发明名称
皮带传送机和电磁驱动器

摘要
在此披露了一种具有电磁驱动器的皮带传送机，该电磁驱动器包括被密封在分开的非磁性的且非导电的壳体内一个转子和一个定子，该转子被安装在一个驱动轴上。所述的驱动轴上便有一个驱动滚筒或驱动链轮具有接合一个传送带的外周驱动表面。该转子与该外周驱动表面同轴，该转子被密封在该滚筒或链轮中，或被容纳在与该驱动表面轴向间隔开的该轴上。该转子可以包括多个导电转子条或永磁体。该定子跨一个窄间隙与该转子间隔开，并且跨该间隙产生一个行进磁通波，该行进磁通波引起该转子和该外周驱动表面旋转并且驱动该传送带。
1. 一种用于传送带的驱动器，该驱动器包括：
 具有一个轴线的一个驱动轴；
 安装到该驱动轴上的一个转子；
 一个驱动元件，该驱动元件由该驱动轴支撑，并且具有与该转子同轴的一个外周驱动
 表面，该外周驱动表面被适配成接合一个传送带，其中该外周驱动表面是非磁性的且非导
 电的；
 一个定子，该定子跨围绕该转子部分地延伸的间隙与该转子分开，并且跨该间隙产生
 一个行进磁通波，该行进磁通波与该转子相互作用以引起该转子旋转该驱动轴和该外周驱
 动表面，以便驱动一个接合的传送带。
2. 如权利要求1所述的驱动器，其中该转子被封装在该驱动元件中。
3. 如权利要求1所述的驱动器，其中该外周驱动表面旋转通过该转子与该定子之间的
 该间隙。
4. 如权利要求1所述的驱动器，其中该定子与该转子之间的该间隙足够大以便允许一个
 传送带与该外周驱动表面接合。
5. 如权利要求1所述的驱动器，其中该转子包括周向间隔开的导电条，这些导电条沿该
 外周驱动表面内部的该驱动元件轴向地延伸。
6. 如权利要求5所述的驱动器，其中这些导电条由多个钢反应条支持以便增大驱动扭
 矩。
7. 如权利要求1所述的驱动器，其中该外周驱动表面是光滑的。
8. 如权利要求1所述的驱动器，其中该外周驱动表面具有以一个规则间距周向间隔开
 的多个驱动面。
9. 如权利要求1所述的驱动器，其中该转子被密封在该驱动元件中。
10. 如权利要求1所述的驱动器，其中该驱动元件是由围绕该转子成型的塑料制成。
11. 如权利要求1所述的驱动器，进一步包括封装该定子的一个非磁性的且非导电的壳
 体。
12. 如权利要求1所述的驱动器，其中该转子包括多个周向间隔开的磁体。
13. 如权利要求12所述的驱动器，其中这些磁体的磁极围绕该转子在周向方向上交替
 极性。
14. 如权利要求12所述的驱动器，其中这些磁体各是一个海尔贝克阵列。
15. 如权利要求1所述的驱动器，其中该转子是该外周驱动表面内部的一个导电铝质圆
 柱体。
16. 如权利要求1所述的驱动器，进一步包括轴向间隔开并由该驱动轴支撑的多个驱动
 元件。
17. 如权利要求1所述的驱动器，其中该转子与该驱动元件轴向间隔开。
18. 如权利要求17所述的驱动器，其中该转子是一个导电圆盘。
19. 如权利要求17所述的驱动器，进一步包括安装在该驱动轴上的一个轮，该轮与该驱
 动元件轴向间隔开并且容纳该转子。
20. 如权利要求1所述的驱动器，进一步包括封装该定子的一个非磁性的且非导电的定
 子壳体，并且其中该驱动元件是非磁性的且非导电的，并且封装该转子。
21. 如权利要求1所述的驱动器，其中该定子包括多个周向间隔开的磁极，这些周向间隔开的磁极具有沿一个圆的一个弧形的外部磁极面。

