(54) 发明名称
单核心电压裕度

(57) 摘要

核心电压裕度装置的示例性实施例包括设置在多核处理器上的多个电压偏移块，每个电压偏移块具有耦合以接收供电电压电平的电压输入端，耦合以接收偏移码的控制输入端，以及耦合到多核处理器中的相应核心处理器的电压输出端，每个电压偏移块被配置为按照电压偏移值来偏移供电电压电平，所述电压偏移值由在电压偏移块的控制输入端接收的偏移码来编码；以及电压偏移寄存器，其具有同样的多个控制输出端，每个控制输出端耦合到电压偏移块的对应的控制输入端，其中所述电压偏移寄存器被配置成保存用于每个电压偏移块的偏移码，并在耦合到所选择的电压偏移块的控制输出端提供偏移码，所述偏移码对所选择的电压偏移块的电压偏移值进行编程。
1. 一种用于降低由多核处理器消耗的功率的装置，包括：

设置在所述多核处理器上的多个电压偏移块，每个电压偏移块具有接收供给电压电平的电压输入端、接收偏移码的控制输入端，以及耦合到所述多核处理器中的相应的处理器核心的电压输出端，其中每个电压偏移块被配置为按照电压偏移值来偏移所述供给电压电平，所述电压偏移值由在所述电压偏移块的所述控制输入端接收的偏移码来编程；

电压偏移寄存器，其具有多个控制输出端，每个控制输出端耦合到电压偏移块的对应控制输入端，其中所述电压偏移寄存器被配置成保存用于每个电压偏移块的偏移码，并在耦合到所选择的电压偏移块的控制输出端提供所述偏移码，所述偏移码对所选择的电压偏移块的所述电压偏移值进行编程；以及

电压裕度指示寄存器，其被配置为向操作系统提供电压裕度的查询，而不向操作系统提供与所述多核处理器的每个核心相关的电压裕度的实际值，其中所述电压裕度的查询基于与所述电压偏移寄存器相关的所述电压偏移值，其中所述操作系统使用所述电压裕度的查询作为参数来确定是否所述多核处理器的核心停车或增加所述多核处理器的核心。

2. 根据权利要求1所述的装置，其中第一处理器核心接收频率F_{核心}(1)，并且其中所述第一处理器核心具有在第一减小电压电平处的用于所述频率F_{核心}(1)的稳定操作点，所述第一减小电压电平等于所述供给电压电平和第一电压偏移值之间的差，并且其中，保存在所述电压偏移寄存器中的第一偏移码对耦合到所述第一处理器核心的第一电压偏移块进行编程，以按照所述第一电压偏移值来偏移所述供给电压电平，从而输出所述第一减小电压电平。

3. 根据权利要求1所述的装置，其中第一处理器核心接收第一频率F_{核心}(1)，其中，所述第一处理器核心具有在第一减小电压电平处的用于所述第一频率F_{核心}(1)的稳定操作点，所述第一减小电压电平等于所述供给电压电平和第一电压偏移值之间的差，并且其中，保存在所述电压偏移寄存器中的第一偏移码对耦合到所述第一处理器核心的第一电压偏移块进行编程，以按照所述第一电压偏移值来偏移所述供给电压电平，从而输出所述第一减小电压电平，并且其中，第二处理器核心接收第二频率F_{核心}(2)，其中所述第二处理器核心具有在第二减大电压电平处的用于所述第二频率F_{核心}(2)的稳定操作点，所述第二减大电压电平等于所述供给电压电平与第二电压偏移值之和，并且其中保存在所述电压偏移寄存器中的第二偏移码对耦合到所述第二处理器核心的第二电压偏移块进行编程，以按照所述第二电压偏移值来偏移所述供给电压电平，从而输出所述第二减大电压电平。

4. 根据权利要求1所述的装置，还包括：

设置在所述多核处理器上的集成稳压器，所述集成稳压器输出所述供给电压电平。

5. 一种用于降低由多核处理器消耗的功率的方法，包括：

确定第一电压偏移值，所述第一电压偏移值可被应用于公共供给电压电平，以将所述公共供给电压电平减小到第一减小供给电压电平，所述第一减小供给电压电平不会对第一处理器核心的操作稳定性造成不利影响，所述公共供给电压电平被提供给所述多核处理器中的所有处理器核心；

