发明名称
视频编码系统及应用于以电池供电的装置中的视频编码方法

摘要
本发明提供一种视频编码系统及应用于以电池供电的装置中的视频编码方法。该方法包括下列步骤：侦测电池中的电力电平；依据侦测到的电池电力电平，针对一像素阵列，由多个移动预测程序之中决定出一个移动预测程序；在该像素阵列进行所决定的移动预测程序。通过本发明视频编码方法的应用，减少了电子装置的电力消耗。
1. 一种应用于以电池供电的装置中的视频编码方法，其特征在于包括：

 侦测一电池中的一电力电平；

 依据侦测到的上述电池电力电平，针对一像素阵列，由多个移动预测程序之中决定出一移动预测程序；以及

 在上述像素阵列进行上述决定的移动预测程序。

2. 如权利要求1所述的应用于以电池供电的装置中的视频编码方法，其特征在于，上述多个移动预测程序包括阶层式搜寻区块对比程序及全搜寻区块对比程序。

3. 如权利要求2所述的应用于以电池供电的装置中的视频编码方法，其特征在于，上述决定移动预测程序的步骤包括：当侦测到的上述电池电力电平高于一阈值时，选择上述全搜寻区块对比程序。

4. 如权利要求3所述的应用于以电池供电的装置中的视频编码方法，其特征在于还包括：依据侦测到的上述电池电力电平，决定上述全搜寻区块对比程序的一搜寻范围。

5. 如权利要求3所述的应用于以电池供电的装置中的视频编码方法，其特征在于，上述决定移动预测程序的步骤包括：当侦测到的上述电池电力电平低于或等于上述阈值时，选择上述阶层式搜寻区块对比程序。

6. 如权利要求5所述的应用于以电池供电的装置中的视频编码方法，其特征在于还包括：依据侦测到的上述电池电力电平，决定上述阶层式搜寻区块对比程序的一阶层总数以及每一阶层的一搜寻范围。

7. 如权利要求1所述的应用于以电池供电的装置中的视频编码方法，其特征在于还包括：依据侦测到的上述电池电力电平，决定一区块对比准则。

8. 一种应用于以电池供电的装置中的视频编码方法，其特征在于包括：

 侦测一电池中的一电力电平；
依据侦测到的上述电池电力电平，针对一像素阵列，决定一阶层式搜寻区块对比程序的一阶层数目；以及

使用上述阶层式搜寻区块对比程序以及上述决定的阶层数目，在上述像素阵列进行移动预测。

9. 如权利要求 8 所述的应用于以电池供电的装置中的视频编码方法，其特征在于，上述决定阶层数目的步骤包括：当侦测到的上述电池电力电平为一较高电平时，决定一较少的阶层数目来实行上述阶层式搜寻区块对比程序。

10. 如权利要求 8 所述的应用于以电池供电的装置中的视频编码方法，其特征在于还包括：依据侦测到的上述电池电力电平，决定上述阶层式搜寻区块对比程序的每一阶层所适用的一搜寻范围。

11. 如权利要求 10 所述的应用于以电池供电的装置中的视频编码方法，其特征在于，上述移动预测的进行是在上述阶层式搜寻区块对比程序的各阶层使用上述决定的对应搜寻范围。

12. 如权利要求 8 所述的应用于以电池供电的装置中的视频编码方法，其特征在于还包括：依据侦测到的上述电池电力电平，决定一区块对比准则。

13. 一种视频数据编码系统，包括：

一电池；

一侦测单元，耦接于上述电池并且用以侦测上述电池中的一电力电平；以及

一编码器，耦接于上述侦测单元，根据侦测到的上述电池电力电平，针对一像素阵列，由多个移动预测程序之中决定出一移动预测程序，并且在上述像素阵列进行上述决定的移动预测程序。

