(54) 发明名称
填料颗粒、树脂组合物、脂膏和涂料组合物

(57) 摘要
本发明涉及一种填料颗粒，其特征在于其由下述化学式(1)表示的复合氧化锌构成。并且涉及含有该填料颗粒的树脂组合物、脂膏、涂料组合物。并且，根据本发明，可以得到具有稳定的绝缘性的填料颗粒，以及具有所述填料颗粒的树脂组合物、脂膏、涂料组合物。其中下述化学式(1)中的M为Mg、Co、Li、K、Na或Cu，若将M的价数设为n，则x+ny/2=1，ZnM_{0.5}(1)。
1. 一种填料颗粒，其特征在于，其由下述化学式 (1) 表示的复合氧化锌构成，该填料颗粒的中值径 D50 为 1μm ~ 10000μm，

\[\text{Zn}_x\text{M}_y\text{O} \]

式中，M 为选自由 Li、K、Na 和 Cu 组成的组中的至少一种金属，若将 M 的价数设为 n，则 x + ny/2 = 1。

2. 如权利要求 1 所述的填料颗粒，其中 0.0001 < ny/2 < 0.3。

3. 一种树脂组合物，其特征在于，其含有权利要求 1 或 2 所述的填料颗粒。

4. 一种脂膏，其特征在于，其含有权利要求 1 或 2 所述的填料颗粒。

5. 一种涂料组合物，其特征在于，其含有权利要求 1 或 2 所述的填料颗粒。
填料颗粒、树脂组合物、脂膏和涂料组合物

技术领域
【0001】 本发明涉及由低导电性的氧化锌颗粒构成的填料颗粒、树脂组合物、脂膏和涂料组合物。

背景技术
【0002】 氧化锌颗粒在树脂、涂料、脂膏等领域中被广泛用作填料颗粒。对于作为这样的填料颗粒的氧化锌颗粒，期待各种功能。作为这样的氧化锌颗粒的特征之一，具有高导电性的性质。
【0003】 在某些用途下，这样的高导电性不会产生特别的问题，但是由于具有导电性，对于填料的使用会产生不良影响，存在难以将氧化锌颗粒用作填料的用途。特别是在电子材料、电器制品的领域中，导电性能多会导致不好的结果。因此，要求一种抑制了导电性的氧化锌颗粒。
【0004】 作为抑制了导电性的氧化锌颗粒，专利文献1中记载的氧化锌颗粒是公知的。专利文献1公开了一种通过用1价的掺杂剂掺杂从而外周部变成了高电阻层的氧化锌粉末。
【0005】 专利文献2中记载了一种适合在作为压敏电阻粉末的用途的氧化锌颗粒，并且记载了以一定的比例添加各种金属。但是，对于该文献所记载的氧化锌颗粒而言，记载了其作为压敏电阻粉末的使用，不存在关于作为填料的使用的记载。此外，虽然记载了添加其他金属，但由于使用铝作为必要成分，因而绝缘性容易降低，无法充分地进行导电性的抑制。即，认为：搬运ZnO的电荷的载体是自由电子，显示出N型半导体特性。据认为，若在ZnO中添加Al^{3+}，则对于Zn^{2+}而言Al^{3+}起到提供自由电子的供体的作用，ZnO的自由电子增加，从而使导电性提高。
【0006】 专利文献3中记载了一种指向性氧化锌系压电材料。但是，该文献所记载的是作为压电材料的氧化锌，并不存在关于作为填料的使用的记载。

现有技术文献
【0007】 现有技术文献
【0008】 专利文献
【0009】 专利文献1：日本特开2007-84704号公报
【0010】 专利文献2：日本特开2008-218749号公报
【0011】 专利文献3：日本特开平8-310813号公报

发明内容
【0012】 发明要解决的问题
【0013】 鉴于上述内容，本发明的目的在于得到具有稳定的绝缘性的填料颗粒，以及具有所述填料颗粒的树脂组合物、脂膏和涂料组合物。
【0014】 用于解决问题的方案
【0015】 本发明涉及一种填料颗粒，其特征在于，其由下述化学式(1)表示的复合氧化锌构成。
说明书

