(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2009年6月11日 (11.06.2009)

(51) 国際特許分類:
C09J 175/04 (2006.01)

(21) 国際出願番号:
PCT/JP2008/071552

(22) 国際出願日:
2008年11月27日 (27.11.2008)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(71) 出願人 (米国を除く全ての指定国について):
株式会社ミチウチュレタン社 (MITSUI CHEMICALS POLYURETHANES, INC.) [JP/JP]; 〒1057117 東京都港区東新橋一丁目5番2号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ):
今井 朗博 (IMA1, Akihiro) [JP/JP]; 〒2990265 千葉県袖ヶ浦市長浦80番地32 三井化学ポリウレタン株式会社内 Chiba (JP).

(74) 代理人:
岡本 章之 (OKAMOTO, Hiroyuki); 〒5410054 大阪府大阪市中央区南本町2丁目6番12号 サンマリオンNBFタワー21階 あい特許事務所内Osaka (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能):

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能):
ARIP0 (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), 亞羅西亞 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, BE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

(54) Title:
ADHESIVE FOR LAMINATE

(54) 発明の名称: ラミネート用接着剤

(57) Abstract:
Disclosed is an adhesive for laminates, which contains a polyisocyanate component (A) and a polyol component (B). The polyisocyanate component (A) contains a polyisocyanate (A1) having no aromatic ring. The polyol component (B) contains a macropolyol (B1) having a cyclohexane ring but not an aromatic ring.

(57) 要約:【解決手段】本発明のラミネート用接着剤は、ポリイソシアネート成分（A）およびポリオール成分（B）を含み、ポリイソシアネート成分（A）は、芳香環を含有しないポリイソシアネート（A１）を含有し、ポリオール成分（B）は、芳香環を含有せず、シクロヘキサン環を含有するマクロポリオール（B１）を含有する。
明細書

ラミネート用接着剤

技術分野

[0001] 本発明は、ラミネート用接着剤、詳しくは、屋外およびそれに準ずる環境下で使用される複合シートの積層に、好適に用いられるラミネート用接着剤に関する。

背景技術

[0002] 複合シートは、各種プラスチックフィルム、アルミニウムなどの金属箔、金属蒸着フィルム、シリカ蒸着フィルムなどから選択される複数のシート材料を、接着剤でラミネートすることにより、製造されている。

複合シートのラミネートに使用される接着剤として、ポリイソシアネート成分およびポリオール成分を配合する二液型ポリウレタン接着剤が、優れた接着性能を有することから、広く使用されている。

[0003] このような二液型ポリウレタン接着剤として、例えば、ポリオール成分を主剤とし、ポリイソシアネート成分を硬化剤とする2液硬化型ラミネート用接着剤組成物が提案されている（例えば、下記特許文献1参照。）。

一方、レジャーシート、テント、ビニールハウス、ベランダ用シート、雨合羽、雨傘、幌、防水布、自動車用カバーシート、建築用カバーシート、太陽電池バックシートなど、屋外環境で使用される屋外用シートにても、複合シートが使用されている。

特許文献1：特開2003－129024号公報

発明の開示

発明が解決しようとする課題

[0004] しかし、屋外環境で使用される複合シート（以下、屋外用複合シートとする。）に、上記特許文献1に記載の2液硬化型ラミネート用接着剤組成物を使用すると、太陽の紫外線により接着剤が経時的に変質し、あるいは、雨水や日光照射熱、紫外線により接着剤が劣化して、デラミネーションを生じるという不具合がある。

本発明の目的は、経時的な変質を抑制でき、雨水や日光照射熱、紫外線に対する優れた耐久性能を有し、しかも、優れた接着性能を発揮することのできる、ラミネート
用接着剤を提供することにある。

課題を解決するための手段

[0005] 本発明のラミネート用接着剤は、ポリイソシアネート成分（A）およびポリオール成分（B）を含み、ポリイソシアネート成分（A）は、芳香環を含有しないポリイソシアネート（A1）を含有し、ポリオール成分（B）は、芳香環を含有せず、シクロヘキサン環を含有するマクロポリオール（B1）を含有することを特徴としている。

また、本発明のラミネート用接着剤では、ポリイソシアネート成分（A）およびポリオール成分（B）の合計の固形分に対して、シクロヘキサン環の濃度が、2. 5mmol/g以下であることが好適である。

[0006] また、本発明のラミネート用接着剤では、マクロポリオール（B1）が、芳香環を含有せず、常温で結晶性を有する結晶性ポリオール（B1－1a）と、芳香環を含有せず、シクロヘキサン環を含有するポリイソシアネート（B1－b）との反応により得られるポリウレタンポリオール（B1－1b）であることが好適であり、さらに、結晶性ポリオール（B1－1a）が、常温で結晶性を有する結晶性ポリカーボネートジオールを含有することが好適であり、さらにまた、常温で結晶性を有する結晶性ポリカーボネートジオールが、数平均分子量1000以下であることが好適である。

[0007] また、本発明のラミネート用接着剤では、ポリイソシアネート成分（A）が、イソホロンジイソシアネートの誘導体を含有しないことも好適であり、その場合には、マクロポリオール（B1）が、数平均分子量5000以下であり、芳香環を含有せず、常温で結晶性を有する結晶性ポリカーボネートジオールと、芳香環を含有せず、シクロヘキサン環を含有するポリイソシアネート（B1－b）との反応により得られるポリウレタンポリオール（B1－1b）であることが好適である。