22. 如权利要求1所述的驱动器，进一步包括一个电机控制器，该电机控制器向该定子发送信号，以便控制该行进磁通波以及该转子的该旋转。

23. 一种传送机，包括：
 一个驱动轴，该驱动轴具有一个轴线；
 一个驱动表面，该驱动表面通过该驱动轴绕该轴线旋转；
 一个传送带，该传送带被该驱动表面接合以便使该传送带前进；
 一个转子壳体，该转子壳体由一种非磁性的且非导电的材料制成；
 一个转子，该转子被密封在该定子壳体内并且联接到该驱动轴上；
 一个定子壳体，该定子壳体由一种非磁性的且非导电的材料制成；
 一个定子，该定子跨间隙与该转子间隙开并且被密封在该定子壳体内中，其中该定子跨该间隙产生一个行进磁通波，该磁通波与该转子相互作用以引起该转子旋转该驱动轴和该驱动表面，以便该传送带前进。

24. 如权利要求23所述的传送机，其中该驱动表面是该转子壳体的一个圆柱形外表面。

25. 如权利要求23所述的传送机，其中该传送带前进通过该转子与该定子之间的间隙。

26. 如权利要求23所述的传送机，其中该转子包括周向间隔开的导电条，这些导电条沿该转子壳体轴向地延伸。

27. 如权利要求23所述的传送机，其中该驱动表面具有以一个规则间距周向间隔开的驱动点，并且该传送带具有被该驱动表面上的这些驱动面接合的多个驱动面，其中该定子壳体具有界定该间隙的一个支承表面，以便在该传送带从该驱动表面离开之前，迫使该传送带的一个驱动面进入与该驱动表面上的一个驱动面的接合。

28. 如权利要求23所述的传送机，其中该驱动表面被形成在多个链轮上，这些链轮安装在该驱动轴上的轴向间隔开的位置处。

29. 如权利要求23所述的传送机，其中该传送带不接合该定子与该转子之间的间隙中的该驱动表面，并且该传送带进一步包括具有一个支承表面的一个位置限制器，该支承表面抵靠在该传送带上，以便迫使该传送带朝向该驱动表面。

30. 如权利要求23所述的传送机，进一步包括一个电机控制器，该电机控制器向该定子发送信号以便控制该磁通波以及该转子的旋转。

31. 如权利要求30所述的传送机，其中该电机控制器被封装在该定子壳体内。

32. 一种用于传送带的驱动器，该驱动器包括：
 一个驱动元件，该驱动元件具有一个转子和被适配成接合一个传送带的一个外周驱动表面；
 一个定子，该定子跨围绕该转子部分地延伸的间隙与该转子分开，并且所述间隙在该驱动元件和该定子之间接收该传送带。

 其中该定子跨该间隙产生一个行进磁通波，该行进磁通波与该转子相互作用以引起该转子旋转该驱动元件并驱动该外周驱动表面接合的该传送带。

33. 一种用于传送带的驱动器，该驱动器包括：
 一个驱动元件，该驱动元件具有一个转子和一个外周驱动表面，该外周驱动表面包括
以一个规则间距周向间隔开的多个驱动面，用于主动接合一个传送带上的驱动接收表面；
一个定子，该定子跨围绕该转子部分地延伸的间隙与该转子分开，并且跨该间隙产生一个行进磁通波，该行进磁通波与该转子相互作用以引起该转子旋转该驱动元件并驱动被该外周驱动表面上的这些驱动面接合的该传送带。
34. 如权利要求32或33所述的驱动器，其中该驱动元件是一个驱动滚筒。
皮带传送机和电磁驱动器