14. 如权利要求 13 所述的视频数据编码系统，其特征在于，上述多个移动预测程序包括阶层式搜寻区块对比程序及全搜寻区块对比程序。

15. 如权利要求 14 所述的视频数据编码系统，其特征在于，当侦测到的
上述电池电力电平高于一阈值时，上述编码器选择上述全搜寻区块对比程序。

16. 如权利要求 15 所述的视频数据编码系统，其特征在于，上述编码器更依据侦测到的上述电池电力电平，决定上述全搜寻区块对比程序的一搜寻范围。

17. 如权利要求 15 所述的视频数据编码系统，其特征在于，当侦测到的上述电池电力电平低于或等于上述阈值时，上述编码器选择上述阶层式搜寻区块对比程序。

18. 如权利要求 17 所述的视频数据编码系统，其特征在于，上述编码器更依据侦测到的上述电池电力电平，决定上述阶梯式搜寻区块对比程序的一阶梯总数以及每一阶梯的一搜寻范围。

19. 如权利要求 13 所述的视频数据编码系统，其特征在于，上述编码器更依据侦测到的上述电池电力电平，决定一区块对比准则。

20. 一种视频数据编码系统，其特征在于包括：

一电池；

一侦测单元，耦接于上述电池并且用以侦测上述电池中的一电力电平；以及

一编码器，耦接于上述侦测单元，根据侦测到的上述电池电力电平，针对一像素阵列，决定一阶梯式搜寻区块对比程序的一阶梯数目，并且使用上述阶梯式搜寻区块对比程序以及上述决定的阶梯数目，在上述像素阵列进行移动预测。

21. 如权利要求 20 所述的视频数据编码系统，其特征在于，当侦测到的上述电池电力电平为一较高电平时，上述编码器决定一较少的阶梯数目来实行上述阶梯式搜寻区块对比程序。

22. 如权利要求 20 所述的视频数据编码系统，其特征在于，上述编码器依据侦测到的上述电池电力电平，决定上述阶梯式搜寻区块对比程序的每一
阶层所适用的一搜寻范围。

23. 如权利要求 22 所述的视频数据编码系统，其特征在于，上述编码器是在上述阶层式搜寻区块对比程序的各阶层使用上述决定的对应搜寻范围。

24. 如权利要求 20 所述的视频数据编码系统，其特征在于，上述编码器更依据侦测到的上述电池电力电平，决定一区块对比准则。
视频编码系统及应用于以电池供电的装置中的视频编码方法

技术领域

本发明涉及视频编码技术，特别涉及一种应用于手持式装置的视频编码方法及系统。

背景技术

视频编码（video encoding）方法通常以压缩效率来衡量其效能优劣。一开始的视频编码标准的目的是应用于光盘中储存影片（MPEG-1），然后演变为宽频/卫星播送电视节目（MPEG-2），以及在网络间串流化/下载视频内容（MPEG-4）；其限制在于频宽与储存容量。衡量准则着重于计算复杂度上，尤其对那些必须能实时编码的应用而言更是关键。由于处理器的处理速度随着时代演进会愈来愈快，使得计算复杂度的问题变得较不重要，但压缩效率仍旧为相当重要的课题。在新的应用领域上，特别是手持式（handheld）装置，电力消耗已成为日益重要课题。手持型装置，例如个人数字助理（personal digital assistants, PDAs）或移动电话，预期于现在或不久的将来都会提供视频编码功能。

传统上，电子装置的电力消耗可通过架构设计或算法设计来控制。例如，Yoon等人在2001年11月于IEEE Journal of Solid-State Circuits, Volume:36, Issue:11, 第1758至1767页所著标题为“An 80/20 MHz 160mW multimedia processor integrated with embedded DRAM, MPEG-4 accelerator and 3-D rendering engine for mobile application”的文章中，提出一种低耗电的视频装置。此视频装置包括设置于邻近中央处理单元与共同处理器的嵌入式存储装置，使得在数据（data）存取时，可经过较短的路径，用以减少耗电。另外，Vleeschouwer在2001年于International Conference on Image Processing, Volume:2, 第953至956页所著标题为“Motion Estimation for Low Power
Video Devices”的论文中，提出一种通过减少载体内存取及数据移转的低耗电方法。