附图说明

图1是由实施例1得到的本发明的填料颗粒的扫描型电子显微镜照片。

图2是由实施例1得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。

图3是由实施例1得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的绘图的图像。

图4是由实施例1得到的本发明的填料颗粒的截面的Mg的基于波长色散型X射线分析的绘图的图像。

图5是由实施例1得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。

图6是由实施例1得到的本发明的填料颗粒的截面的Mg的基于波长色散型X射线分析的谱线强度的图像。

图7是由实施例1得到的本发明的填料颗粒的截面的Zn和Mg,通过能量色散型X射线分析进行了定量分析的部位的图像。

图8是由实施例2得到的本发明的填料颗粒的扫描型电子显微镜照片。

图9是由实施例2得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。

图10是由实施例2得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的绘图的图像。

图11是由实施例2得到的本发明的填料颗粒的截面的Co的基于波长色散型X射线分析的绘图的图像。

图12是由实施例2得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。

图13是由实施例2得到的本发明的填料颗粒的截面的Co的基于波长色散型X射线分析的谱线强度的图像。

图14是由实施例2得到的本发明的填料颗粒的截面的Zn和Co,通过能量色散型X射线分析进行了定量分析的部位的图像。

图15是由实施例3得到的本发明的填料颗粒的扫描型电子显微镜照片。

图16是由实施例4得到的本发明的填料颗粒的扫描型电子显微镜照片。

图17是由实施例5得到的本发明的填料颗粒的扫描型电子显微镜照片。
图18是由实施例5得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。
图19是示出由实施例5得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的图的图像。
图20是示出由实施例5得到的本发明的填料颗粒的截面的Na的基于波长色散型X射线分析的图的图像。
图21是示出由实施例5得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。
图22是示出由实施例5得到的本发明的填料颗粒的截面的Na的基于波长色散型X射线分析的谱线强度的图像。
图23是由实施例6得到的本发明的填料颗粒的扫描型电子显微镜照片。
图24是由实施例6得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。
图25是示出由实施例6得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的图的图像。
图26是示出由实施例6得到的本发明的填料颗粒的截面的Cu的基于波长色散型X射线分析的图的图像。
图27是示出由实施例6得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。
图28是示出由实施例6得到的本发明的填料颗粒的截面的Cu的基于波长色散型X射线分析的谱线强度的图像。
图29是由实施例7得到的本发明的填料颗粒的扫描型电子显微镜照片。
图30是由实施例7得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。
图31是示出由实施例7得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的图的图像。
图32是示出由实施例7得到的本发明的填料颗粒的截面的Mg的基于波长色散型X射线分析的图的图像。
图33是示出由实施例7得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。
图34是示出由实施例7得到的本发明的填料颗粒的截面的Mg的基于波长色散型X射线分析的谱线强度的图像。
图35是示出对于由实施例7得到的本发明的填料颗粒的截面的Zn和Mg，通过能量色散型X射线分析进行了定量分析的部位的图像。
图36是由实施例8得到的本发明的填料颗粒的扫描型电子显微镜照片。
图37是由实施例8得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。
图38是示出由实施例8得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的图的图像。
图39是示出由实施例8得到的本发明的填料颗粒的截面的Co的基于波长色散型X射线分析的图的图像。
图40是示出由实施例8得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。
图41是示出由实施例8得到的本发明的填料颗粒的截面的Co的基底波长色散型X射线分析的谱线强度的图像。

图42是示出对于由实施例8得到的本发明的填料颗粒的截面的Zn和Co,通过能量色散型X射线分析进行了定量分析的部位的图像。

图43是由比比较例2得到的本发明的填料颗粒的扫描型电子显微镜照片。

图44是由比较例2得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。

图45是示出由比较例2得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的综合图的图像。

图46是示出由比较例2得到的本发明的填料颗粒的截面的Ca的基于波长色散型X射线分析的谱线的图像。

图47是示出由比较例2得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。

图48是示出由比较例2得到的本发明的填料颗粒的截面的Ca的基于波长色散型X射线分析的谱线强度的图像。

图49是示出对于由比较例2得到的本发明的填料颗粒的截面的Zn和Ca,通过能量色散型X射线分析进行了定量分析的部位的图像。

图50是由比较例3得到的本发明的填料颗粒的扫描型电子显微镜照片。

图51是由比较例3得到的本发明的填料颗粒的截面的扫描型电子显微镜照片。

图52是示出由比较例3得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的综合图的图像。

图53是示出由比较例3得到的本发明的填料颗粒的截面的Ni的基于波长色散型X射线分析的谱线的图像。

图54是示出由比较例3得到的本发明的填料颗粒的截面的Zn的基于波长色散型X射线分析的谱线强度的图像。

图55是示出由比较例3得到的本发明的填料颗粒的截面的Ni的基于波长色散型X射线分析的谱线强度的图像。

图56是示出对于由比较例3得到的本发明的填料颗粒的截面的Zn和Ni,通过能量色散型X射线分析进行了定量分析的部位的图像。

具体实施方式

以下，详细地说明本发明。

本发明涉及一种填料颗粒，其特征在于，其由ZnM_nO₂（式中，M为Mg、Co、Li、K、Na或Cu，若将M的价数设为n，则x+n/2=1。）表示的复合氧化锌构成。即，本发明的填料颗粒是由含有选自由Mg、Co、Li、K、Na和Cu组成的组中的一种金属的复合氧化锌构成的填料颗粒。

本发明中，M表示的金属元素的一部分或全部均匀地存在于氧化锌颗粒内部。即，本发明是由ZnM_nO₂表示的复合氧化物构成的填料颗粒。如上所述，氧化锌颗粒是具有高导电性的颗粒，因此无法在要求绝缘性的用途中使用。若对其以一定的比例添加选自由Mg、Co、Li、K、Na和Cu组成的组中的至少一种金属，则所添加的金属以均匀分布的固溶状态包含在
氧化锌颗粒内部。由此，发现氧化锌颗粒的绝缘性提高，能够在需要绝缘性的用途中使用，从而完成了本发明。