技术领域
[0001] 本发明总体上涉及动力驱动的传送机,并且更具体而言,涉及由分开地容纳的定子和转子驱动的皮带传送机。
[0002] 背景
[0003] 传送带通常由以下各项驱动:链轮、滚筒、或安装在一个驱动轴上的滑轮,该驱动轴通过一个电动机经由一个减速齿轮、一个链带-链条系统、或一个皮带-滑轮系统来旋转。这些标准部件为碎片和其他污染物提供了许多藏身之处。在食品加工行业中,藏匿污染物和细菌是问题的。此外,减速齿轮发生磨损并且需要润滑。
[0004] 概述
[0005] 体现本发明的特征的一个传送带驱动器包括安装到具有一个轴线的一个驱动轴上的一个转子。具有一个外周驱动表面的一个驱动元件由该驱动轴支撑。被适配成接合一个传送带的该外周驱动表面与该转子同轴。一个定子跨围绕该转子部分地延伸的间隙与该转子分开。该定子跨间隙产生一个行进磁通波,该行进磁通波与该转子相互作用并且引起该转子旋转该驱动轴以及该外周驱动表面,以便驱动一个接合的传送带。
[0006] 在一个方面,本发明公开了一种用于传送带的驱动器,该驱动器包括:
[0007] 具有一个轴线的一个驱动轴;
[0008] 安装到该驱动轴上的一个转子;
[0009] 一个驱动元件,该驱动元件由该驱动轴支撑,并且具有与该转子同轴的一个外周驱动表面,该外周驱动表面被适配成接合一个传送带;
[0010] 一个定子,该定子跨围绕该转子部分地延伸的间隙与该转子分开,并且跨该间隙产生一个行进磁通波,该行进磁通波与该转子相互作用以引起该转子旋转该驱动轴和该外周驱动表面,以便驱动一个接合的传送带。
[0011] 在某些实施方式中,该转子可以被封装在该驱动元件中。
[0012] 在某些实施方式中,该外周驱动表面可以旋转通过该转子与该定子之间的该间隙。
[0013] 在某些实施方式中,该定子与该转子之间的该间隙可以足够大以便允许一个传送带与该外周驱动表面接合。
[0014] 在某些实施方式中,该转子可以包括周向间隔开的导电条,这些导电条可以沿该外周驱动表面内部的该驱动元件轴向地延伸。
[0015] 在某些实施方式中,这些导电条可以由多个钢反应条支持以便增大驱动扭矩。
[0016] 在某些实施方式中,该外周驱动表面可以是光滑的。
[0017] 在某些实施方式中,该外周驱动表面可以具有以一个规则间距周向间隔开的多个驱动面。
[0018] 在某些实施方式中,该外周驱动表面可以是非磁性的且非导电的。
[0019] 在某些实施方式中,该转子可以被密封在该驱动元件中。
[0020] 在某些实施方式中,该驱动元件可以是由围绕该转子成型的塑料制成。
在某些实施方式中，所述驱动器可以进一步包括封装该定子的一个非磁性的且非导电的壳体。

在某些实施方式中，该转子可以包括多个周向间隔开的磁体。

在某些实施方式中，这些磁体的磁极可以围成该转子在周向方向上交替极性。

在某些实施方式中，这些磁体可以各自是一个海尔贝克阵列。

在某些实施方式中，该转子可以是该外周驱动表面内部的一个导电铝质圆柱体。

在某些实施方式中，所述驱动器可以进一步包括轴向间隔开并由该驱动轴支撑的多个驱动元件。

在某些实施方式中，该转子可以与该驱动元件轴向间隔开。

在某些实施方式中，该转子可以是一个导电圆盘。

在某些实施方式中，所述驱动器可以进一步包括安装在该驱动轴上的一个轮，该轮可以与该驱动元件轴向间隔开并且容纳该转子。

在某些实施方式中，所述驱动器可以进一步包括封装该定子的一个非磁性的且非导电的定子壳体，并且其中该驱动元件可以是磁性的且非导电的，并且可以封装该转子。

在某些实施方式中，该定子可以包括多个周向间隔开的磁极，这些周向间隔开的磁极可以具有沿一个圆的一个弧安排的外部磁极面。

在某些实施方式中，所述驱动器可以进一步包括一个电机控制器，该电机控制器可以向该定子发送信号，以便控制该行进磁通波以及该转子的旋转。

在另一个方面，体现本发明的特征的一个传送机包括通过一个驱动轴绕其轴线旋转的一个驱动表面。一个传送带被该驱动表面接合以便使该传送带前进。密封在一个转子壳体内的一个转子联接到该驱动轴上。跨间隙与该转子间隔开的一个定子被密封在一个定子壳体中。该转子壳体和该定子壳体都是由非磁性的且非导电的材料制成的。该定子跨间隙产生一个行进磁通波，该行进磁通波与该转子相互作用以引起该转子旋转该驱动轴以及该驱动表面，以便使该传送带前进。

在另一个方面，该发明公开了一种传送机，包括：

一个驱动轴，该驱动轴具有一个轴线；

一个驱动表面，该驱动表面通过该驱动轴绕该轴线旋转；

一个传送带，该传送带被该驱动表面接合以便使该传送带前进；

一个转子壳体，该转子壳体由一种非磁性的且非导电的材料制成；

一个转子，该转子被密封在该转子壳体内并且联接到该驱动轴上；

一个定子壳体，该定子壳体由一种非磁性的且非导电的材料制成；

一个定子，该定子跨间隙与该转子间隔开并且被密封在该定子壳体中，其中该定子跨间隙产生一个行进磁通波，该行进磁通波与该转子相互作用以引起该转子旋转该驱动轴和该驱动表面，以便使该传送带前进。