按照所述第一电压偏移值来偏移所述公共供给电压电平，以形成所述第一减小供给电压电平；

将所述第一减小供给电压电平提供给所述第一处理器核心，以减小功耗；以及
权利要求书

权利要求5所述的方法，还包括：
确定第二电压偏移值，所述第二电压偏移值可被应用于所述公共供电电压电平以将所述公共供电电压电平减小到第二减小供电电压电平，所述第二减小供电电压电平不会对所述多核处理器中的第二处理器核心的操作稳定性造成不利影响。

权利要求6所述的方法，还包括：
按照所述第二电压偏移值来偏移所述公共供电电压电平，以形成所述第二减小供电电压电平。

权利要求7所述的方法，还包括：
将所述第二减小供电电压电平提供给所述第二处理器核心，以减小功耗。

权利要求8所述的方法，还包括：
向所述操作系统提供所述第一减小供电电压电平或所述第二减小供电电压电平中哪一个更小的指示，使得所述操作系统可以调度线程，以消耗更少功率的处理器核心上执行。

权利要求10所述的方法，还包括：
用于确定可被应用于公共供电电压电平的第一电压偏移值以将所述公共供电电压电平减小到减小供电电压电平的单元，所述减小供电电压电平不会对第一处理器核心的操作稳定性造成不利影响，所述公共供电电压电平被提供给所述多核处理器中的所有处理器核心；
用于按照所述第一电压偏移值来偏移所述公共供电电压电平以形成第一减小供电电压电平的单元；
用于将所述第一减小供电电压电平提供给所述第一处理器核心以减小功耗的单元；以及
用于读取电压裕度提示寄存器以向操作系统提供电压裕度的排序，而不向操作系统提供与所述多核处理器的每个核心相关联的电压裕度的实际值的单元，其中所述电压裕度的排序基于与电压偏移寄存器相关联的电压偏移值，所述电压偏移寄存器被配置成保存用于在所述多核处理器上设置的每个电压偏移块的偏移值，其中所述操作系统使用所述电压裕度的排序作为参数来确定使所述多核处理器的核心停车或增加所述多核处理器的核心。

权利要求11所述的系统，还包括：
用于确定可被应用于所述公共供电电压电平的第二电压偏移值以将所述公共供电电压电平减小到第二减小供电电压电平的单元，所述第二减小供电电压电平不会对所述多核处理器中的第二处理器核心的操作稳定性造成不利影响。