[0083] 这样，只有在使特定的金属为M的情况下，能够形成添加金属得到均匀分布的固溶状态的复合氧化锌。在含有均匀的固溶状态的金属元素的情况下，能够得到高绝缘性，但在含有其他金属元素的情况下，有时无法充分得到绝缘性的提高效果。特别是，从绝缘性的方面出发，Zn可不主动添加作为不优选的金属元素的铝等，优选实质上不含有铝，更具体地说，其含量相对于氧化锌颗粒的重量以Al计优选为0.0001重量%以下。

[0084] 本发明中，添加金属得到均匀分布的固溶状态的复合氧化锌优选以下所示的Δ(%)小于60%。

[0085] (Δ(%) 的测定方法)

[0086] 如图7所示，在填料颗粒的截面的图像上，制作在直径方向分割的10个正方形。对于这些正方形，从图7的左侧编码为1、2、3、4、5、6、7、8、9、10，由各正方形中的Zn和金属M的定量分析值(重量%)求出各正方形中的相对于100重量%Zn0的金属M的以氧化物换算的定量分析值Q(重量%)。进而，通过下式求出正方形1～10中的金属M的以氧化物换算的定量分析值Q(重量%)、相对于正方形1～10中的金属M的以氧化物换算的定量分析值的平均值A(重量%)的偏差：Δ(%)。

\[\Delta(\%) = \frac{|Q - A|}{A} \times 100 \]

[0087] 此时，

[0088] Q：各正方形1～10中的相对于100重量%Zn0的金属M的以氧化物换算的定量分析值(重量%)。

[0089] A：各正方形1～10中的相对于100重量%Zn0的金属M的以氧化物换算的定量分析值的平均值(重量%)。

[0090] 在这样对所有的正方形测定Δ(%)的情况下，优选所有的正方形中Δ(%)小于60%。

[0091] 在作为现有技术列举的文献中，也记载了在填料以外的领域中在氧化锌中混杂其他金属。但是，实际上，所得到的氧化锌很少为通式ZnMgO表示的结构，以往完全不知道上述见解。

[0092] 为了进一步明确这点，以下，基于图中所示的实施例的填料颗粒的截面的图像进行说明。

[0093] 图3、4是示出通过波长色散型X射线分析对实施例1的填料颗粒(颗粒内部均匀地存在Mg的氧化锌颗粒)的截面进行绘图所得到的Zn和Mg的存在位置的绘图图像。图5、6是分别示出在实施例1的填料颗粒的截面中存在于图中央的直线上的Zn和Mg的强度的图像。

[0094] 图15、16是分别示出通过波长色散型X射线分析对比较例2的填料颗粒(颗粒内部存在Ca的氧化锌颗粒)的截面进行绘图所得到的Zn和Ca的存在位置的绘图图像。图17、18是分别示出在比较例2的填料颗粒的截面中存在于图中央的直线上的Zn和Ca的强度的图像。

[0095] 在示出绘图图像的图中，显示白色的点表示Zn、Mg、Ca分别存在，在示出谱线强度的图中所示的波形的谱图表示存在于图中央的直线上的Zn、Mg、Ca的强度。

[0096] 由图3、4、5、6可知，对于实施例1得到的本发明的填料颗粒，直至氧化锌颗粒内部均匀地存在Mg。另一方面，可知图15、16所示的实施例2的填料颗粒在颗粒表层集
中存在有Ca。此外，在图52、53、54、55所示的比较表3的填料颗粒中，Ni虽然存在于颗粒内部，但不是均匀地存在，其不均匀地集中存在颗粒内部。即，在使用Mg作为金属种的情况下，本发明的填料颗粒能够以完全的复合氧化锌构成的均匀的固溶状态获得，在使金属种为Ca或Ni的情况下，没有均匀地固溶，集中存在于颗粒内部或颗粒表层。

[0098] 除此之外，在使用Co、Cu、Na作为M的条件下，也同样是地由图10、11、12、13、38、39、
40、41（Co的情况下）；图19、20、21、22（Na的情况下）；图25、26、27、28（Cu的情况下）可知，M均匀地存在于氧化锌颗粒内部。

[0099] 上述化学式（1）中，若将M的价数设为n，则优选x+ny/2=1.0,0001<ny/2<0.3。若
ny/2为0.0001以下，则有可能得到充分的绝缘性能。另外，若ny/2为0.3以上，则散热性能
有目好的降低。上述ny/2的值更优选为0.0001<ny/2<0.2，更进一步优选为0.0001<ny/2<
0.06。

[0100] 上述M为选自由Mg、Co、Li、K、Na和Cu组成的组中的至少一种金属元素。其中，由于
绝缘性能优良而优选为Mg、Co。本发明的填料颗粒可以含有2种以上的金属元素作为上述M。
需要说明的是，在使用2种以上的金属作为M的情况下，优选x+Σ（ny/2）=1、Σ（ny/2）满足
上述数值范围。

[0101] 在与高纯度的氧化锌相比时，本发明的填料颗粒的绝缘性显著较高。优选的是，上
述填料颗粒若在制成片材时的绝缘性即体积固有电阻值为10^15Ω·cm的树脂中以散热材料
的的形式填充62.9体积％，则该片材的体积固有电阻值能够维持为10^14Ω·cm以上。