[0008] また、本発明のラミネート用接着剤は、屋外用複合シートの積層に使用されることが好適である。

発明の効果

[0009] 本発明のラミネート用接着剤によれば、優れた接着性能を発現することができながら、太陽の紫外線による経時的な変質を抑制でき、かつ、雨水や太陽光の照射、紫外線による劣化を抑制して、デラミネーションの発生を防止することができる。そのため
発明の実施形態

本発明のラミネート用接着剤は、二液型ポリウレタン接着剤であり、ポリイソシアネート成分（A）およびポリオール成分（B）を含有している。

本発明において、ポリイソシアネート成分（A）は、芳香環を含有しないポリイソシアネート（A1）、すなわち、脂環族ポリイソシアネート、脂肪族ポリイソシアネート、および／または、それらの誘導体を含有する。

脂環族ポリイソシアネートとしては、例えば、1,3-ジクロベンテンジイソシアネート、1,4-ジクロヘキサジイソシアネート、1,3-ジクロヘキサンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキサニトロイソシアネート（イソプロロンジイソシアネート；IPDI）、4,4’-、2,4’-または2,2’-ジクロヘキサニトロメタニンジイソシアネートもしくはその混合物（H_{12}MDI）、メチル-2,4-ジクロヘキサジイソシアネート、メチル-2,6-ジクロヘキサジイソシアネート、1,3-または1,4-ビス（イソシアネートメチル）シクロヘキサニトロイソシアネートなどの脂環族ジイソシアネートなどの脂環族ジイソシアネートなどが挙げられる。

脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート（HDI）、ベンタメチレンジイソシアネート、1,2-、2,3-または1,3-プチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネートなどが挙げられる。

それらの誘導体としては、例えば、上記ポリイソシアネート（A1）（すなわち、脂環族ポリイソシアネートおよび／または脂肪族ポリイソシアネート）の多量体（2量体、3量体、5量体、7量体など）、ビウェット変性体（例えば、上記ポリイソシアネート（A1）と水との反応により生成するビウェット変性体など）、アロフォネート変性体（例えば、上記ポリイソシアネート（A1）と、モノオールまたは多価アルコール（後述）との反応により生成するアロフォネート変性体など）、ポリオール変性体（例えば、上記ポリイソシアネート（A1）と、多価アルコール（後述）との反応により生成するポリオール変性体など）、ウレア変性体（例えば、上記ポリイソシアネート（A1）とジアミンとの反応により生成するウ
レア変性体など）、オキサジアジントリオン（例えば、上記ポリイソシアネート（A1）と炭酸ガスとの反応により生成するオキサジアジントリオンなど）、カルボジイミド変性体（上記ポリイソシアネート（A1）の脱炭酸縮合反応により生成するカルボジイミド変性体など）などが挙げられる。

芳香環を含有しないポリイソシアネートとして、好ましくは、IPDI、H\textsubscript{12}MDI、H\textsubscript{6}XDI、NBDI、HDI、および、それらの誘導体が挙げられる。

本発明において、ポリオール成分（B）は、芳香環を含有せず、シクロヘキサン環を含有するマクロポリオール（B1）を含有する。

上記マクロポリオール（B1）としては、例えば、芳香環を含有しないポリオール（B1－1a）と、芳香環を含有せず、シクロヘキサン環を含有するポリイソシアネート（B1－1b）との反応により得られるポリウレタンポリオール（B1－1）や、ポリエステルポリオール（後述）において、脂環族多価カルボン酸（後述）および／または脂環族ジオール（後述）を含むポリエステルポリオールが挙げられる。

芳香環を含有しないポリオール（B1－1a）としては、例えば、芳香環を含有しないポリエステルポリオール、芳香環を含有しないポリカーボネートポリオール、芳香環を含有しないポリエーテルポリオールなどが挙げられる。

好ましくは、芳香環を含有せず、常温で結晶性を有する結晶性ポリオール（B1－1a'）、例えば、芳香環を含有しない結晶性ポリエステルポリオール、芳香環を含有しない結晶性ポリカーボネートポリオール、芳香環を含有しない結晶性ポリエーテルポリオールが挙げられる。さらに好ましくは、芳香環を含有しない結晶性ポリカーボネートポリオールが挙げられる。

なお、結晶性ポリオール（B1－1a')（結晶性ポリエステルポリオール、結晶性ポリカーボネートポリオール、結晶性ポリエーテルポリオール）は、常温で液状（液体および流動体）ではなく、常温で固体のポリオールを指称する。

上記ポリエステルポリオールは、例えば、脂肪族多価カルボン酸および脂環族多価カルボン酸から選択される多塩基酸と、脂肪族ジオール、脂環族ジオールおよび多官能性ポリオールから選択される多価アルコールとの縮合反応や、多塩基酸のアルキルエステルと多価アルコールとのエステル交換反応により得ることができる。
[0017] 脂肪族多価カルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ビメリン酸、コルク酸、アゼライン酸、セバシン酸、ドデカンニ酸、水添ダイマー酸などが挙げられる。

脂肪族多価カルボン酸としては、例えば、ヘキサヒドロフタル酸、デトラヒドロフタル酸などが挙げられる。

[0018] 多塩基酸のアルキルエステルとしては、例えば、上記した多塩基酸のC1〜4アルキルエステルが挙げられる。

脂肪族ジオールとしては、例えば、エチレンジオール、ジェチレンジオール、トリエチレンジオール、プロピレンジオール、ジプロピレンジオール、トリプロピレンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ベンタンジオール、3-メチル-1,5-ベンタンジオール、2,4-ジエチル-1,5-ベンタンジオール、2,2,4-トリメチルベンタン-1,3-ジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,5-ヘプタンジオール、1,7-ヘプタンジオール、3,3'-ジメチロールヘプタン、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ウンデカンジオール、12-ヒドロキシステアリルアルコール、水添ダイマージオールなどが挙げられる。