权利要求12所述的系统，还包括：
用于按照所述第二电压偏移值来偏移所述公共供电电压电平以形成所述第二减小供电电压电平的单元。
13. 根据权利要求12所述的系统，还包括：
用于将所述第二减小供给电压电平提供给所述第二处理器核心以减小功耗的单元。
14. 根据权利要求13所述的系统，还包括：
用于向所述系统第二减小供给电压电平或所述第二减小供给电压电平中哪一个更小的指示，以使得所述系统能够调整线程以在消耗更多功率的处理器核心上执行的单元。
15. 一种用于减小由多核处理器消耗的功率的系统，包括：
芯片组；以及
偶合到所述芯片组的所述多核处理器，所述多核处理器包括电压偏移块，所述电压偏移块被配置为将提供给所述多核处理器中的每个处理器核心的电压电平偏移，以减小功耗，
其中，所述多核处理器包括：
设置在所述多核处理器上的多个电压偏移块，每个电压偏移块具有接收供给电压电平的电压输入端、接收偏移码的控制输入端，以及偶合到所述核处理器中的相应的处理器核心的电压输出端，每一个电压偏移块被配置为按照电压偏移量来偏移所述供给电压电平，所述电压偏移量由在所述电压偏移块的所述控制输入端接收的偏移码来编程；
具有多个控制输出端的电压偏移寄存器，每个所述控制输出端偶合到所述电压偏移块的对应的控制输入端，其中所述电压偏移寄存器被配置成保存用于每个电压偏移块的偏移码，并在偶合到所述选择的电压偏移块的控制输出端处提供所述偏移码，所述偏移码对所选中的电压偏移块的电压偏移值进行编程；以及
电压裕度提示寄存器，其被配置为向操作系统提供电压裕度的排序，而不向操作系统提供与所述多核处理器的核心相关的电压裕度的实际值，其中所述电压裕度的排序基于与所述电压偏移寄存器相关的所述电压偏移值，其中所述操作系统使用所述电压裕度的排序作为参数来确定使所述多核处理器的核心停机或增加所述多核处理器的核心。
16. 根据权利要求15的系统，其中第一处理器核心接收频率F_核心(1)，并且其中，所述第一处理器核心具有在第一减小电压电平处的用于所述频率F_核心(1)的稳定操作点，所述第一减小电压电平等于所述供给电压电平和第一电压偏移值之间的差，并且其中，保存在所述电压偏移寄存器中的第一偏移码对偶合到所述第一处理器核心的第一电压偏移块进行编程，以按照所述第一电压偏移值来偏移所述供给电压电平，从而输出所述第一减小电压电平。
17. 根据权利要求15的系统，其中第一处理器核心接收第一频率F_核心(1)，其中所述第一处理器核心具有在第一减小电压电平处的用于所述第一频率F_核心(1)的稳定操作点，所述第一减小电压电平等于所述供给电压电平和第一电压偏移值之间的差，并且其中，保存在所述电压偏移寄存器中的第一偏移码对偶合到所述第一处理器核心的第一电压偏移块进行编程，以按照所述第一电压偏移值来偏移所述供给电压电平，从而输出所述第一减小电压电平，并且其中第二处理器核心接收第二频率F_核心(2)，其中所述第二处理器核心具有在第一减大电压电平处的用于所述第二频率F_核心(2)的稳定操作点，所述第一减大电压电平等于所述供给电压电平与第二电压偏移值之和，并且其中保存在所述电压偏移寄存器中的第二偏移码对偶合到所述第二处理器核心的第二电压偏移块进行编程，以按照
所述第二电压偏移值来偏移所述供给电压电平，从而输出所述第一增大电压电平。

18. 根据权利要求15所述的系统，还包括：

设置在所述多核处理器上的集成稳压器，所述集成稳压器输出所述供给电压电平。
单核心电压裕度

技术领域
[0001] 本发明总体上涉及一种用于减小由多核处理器消耗的功率的装置、方法、以及系统。

背景技术
[0002] 下面描述的示例实施例一般涉及对于多核处理器的功率节省技术。
[0003] 采用高端处理器的服务器群可能存在对功率和冷却资源的大量需求。服务器系统的控制设施监控功耗，并在动态模式下在不同的性能状态之间切换处理器以节约功耗。
[0004] 此外，移动设备通常是电池供电的，并且需要复杂的功率控制技术以延长电池寿命。
[0005] 软件技术，如微软*操作系统使用的“核心停车 (parking)”，将处理合并到尽可能最少的处理器核心，并暂停非活动处理器核心，从而减少多核处理器消耗的功率。
[0006] 在现有的多核处理器中，电压源和多个核心被集成到单个或多个集成电路 (ICs) 上。独立的核心电压 (VCC) 平面被实现用于多个核心中每一个，并且相同的电压被提供给每个电压平面。