[0102] 对于本发明的填料颗粒，能够制成具有任意的形状、粒径等的颗粒。作为形状，能
够制成针状、棒状、板状、球状的任意形状。对粒径也没有特别限定，中值径（D50）优选为为
作为填料使用的氧化锌的通常的粒径即1μm～10000μm的范围。上述中值径（D50）是利用激光
衍射/散射式粒度分布测定装置LA-750（场制作所社制造）所测定的值。上述粒径更优选
为1μm～100μm。

[0103] 本发明的填料颗粒对其制造方法没有特别限定，通过在通常的氧化锌的制造方法
中的任意工序中添加规定量的金属M的化合物而能够制造。作为公知的氧化锌颗粒，例如，
可以举出日本特开2009-249226号公报所公开的氧化锌颗粒等，在这些氧化锌颗粒的制造
方法的制造中的任意工序中，添加规定量的金属M的化合物，从而能够得到。

[0104] 其中，本发明的填料颗粒优选密度为4.0g/cm³以上，中值径（D50）为17μm～10000μ
m的填料颗粒（A）、或者中值径（D50）为1μm～20μm且D90/D10为4以下的填料颗粒（B）。上述填
料颗粒（A）和（B）分别具有优异的绝缘性。以下，对它们进行详细说明。

[0105] （填料颗粒（A））

[0106] 上述填料（A）能够通过下述氧化锌颗粒的制造方法获得，该制造方法包括以下工
序：工序（1），在锌源颗粒中混合具有选自由Mg、Co、Li、K、Na和Cu组成的组中的至少一
种金属元素的金属化合物而进行造粒；以及工序（2），对由上述工序（1）得到的造粒颗粒进
行烧制。

[0107] 上述工序（1）为以下工序：在水中将锌源颗粒再制浆，混合具有选自由Mg、Co、Li、
K、Na和Cu组成的组中的至少一种金属元素的金属化合物，进行造粒。

[0108] 在本发明的填料颗粒（A）的制造方法中，使用锌源颗粒作为原料。作为锌源颗粒，
只要是氧化锌、硝酸锌、硫酸锌、碳酸锌、氢氧化锌、乙酸锌等通过烧制而成为氧化锌的物质
则没有特别限定。上述锌源颗粒特别优选为氧化锌。上述锌源颗粒优选中值径（D50）为0.01 μm~1.0μm。上述锌源颗粒的中值径（D50）是利用激光衍射/散射式粒度分布测定装置LA-750（堀场制作所社制造）或动态光散射型粒度分布测定装置ELS-22（大塚电子社社制造）所测定的值。

【0109】作为能够用作原料的氧化锌，没有特别限定，可以使用通过法国法、美国法等公知的方法所制造的氧化锌，从杂质少的方面出发，特别优选使用通过法国法所制造的氧化锌。

【0110】上述金属化合物可以举出例如上述金属M的硝酸盐、硫酸盐，以及乙酸盐、柠檬酸盐、丙酸盐、丁酸盐、乳酸盐、草酸盐、硬脂酸盐等有机酸盐、氢氧化物等。其中，从能够有效地绝缘化的方面出发，优选为乙酸盐。上述金属化合物可以为一种，也可以将两种以上合用。

【0111】由于上述金属化合物在制造工序中的添加量被化学式（1）中的ny/2的值所反映，因而上述金属化合物优选为与作为目标的ny/2的值对应的添加量。

【0112】关于上述工序（1）中的造粒，并不特别限定其方法，例如，可以举出以下方法：将上述锌源颗粒和金属化合物分散于水中而制成浆料，并进行喷雾干燥等等。另外，还可以举出以下方法：在上述锌源颗粒中添加金属化合物的水溶液，使用斯巴达式造粒机（スパルタン・リコーダー）、斯巴达式混合器（スパルタンミキサー）、亨舍尔混合机、球形造粒机等进行混合并造粒等等。

【0113】上述工序（1）中，在制成浆料时，除了上述金属M的化合物之外，还可以添加烧结促进成分。烧结促进成分可以举出例如乙酸，通过添加乙酸作为烧结促进成分，与仅添加了金属M的化合物的情况相比，在上述工序（2）中能够得到更致密地烧结的氧化锌颗粒。

【0114】上述工序（1）中，在制成浆料时，可以使用分散剂。作为能够适合用作分散剂的物质，没有特别限定，例如，可以举出多元羧酸铵盐（花王社制造POIZ 532A）等等。

【0115】在使用脂肪酸盐作为有机酸盐时，由于有机酸盐自身具有作为分散剂的功能，因而能够容易地获得浆料，从这方面出发是优选的。

【0116】对浆料的制造方法没有特别限定，例如，将上述成分添加到水中，在18℃~30℃下分散10分钟~30分钟，从而能够制成锌源颗粒的浓度为100g/l~1500g/l的均匀的浆料。