发明内容

本发明针对上述现有技术的缺陷，提出一种视频编码系统及应用于以电池供电的装置中的视频编码方法，以解决电子装置耗电大导致使用时间缩短的问题。

本发明提供一种应用于电池供电装置的视频编码方法。范例的视频编码方法包括侦测电池供电装置中的电力电平，依据侦测到的电池电力电平，针对一像素阵列，由多个移动预测程序之中决定出一个移动预测程序，并且在该像素阵列进行所决定的移动预测程序。

本发明也提供一种视频数据编码系统。范例的视频编码系统包括电池、侦测单元以及编码器。侦测单元耦接于电池并且用以侦测电池中的电力电平。编码器耦接于侦测单元，根据侦测到的电池电力电平，针对一像素阵列，由多个移动预测程序之中决定出一个移动预测程序，并且在像素阵列进行所决定的移动预测程序。

通过本发明视频编码方法的应用，减少了电子装置的电力消耗。

附图说明

图 1 显示范例的 MPEG-2 视频串流的结构；
图 2 表示范例的 MPEG-2 视频串流的画面架构；
图 3 表示双向预测的范例图式；
图 4 表示依据本发明实施例的范例金字塔式影像示意图；
图 5 表示依据本发明实施例的应用于电池供电装置 10 的硬件环境方块图；
图 6 表示应用于本发明实施例的视频解码器方块图；
图 7 为依据本发明实施例的应用于电池供电装置的视频编码流程图；
图8为依据本发明实施例的适用于电池供电装置的视频编码流程图。

符号说明:

VS~视频串流; GOP~画面群组; P~画面; S~片段; MB~宏区块; I~I
画面; P~P画面; B~B画面; Level 0~第一阶层; Level 1~第一阶层; Level 2~
第二阶层; P11、P12、P13~最佳匹配点; W11、W12、W13~搜寻音帧; W0~
搜寻区域; 10~视频编码装置; 12~视频编码器; 14~电池; 16~视频解码器;
18~音频编码器/解码器; 20~显示控制器; 22~存储装置控制器; 24~存储装
置; 26~中央控制器; 122~视频接口; 124~移动预测器; 126~编码电路; 51~B
画面; 52~前一张I或P画面; 53~下一张I或P画面; 52m、53m~最相配区块
52v、53v~移动向量; S71、S73、S75、S81、S83、S85~流程步骤。

具体实施方式

一段数字视频 (digital video) 可以看成是一连串的静止数字影像，在连
续播放的情形下，由于视觉暂留，而成为连续的视频。但在不压缩的情形下，
其储存空间、音频的要求都是非常高的。若以 640×480，每秒 15 张，90 分
钟的一段全彩数字视频而言，其需要的频宽为 640×480 (pixels/frame) ×3
(bytes/pixel) ×15 (pictures/sec) =13.18 MB/sec，而所需的储存空间为
13.18 MB/sec×90×60=69.50 GB。这么大的档案显然不利于数据的实时传输与
储存，因此，各种数字视频压缩技术也应运而生。

MPEG 标准确保视频编码系统所产生的标准化档案，能够在配备有符合标
准解码器的任何系统上开启与运作。数字视频所包括的空间 (spatial) 与
时间冗余 (temporal redundancy) 的数据，使其可在品质没有重大减损下进
行压缩。MPEG 编码为一个通用标准，非仅针对特定应用，牵涉到以时间与
空间上的统计冗余为基础的压缩方式。空间冗余为同一张画面相邻像素
(pixels) 的颜色值的相似度。MPEG 使用离散余弦转换 (Discrete Cosine
Transform, DCT) 与量化 (quantization) 对冗余的颜色值进行画面内的
(Intra-picture) 空间上压缩。时间冗余是指在视频画面间的相同的移动，在
视觉上提供平顺与逼真的动作。在画面间的时间补偿上，MPEG 仰赖预测，
更确切地说，为移动补偿（motion-compensated）预测。MPEG 利用 I 画面
（Intra-coded pictures）、B 画面（bidirectionally predictive-pictures）以及 P 画
面（Predictive-coded pictures）产生时间上的压缩。I 画面为帧内编码的画面，
为一连串画面的第一张，而不会参考之前或之后的画面。P 画面为向前预测
（forward-predicted）画面，参考先前的 I 或 P 画面，并拥有指向先前画面
信息的向量。B 画面可从向前、向后、或上述两者的方向，辅以参考画面的
data 进行编码。其中产生的移动向量（motion vector）可用为向前、向后或
上述两者。

