电极式加湿器在对箱体内空气加湿过程是通过所述箱体内湿湿度控制系统
PID 调节电极式加湿器内的两极之间的电压，将水蒸气快速准确地通过软管、电动三通阀及
箱体内加湿喷气管喷入箱体内处理风中，当箱内湿度达到要求值时，电极式加湿器停止工
作同时电动三通阀动作，关闭箱体两侧门，打开箱体两侧门，将多余的水蒸发至室外，这
个动作完成后也切断了电极式加湿器内水源与箱体内加湿喷气管的连接，可避免电极式加湿
器内水源对箱体内空气湿度的影响。

[0030] 降温方式：
[0031] 所述箱体外配置冷水机组，设定的冷冻水温度大于箱内规定温度空气的露点温
度，只有在这种条件下，当对箱体内空气降温时，当箱内空气降温时，当箱体内空气降温时，
只能对箱体内空气降温而冷却盘管不会出现结露除湿的现象，控制系统启动电极式加湿器重新
加湿，通水量由箱体内湿湿度控制系统通过电动三通阀 PID 调节，实现对箱体内空气温度
的精确控制。

[0032] 除湿方式：
[0033] 除湿过程中为保证不对箱体内稳定的空气温度状态造成波动影响，同时尽量消除
除湿机蒸发器上残余水分在除湿机停止除湿后重新蒸发回箱体内造成除湿效率降低的现
象，所述箱体内配置一台大功率除湿机和一台小功率除湿机，采用的是氟利昂制冷除湿的
方式，其蒸发器和冷凝器背靠背组合成一体结构，当除湿机对箱体内空气除湿时，箱内的空
气从低温的氟利昂蒸发器一侧进入，空气中的水分被冷凝在蒸发器上并滴入接水盘排至箱
体外而除去水分并被冷却、降温的空气马上进入氟利昂的高温冷凝器，重新加热到室温，避
免了箱体内空气温度因除湿而被降低，保持箱体内空气温度的稳定。低温的氟利昂蒸发器
留有残余的水分无法排除箱体外，当除湿机停止工作时，氟利昂蒸发器温度会逐渐上升至
箱内温度，而在升温过程中，已被冷凝的水无法排至箱体外，残余水分会很快蒸发到箱体
内空气中，降低了除湿精度，也消耗了除湿效率。氟利昂蒸发器的表面积越小，残余的水分
就越多，对除湿精度的影响就越大，而这部分水是除湿机永远都无法除去的。采用一台大功
率和一台小功率的除湿机，分段除湿即可解决此问题，即可快速除湿又可利用小功率除湿
机除去大功率除湿机上的残余水分。

[0034] 箱内湿湿度的均匀性：
[0035] 为保证箱内各点空气湿温度在同一时间点上非常均匀，所述箱体内处理风均匀分配风管系统及多台循环风机起着决定性的作用。箱体内回风夹道空间被分割成两个相对独立的部分，其一为空气处理段，其二为混合送风段。在空气处理段中安装有所述箱体内加湿喷气管、大小功率除湿机、冷却盘管、电加热管、处理离心风机和分配风管系统。工作时通过处理离心风机吸入箱体内部分空气加以升温、降温、加湿、除湿处理，被处理后的空气由处理风机通过分配风管系统均匀、稳定的送到混合送风段各个循环风机的入口处，在与其他箱体内空气混合后进入箱体内各点，由于每台循环风机供电相同的处理空气，所以送至各点的湿温度均匀性非常好。

[0036] 由上可见，本发明与现有技术相比有如下有益效果：

[0037] 箱体由原来的箱体改为步入式，解决了箱式中药存放空间小的问题；本发明改善了箱内空气温湿度均匀性；现有步入式恒温恒湿实验室采用回风夹道内整体处理循环风的温湿度。冷却盘管、电加热管、电加热加湿水箱、除湿盘管，全部安装在风夹内，进行分层分布，长度过长，体积过大，且各处理单元本身的温湿度不均匀，当多台均匀布置的循环送风机吸入送出时会形成无序运动，几个相对独立的气流回旋空间而造成整体箱内空气不能有效的充分混合，影响了箱内温湿度的均匀性。本发明循环风机、回风百叶口风及出风百叶口风在回风夹道的布置与现有技术大体相同，但在回风夹道中分隔了一个密闭的处理风段，加热、加湿、冷却、除湿各功能部件均安装在此，以将箱体内一部分吸入处理段内经过加热、加湿、冷却、除湿处理后，由处理离心风机通过处理风均匀分配风管系统稳定均匀地送到混合送风段各循环风机的入口处，再与其他箱体内空气混合进入箱体内各点，由于多台循环风机供相同的处理后的空气，所以送出的湿温度均匀性非常好。

[0038] 本发明与现有技术相比在空气冷却、加湿、除湿的处理方面具有投资少、处理精度高、能耗低的优点。

[0039] 冷却方式：

[0040] 目前技术采用不能 PID 调节的氟利昂直接蒸发式冷却盘管来降温，由于氟利昂直接蒸发温度很低，蒸发器表面温度通常在 10℃以下，比箱内空气露点温度低，因此制冷系统在对空气降温时却连带把处于合格范围内的水分也除掉了一些，造成温度合格而湿度又偏低，只能再次启动加湿功能去补充水分提高湿度。同时由于不能 PID 调节降温，因蒸发器温度太低，停机后仍有很大依恋于继续降温导致空气温度接近不合格区，系统又启动加热功能，增加了能耗。