在某些实施方式中，该驱动表面可以是该转子壳体的一个圆柱形外表面。

在某些实施方式中，该传送带可以前进通过该转子与该定子之间的间隙。

在某些实施方式中，该传送带可以包括周向间隔开的导电条，这些导电条可以沿该转子壳体轴向地延伸。

在某些实施方式中，该驱动表面可以具有以一个规则间距周向间隔开的驱动面，
并且该传送带可以具有该传动表面上的多个驱动面接合的多个驱动面，其中该定子壳体可以具有界定该间隙的一个支承表面，以便恰好在该传送带从该驱动面离开之前，迫使该传送带的一个驱动面进入与该驱动表面上的一个驱动面的接合。

[0046] 在某些实施方式中，该驱动表面可以被形成在多个链轮上，这些链轮可以安装在该驱动轴上的轴向间隙开的位置处。

[0047] 在某些实施方式中，该传送带可以不接合该定子与该转子之间的间隙中的该驱动表面，并且该传送机可以进一步包括具有一个支承表面的一个位置限制器，该支承表面可以抵靠在该传送带上，以便迫使该传送带朝向该驱动表面。

[0048] 在某些实施方式中，所述传送机可以进一步包括一个电机控制器，该电机控制器可以向该定子发送信号以便控制该磁通波以及该转子的旋转。

[0049] 在某些实施方式中，该电机控制器可以被封装在该定子壳体内。

[0050] 附图简述

[0051] 本发明的这些方面和特征以及其优点在以下说明、所附权利要求以及附图中进行更详细的描述，在附图中：

[0052] 图1a是体现本发明的特征的一个传送带驱动器中可使用的一个定子的等距视图；

[0053] 图1b是一个驱动系统的一个版本的等距视图，该驱动系统使用如图1a中的一个定子以及一个驱动滚筒中的一个导电条转子；

[0054] 图1c是图1b的该驱动系统的一个可替代版本的等距视图，该驱动系统具有支持该驱动滚筒中的转子的铜反应条；

[0055] 图1d是用端盖密封的图1b的该驱动系统的等距视图；

[0056] 图2是使用如图1a中的一个定子的一个传送机系统的等距视图，该定子被密封在该滚筒下方的一个壳体中并且压靠在一个传送带的外表面中；

[0057] 图3是如图2中的但具有密封在该滚筒后方的一个壳体中的该定子的一个传送机系统的等距视图；

[0058] 图4是如图3中的有一个专用位置限制器的一个传送机系统的等距视图；

[0059] 图5是一个中心驱动传送机的等距视图，该中心驱动传送机具有如图1a中的安装在皮带返回路径下方的一个壳体中的一个定子；

[0060] 图6是如图5中的一个传送机的等距视图，其中，该定子壳体设置在返回路径上方；

[0061] 图7是具有如图3中的一个驱动系统的传送机的等距视图；

[0062] 图8a是如图2中的但具有取代一个滚筒容纳该转子的链轮的一个驱动系统的等距视图；

[0063] 图8b是如图8a中的具有该转子中的永磁体的一个驱动系统的等距视图；

[0064] 图8c是如图8b中的一个驱动系统的等距视图，其中这些永磁体被安排成海尔贝克阵列（Halbach arrays）；

[0065] 图9a是如图8a中的一个链轮驱动系统的等距视图，其中该转子和定子与驱动链轮轴向间隔开；

[0066] 图9b是如图9a中的具有完全包围该转子的一个定子的一个链轮驱动系统的等距视图；

[0067] 图9c是如图9a中的一个链轮驱动系统的等距视图，其中该转子是一个导电圆盘；
图9d是图9a中的一个链轮驱动系统的等距视图，其中该转子是由一个双面定子驱动的一个导电圆柱体。

图9e是图9b的该链轮驱动系统的定子末端的等距视图，其中出清洁已从该壳体去除该转子壳体；

图9f是图9c中的一个链轮驱动系统的等距视图，该链轮驱动系统具有一个导电圆盘转子并且其中一个单面定子容纳在一个最小壳体中。

【0070】 详细描述

【0071】 图1a中示出了体现本发明的特征的可用在一个皮带传送机驱动器中的一个弯曲的直线感应定子。定子10具有一个芯体12，该芯体可以由一个实心金属件或金属层压件制成。磁极14从该芯体径向延伸至限定一个圆的弧的外部磁极表面16。缠绕在磁极14周围的线圈18形成电磁体，这些电磁体通过一个交流电供电，以便产生通过磁极面16的一个磁通波。该磁通波在一个方向或另一个方向上从磁极行进到磁极。（为清楚起见，图1a中示出了这些磁极的仅一个上的线圈。）