【0117】作为上述喷雾干燥的方法，没有特别限定，例如，可以举出以下方法：在优选为150℃~300℃左右的气流中，利用双流体喷嘴或旋转盘等喷雾上述浆料，制作20μm~100μm左右的造粒颗粒。此时，优选以浆料的粘度为50cps~3500cps的方式控制浆料的浓度。浆料的粘度是利用B型粘度计（东京计器社制造）以60rpm的剪切力所测定的值。利用亚微米数量级的过滤器（袋式过滤器）捕集在该气流中干燥的造粒颗粒。若浆料的粘度、干燥温度、气流速度不在所期望的范围，则造粒颗粒会形成中空或者凹陷的形状。

【0118】通过对这样得到的颗粒进行烧制，能够得到上述填料颗粒（A）。对烧制条件没有特别限定，优选以烧制温度700℃~1500℃，烧制时间1小时~3小时进行，烧制优选通过静置烧制来进行。上述静置烧制能够在莫来石制、莫来石和堇青石制等的匣钵中进行。上述烧制更优选以1000℃~1200℃进行。若利用上述方法进行烧制，则颗粒彼此之间基本上没有熔合，能够得到致密地烧结至颗粒内部的填料颗粒。

【0119】若为小于700℃的烧制，则有可能无法充分烧结至颗粒内部，从这方面出发是优选。若超过1500℃，则颗粒彼此之间的熔合进行，从这方面出发是优选。
[0120] 这样得到的填料颗粒(A)优选中值径(D50)为17μm～10000μm。上述中值径的下限更优选为20μm。另外，上限更优选为1000μm、进一步优选为100μm。填料颗粒的颗粒尺寸大时，在树脂组合物中的传热路径增加，通过与其他填料组合，能够期待最紧密堆积效果所引起的高导热化，从这方面出发是优选的。因此，通过使中值径(D50)在上述范围内，在作为散热性填料使用时具有更优异的性能。

[0121] 需要说明的是，本说明书中，中值径(D50)是利用激光衍射/散射式粒度分布测定装置LA-750(堀场制作所社制造)所测定的值。或者，利用基于目视观察的统计学方法所得到的值。目视观察可以利用扫描型电子显微镜JSM-5400(日本电子社制造)、或者JSM-7000F(日本电子社制造)进行。

[0122] （填料颗粒(B)）

[0123] 上述填料颗粒(B)的中值径(D50)为1μm～20μm、D90/D10为4以下。其特征在于，与现有的氧化锌颗粒相比，粒径更大，且D90与D10之比更小（即，粒径极端小的粗大颗粒的数目少）。这样的填料颗粒虽然为大颗粒，但基本上没有混入50μm以上的粗大颗粒，粒度分布窄，因此能够得到优异的散热性。上述填料颗粒(B)的粒径的分布是利用激光衍射/散射式粒度分布测定装置LA-750(堀场制作所社制造)所测定的值。

[0124] 上述中值径(D50)的下限为1.0μm、更优选为1.5μm。上述中值径(D50)的上限为20μm、更优选为17μm。

[0125] 上述填料颗粒(B)优选50μm以上的粗大颗粒的比例为0.05重量%以下。50μm以上的粗大颗粒的比例可以根据JIS K 1410氧化锌・筛余物试验来测定。

[0126] 上述填料颗粒(B)例如可以通过将锌质源颗粒在溴化铵或氯化铵等卤化物、以及具有选自由Mg,Co, Li, K, Na和Cu组成的组中的至少一种金属元素的金属化合物的存在下进行烧制而制造。以下，详细说明上述填料颗粒(B)的制造方法。

[0127] 在上述填料颗粒(B)的制造方法中，使用锌质源颗粒作为原料。作为锌质源颗粒，只要是氧化锌、硝酸锌、硫酸锌、氯化锌、溴化锌、乙酸锌、氯化锌等通过烧制而成为氧化锌的物质则没有特别限定。上述锌质源颗粒优选为氧化锌。上述锌质源颗粒优选中值径(D50)为0.01μm～1.0μm。上述锌质源颗粒的中值径(D50)是利用激光衍射/散射式粒度分布测定装置LA-750(堀场制作所社制造)或动态光散射型粒度分布测定装置ELS-22(大塚电子社制造)所测定的值。

[0128] 作为能够用作原料的氧化锌，没有特别限定，可以使用通过法国法、美国法等公认的方法所制造的氧化锌，从杂质少的方面出发，特别优选使用通过法国法所制造的氧化锌。

[0129] 上述填料颗粒(B)的制造方法的特征在于，在溴化铵或氯化铵等卤化物、以及具有选自由Mg, Co, Li, K, Na和Cu组成的组中的至少一种金属元素的金属化合物的存在下进行烧制。作为上述金属化合物，没有特别限定，可以使用上述填料颗粒(A)的制造方法中列举的化合物。或者，溴化物、氯化物等含有卤素的金属化合物，其中，优选溴化镁等溴化物。在无机颗粒的制造中，为了增大粒径，有时在熔剂存在下进行烧制。若使用金属M的溴化物作为这样的烧制时的熔剂，与使用其他化合物作为熔剂的情况相比，所得到的填料颗粒(B)的粒径的分布窄。

[0130] 另外，在使用氯化物、溴化物等含有卤素的金属化合物作为金属化合物时，可以不必使用溴化铵或氯化铵等卤化物，但可以使用溴化镁或氯化镁等卤化物作为烧结促进剂

[0131] [0132] [...]