[0019] 脂環族ジオールとしては、例えば、水添ピスフェノールA、水添キシリレンジオール、シクロヘキサンジオール、シクロヘキサンジメタノールなどが挙げられる。

多官能性ポリオールとしては、例えば、グリセリン、トリメチロールプロパン、ベンタエリスリトール、ソルビトールなど3つ以上の水酸基を有する脂肪族ポリオールが挙げられる。

[0020] 縮合反応やエステル交換反応は、特に制限されず、公知の方法に準拠することができ、例えば、各成分を仕込んで、150〜240℃で7〜50時間反応させる。また、この反応には、公知の触媒（例えば、チタン系触媒、亜鉛系触媒など）を添加できる。

また、上記ポリエステルポリオールとして、例えば、上記多価アルコールを開始剤として、例えば、ε-カプロラクトン、γ-バレララクトンなどのラクトン類を開環重合して得られる、ポリカプロラクトンポリオール、ポリバレララクトンポリオールなどのラクトン系
ポリエステルポリオールが挙げられる。

[0021] 芳香環を含有しない結晶性ポリエステルポリオールとしては、例えば、それらの数
平均分子量が1000以上であって、ポリエチレンアジペート、ポリプロピレンアジペート
およびポリエチレンプチレンアジペートなどが挙げられる。

上記ポリカーボネートポリオールは、例えば、上記多価アルコールを開始剤として、
例えば、触媒の存在下または不在下に、ホスゲン、ジアルキルカーボネート、ジアリ
ルカーボネート、アルキレンカーボネートなどを反応させることにより、得ることができる。

[0022] 芳香環を含有しない結晶性ポリカーボネートポリオールとしては、例えば、数平均
分子量が400以上の1, 6-ヘキサンジオールベースポリカーボネートジオールなど
が挙げられる。

上記ポリエーテルポリオールは、例えば、上記多価アルコールを開始剤として、エ
チレンオキサイドおよび/またはプロピレノキサイドなどのアルキレンオキサイドを
付加反応させることにより、得ることができる。具体的には、ポリエチレングリコール、
ポリプロピレングリコール、ポリエチレンポリプロピレングリコール（ランダムまたはブロ
ック共重合体）が挙げられる。また、例えば、テトラヒドロフランの開環重合により得ら
れるポリテトラメチレンプチレンジオールが挙げられる。

[0023] 芳香環を含有しない結晶性ポリエーテルポリオールとしては、例えば、それらの数
平均分子量が1000以上であって、ポリエチレングリコール、ポリエチレンポリプロピレ
ングリコール（エチレンオキシド-プロピレノキシドブロック共重合体）およびポリオ
キシテトラメチレンエーテルグリコールなどが挙げられる。

上記ポリオール（B1－1a）（上記ポリエステルポリオール、上記ポリカーボネートポリ
オール、および、上記ポリエーテルポリオール）の数平均分子量は、例えば、100～5000である。

[0024] ポリイソシアネート成分（A）として、3-イソシアナトメチル-3, 5, 5-トリメチルシクロ
ヘキシルイソシアネートの誘導体を含有する場合に、ポリオール成分（B）において
、常温で結晶性を有する結晶性ポリカーボネートジオールを、上記結晶性ポリオール
（B1－1a」と）、ポリウレタンポリオール（B1－1″）を調製する場合には、その結晶
性ポリカーポネートジオールの数平均分子量は、好ましくは、1000以下である。結晶性ポリカーポネートジオールの数平均分子量が1000以下であれば、ポリイソシアネート成分（A）として、3−イソシアアナトメチル−3, 5, 5−トリメチルシクロヘキシルイソシアネートの誘導体を含有していても、良好な透明性を確保することができる。ポリイソシアネート成分（A）として、3−イソシアアナトメチル−3, 5, 5−トリメチルシクロヘキシルイソシアネートの誘導体を含有するときに、結晶性ポリカーポネートジオールの数平均分子量が1000を超過すると、良好な透明性を確保することができない場合がある。

一方、ポリイソシアネート成分（A）が、3−イソシアアナトメチル−3, 5, 5−トリメチルシクロヘキシルイソシアネートの誘導体を含有しない場合に、ポリオール成分（B）において、常温で結晶性を有する結晶性ポリカーポネートジオールを、上記結晶性ポリオール（B1−1a）として、ポリウレタンポリオール（B1−1）を調製する場合には、その結晶性ポリカーポネートジオールの数平均分子量は、好ましくは、5000以下である。ポリイソシアネート成分（A）として、3−イソシアアナトメチル−3, 5, 5−トリメチルシクロヘキシルイソシアネートの誘導体を含有しないときに、結晶性ポリカーポネートジオールの数平均分子量が5000以下であれば、良好な透明性を確保することができる。

なお、透明性は、特に、透明な屋外用複合シートに使用されるラミネート用接着剤において、重要な性質となる。

なお、ポリオール成分（B）において、数平均分子量は、アセチル化法またはフタル酸化法などの公知の水酸基価測定方法、および、開始剤または原料の官能基数から算出することができる。

また、上記ポリオール（B1−1a）として、上記多価アルコールを、上記ポリエステルポリオール、上記ポリカーポネートポリオール、および／または、上記ポリエーテルポリオールと併用することもできる。そのような多価アルコールとして、好ましくは、上記した脂環族ジオールを使用することもできる。上記ポリオール（B1−1a）として、多価アルコールを併用する場合には、上記ポリエステルポリオール、上記ポリカーポネートポリオール、および／または、上記ポリエーテルポリオール100重量部に対して、多
価アルコールを、例えば、0.1～50重量部、好ましくは、0.5～30重量部併用する。