【0072】 在大多数电机的定子不同，图1a中的定子10未构成一个完整的360°圆。替代地，该定子仅在约90°的一个弧上延伸。事实上，与一个常规的电机定子相比，该定子更像是一个弯曲的直线感应定子。

【0073】 图1b示出了图1a中与一个转子20相关联的定子10，该转子由多个转子条22组成，该多个转子条以规则隔开的周向间隔嵌入在一个驱动元件如一个滚筒24的内部中。转子条22通过围绕该转子部分地延伸的一个间隙26与定子磁极面16分开。来自定子磁极的磁通穿过该间隙，并且诱导导电转子条中的电流，该电流产生与定子场相互作用的一个磁场。合力引起该电机旋转，并且追踪（chase）定子的行进磁场。滚筒24具有一个光滑的圆柱形外部表面28，外表面中按规则间隔排列的轴向狭槽30形成驱动面32，该驱动面可以驱动一个传送带上的驱动接收表面。或者，外部驱动表面可以是光滑的，不被槽中断的，以用于摩擦地接合并且驱动一个拉紧的扁平皮带。

【0074】 在图1c中，优选地由铝或另一种导电材料制成的转子条22由反扭矩条34支持，以便增大通量密度和驱动力，该反扭矩条可以由一种铁质材料如钢制成。（如在整本书中以及权利要求书中所使用，术语“导电的”以及“非导电的”指代导电性。）如图1d所示，该转子被密封在由外周驱动表面28形成的一个转子壳体36以及该壳体的每端处的端盖38中。该转子壳体被安装在从这些端盖向外延伸的一个驱动轴40上。该转子与该外周驱动表面彼此同轴，并且与该驱动轴的轴线42同轴。该外周驱动表面由一种非磁性的且非导电的材料如塑料制成，以免干扰行进磁场或在该驱动表面中诱导电流。

【0075】 图2示出了具有封装在如图1d中的一些转子壳体36中的一个转子的一个皮带驱动器。该定子密封在一个非磁性的且非导电的定子壳体44中。该定子壳体具有大体光滑的容易清洁的外表面。一个传送带46具有沿形成在皮带的内侧上的规则隔开的齿50的一侧的驱动面48。这些齿接收在滚筒36的外周驱动表面28中的狭槽52中。驱动面32限定该槽与驱动面48啮合以便使皮带在带行进方向54上向前移动。传送带46穿过定子壳体44与转子壳体36之间的间隙26。定子壳体44提供抵靠该传送带的一个凹形支承表面47，以便确保皮带的一个驱动面48恰好在该皮带从该滚筒离开的退出点56之前的一个位置处被滚筒36的一个驱动面32接合。以此方式，该定子壳体还充当一个低张力、正向驱动的传送带的一个位置限制器。
器。

[0076] 图3示出了安装在转子滚筒36后方的一个定子壳体58。在这种不同于图2的构型中，皮带46不穿过间隙26。为此，该间隙可以是更窄的，这改善了从该定子到该转子的磁通量的耦合。此外，定子壳体58可以形成为传送机传送路径的一个延伸部。图2和图3中的定子壳体44.58各自具有臂60.61，这些臂附接到驱动轴40上以便维持转子与定子之间的一个固定的间隙宽度。由于于图3中的定子壳体58不接触皮带46，它的凹面62无法充当一个位置限制器。图4中示出了图3中的该定子壳体的一个修改版本，其中一个位置限制器64附接到定子壳体58的臂61的远端上。该位置限制器的凹形内表面66抵靠在皮带46上，并且维持皮带齿50恰好在皮带从该滚筒离开的退出点56之前与滚筒36的驱动面32接合。位置限制器64通过支腿68连接到臂61上。

[0077] 图5和图6示出了由返回路径中而非如图2-4中的传送路径的一端的一个驱动单元驱动的传送带46。在图5中，定子壳体70安装在滚筒36下方，其中该皮带穿过定子-转子间隙26。在图6中，定子壳体70’安装在滚筒36上方，而且皮带46不前进通过较窄间隙26’。定子壳体70’可以与该传送路径一体成型。在该滚筒的入口之前以及出口之后的缓冲段72增加了缠绕在该滚筒周围的皮带的周向范围。