图 1 显示范例的 MPEG-2 视频串流（bitstream）的结构。视频串流（video
stream, VS）由多个画面群组（Group of pictures, GOP）所组成。画面为进行
压缩的基本单位，包括三种型态的画面，I 画面、P 画面与 B 画面。每一画
面可水平分割为多个固定长度的片段（slices, Ss），以作为信号同步（signal
synchronization）及错误控制（error control）的最小单位。每一片段由多个
16×16 像素的宏区块（macroblocks, MBs）组成，宏区块是取样、移动
预测及移动补偿的最小单位。每一宏区块由四个 8×8 像素的区块（blocks）
组成，此区块是离散余弦转换的最小单位。

图 2 表示范例的 MPEG-2 视频串流其画面架构。在 MPEG-2 的视频中，
I 画面没有参考画面，使用量化与可变长度编码（variable length coding, VLC）
方法进行压缩，可在没有其它参考画面下当作解压缩起始点。I 画面为视频
串流或画面群组的第一张画面，随后为 P 画面与 B 画面。P 画面以先前的 I
画面或 P 画面为参考画面，用以定位相似的宏区块。若没有相似的宏区块，
则以帧内编码的方式为 P 画面中的宏区块作压缩。基本上，P 画面由帧内编
码的宏区块与预测编码（predictive-coded）宏区块所组成，预测编码宏区块
的内容为移动向量，其根据参考画面计算而得。B 画面使用到向前与向后两
个方向的参考画面来定位相似的宏区块。

9
在画面序列中，目前的画面是由先前画面预测而来的，此先前画面也可称为参考画面。然而，不同的移动预测技巧可选择不同的区块大小，并且可在一个画面中变化区块大小。每一宏区块对比参考画面中的宏区块，并搭配使用一些误差衡量方法来选出最匹配的宏区块。此搜寻会在预先决定的搜寻范围内进行对比。接着，决定出一移动向量（motion vector），该移动向量代表参考画面中的某宏区块相对于目前画面中的特定区块的位移。当使用前一个画面作参考时，该预测称为向前预测（forward prediction）。当参考画面为将来的一个画面，该预测为向后预测（backward prediction）。向后预测通常搭配使用向前预测，所以也称为双向预测（bidirectional prediction）。图 3 是双向预测的范例图式。在 B 画面 51 中，双向预测的移动补偿宏区块 51m 有两个移动向量，向前预测的移动向量 52v 参考到前一张 I 或 P 画面 52 中的最相配区块 52m，而向后预测的移动向量 53v 参考到下一张 I 或 P 画面 53 中的最相配区块 53m。

移动预测方法用以消除存在于视频序列中的大量空间与时间冗余。越好的预测，可得到较小的误差及传输位率。若一个场景是静止不动的，则对该画面特定宏区块的较佳的预测为之前或之后画面当中相同位置的宏区块，且误差为零。有多样的移动预测程序可以进行画面间的预测编码，诸如完全区块对比程序（full search block-matching）与阶层式搜寻区块对比程序（hierarchical search block-matching）。本发明的实施例中，以电池供电的装置依据侦测到的电力电平，在多个移动预测程序之中选择出一个适合的移动预测程序。当侦测到的电力电平较高时，使用计算较复杂且较精确的移动预测程序；当侦测到的电力电平较低时，使用计算较简单且精确较低的移动预测程序。

更甚者，有多种不同的对比准则（matching criteria），用以衡量参考画面的预测区块与目前画面之中所欲编码的宏区块两者之间的对比“精确性”，诸如，交互关联函数（cross correlation function, CCF）、像素差异分类（pel
difference classification, PDC）、绝对差异平均（mean absolute difference, MAD）、差异均方（mean squared difference, MSD）、结合投射（integral projection, IP）等等。其中，某些对比准则较易于计算并且消耗较少电力，而某些对比准则其计算较复杂且消耗较多电力。在实施例中，侦测到的以电池供电的装置中的电力电平，移动预测方法可在宏区块对比上使用不同的对比准则。当高电力电平时，使用计算复杂而精确的对比准则；当低电力电平时，使用计算简单而精确度较低的对比准则。