[0028] 芳香環を含有せず、シクロヘキサン環を含有するポリイソシアネート（B1－1b）としては、例えば、上記した脂環族ポリイソシアネートおよびその誘導体が挙げられる。好ましくは、IPDI、H_12-MDI、H_XDI、NBDIおよび、それらの誘導体が挙げられる。

ポリウレタンポリオール（B1－1）は、上記ポリオール（B1－1a）と、上記ポリイソシアネート（B1－1b）を、上記ポリオール（B1－1a）の水酸基に対する上記ポリイソシアネート（B1－1b）のイソシアネート基の当量比（NCO/ OH）が、1より小さくなる割合、好ましくは、0.5～0.9で、ウレタン化反応させることにより、得ることができる。ウレタン化反応は、公知の方法に準拠できる。

[0029] ポリウレタンポリオール（B1－1）として、好ましくは、上記ポリカーボネートポリオールと、上記した脂環族ポリイソシアネートとの反応により得られる、ポリウレタンポリカーボネートポリオールが挙げられる。さらに好ましくは、上記した結晶性ポリカーボネートジオールと、脂環族ポリイソシアネートとの反応により得られる、ポリウレタン結晶性ポリカーボネートジオールが挙げられる。

[0030] また、上記したように、マクロポリオール（B1）として、上記ポリエステルポリオールにおいて、脂環族多価カルボン酸および／または脂環族ジオールを含むポリエステルポリオールが挙げられる。

上記マクロポリオール（B1）の水酸基当量（OH当量）は、例えば、1000～15000、好ましくは、1500～10000である。

[0031] また、ポリオール成分（B）には、上記マクロポリオール（B1）以外に、例えば、上記多価アルコールを含有させることもできる。ポリオール成分として、多価アルコールを含有させる場合には、マクロポリオール（B1）100重量部に対して、多価アルコールを、例えば、0.01～50重量部、好ましくは、0.1～30重量部含有させる。

また、ポリイソシアネート成分（A）およびポリオール成分（B）には、必要に応じて、そのいずれか一方またはその両方で、シランカップリング剤を配合することができる。

[0032] シランカップリング剤は、例えば、構造式R－Si≡(X)_3またはR－Si≡(R')(X)_2（式中、Rはビニル基、エボキシ基、アミノ基、イミノ基、イソシアネート基またはメルカプ
シランカップリング剤として、具体的には、例えば、ビニルトリクロリランなどのクロロシラン、例えば、N－β－（アミノエチル）－γ－アミノプロピルトリメチキシラン、γ－アミノプロピルトリメチキシラン、N－β－（アミノエチル）－γ−プロピルメチルジェントキシラン、n－（ジメチルジメチルシリルプロピル）エチレンジアミン、n－（トリエチルシリルプロピル）エチレンジアミン、N－フェニル－γ－アミノプロピルトリメチキシランなどのアミノシラン、例えば、γ−グリシルキシプロピルトリメチキシラン、γ−グリシドキシプロピルトリメチキシラン、β−（3,4−エポキシシクロヘキシル）エチルトリメチキシラン、ジ（γ−グリシルキシプロピル）ジメチキシランなどのエポキシシラン、例えば、ビニルトリメチキシランなどのビニルシラン、例えば、3−イソシアナートプロピルトリメチキシラン、3−イソシアナートプロピルトリメチキシランなどのイソシアネートシランなどが挙げられる。

シランカップリング剤は、単独使用または2種以上併用することができる。シランカップリング剤の配合割合は、例えば、ポリイソシアネート成分（A）およびポリオール成分（B）の総量100重量部に対して、0.001～10重量部、好ましくは、0.01～6重量部である。

さらに、ポリイソシアネート成分（A）およびポリオール成分（B）には、必要に応じて、そのいずれか一方またはその両方に、例えば、エポキシ樹脂、触媒、塗装性改良剤、レベリング剤、消泡剤、酸化防止剤や紫外線吸収剤などの安定剤、可溶剤、界面活性剤、顔料、充填剤、有機または無機微粒子、防黴剤などの添加剤を配合することもできる。これらの添加剤の配合量は、その目的および用途により適宜決定される。

なお、接着性向上のためにエポキシ樹脂を配合する場合には、耐候変性をより向上させる目的で、水添ビスフェノールA型エポキシ樹脂を配合させることができる。

そして、本発明のラミネート用接着剤は、ポリイソシアネート成分（A）およびポリオール成分（B）を配合する二液型ポリウレタン接着剤として使用される。すなわち、本発明のラミネート用接着剤は、予め、ポリイソシアネート成分（A）およびポリオール成分
（B）を別々に調製しておき、使用時にポリイソシアネート成分（A）およびポリオール成分（B）を配合して、被着体（シート材料）に塗布する。ポリイソシアネート成分（A）およびポリオール成分（B）の配合割合は、ポリオール成分（B）中の水酸基に対するポリイソシアネート成分（A）中のイソシアネート基の当量比（NCO／OH）で、例えば0.6～10、好ましくは0.8～6となる割合である。

なお、本発明のラミネート用接着剤では、ポリイソシアネート成分（A）およびポリオール成分（B）の合計の固形分に対して、シクロヘキサン環の濃度が、例えば2.5mmol/g以下、好ましくは2mmol/g以下、通常、0.1mmol/g以上となるように、調製する。シクロヘキサン環の濃度が2.5mmol/gを超えると、ラミネート用接着剤として、良好な透明性を確保することができない場合がある。