发明内容
[0007] 根据本发明的一个实施例，提供了一种用于减小由多核处理器消耗的功率的装置，包括：设置在所述多核处理器上的多个电压偏移块，每个电压偏移块具有接收供给电压电平的电压输入端、接收偏移码的控制输入端、以及耦合到所述多核处理器中的相应的处理器核心的电压输出端，其中每个电压偏移块被配置为按照电压偏移值来偏移所述供给电压电平，所述电压偏移值是由所述电压偏移块的所述控制输入端接收的偏移码来编程；电压偏移寄存器，其具有多个控制输出端，每个控制输出端耦合到电压偏移块的对应控制输入端，其中所述电压偏移寄存器被配置成保存用于每个电压偏移块的偏移码，并在耦合到所选择的电压偏移块的控制输出端提供所述偏移码，所述偏移码对所选择的电压偏移块的所述电压偏移值进行编程；以及电压裕度提示寄存器，其被配置为向操作系统提供电压裕度的排序，而不向操作系统提供与所述多核处理器的每个核心相关的电压裕度的实际值，其中所述电压裕度的排序基于与所述电压偏移寄存器相关联的所述电压偏移值，其中所述操作系统使用所述电压裕度的排序作为参数来确定所述多核处理器的核心停车或增加所述多核处理器的核心。
[0008] 根据本发明的一个实施例，提供了一种用于减小由多核处理器消耗的功率的方法，包括：确定第一电压偏移值，所述第一电压偏移值可被应用于公共供给电压电平以将所述公共供给电压电平减小到第一减小供给电压电平，所述第一减小供给电压电平不会对第一处理器核心的操作稳定性造成不利影响；所述公共供给电压电平被提供给所述多核处理器中的所有处理器核心；按照所述第一电压偏移值来偏移所述公共供给电压电平，以形成所述第一减小供给电压电平；将所述第一减小供给电压电平提供给所述第一处理器核心，
以减小功耗；以及读取电压裕度提示寄存器以向操作系统提供电压裕度的排序，而不同操作系统提供与所述多核处理器的每个核心相关的电压裕度的实际值，其中所述电压裕度的排序基于与电压偏移寄存器相关的偏移值，所述电压偏移寄存器被配置为保存用于在所述多核处理器上设置的每个电压偏移块的偏移码，其中所述操作系统使用所述电压裕度的排序作为参数来确定使所述多核处理器的核心停车或增加所述多核处理器的核心。

【0009】根据本发明的一个实施例，提供了一种用于减小由多核处理器消耗的功率的系统，包括：用于确定可被应用于公共供给电压电平的第一电压偏移值以将所述公共供给电压电平减小到减小供给电压电平的单元，所述减小供给电压电平不会对第一处理器核心的操作稳定性造成不利影响，所述公共供给电压电平被提供给所述多核处理器中的所有处理器核心；用于按照所述第一电压偏移值来偏移所述公共供给电压电平以形成第一减小供给电压电平的单元；用于将所述第一减小供给电压电平向所述第一处理器核心以减小功耗的单元；以及用于读取电压裕度提示寄存器以向操作系统提供电压裕度的排序，而不向操作系统提供与所述多核处理器的每个核心相关的电压裕度的实际值的单元，其中所述电压裕度的排序基于与电压偏移寄存器相关的偏移值，所述电压偏移寄存器被配置为保存用于在所述多核处理器上设置的每个电压偏移块的偏移码，其中所述操作系统使用所述电压裕度的排序作为参数来确定使所述多核处理器的核心停车或增加所述多核处理器的核心。

【0010】根据本发明的一个实施例，提供了一种用于减小由多核处理器消耗的功率的系统，包括：芯片组；以及耦合到所述芯片组的所述多核处理器，所述多核处理器包括电压偏移块，所述电压偏移块被配置为将提供给所述多核处理器中的每个处理器核心的电压电平偏移，以减小功耗，其中，所述多核处理器包括：设置在所述多核处理器上的多个电压偏移块，每个电压偏移块具有接收供给电压电平的电压输入端、接收偏移码的控制输入端，以及耦合到所述多核处理器中的相应的处理器核心的电压输出端，每一个电压偏移块被配置为按照电压偏移值来偏移所述供给电压电平，所述电压偏移值由在所述电压偏移块的所述控制输入端接收的偏移码来编程；具有多个控制输出端的电压偏移寄存器，每个所述控制输出端耦合到所述电压偏移块的对应的控制输入端，其中所述电压偏移寄存器被配置为保存用于每个电压偏移块的偏移码，并在耦合到所选择的电压偏移块的控制输出端提供所述偏移码，所述偏移码对所选择的电压偏移块的电压偏移值进行编程；以及电压裕度提示寄存器，其被配置为向操作系统提供电压裕度的排序，而不向操作系统提供与所述多核处理器的每个核心相关的电压裕度的实际值，其中所述电压裕度的排序基于与所述电压偏移寄存器相关的所述电压偏移值，其中所述操作系统使用所述电压裕度的排序作为参数来确定使所述多核处理器的核心停车或增加所述多核处理器的核心。