在全搜寻区块对比法中，是根据一个对比法则，在给定的搜寻画面中的每一个宏区块都和目前的宏区块相对比并且得出最好的匹配。虽然该方法在预测画面的品质上与算法的简易性上是最好的，但却消耗最少的电力。由于移动预测程序在视频串流的编码之中是计算最复杂且最消耗电力的，因此，各种以特征为基础（signature-based）的搜寻区块对比法被提出，诸如，阶层式搜寻（hierarchical search）、三步骤搜寻（three step search, TSS）、二维对数搜寻（two dimensional logarithmic search, TDL）、二元素搜寻（binary search, BS）、四步骤搜寻（four step search, FSS）、直角搜寻算法（orthogonal search algorithm, OSA）、逐次逐一算法（one at a time algorithm, OTA）、交叉搜寻算法（cross search algorithm, CSA）、钻石搜寻法（diamond search, DS）等等。然而，预测画面品质与方法的效率则须折衷考虑，无法兼得。

为减少移动预测程序中的电力消耗，较佳的作法是采用由粗略到精确的阶层式搜寻区块对比法（hierarchical searching block-matching processes）。由于会在较高的阶层减少须搜寻影像尺寸，使其得以减少电力消耗。该方法中已知的范例为平均金字塔（mean pyramid）法。在平均金字塔法中，通过次采样（sub-sampling）方式建立起不同的金字塔式的各层影像。接着阶层式搜寻移动向量从较高至较低阶层进行预测，以减少计算的复杂并且得到较高品质的移动向量。为消除噪声（noise）在较高阶层的影响，使用低通滤波器（low pass filter）来建立影像金字塔。其可利用简单移动平均法以建立多阶
层金字塔影像（multiple-level pyramidal images）。例如金字塔式影像可以下列方程式建立:

\[g_L(p,q) = \left(\frac{1}{4} \sum_{u=0}^{1} \sum_{v=0}^{1} g_{L-1}(2p+u,2q+v) \right) \]

其中，\(g_L(p,q) \) 代表第 L 层阶位于位置 \((p,q)\) 的灰阶值，而 \(g_0(p,q) \) 代表原始影像。通过简单的非重叠性低通过滤（non-overlapping low pass filtering），指定一个低通窗框（low pass window）之中像素的平均灰度（mean gray level）给下一个阶层的单一像素，来建构完成平均金字塔。此方法会递归性地使用于较低阶层的四像素平均值（mean value），来产生平均金字塔。

以下举出一个实例来说明使用三个阶层的阶层式搜寻区块对比程序。在第二阶层的每一个像素（pixel）分别相等于第零阶层与第一阶层的一个 4×4 与 2×2 区块。所以，在第零阶层且大小为 16×16 的区块，被第 L 阶层上大小为 16/2L×16/2L 的区块的其中一个所取代。在建立完平均金字塔后，这些影像可使用三步法来进行搜寻，而在第二阶层所搜寻到的多个移动向量各拥有其绝对差异平均（mean absolute difference, MAD），并且，在此阶层中，拥有最小绝对差异平均的移动向量会被选择为粗略移动向量（coarse motion vector）。也就是，在较高阶层所侦测到的移动向量会传递到较低阶层，用以带领较低阶层的微调程序（refinement process）。此阶层式搜寻程序会反复进行直到第零阶层。因为在最高阶层是依据相对较小区块来计算出多个绝对差异平均值后，可能会在多个点上拥有几乎相同的绝对差异平均值，所以，在最高阶层中可能存在超过一个的候选点（假设第二阶层存在此特殊情况），第二阶层的移动向量会传递到较低的阶层。在第一阶层中，在围绕于候选区域外的一个小窗框（window）以两个像素的分辨率进行完全搜寻（full search），用以找寻具有最小差异的位置，当作第零阶层的搜寻中心点。图 4 是依据本发明实施例的范例金字塔式影像示意图。首先，三个最佳匹配点 \(P_{11} \) 至 \(P_{13} \) 被选为下一个阶层（也就是第一阶层）上搜寻窗框的中心点。搜寻
窗框 W₁₁ 至 W₁₃ 被选为在第一阶层找出最佳匹配的潜在位置。最后，搜寻区域 W₀ 被选择为第零阶层上找出最佳匹配的潜在位置。