本発明のラミネート用接着剤は、具体的には、溶剤タイプまたは無溶剤タイプとして調製され、主として、複合シートのラミネートに使用される。

例えば、溶剤タイプとして調製する場合には、ポリイソシアネート成分（A）およびポリオール成分（B）を有機溶剤で希釈して配合し、それを溶剤型ラミネータによって、一方のシート材料の表面に塗布する。そして、溶剤を揮発させた後、他方のシート材料と貼り合わせ、その後、常温または加温下において養生して硬化させる。なお、塗布量は、溶剤揮発後で、例えば、約2.0～10.0g/m²に設定される。

また、ポリイソシアネート成分（A）およびポリオール成分（B）の配合粘度が、常温100℃で、約100～10000mPa・s、好ましくは、約100～5000mPa・sの場合には、無溶剤タイプとして調製できる。

例えば、無溶剤タイプとして調製する場合には、ポリイソシアネート成分（A）およびポリオール成分（B）をそのまま配合し、それを無溶剤型ラミネータによって、一方のシート材料の表面に塗布する。そして、他方のシート材料と貼り合わせ、その後、常温または加温下において養生して硬化させる。なお、塗布量は、例えば、約0.5～5.0g/m²に設定される。

シート材料としては、複合シートとしてラミネートできるシートであれば、特に制限されないが、例えば、金属箔や、プラスチックシートなどが挙げられる。

金属箔の金属としては、例えばアルミニウム、ステンレス、鉄、鋼、鉛などが挙げら
れる。金属箔の厚みは、通常、5〜100 μm、好ましくは、7〜50 μmである。

プラスチックシートのプラスチックとしては、例えば、オレフィン系重合体（例えば、ポリエチレン、ポリプロピレンなど）、ポリエステル系重合体（例えば、ポリエチレンテレフタレート（PET）、ポリプロピレンテレフタレートなどのポリアクリレートテレフタレート、ポリアルキレンナフタレートや、それらのポリアクリレートアリレート単位を主成分とするコポリエステルなど）、ポリアミド系重合体（例えば、ナイロン6、ナイロン66など）、ビニル系重合体（例えば、ポリ塩化ビニル、エチレン酢酸ビニル共重合体、エチレン＝ビニルアルコール共重合体など）などが挙げられる。

[0039] また、プラスチックシートには、少なくとも一方の表面に無機質層を形成することもできる。無機質層は、蒸着、スパッタリング、ソルゲル法などで形成することができる。無機質層を形成する無機物としては、例えば、チタン、アルミニウム、ケイ素などの単体またはこれらの元素を含む無機化合物（酸化物など）などが挙げられる。具体的には、アルミナ蒸着シートやシリカ蒸着シートが挙げられる。

[0040] プラスチックシートの厚みは、通常、5〜200 μm、好ましくは、10〜150 μmである。

なお、金属箔およびプラスチックシートの表面には、コロナ放電処理やプライマー処理などの表面処理を施すこともできる。また、金属箔およびプラスチックシートには、適宜印刷を施すこともできる。

[0041] そして、本発明のラミネート用接着剤は、芳香環を含有していないため、経時的な黄変を抑制することができる。その一方で、シクロヘキサン環を含有しているため、優れた接着強度および機械強度を長期にわたって確保することができる。よって、本発明のラミネート用接着剤は、優れた接着性能および透明性を確保することができる。

そのため、本発明のラミネート用接着剤は、経時的な黄変を抑制でき、雨水や日光照射、紫外線に対する優れた耐久性能を有し、しかも、優れた接着性能を発現して、デラミネーションの発生を防止することができる。よって、本発明のラミネート用接着剤は、とりわけ、屋外環境で使用される複合シート、すなわち、屋外用複合シートの積層に、好適に用いられる。

[0042] より具体的には、本発明のラミネート用接着剤は、例えば、レジャーシート、テント、
ビニールハウス、ベランダ用シート、雨合羽、雨傘、幌、防水布、自動車用カバーシート、建築用カバーシート、太陽電池バックシートなど、屋外環境で使用される屋外用複合シートの積層に、好適に用いられる。

実施例

[0043] 以下に、実施例および比較例を挙げて、本発明を詳しく説明するが、本発明はこれらに限定されるものではない。

調製例1(ポリオール成分Aの調製)
3－イソシアナートメチル－3, 5, 5－トリメチルシクロヘキシルイソシアネート130. 5g、数平均分子量500の1, 6－ヘキサンジオールベースポリカーボネートジオール（東部興産社製、常温固体）345. 3gとを、窒素気流下90～95℃で攪拌し、ウレタン化反応させることにより、ポリウレタンポリオールを合成した。IR測定によりNCOピークがないことを確認した後、酢酸エチル500g、γ－グリシジンプロピルトリメチレンジシラン（KBM403、信越シリコン社製）23. 8gを添加して、固形分50重量％のポリオール成分Aを得た。

[0044] 調製例2(ポリオール成分B～Mの調製)
表1に示す成分および配合割合にて処方した以外は、調製例1と同様の方法により、ポリオール成分B～Mを調製した。

調製例3(ポリオール成分Nの調製)
イソフタル酸330. 68g、エチレングリコール71. 38g、ネオペンチルグリコール359. 31gを、窒素気流下180～220℃でエステル化反応させた。所定量の水を留出後、セバシン酸402. 57gを加え、さらに、180～220℃でエステル化反応し、数平均分子量約2, 500のポリエステルポリオールPE1を得た。