附图说明
【0011】图1是示例性实施例的框图。
【0012】图2是示出示例性裕度软件例程的操作的流程图。
【0013】图3是曲线图，示出了应用于处理器核心的处理状态的偏移量的示例。
【0014】图4是另一示例性实施例的框图。
【0015】图5是包括处理器的系统的框图。
具体实施方式
[0016] 现在将详细地参考有关发明的各种实施例。这些实施例的示例示于附图中。而本发明将结合这些实施例来描述，应当理解的是，它不意在将本发明限制于任何实施例。相反，旨在覆盖可以被包括在在所附权利要求所定义的本发明的精神和范围内的替代，修改和等同物。在下面的描述中，阐述许多具体细节，以便彻底理解各种实施例。然而，本发明可以在没有一些或全部具体细节的情况下实施。在其它情况下，为了不会不必要的混淆本发明，众所周知的处理操作未被详细描述。另外，短语“示例性实施例”在说明书中不同地方的每次出现不一定指代相同的示例性实施例。
[0017] 电压裕度是一个测试在供给电压的不同电平下的处理器的鲁棒性的过程。通常，制造商指定供给电压的最佳电平。然而，在现实中，这一电压电平可能会因制造公差和其它因素而改变。电压裕度需要改变供给电压并监控在供给电压的不同电平下的处理器性能。
[0018] 如果该核心处理器的裕度信息表示该核心处理器的功能在较低（或较高）的供给电压电平时是稳定的，则示例性实施例允许使用有关多核处理器中每个核心处理器的电压裕度信息，以将一个或多个核心处理器的供给电压偏移到该较低（或较高）的电平。
[0019] 图1示出在集成电路中实现的多核处理器的示例性实施例，该集成电路包括用于基于电压裕度信息来偏移供给每个核心处理器的电压的功能块。
[0020] 在图1中，多核处理器10包括集成的电源12，其具有耦合到一组电压偏移块14 (0)–14 (N) 的电压输入端的电压输出端，其中，N是正整数，并且每个偏移块具有耦合以接收VCORE电压电平的电压输入端。每个电压偏移块14 (0)–14 (N) 的电压输出端被耦合到对应的处理器核心16 (0)–16 (N) 的电压输入端。在每个核心的频率输入端提供单个外部提供的时钟频率。
[0021] 图1示出电压偏移块的电压输出端和核心处理器的电压输入端之间的简单连接。在多核处理器的某些实施中，单独的电压平面被提供给每个核心，并且电压偏移块的输出端将被耦合到偏移处理器对应的电压平面。
[0022] 多核处理器10还包括可编程电压偏移寄存器18和0S可见提示寄存器20，该可编程电压偏移寄存器18具有N个输出端，且每个输出端耦合到对应的电压偏移块14 (0)–14 (N) 的控制输入端。
[0023] 在一个实施例中，可编程电压偏移寄存器存储偏移码，其为电压偏移块编程特定的电压偏移值。这些码由多核处理器的硬件使用，并被实现为当前应用程序的受让人制造的处理器所采用的电压识别信号（VID），以编制电源中的电压电平。例如，电压偏移块可以被实现为接收二进制输入来影响二进制粒度的偏移电平的开关稳压器。将在下文详细描述用于设定和设定偏移码的技术。
[0024] 在示例性实施例中，电压的偏移电压的值可以被定义为VCORE的少数百分比或特定的电压电平。用于特定的电压偏移块的偏移码被存储在电压偏移寄存器中，并控制输出的电压偏移量以具有由该偏移码编码的值。
[0025] 图2是流程图，示出了由核心电压裕度软件执行以确定每个核心处理器的电压偏移的步骤。
[0026] 在处理步骤200中，启动了用于特定核心，例如核心(n)的电压裕度测试，并且在处
理步骤202中，电压偏移量被设定为0伏，并且VCORE被施加到核心(n)。