[0078] 图7示出了一个完整的传送机系统，其中如图3中的一个定子壳体58安装在传送路径的一端处。一个电机控制器74通过信号线76向壳体58中的定子发送电机控制信号，以便控制磁通波、转子和滚筒36的旋转，以及皮带速度和方向。电机控制器74能够替代地安装在定子壳体58中（如图3中所示），从而仅需要交流（ac）电力线的连接。可以经由一个无线RF链路75或其他遥控装置来远程操作和监控该电机控制器。这将进一步地改善传送机的卫生质量。

[0079] 替代使用一个滚筒作为驱动元件和转子壳体，图8a-8c中的电磁驱动器使用较窄的链轮（sprocket wheels）来容纳这些转子。在图8a中，该转子包括一系列导电板78，这些导电板嵌入在安装在一个驱动轴82上的非磁性的且非导电的链轮80中。这些链轮的外周表面84接合并驱动传送带46。与图1c中的导电转子类似，导电板78可以由钢板支持以便减小定子与转子之间的磁路中的磁阻。在图8a的转子构型中，与图1b和图1c中的驱动器类似的电磁驱动器作为一个ac感应电机来操作。

[0080] 图8b中的链轮86含有永磁体88，这些永磁体的极性在周向上在朝外的北极N与南极S之间交替。在图8c中的链轮90中，磁体被安排成具有交替极性的海尔贝克阵列92以便将磁通量集中在定子磁极的方向上。图8b和图8c的永磁体转子和定子可以作为永磁体ac电机或作为无刷dc电机来操作， timp同转子中含有永磁体的滚筒版本一样。

[0081] 在图9a中，转子密封在一个转子壳体94中，该转子壳体处于轴向远离安装在一个驱动轴98上的标准链轮96的一个轮的形式。链轮96具有接合传送带的外周驱动表面。该定子密在在一个定子壳体100中，该定子壳体围绕嵌入的转子的周向部分地延伸。在图9b中，一个定子壳体102中的该定子完全包围转子转子94以便形成一个常规的电机，但是具有密封在分开的壳体中的转子和定子。在这两个实例中，该转子可以包括与图8a的链轮中的导电板类似的导电板，或者与图8b和图8c中的永磁体类似的永磁体。由该转子和定子形成的电机具有单个轴承103并且不需要轴联接器或减速齿轮。而且，如图9c中所示，转子壳体94可以沿远离定子壳体102的驱动轴98滑动，以便容易地清洁两者。
[0082] 在图9c中，电磁驱动器轴向地远离如图9a和图9b中的驱动元件，但是该转子是安装在驱动轴98上的一个密封的导电圆盘104。该定子示出为密封在一个定子壳体106中的一个双面定子，该定子壳体围绕该圆盘的外周部分地延伸。该双面定子改善了磁通量与圆盘转子的耦合。但是，一个单面定子可以用于旋转如图9f中所示的圆盘104，其中为了容易清洁，使用了一个最小定子壳体107。

[0083] 在图9d中，一个转子滚筒108具有一个延伸部110，该延伸部在该转子滚筒的外周驱动表面112的外部轴向地延伸。该延伸部中的一个导电圆柱体充当一个转子，该转子通过由密封在围绕该转子部分地延伸的一个定子壳体114中的一个双面定子产生的磁通波来旋转，也可以使用一个单面转子。

[0084] 虽然已经参考一些示例性版本描述了本发明，但是其他版本也是可能的。例如，示出具有链轮的驱动系统可以与滚筒一起使用，并且反之亦然。作为另一个实例，该转子无需安装在该驱动轴上，并且可以联接到该驱动轴上而非通过一个直接连接。例如，该转子可以经由一个减速齿轮、一个链轮-链条系统，或一个皮带-滑轮系统联接到该驱动轴上。而且，虽然所有详细描述的驱动系统具有恒定宽度的定子-转子间隙，但该间隙宽度不必是恒定的。例如，一个弯曲转子可以同与该转子相切的一个直线定子一起使用，或同具有比该转子大得多的一个曲率半径以及一个发散空气间隙的一个弯曲的直线定子一起使用。因此，就像这些实例所表明的，权利要求书并不意味着受限于详细描述的这些版本。
图1a

图1b
图9f