[0045] 次いで、このポリエステルポリオールPE1446. 6g、3－イソシアナートメチル－3, 5, 5－トリメチルシクロヘキシルイソシアネート32. 5g、酢酸エチル191. 4gを窒素気流下90～95℃で攪拌し、ウレタン化反応させることにより、ポリウレタンポリオールを合成した。

IR測定によりNCOピークがないことを確認した後、酢酸エチル314. 04g、ジェチレングリコール2. 15g、γ－グリシジンプロピルトリメチレンジシラン（KBM403、信越
シリコーン社製）23.95gを添加して、固形分50重量％のポリオール成分Nを得た。

[0046] 調製例4（ポリオール成分Oの調製）
アジピン酸735.19g、エチレンジリコール184.56g、ネオペンチルグリコール83.02g、1、6-ヘキサンジオール200.79gを、窒素気流下180〜220℃でエステル化反応させ、数平均分子量約5,500のポリエステルポリオールPE2を得た。

[0047] 次いで、このポリエステルポリオールPE2 448g、酢酸エチル470.5g、γ-グリシドキシプロピルトリメチクリシラン（KBM403、信越シリコーン社製）22.4gを、均一になるまで50℃で攪拌して、ポリオール成分Oを調製した。

調製例5（ポリオール成分Pの調製）
数平均分子量3000の1、6-ヘキサンジオールベースポリカーボネートジオール（宇部興産社製、常温固体）468g、酢酸エチル491.5g、γ-グリシドキシプロピルトリメチクリシラン（KBM403、信越シリコーン社製）23.4gを、均一になるまで50℃で攪拌して、ポリオール成分Pを調製した。

[0048] 調製例6（ポリオール成分Qの調製）
1、6-ヘキサンジオール136.3g、ネオペンチルグリコール92.4g、エチレンジリコール95.6g、イソフタル酸292.6g、酢酸亜鉛0.2gを、窒素気流下180〜220℃でエステル化反応させた。所定量の水を留出後、アジピン酸85.8gを加え、さらに、180〜220℃でエステル化反応し、数平均分子量約10,000のポリエステルポリオールPE3を得た。

[0049] これに、酢酸エチル381.9g、ビスフェノールA型エポキシ樹脂の酢酸エチル溶液（東都化成社製、YD－902LEA60）45.3g、γ-グリシドキシプロピルトリメチクリシラン（KBM403、信越シリコーン社製）31.3g、リン酸1.1gを加えて均一になるまで攪拌し、ポリオール成分Qを調製した。

調製例7（ポリイソシアネート成分Aの調製）
タケネートA－3070（三井化学ポリウレタン社製、ヘキサメチレンジイソシアネートの誘導体、酢酸エチル溶液、固形分75重量％）を、ポリイソシアネート成分Aとして調製した。

[0050] 調製例8（ポリイソシアネート成分Bの調製）
ヴェスタナートT1890／100（Huls社製、3－イソシアナトメチル－3, 5, 5－トリメチルシクロヘキシルイソシアネートの誘導体）124. 38gと、ジブチルチエンジラウレート0. 62gとを酢酸エチル375gに溶解し、固形分25重量％の溶液として、ポリイソシアネート成分Bを調製した。

[0051] 調製例9（ポリイソシアネート成分Cの調製）
タケネートD－120N（三井化学ポリウレタン製、1, 3－および1, 4－ビス（イソシアナトメチル）シクロヘキサンの誘導体、酢酸エチル溶液、固形分75重量％）を、ポリイソシアネート成分Cとして調製した。

[0052] [表1]
表1

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.6</td>
<td>75.1</td>
</tr>
<tr>
<td>113.7</td>
<td>23.4</td>
</tr>
<tr>
<td>103.3</td>
<td>138.4</td>
</tr>
<tr>
<td>131.5</td>
<td>23.4</td>
</tr>
<tr>
<td>40.0</td>
<td>23.5</td>
</tr>
</tbody>
</table>

PCD-1: 宇部興産社製、1,6-ヘキサンジオールベースポリカーボネートジオール
数平均分子量500、常温固体

PCD-2: 宇部興産社製、1,6-ヘキサンジオールベースポリカーボネートジオール

なお、表1中の略号の詳細を下記に示す。
数平均分子量1000、常温固体
PCD－3: 宇部興産社製、1, 6-ヘキサンジオールベースポリカーボネートジオール
、数平均分子量2000、常温固体
PCD－4: 宇部興産社製、1, 6-ヘキサンジオールベースポリカーボネートジオール
、数平均分子量3000、常温固体
CHDM: シクロヘキサンジメタノール
PTG2000: 保土ヶ谷化学社製、ポリトラメチレンリコール、数平均分子量2000、
常温固体
PTG3000: 保土ヶ谷化学社製、ポリトラメチレンリコール、数平均分子量3000、
常温固体
C－2090: クラレ社製、ポリカーボネートジオール、数平均分子量2000、常温液状
実施例および比較例
ポリオール成分とポリイソシアネート成分を、表2に示す処方および割合で、配合
して、ラミネート用接着剤を調製した。

なお、表2には、ポリオール成分とポリイソシアネート成分との合計（固形分）に対す
るシクロヘキサン環濃度（mmol／g）を併記した。

評価
1) 80℃下剥離試験
各実施例および各比較例のラミネート用接着剤を、約5g／m²の塗布量で、PETシ
ート（東レフィルム加工製P－60、16ミクロン）の処理面に塗布し、溶剤揮散後、CPP
シート（東レフィルム加工テフロンNO ＺK－99、60ミクロン）の処理面と貼り合わせ
、60℃で4日間養生して、複合シートを得た。この複合シートを、80℃下で剥離試験
（インテスコ精密万能材料試験機201B型（恒温槽付き）、試験片厚15mm、引張速
度50mm／min）して、剥離強度を求めた。その結果を表2に示す。