【0027】在处理步骤204中，提供超频看门狗定时器(OC WDT)。因为如果处理器核心在特定应用的电压偏移量时变得不稳定，软件应用程序可能会暂停，所以需要利用看门狗定时器。该OC WDT最初被提供在处理步骤204中，并在测试运行时重新提供。如果软件应用程序暂停，那么OC WDT到期并产生复位，从而使整个系统默认进行复位。在开机时，软件应用程序将在它离开的地方重新启动，并继续下一个核心。

【0028】在处理步骤206中，核心(n)运行在第一处理状态(P1)下，并且所有其它核心空闲和关闭。

【0029】处理步骤208-216形成一个循环，其中偏移量被增加了指定的增量并且Core(n)的稳定性被测试。在某时刻，电压偏移量将超过核心(n)的电压裕度，并且处理步骤214将确定核心(n)不再稳定。

【0030】该实用程序的实用程序是前进到处理步骤218，其中电压偏移被重新设定为0，并且该实用程序在处理步骤220中退出。

【0031】核心电压裕度软件实用程序仅需要运行一次，以确定在多核处理器中的每个单独核心的裕度。由于在特定的核心处理器的电压超出操作点时出现了暂停，整个裕度处理将需要多次重启。一旦所有的核心已经加裕度，将结果存储在非易失性存储器中。

【0032】该实用程序的稳定性测试部分只着重被加裕度的核心。稳定性测试所需的时间长度取决于被测试而变化，并可能花几个小时来运行。

【0033】电压裕度完成后，与所确定的用于每个核心的电压偏移量相对应的偏移报被存储在电压裕度寄存器中，该电压裕度寄存器位于非易失性存储器中，例如图5所示的系统存储器508中。

【0034】在示例性实施例中，电压偏移寄存器由基本I/O系统(BIOS)加载，该基本I/O系统(BIOS)读取由电压裕度软件实用程序储存的电压裕度在非易失性存储器中的电压偏移量，并对电压偏移寄存器进行编程。电压偏移量的初始值是0(被清除)，并且电压偏移量也由复位(热或冷)所清除。在无需复位的启动期间，偏移量由BIOS动态地应用。

【0035】电压裕度实用程序可以由制造商运行，并且多核处理器可以被提供给客户，并且正确的偏移量被存储在电压偏移寄存器中。在这种情况中，通过由客户通电时，处理器将实现电压裕度。

【0036】可替换地，提供给客户核心电压裕度软件实用程序和其它所需的操作实用程序的工具，并将偏移量设定在电压偏移寄存器中。

【0037】一旦实施电压裕度，将减小多核功耗，这是因为提供给每个核心的电压电平减小了，并且由产生的电压和电流电平来确定功率。

【0038】可以通过修改操作系统(OS)以将线程安排在那些使用较低的电压电平的核心处理器上，来实现进一步减小的功耗，在该示例性实施例中，那些核心处理器具有最大的电压偏移量。

【0039】在一个示例性实施例中，BIOS被修改为读取图1的电压偏移寄存器18，并将偏移电压偏移的指示或提示存储在OS可见电压提示寄存器20中，在示例性实施例中，该OS可见电压提示寄存器20被包括在集成电路上并且可以被软件读取和写入。存储在OS可见电压裕度提示寄存器20中的对于OS的每个核心裕度提示的格式为“物理核心(n);值00h-0fh”，其中
这些值都是十六进制格式，并具有范围从0~15的十六进制值。

[0040] 在该示例中，电压裕度被给定为16个不同的值。该OS不被提供裕度的实际值，而仅提供裕度的排序。OS可以使用路径裕度提示作为参数之一，以基于添加到OS的新策略来确定哪些核心可以提供（park）或增加。

