

Oct. 27, 1953

M. A. BROSSEIT

2,656,643

FIGURE TOY WITH SPINNING ELEMENT

Filed Aug. 26, 1949

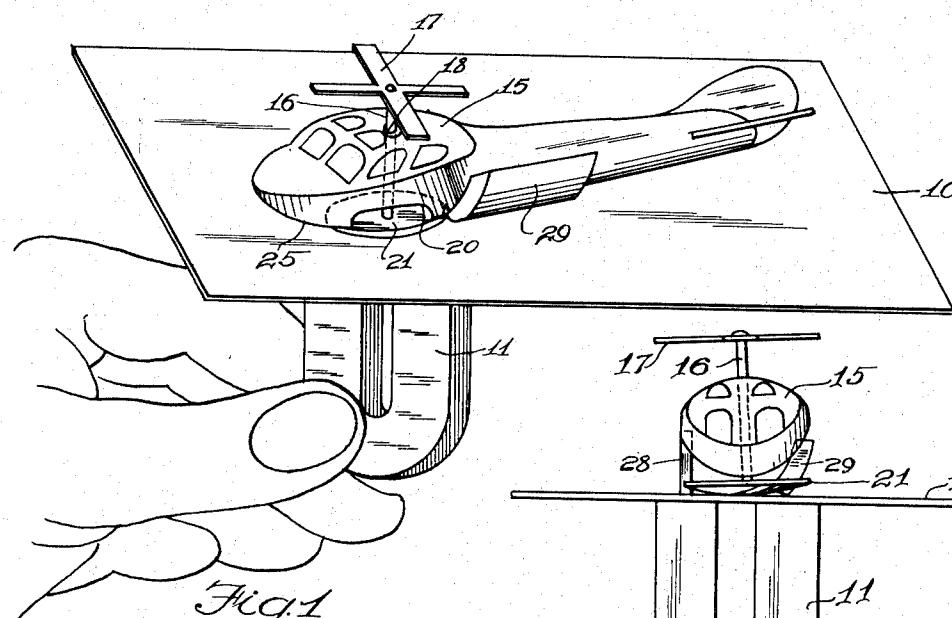


Fig. 1

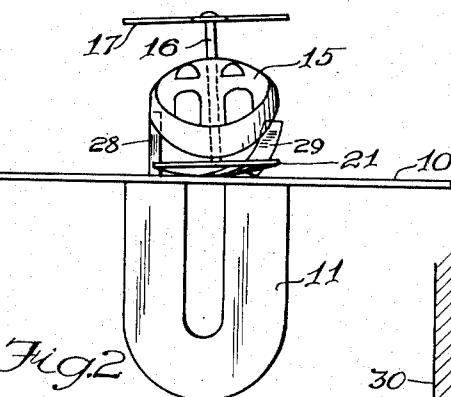


Fig. 2

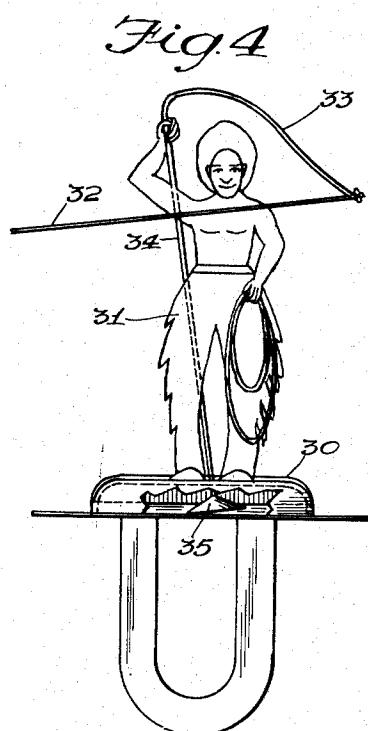


Fig. 4

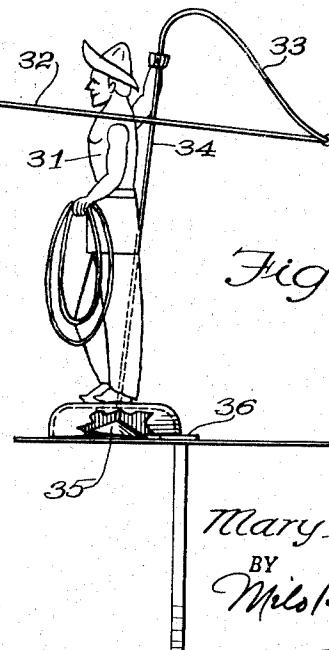


Fig. 5

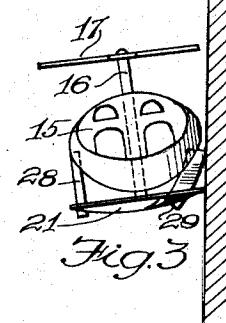


Fig. 3

INVENTOR:
Mary A. Brosseit
BY
Milo B. Stearns & Co.
Attorneys.

Patented Oct. 27, 1953

2,656,643

UNITED STATES PATENT OFFICE

2,656,643

FIGURE TOY WITH SPINNING ELEMENT

Mary A. Brosseit, Chicago, Ill.

Application August 26, 1949, Serial No. 112,523

3 Claims. (Cl. 46—47)

1

My invention relates to toys having action or motion, and more particularly to such toys as are designed to be drawn over a flat surface with the effect of performing some action or motion.

One object of the invention is to provide a toy of the above character which employs a rolling drive to operate a device simulating some performance or familiar practice, so that a fascinating effect is produced.

Another object is to provide a base for the toy which includes a simple mechanism designed to receive motion from the sliding of the toy over a flat surface.

A further object is to constitute the base of the toy in a manner to procure a friction drive by mere contacting motion with the flat surface referred to.