图 5 是表示依据本发明实施例应用于电池供电装置 10 的硬件环境架构图，包括视频编码器 12、电池 14、视频解码器 16、音频编码器/解码器 18、显示控制器 20、存储装置控制器 22、存储装置 24 以及中央控制器 26。电池 14 为装置 10 中的主要或备用电力来源。存储装置 24 在较佳的情况下，为一随机存取存储器（random access memory；RAM），但也包含只读存储器（read only memory；ROM）或闪存（flash ROM）。存储装置 24 用以暂时性地储存视频编码数据。一般而言，储存较大的暂时性数据会占去存储装置 24 较大的储存空间，至使电池 14 消耗掉更多的电力。中央控制器 26 控制视频解码器 16、视频编码器 12、音频编码器/解码器 18、显示控制器 20 与存储装置控制器 22，以管控视频编码功能。在此须注意的是，为侦测电池电力电平，电池 14 也可不耦接于视频编码器 16，而耦接于中央控制器 26，视频编码器 16 则可通过查询中央控制器 26 来取得电池的电力电平。

图 6 是表示应用于本发明实施例的视频编码器 12 方块图，包括视频接口 122、移动预测器 124 及编码电路 126。视频编码器 12 用以将数字视频数据编码成视频串流（VS）。移动预测器 124 耦接于视频接口 122，用以针对数字视频数据中的宏区块进行各种移动预测程序。编码电路 126 耦接于视频接口 122 及移动预测器 124，用以控制整个编码流程，使用离散余弦转换（DCT）、量化（Quantization）、可变长度编码（VLC）等方法对预测的画面进行编码以产生一视频串流，以及使用反向量化（Inverse Quantization）、离散余弦反转换（Inverse DCT, IDCT）、移动补偿（Motion Compensation, MC）等方法以产生移动预测的参考画面。

参考图 5，若电池 14 的电力充足或几乎满载，则可调整视频编码器 12，允许使用较多的电力消耗，以产生较佳的视频品质。若电池 14 的电力匮乏或几乎消耗殆尽，为了延长电池寿命，视频编码器 12 只允许使用较少的电
力，因此逐渐将视频的品质降低。换句话说，当电池电力电平变低时，以电池供电的视频编码装置仍可继续编码而非停止运作，只是其所产生的视频品质较差。

一般而言，执行完全区块对比程序需要较多的存储器频宽，导致较多的电池电力消耗，而阶层式搜寻区块对比程序需要较少的存储器频宽，消耗电池电力较少。因此，若电池 14 的电力电平为满载或几乎满载，视频编码器 12 可执行完全区块对比程序，产生最佳的视频品质。若电池 14 的电力电平近乎零，视频编码器只能执行阶层式搜寻区块对比程序以延长电池使用时间，但会减损视频品质。执行阶层式搜寻区块对比程序时，运用较多的阶层进行搜寻，存储器所需的频宽会较少，以致消耗较少电力，另一方面，使用较少的阶层数目进行搜寻时，需要较大的存储器频宽，以致消耗较多电力。而当执行阶层式搜寻区块对比程序或完全区块对比程序时，搜寻越大的范围需要越大的存储器频宽，以致消耗较多电力，相对而言，搜寻较小的范围需要较小的存储器频宽，将消耗掉较少的电力。