[0133] 另外，在使用氯化物、溴化物等含有卤素的金属化合物作为金属化合物时，可以不必使用溴化铵或氯化铵等卤化物，但可以使用溴化镁或氯化镁等卤化物作为烧结促进剂。
上述填料颗粒(B)可以如下制造：利用公知的方法将上述铝源颗粒与氯化铵或氯化锌等卤化物以及上述金属化合物混合，并对其进行热处理，由此得到单质。在工业上，上述烧结例如优选利用隧道窑或梭式窑的静置烧结。通过为静置烧结，颗粒彼此之间熔合，能够有效地发生颗粒生长，能够有效地得到粒径大的氧化铝颗粒，从这方面出发是优选的。

上述烧结优选以600℃～1200℃进行。若为小于600℃的烧结，则粒径有可能不会增加。从这面出发不优选。若超过1200℃，则粗大颗粒的发生变多，收率有可能降低，从这方面出发优选。

对于通过上述方法制造的填料颗粒(B)，其粒径分布窄，但需要得到粒径分布更窄的填料颗粒(B)时，或者为了除去以低比例含有的粗大颗粒，也可以利用粉碎和筛分再分级。对粉碎方法没有特别限定，例如，可以涂出喷雾器等。另外，作为利用筛的分级方法，可以采取湿式分、干式分级。

本发明的填料颗粒在特别限定用途，能够特别适合用作散射性填料，即，氧化铝颗粒由于导电性高，因此能够适合用作散射性填料。本发明的填料颗粒在维持了这样的散射性能的同时抑制了导电性，因而能够适合用在电子设备等用途中使用的散射性填料。

在将本发明的填料颗粒用作散射性填料时，密度优选为4.0 g/cm³以上，更优选为4.5 g/cm³以上。上述范围所表示的那样高的密度的填料颗粒是在颗粒内部中空部少的致密的颗粒，因此容易产生热传导，作为散射性填料具有特别优异的性能。若密度小于4.0 g/cm³，有可能无法得到充分的散射性能。

在用作散射性填料时，本发明的填料颗粒可以为球状颗粒。若为球状颗粒，则能够进行最紧密堆积，因此能够提高散射性填料的密度。由此，从能够赋予更高的散射性能的方面出发是优选的。颗粒的形状能够利用扫描型电子显微镜JSM-5400(日本电子社制造)或者JSM-7000F(日本电子社制造)来观察。上述填料颗粒优选横轴为100～150。在用于散射性填料时，横向比近1.0，则填料的取向性会随之消失，因而无论从任何方向进行加压成型，都能够获得填料被均匀地填充的树脂成型体。上述横轴的上限优选为1.10。

本发明的填料颗粒优选表面密度为2.50 g/ml以上，所述表面密度是按照JISK5101-12-1和JIS-R1639-2进行测定的。这样的表面密度是成为颗粒致密、高密度、且形状整齐均匀的指标的值。这样的表面密度高的填料颗粒具有下述优点：由于颗粒本身为高密度，所以散射性能优异，进而能够提高在树脂中的填充率。

本发明的填料颗粒优选填实堆积密度为3.10 g/cm³以上，所述填实堆积密度是按照JIS R1639-2进行测定的。这样的填实堆积密度高的填料颗粒具有下述优点：由于颗粒本身为高密度，所以散射性能优异，进而能够提高在树脂中的填充率。

本发明的填料颗粒优选颗粒中的90%以上的颗粒的纵横比为1.10以下，即，具有高纵横比、低球形度的颗粒存在时，用作填料时的填充率容易降低。因此，优选正球状形状的颗粒以高比例存在。需要说明的是，颗粒中的90%以上的颗粒的纵横比为1.10以下是指，对在电子显微镜照片中存在于视野中的所有颗粒的纵横比进行测定，通过这样的操作对于合计250个颗粒测定纵横比时，90%以上的颗粒的纵横比为1.10以下。

本发明的填料颗粒能够用作树脂组合物，脂膏，涂料组合物中的填料成分。
说明书

[0141] 在用作树脂组合物中的填料时，所使用的树脂可以为热塑性树脂，也可以为热固性树脂，可以由丙交酯树脂、聚苯硫醚（PPS）树脂、聚酯系树脂、聚酰胺、聚酰亚胺、聚苯乙烯、聚乙烯、聚丙烯、聚氯乙烯、聚偏二氯乙烯、氟树脂、聚甲基丙烯酸甲酯、乙烯-丙烯酸酯共聚物（EAA）树脂、聚碳酸酯、聚氨酯、聚缩醛、聚醚酯、聚醚酮、聚醚酮亚胺、丙烯腈-丁二烯-苯乙烯共聚物（ABS）树脂、环氧树脂（epoxides）、酚醛（phenols）、液晶树脂（LCP）、有机硅树脂、丙烯酸类树脂等树脂。