[0041] 作为考虑多核处理器的具体示例，其中核心(2)的裕度是最大的，并且核心(0)的裕度是最低的。

[0042] 物理核心 (0) : 0ch (最低裕度)
[0043] 物理核心 (1) : 0eh
[0044] 物理核心 (2) : 0fh (最高裕度)
[0045] 物理核心 (3) : 0dh

[0046] 在该示例中，OS将为了最好的减少功率而选择在单核模式的核心1上运行线程，并当需要增加更多的核心时，增加核心1,3,然后0。

[0047] 在图1所示的实施例中，单一频率——F_核心被提供给多核处理器中所有核心处理器。如果选择了另一处理器状态，则不同的频率将被提供给这些核心。在一个示例性实施例中，针对如图3的图形所示的每个处理器状态，偏移量使电压改变下降。

[0048] 在上述示例性实施例中，单个F_核心的频率被提供给所有核心处理器，并且电压偏移量都减小了VCORE的值。图4示出了替代实施例，其允许电压偏移量，以相对于VCORE增加供应到核心处理器的电压。

[0049] 在图4中，单独的F_核心(n)被提供给每个核心，并且电压偏移量可以被编程为正向或负向偏移VCORE。将单独的F_核心提供给每个核心能够增加处理速度同时不改变功率包络。在这种情况下，可以增加所选择的核心的频率以提高处理速度，并且VCORE将被负向偏移到较低的功耗。

[0050] 可替换地，功率包络可以增加，以允许每个核心具有增加的频率和对VCORE的正向偏移。这将是多核处理器的超频模式，并且用户需要保证该多核处理器具有充足的功率和散热冷却空间。

[0051] 该示例性实施例提供了提高在CPU密集活动，比如游戏时的处理器效率的灵活性。

[0052] 这是系统的方块图，其中包括具有核心电压裕度特征的多核处理器。

[0053] 参照图5，在一些实施例中，多核处理器10可与北桥，或者存储器集线器504一起耦合到本地总线502。存储器集线器504可代表半导体器件的集合，或者“芯片集”，并将接口提供给外围组件互连 (PCI) 总线516和加速图形端口 (AGP) 总线510。PCI规范可得自于PCI特别兴趣小组，波特兰，俄勒冈州97214。该AGP在由加利福尼亚州圣克拉拉的英特尔公司发布于1996年7月31日，版本1.0的加速图形端口接口规范中进行了详细的描述。

[0054] 图形加速器512可耦合到AGP总线510，并提供信号以驱动显示器514。例如，PCI总线516可以耦合到网络接口卡 (NIC) 520。存储器集线器504还可以将接口提供给存储器总线506，其耦合到系统存储器508。

[0055] 南桥，或输入/输出 (I/O) 集线器524，可以经由集线器链路522耦合到存储器集线器504。I/O集线器524代表半导体器件的集合，或者芯片集，并为硬盘驱动器538、CD-ROM驱动器540和I/O扩展总线526提供接口，这仅仅是几个示例。I/O控制器528可耦合到I/O扩展总线526，以从鼠标532和键盘534接收输入数据。I/O控制器528还可以控制键盘驱动器530
的操作。
【0056】在图1和4所示的示例性实施例包括在单个IC上的多个核心。然而，上述实施例可以在多核处理器上实现，该多核处理器具有处理器核心和分布在多个互联的IC上的其它电路。
【0057】虽然本发明已经结合具体实施例进行了描述，但应当理解，可以在不脱离在所附权利要求中阐述的本发明的精神和范围的情况下，对所公开的实施例进行对于本领域的技术人员而言显而易见的各种变化，替换和更改。
图1
在核心 (n) 中执行电压裕度测试

将偏移量设定为 0

提供OCWDT

在P1中运行核心 (n)
（所有其他核心都关闭和关闭）

增加偏移量

按偏移量减少核心 (n) 电压

运行稳定性测试

是

稳定吗？

否

将偏移量设定为 0

退出

将偏移量存储到非易失性存储器中的电压裕度寄存器

图2
图3
图5