参考图 5 的实施例，视频编码器 12 取得电池 14 中的电力电平信息，依据电池电力电平在多个移动预测程序之中，决定出一个移动预测程序以应用于一像素阵列（an array of pixels），并且在此像素阵列进行所决定的移动预测程序。这些移动预测程序可包括阶层式搜寻区块对比程序与全搜寻区块对比程序。在某些例子中，当侦测到的电池电力电平高于一阈值时，视频编码器 12 可选择全搜寻区块对比程序，如有必要，还可根据侦测到的电力电平决定搜寻的范围。更甚者，视频编码器 12 可根据侦测到的电池电力电平决定区块对比准则。然而，当侦测到的电池电力电平低于或等于该阈值时，视频编码器 12 可选择阶层式搜寻区块对比程序，而在必要的情况下，可更依据侦测到的电池电力电平，为阶层式搜寻区块对比程序决定阶层的总数以及每一阶层的搜寻范围。视频编码器 12 也可依据侦测到的电池电力电平，决定区块对比准则。
图7为依据本发明实施例的应用于电池供电装置的视频编码流程图。此流程始于步骤S71，侦测装置中的电池的电力电平。如步骤S73，依据电池电力电平，在多个移动预测程序之中，决定出一个移动预测程序以应用于一像素阵列。这些移动预测程序可包括阶梯式搜寻区块对比程序与全搜寻区块对比法。在某些例子中，当侦测到的电池电力电平高于一阈值时，可选择全搜寻区块对比程序，而在必要情况下，可更根据侦测到的电池电力电平，决定全搜寻区块对比程序的搜寻范围。更甚者，可根据侦测到的电池电力电平，决定区块对比准则（criterion）。另一些例子中，当侦测到的电池电力电平低于或等于该阈值时，可选择阶梯式搜寻区块对比程序，而在必要情况下，可更依据侦测到的电池电力电平，决定阶梯式搜寻区块对比程序的阶梯总数以及每一阶梯的搜寻范围。其也可根据侦测到的电池电力电平，决定区块对比准则。如步骤S75，在像素阵列进行所决定的移动预测程序。

继续参考图5，视频编码器12可取得电池14中的电力电平，根据侦测到的电池电力电平，针对像素阵列来决定阶梯式搜寻区块对比程序的阶梯总数，并且使用阶梯式搜寻区块对比程序以及决定的阶梯总数在像素阵列进行移动预测。在某些例子中，当侦测到的电力电平较高时，视频编码器12可决定一较少的阶梯数来实行阶梯式搜寻区块对比程序，另一方面，当侦测到的电力电平较低时，可决定一较多的阶梯数来实行阶梯式搜寻区块对比程序。在某些例子中，当决定出阶梯式搜寻程序的阶梯数时，视频编码器12可更依据侦测到的电池电力电平，决定阶梯式搜寻区块对比程序的每一阶梯所适用的搜寻范围，并且以决定的搜寻范围在各金字塔式阶梯执行区块搜寻与对比。

图8为依据本发明实施例的应用于电池供电装置的视频编码流程图。此流程始于步骤S81，侦测装置中的电池的电力电平。如步骤S83，依据电池电力电平，对于一像素阵列决定其阶梯式搜寻区块对比程序的阶梯数目。在某些例子中，当侦测到的电池电力电平较高时，可选择较少阶梯数的阶层
式搜寻，另外，当侦测到的电池电力电平较低时，可选择较多阶层数的阶层式搜寻。如步骤 S85，使用阶层式搜寻区块对比程序以及决定的阶层数目在像素阵列进行移动预测。在某些例子中，当决定出阶层式搜寻区块对比程序的阶层数时，可更根据侦测到的电池电力电平，决定阶层式搜寻区块对比程序的每一阶层所适用的搜寻范围，并且以决定的搜寻范围，在各金字塔式阶层执行区块搜寻与对比。

虽然本发明已以较佳实施例揭露如上，然其并非用以限定本发明，任何熟悉此项技艺者，在不脱离本发明的精神和范围内，当可做些许更动与润饰，因此本发明的保护范围当视权利要求所界定的范围为准。
图 3
图 4
开始

侦测电池中的电力电平 S71

依据电池电力电平，在多个移动预测程序之中决定出一个移动预测程序 S73

在像素阵列进行所决定的移动预测程序 S75

结束

图 7
开始

侦测电池中的电力电平 S81

依据电池电力电平，决定阶层式搜寻区块对比程序的阶层数目 S83

使用阶层式搜寻区块对比程序以及所决定的阶层数目，在像素阵列进行移动预测 S85

结束

图 8