なお、表2のカッコ書きモードにおいて、「凝集」とあるのは、接着剤の凝集剥離であ
り、接着剤とシート界面との接着力よりも、接着剤の凝集力が弱いことを示し、たとえ
剥離強度が大きくても、「凝集」である場合には、接着力不足であることを示す。
2) 透明性および黄変度合
各実施例および各比較例のラミネート用接着剤を、約5g／m²の塗布量で、日本テストパネル製JIS R 3202ガラス板の表面に塗布し、CPPシート（東レフィルム加工トレファムNO ZK－99、60ミクロン）の未処理面と貼り合わせ、60℃で4日間養生した。

[0056] その後、CPPフィルムを剥がして、QUV装置にて50時間連続で光照射し、取り出し後、その透明性を観察し、50時間後の透明性として評価した。また、同時に色彩計でb値を測定した。さらに、QUV装置にて100時間連続で光照射し、取り出し後、その透明性を観察し、100時間後の透明性として評価した。また、同時に色彩計でb値を測定した。両者のb値の差Δb値にて、硬化したラミネート用接着剤の黄変度を評価した。その結果を表2に示す。

QUV装置：デューパネル光コントロールウェザーメーターFDP（スガ試験機株式会社）、連続照射、70℃、10％RH、放射照度設定28W／m²

色彩計：分光式色彩計SE－2000（日本電色工業株式会社製）、測定方法：透過法
表2

<table>
<thead>
<tr>
<th>実施例</th>
<th>ポリオール成分</th>
<th>ポリオシアルネット成分</th>
<th>配合比(重量比)</th>
<th>シクロヘキサン可溶濃度(mmol/g)</th>
<th>80°C下剝離強度(N)</th>
<th>透明性</th>
<th>貧変位％</th>
<th>50時間後</th>
<th>100時間後</th>
<th>Δε值</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例1</td>
<td>A</td>
<td>A</td>
<td>16 1</td>
<td>1.073</td>
<td>2.6(界面)</td>
<td>○</td>
<td>○</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例2</td>
<td>B</td>
<td>A</td>
<td>16 1</td>
<td>0.581</td>
<td>2.1(界面)</td>
<td>○</td>
<td>○</td>
<td>-0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例3</td>
<td>B</td>
<td>B</td>
<td>9 2</td>
<td>1.032</td>
<td>2.2(界面)</td>
<td>○</td>
<td>○</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例4</td>
<td>C</td>
<td>A</td>
<td>20 1</td>
<td>0.307</td>
<td>2.3(界面)</td>
<td>○</td>
<td>○</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例5</td>
<td>D</td>
<td>A</td>
<td>20 1</td>
<td>0.196</td>
<td>2.3(界面)</td>
<td>○</td>
<td>○</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例6</td>
<td>E</td>
<td>A</td>
<td>13 1</td>
<td>1.388</td>
<td>2.5(界面)</td>
<td>○</td>
<td>○</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例7</td>
<td>F</td>
<td>A</td>
<td>13 2</td>
<td>1.615</td>
<td>1.8(界面)</td>
<td>○</td>
<td>○</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例8</td>
<td>F</td>
<td>B</td>
<td>9 5</td>
<td>2.534</td>
<td>シート破断</td>
<td>△</td>
<td>△</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例9</td>
<td>F</td>
<td>C</td>
<td>4 1</td>
<td>2.587</td>
<td>3.1(表面)</td>
<td>○</td>
<td>○</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例10</td>
<td>G</td>
<td>A</td>
<td>16 1</td>
<td>0.576</td>
<td>1.7(界面)</td>
<td>○</td>
<td>○</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例11</td>
<td>H</td>
<td>A</td>
<td>16 1</td>
<td>0.391</td>
<td>2.1(界面)</td>
<td>○</td>
<td>○</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例12</td>
<td>I</td>
<td>A</td>
<td>6 1</td>
<td>2.088</td>
<td>2.1(界面)</td>
<td>○</td>
<td>○</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例13</td>
<td>J</td>
<td>A</td>
<td>20 1</td>
<td>0.196</td>
<td>1.0(界面)</td>
<td>○</td>
<td>○</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例14</td>
<td>K</td>
<td>A</td>
<td>17 1</td>
<td>0.284</td>
<td>4.8(表面)</td>
<td>○</td>
<td>○</td>
<td>-0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例15</td>
<td>L</td>
<td>A</td>
<td>16 1</td>
<td>0.356</td>
<td>1.2(界面)</td>
<td>○</td>
<td>○</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例16</td>
<td>M</td>
<td>A</td>
<td>16 1</td>
<td>0.360</td>
<td>1.2(界面)</td>
<td>○</td>
<td>○</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例17</td>
<td>A</td>
<td>C</td>
<td>16 1</td>
<td>1.432</td>
<td>2.8(界面)</td>
<td>○</td>
<td>○</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

透明性の評価
- ○:透明
- △:着色
- ×:不透明

*1: 構造を示すが不透明で測定不可能

[0058] 3) 耐熱性試験

実施例1、2、17および比較例4のラミネート接着剤を、約5g/m²の塗布量で、CPPシート（東レフィルム加工トレファノZK-99、60ミクロン）の処理面に塗布し、溶剤揮散後、同CPPシートの処理面を貼り合わせ、60°Cで4日間養生して、複合シートを得た。この複合シートを、高度加速寿命試験機（型番：TPC-411、TABAI ESPEC社製）にセットし、120°C、85％RH、1.6気圧の条件にて、168時間試験後、室温にて剝離試験（インステコ精密万能材料試験機201B型、試験片幅15mm、
引張速度300mm/分）して、剝離強度を求め、試験前の剝離強度を100%として
168時間試験後における剝離強度の保持率（耐湿熱性試験／剝離強度保持率（%
）を求めた。その結果を表3に示す。
[0059] [表3]