[0142] 本发明的树脂组合物可以为（1）通过将热塑性树脂和上述填料颗粒以熔融状态混合而得到的热成型用树脂组合物。（2）通过将热固性树脂和上述填料颗粒混合后加热固化而得到的树脂组合物。（3）在树脂溶液或分散液中分散上述填料颗粒而得到的涂料用树脂组合物。

[0143] 本发明的树脂组合物中的上述填料颗粒的混配量可以根据散热性能和树脂组合物的硬度等树脂组合物的性能而任意确定。为了充分表现出上述填料颗粒的散热性能，相对于树脂组合物中的固体成分总重量，优选含有60体积%以上，更优选含有68体积%以上的填料颗粒。

[0144] 本发明的树脂组合物为热成型用树脂组合物时，可以根据用途自由选择树脂成分。例如，在将树脂组合物与热源和散热板粘着并密合的情况下，选择有机硅树脂和丙烯酸类树脂这样的粘接性高且硬度低的树脂即可。

[0145] 本发明的树脂组合物为液体用树脂组合物时，树脂可以为具有固化性的树脂，也可以为不具有固化性的树脂。涂料可以为含有有机溶剂的溶剂系涂料，也可以为树脂溶液或分散液中形成的水系涂料。

[0146] 本发明的填料颗粒还能够与含有矿物油或合成油的基础油混合而用作脂膏中的填料颗粒。在用作这样的脂膏时，作为合成油，可以使用α-烯烃、二烯、多元醇酯、偏苯三酸酯、聚氨基酸、烷基苯基酸等，并且，也可以用作硅油混合而形成的散热性脂膏。

[0147] 本发明的填料颗粒在用作散热性填料时，也可以与其他成分合用。作为能够通过合用而使用的其他成分，可以举出氧化镁、二氧化钛、氧化铝等金属氧化物；氧化铝、氧化硼、碳化硅、氮化硅、氮化钛、金属硅、金刚石等除氧化铝以外的散热性填料；脂肪；表面活性剂等。

[0148] 本发明的填料颗粒的绝缘性能优异，因而能够特别适合用于在电子设备领域中使用的散热性填料。此外，还能够在涂料和油墨用颜料等领域中使用。

实施例

[0149] 以下举出实施例来说明本发明，但本发明并不受这些实施例的任何限定。

[0150] （实施例1）

[0151] 将微细氧化锌（塚化学工业社制造中质径（D50）0.2μm）600g在水中进行再制浆，混合分散剂（花王社制造P01Z 532A）21.0g（相对微细氧化锌的重量为3.50重量%），混合作为金属M的化合物的乙酸钠四水合物161.4g（相对微细氧化锌的重量为26.9重量%），制备浓度为590g/1的浆料。接着，将该浆料用实验室喷雾干燥机DRC型（坂本技研社制造）喷雾干燥，由此得到造粒颗粒。将其放入石膏石制、莫来石和堇青石制的匣钵中，于1200℃静置烧制3小时。将其冷却后，分散在1.0升水中，然后通过200目（网孔75μm）的筛，将过筛后的
浆料过滤、干燥，由此得到颗粒之间几乎不发生熔合，致密烧结至颗粒内部的球状且中值径(D50)为29.0μm的填料颗粒。用扫描型电子显微镜JSM-5400(日本电子社制造)观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图1。

【0152】（实施例2）

【0153】将微细化合物锌(钯化学工业社制造中值径(D50)0.2μm)600g在水中进行再制浆，混合作为金属M的化合物的乙酸钠水合物61.8g(相对于微细化合物锌的重量为10.3重量%)，混合作为烧结促进成分的乙酸3.66g(相对于微细化合物锌的重量为0.61重量%)，制备浓度为340g/l的浆料。接着，将该浆料用实验室喷雾干燥机DCR型(坂本技研社制造)喷雾干燥，由此得到造粒颗粒。将其放入莫来石制、莫来石和堇青石制等的匣钵中，于1200℃静置烧制3小时。将其冷却后，分散在1.0升水中，然后通过200目(网孔75μm)的筛，将过筛后的浆料过滤、干燥，由此得到颗粒之间几乎不发生熔合，致密烧结至颗粒内部的球状且中值径(D50)为31.7μm的填料颗粒。用扫描型电子显微镜JSM-5400(日本电子社制造)观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图8。

【0154】（实施例3）

【0155】将微细化合物锌(钯化学工业社制造中值径(D50)0.2μm)600g在水中进行再制浆，混合分散剂(花王社制造P01Z·532A)21.0g(相对于微细化合物锌的重量为3.50重量%)，混合作为金属M的化合物的乙酸锂3.0g(相对于微细化合物锌的重量为0.5重量%)，混合作为烧结促进成分的乙酸3.66g(相对于微细化合物锌的重量为0.61重量%)，制备浓度为500g/l的浆料。接着，将该浆料用实验室喷雾干燥机DCR型(坂本技研社制造)喷雾干燥，由此得到造粒颗粒。将其放入莫来石制、莫来石和堇青石制等的匣钵中，于1000℃静置烧制3小时。将其冷却后，分散在1.0升水中，然后通过200目(网孔75μm)的筛，将过筛后的浆料过滤、干燥，由此得到颗粒之间几乎不发生熔合，致密烧结至颗粒内部的球状且中值径(D50)为31.9μm的填料颗粒。用扫描型电子显微镜JSM-5400(日本电子社制造)观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图15。