[0041] 而本发明采用冷冻水降温，首先确定箱内空气要求的恒温恒湿点相对应的空气露点温度值，然后将所述箱体外配置的冷水机组的冷冻水温度设定在低于该露点温度值 1℃~2℃。需要降温时控制系统只需要通过 PID 调节电动三通阀控制冷冻水的水量即可快速准确的将温度降到控制范围内，在接近温度设定值上限过程中通入的冷冻水会逐渐减少，冷却盘管整体温度逐渐上升接近箱体内空气的温度，到达温度设定值时电动三通阀关闭，此时冷却盘管与箱内温度基本一致，该降温方式既不影响湿度也排除了降温惯性的影响。

[0042] 加湿方式：

[0043] 目前技术采用的是在大小箱内安装电加热管，通过加热管把水加热到喷出水蒸汽来加湿空气，该方式是不可 PID 调节的。当需要加湿时控制系统接通过加热管全功率
加热水温，水温升至可喷出水蒸气时，空气湿度开始上升，到要求值时，控制系统关闭电加热管。此时水温仍然很高，惯性作用仍会有蒸汽带入到箱内，导致湿度超标，控制系统又只能启动制冷除湿，增加了能耗。

【0044】而本发明采用可PID调节的电极式加湿器，加湿器出气口通过软管和一电磁三通阀与箱体内加湿喷气管相连，需要加湿时，温湿度控制系统启动电极式加湿器同时打开三通阀通往箱内一侧，PID调节电极式加湿器水箱内两电极之间的电压，将水蒸气快速准确地通过软管、电动三通阀及箱腔内加湿喷气管喷入箱腔内处理风中，当箱内湿度达到要求值时，电极式加湿器停止工作同时电动三通阀动作，关闭通向箱内一侧，打开旁通，将多余的水蒸气排至室外，这个动作切断了电极式加湿器内水源与箱内加湿喷气管的连接，可避免电极式加湿器内水源对箱体内空气湿度的影响。

【0045】除湿方式：
【0046】目前采用的是用一台氟利昂蒸发器冷凝除湿，当控制系统命令除湿时，制冷压缩机启动，低温氟利昂进入蒸发器开始降温除湿，箱内空气被降温除湿因电加热管停止工作以维持空气温度在一个合格区间内，湿度达到设定值时，停止制冷，但电加热管仍要开启直至蒸发器整体温度升高至箱内温度不再下降，制冷除湿一个缺陷是蒸发器表面永远不会残留很多水分，而这些水分不能形成大的水滴，流入接水盘，流出箱体外，所以当蒸发器表面温度回升时，又重新蒸发到箱内空气中，提高了箱内空气的湿度，一方面降低了除湿效率（降低50%的除湿效率），另一方面又降低了湿度的控制精度，增加了能耗。

【0047】本发明在除湿过程中为保证不对箱体内稳定的空气温度状态造成波动影响，同时尽量减少除湿机蒸发器上残余水分在除湿机停止除湿后重新蒸发回箱体内造成除湿效率降低的现象，所述箱体内配置一台大功率除湿机和一台小功率除湿机，采用的是氟利昂制冷除湿的方式，其蒸发器和冷凝器背靠背组合成一体机型，当除湿机对箱体内空气除湿时，箱内的空气从低温的氟利昂蒸发器一侧进入，空气中的水分被冷凝在蒸发器上并滴入接水盘排至箱体外，而空气在除去水分同时也被冷却，被降温的空气马上进入安装于同一密闭机壳内的氟利昂高温冷凝器，重新加热到室温，避免了箱体内空气温度因除湿而被降低，保持了箱体内空气温度的稳定。当空气湿度降到设定值时，大功率除湿机停机，小功率除湿机继续运行，用于去除大功率除湿机蒸发器上及接水盘上的残余水分，达到设定值时小功率除湿机停止工作，因小功率蒸发器表面积小，残余水分也少，对箱内空气湿度的影响就很有限，基本上无干扰。

【0048】步入式药品稳定性恒温恒湿试验箱内摆放的药品自身均要密封包装，所以它本身不会产生冷热湿负荷，理论上讲除箱体密封泄漏问题，人员进出及新药品放入这些干扰因素，箱内空气在经过第一次的降温、升温、加湿、除湿处理后，空气湿度将保持在一个稳定水平上永远不需要再次加湿或者除湿。而加热只需抵消箱体本身与外界空气热传导的冷负荷，降温只需抵消箱体本身与外界空气热传导及循环风机组产生的热负荷。

【0049】目前技术所采用的升温、降温、加湿、除湿的处理方式基本上是每一次动作是为弥补上次动作所产生的新的温湿不平衡，是在一种能量消耗的动态模式中达到温湿度的平衡。

【0050】例如：箱内空气温度高而湿度合格
制冷降温→温度合格，同时开启加热抵消制冷惯性→造成温度到下限→加湿→湿度合格→加湿惯性造成湿度接近上限→除湿→湿度合格，同时开启加热抵消冷负荷→停除湿→蒸发器温度回升，残余水分及接水盘内水分重新蒸发到空气中→造成湿度接近上限→除湿→……循环往复。

本发明所采用的升温、降温、加湿、除湿的处理方式完全消除了现有技术的上述缺陷。

例如：
1. 温度接近上限而湿度合格 启动降温→空气温度合格→停止降温。
2. 温度接近上限而温度合格 启动除湿→空气温度合格→停大功率除湿机→停小功率除湿机。
3. 温度接近下限而温度合格 启动加湿→空气湿度合格→停止加湿。
4. 温度接近下限而湿度合格 启动加热→空气温度合格→停止加热。

各功能处理既简单又无相互干扰，控制精度高，能耗非常低。

以上对本发明实施例所提供的技术方案进行了详细介绍，本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述，以上实施例的说明只适用于帮助理解本发明实施例的原理；同时，对于本领域的一般技术人员，依据本发明实施例，在具体实施方式以及应用范围上均会有改变之处，综上所述，本说明书内容不应理解为对本发明的限制。