<table>
<thead>
<tr>
<th>実施例</th>
<th>対照例</th>
<th>ポリオール成分</th>
<th>ポリウレアネット成分</th>
<th>配合比（重量比）</th>
<th>シクロヘキサン濃度（mmol/g）</th>
<th>耐湿熱性試験剝離強度保持率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例1</td>
<td>A</td>
<td>A</td>
<td>16</td>
<td>1</td>
<td>1.073</td>
<td>84</td>
</tr>
<tr>
<td>実施例2</td>
<td>B</td>
<td>A</td>
<td>16</td>
<td>1</td>
<td>0.591</td>
<td>102</td>
</tr>
<tr>
<td>実施例17</td>
<td>A</td>
<td>C</td>
<td>16</td>
<td>1</td>
<td>1.432</td>
<td>74</td>
</tr>
<tr>
<td>対照例</td>
<td>Q</td>
<td>A</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

なお、上記説明は、本発明の例示の実施形態として提供したが、これは単なる例示
にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな
本発明の変形例は、後記の特許請求の範囲に含まれるものである。

産業上の利用可能性

[0061] 本発明のラミネート用接着剤は、屋外用複合シートの積層に好適に用いられる。
請求の範囲

[1] ポリイソシアネート成分（A）およびポリオール成分（B）を含み、
ポリイソシアネート成分（A）は、芳香環を含有しないポリイソシアネート（A1）を含有し、
ポリオール成分（B）は、芳香環を含有せず、シクロヘキサン環を含有するマクロポリオール（B1）を含有することを特徴とする、ラミネート用接着剤。

[2] ポリイソシアネート成分（A）およびポリオール成分（B）の合計の固形分に対して、シクロヘキサン環の濃度が、2.5mmol/g以下であることを特徴とする、請求項1に記載のラミネート用接着剤。

[3] マクロポリオール（B1）が、芳香環を含有せず、常温で結晶性を有する結晶性ポリオール（B1－1α）と、芳香環を含有せず、シクロヘキサン環を含有するポリイソシアネート（B1－1b）との反応により得られるポリウレタンポリオール（B1－1β）であることを特徴とする、請求項1に記載のラミネート用接着剤。

[4] 結晶性ポリオール（B1－1α）が、常温で結晶性を有する結晶性ポリカーボネートジオールを含有することを特徴とする、請求項3に記載のラミネート用接着剤。

[5] 常温で結晶性を有する結晶性ポリカーボネートジオールが、数平均分子量1000以下であることを特徴とする、請求項4に記載のラミネート用接着剤。

[6] ポリイソシアネート成分（A）が、イソホロンジイソシアネートの誘導体を含有しないことと特徴とする、請求項1に記載のラミネート用接着剤。

[7] マクロポリオール（B1）が、数平均分子量5000以下であり、芳香環を含有せず、常温で結晶性を有するポリカーボネートジオールと、芳香環を含有せず、シクロヘキサン環を含有するポリイソシアネート（B1－1b）の反応により得られるポリウレタンポリオール（B1－1β）であることを特徴とする、請求項6に記載のラミネート用接着剤。

[8] 屋外用複合シートの基材に使用されることを特徴とする、請求項1に記載のラミネート用接着剤。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C09J175/04 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09J1/00-201/10, C08G18/00-18/87, C08G71/00-71/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 06-100851 A (Kuraray Co., Ltd.), 12 April, 1994 (12.04.94), Claim 1; Par. Nos. [0002], [0005] to [0006], [0011] to [0017], [0020]; examples (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2003-129024 A (Dainippon Ink And Chemicals, Inc.), 08 May, 2003 (08.05.03), Claims 1 to 6 (Family: none)</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-107016 A (Takeda Chemical Industries, Ltd.), 17 April, 2001 (17.04.01), Claims 1 to 6 & EP 1074597 A2 & US 6288201 B1</td>
<td>1-8</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 22 January, 2009 (22.01.09)

Date of mailing of the international search report 10 February, 2009 (10.02.09)

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No. Telephone No.
A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. C09J175/04 (2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. C09J1/00-201/10, C08G18/00-18/87, C08G71/00-71/04

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922-1996年
日本国公開実用新案公報 1971-2009年
日本国実用新案登録公報 1996-2009年
日本国登録実用新案公報 1994-2009年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 06-100851 A（株式会社クレ）1994.04.12, 請求項1, 0002, 0005-0006, 0011-0017, 0020, 実施例（ファミリーなし）</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP 2003-129024 A（大日本インキ化学工業株式会社）2003.05.08, 請求項1-6（ファミリーなし）</td>
<td>1-8</td>
</tr>
</tbody>
</table>

\[\checkmark \text{C欄の続きにも文献が列挙されている。} \quad \square \text{パテントファミリーに関する別紙を参照。}\]

＊ 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的的技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を発揮するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 22.01.2009
国際調査報告書の発送日 10.02.2009

国際調査機関の名称及びあて先
特許庁審査官（権限のある職員）
特許庁審査官（権限のある職員）
中島 康子
電話番号 03-3581-1101 内線 3483

特許庁審査官（権限のある職員）

様式PCT／ISA／210（第2ページ）（2007年4月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
</table>