An important object is to provide a mechanism which is not in the least conspicuous, so that little or nothing is evident from the appearance of the toy that it contains the mechanism referred to.

An additional object is to construct the mechanism for the toy along lines of extreme simplicity, whereby to cause but a nominal addition to the cost of the toy.

With the above objects in view, and any others which may suggest themselves from the description to follow, a better understanding of the invention may be had by reference to the accompanying drawing, in which—

Fig. 1 is a perspective view, showing a helicopter-type toy embodying the invention;

Fig. 2 is a front elevation;

Fig. 3 is a view similar to Fig. 2, showing a different application of the toy;

Fig. 4 is a front elevation of a cowboy-type toy; and

Fig. 5 is a side view.

While the toy is designed for movement by any means over a flat surface, the suggestion of self-propulsion and a fascinating effect are obtained when the toy is propelled by a magnet moved along the underside of a card or sheet of paper upon which the toy is placed. Thus, Fig. 1 shows such a sheet at 10, and the magnet underneath the same at 11.

The helicopter-type toy involves a body 15 of wood or plastic material, the same being bored to freely dispose a vertical spindle 16. The latter has a rotor 17 at its upper end and a collar 18 above the body 15 in order to keep the rotor at a fixed height. The body is recessed from the bottom as indicated at 20, and the spindle depends into the recess to receive a roller disc 21.

The bottom 25 of the body 15 is slanted some-

2

what in a transverse direction, so that when the toy is set on a horizontal surface, both its body and the roller disc 21 are tilted accordingly. It follows, therefore, that the roller disc rests only with a side edge on the surface on which the toy is placed, and that the forward or rearward movement thereof causes the roller disc to receive rotation from the friction of such side edge with the said surface.

The toy receives a pair of sheet iron strips 28 and 29 at its sides, such strips being at the bottom of the toy. Consequently, the application of the magnet 11 with a movement in the forward or rearward course of the toy's path of motion would draw the toy in such course and induce the rotation of the rotor 17 from the action of the roller disc 21 as stated above. As indicated in Figs. 1 and 2, the sheet iron strips 28, 29 serve to dispose the spindle and disc 21 in the canted relationship to surface 10 mentioned hereinabove.

Fig. 3 shows a modified application of the toy. Thus, it is apparent that the metallic strip 29 is somewhat tilted from a vertical plane, so that when the toy is applied to a vertical surface 30, the toy is again tilted by reason of the strip 29. Thus, the roller disc 21 applies only with a side edge to the surface 30, and the movement of the toy along such surface lends the impression that the helicopter is flying against a background, which may be painted to represent a scene, the sky or any other environment in which a helicopter is designed to fly.

Figs. 4 and 5 show the principle of the toy applied to the base 30 of a cowboy figure 31 handling a lasso 32. The latter is made of wire into a circular loop which is continued inwardly with a radial portion 33 and downwardly with an axial portion 34 serving as the spindle of the toy. As in the previous case, the spindle receives the roller disc 35 at the bottom. Again, the base 30 of the toy is raised to a slightly tilted position by applying the metallic strip 36 under one side, as shown in Fig. 5, whereby to position the roller disc as shown. It follows that the rotation of the spindle 34 will cause the wire loop 32 to spin, simulating the initial action of a lasso.

It will now be apparent that the novel toy is designed in a manner to produce simulated spinning action or motion of subjects in miniature by the simple tractive motion of the toy over a horizontal surface or along a vertical one, such as a wall. The means employed include a spindle which rests by gravity independently of the body of the toy in applying the side edge of its roller disc to the surface referred to, so that no part

of the toy can limit or impair the action of the spindle. Also, the body of the toy need not be slanted or equipped for magnetic traction. However, it is essential that the spindle of the toy be slanted when the toy is applied to the surface over which it is moved. Also the bottom disc may be replaced by a ball, where less power and more speed is desired in some types of toys. A fascinating action toy is thus produced by means of the novel construction, and it is apparent that the principle of the toy may be applied to various other types of toys where some action or motion simulative of real objects is desired.

While I have described the invention along specific lines, various minor changes or refinements may be made therein without departing from its principle, and I reserve the right to employ all such changes and refinements as may come within the scope and spirit of the appended claims.

I claim:

1. A toy designed to be drawn over a surface comprising a figure maintained in a position substantially perpendicular to the surface and formed with a base slidable thereover, a rotary spindle freely journaled in the figure at an angle out-of-perpendicular to said surface, the end portion of the spindle remote from the latter carrying a unit simulating a familiar spinning activity when the spindle is in rotation, and the opposite end portion of the spindle carrying a circular unit centered on the spindle and deriving rotation

by peripheral frictional engagement with said surface as the toy is drawn thereover.

2. A toy designed to be drawn over a surface comprising a figure maintained in a position substantially perpendicular to the surface and formed with a base slidable thereover, a rotary spindle freely journaled in the figure at an angle out-of-perpendicular to said surface, the end portion of the spindle remote from the latter carrying a unit simulating a familiar spinning activity when the spindle is in rotation, and the opposite end portion of the spindle carrying a conical unit centered on the spindle and deriving rotation by peripheral frictional engagement with said surface as the toy is drawn thereover.

3. The structure of claim 1, the base being spaced from said surface on the side opposite said engagement, and a skid carried by the base under said side.

20

MARY A. BROSSEIT.

References Cited in the file of this patent

UNITED STATES PATENTS

Number	Name	Date
1,643,917	Becker	Sept. 27, 1927
1,701,910	Davis	Feb. 12, 1929
1,767,503	Barnes	June 24, 1930
2,036,076	Philippi	Mar. 31, 1936
2,404,186	Mariani	July 16, 1946
2,469,144	Baggott	May 3, 1949