【0156】（实施例4）

【0157】将微细化合物锌(钯化学工业社制造中值径(D50)0.2μm)600g在水中进行再制浆，混合分散剂(花王社制造P01Z·532A)21.0g(相对于微细化合物锌的重量为3.50重量%)，混合作为金属M的化合物的乙酸钠6.0g(相对于微细化合物锌的重量为1.0重量%)，制备浓度为1470g/l的浆料。接着，将该浆料用实验室喷雾干燥机DCR型(坂本技研社制造)喷雾干燥，由此得到造粒颗粒。将其放入莫来石制、莫来石和堇青石制等的匣钵中，于1000℃静置烧制3小时。将其冷却后，分散在1.0升水中，然后通过200目(网孔75μm)的筛，将过筛后的浆料过滤、干燥，由此得到颗粒之间几乎不发生熔合，致密烧结至颗粒内部的球状且中值径(D50)为34.4μm的填料颗粒。用扫描型电子显微镜JSM-5400(日本电子社制造)观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图16。

【0158】（实施例5）

【0159】将微细化合物锌(钯化学工业社制造中值径(D50)0.2μm)600g在水中进行再制浆，混合分散剂(花王社制造P01Z·532A)21.0g(相对于微细化合物锌的重量为3.50重量%)，混合作为金属M的化合物的乙酸钠20.3g(相对于微细化合物锌的重量为3.38重量%)，制备浓度为690g/l的浆料。接着，将该浆料用实验室喷雾干燥机DCR型(坂本技研社制造)喷雾干燥，由
此得到造粒颗粒。将其放入莫来石、莫来石和堇青石等的匣钵中，于1100℃静置烧制3小时。将其冷却后，分散在1L升水中，然后通过200目（网孔75μm）的筛，将过筛后的浆料过滤、干燥，由此得到颗粒之间几乎不发生熔合、致密烧结至颗粒内部的球状且中值径（D50）为33.4μm的填料颗粒。用扫描型电子显微镜JSM-5400（日本电子社制造）观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图17。

【0160】（实施例6）

【0161】将微细氧化锌（堷化学工业社制造）中值径（D50）0.2μm）600g，在水中进行再制浆，混合分散剂（花王化学工业生产P01Z 532A）21.0g（相对于微细氧化锌的重量为3.50重量％），混合作为金属M的化合物的乙酸铜（I）35.04g（相对于微细氧化锌的重量为5.84重量％），混合作为烧结促进成分的乙酸3.0g（相对于微细氧化锌的重量为0.50重量％），制备浓度为240g/L的浆料。接着，将该浆料用实验室喷雾干燥机DCR型（坂本技术研究所制造）喷雾干燥，由此得到造粒颗粒。将其放入莫来石、莫来石和堇青石等的匣钵中，于1150℃静置烧制3小时。将其冷却后，分散在1L升水中，然后通过200目（网孔75μm）的筛，将过筛后的浆料过滤、干燥，由此得到颗粒之间几乎不发生熔合、致密烧结至颗粒内部的球状且中值径（D50）为28.7μm的填料颗粒。用扫描型电子显微镜JSM-5400（日本电子社制造）观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图23。

【0162】（实施例7）

【0163】将微细氧化锌（堷化学工业社制造）中值径（D50）0.2μm）600g，作为金属M的化合物的氯化锌六水合物156g（相对于微细氧化锌的重量为26.0重量％）和作为烧结促进成分的溴化铵12g（相对于微细氧化锌的重量为1.0重量％）放入塑料袋中，干式混合30秒，将混合粉放入莫来石、莫来石和堇青石等的匣钵中，于1000℃烧制3小时。

【0164】将其冷却后，分散在1L升水中，然后通过200目（网孔75μm）的筛，将过筛后的浆料过滤、干燥，由此得到中值径（D50）为9.1μm的填料颗粒。用扫描型电子显微镜JSM-5400（日本电子社制造）观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图29。

【0165】（实施例8）

【0166】将微细氧化锌（堷化学工业社制造）中值径（D50）0.2μm）600g，和作为金属M的化合物的溴化锌六水合物133.5g（相对于微细氧化锌的重量为22.25重量％）放入乙烯塑料袋中，干式混合30秒，将混合粉放入莫来石、莫来石和堇青石等的匣钵中，于800℃烧制3小时。

【0167】将其冷却后，分散在1L升水中，然后通过200目（网孔75μm）的筛，将过筛后的浆料过滤、干燥，由此得到中值径（D50）为8.2μm的填料颗粒。用扫描型电子显微镜JSM-5400（日本电子社制造）观察了所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图36。

【0168】（比较例1）

【0169】将微细氧化锌（堷化学工业社制造）中值径（D50）0.2μm）600g在水中进行再制浆，混合分散剂（花王化学工业生产P01Z 532A）21.0g（相对于微细氧化锌的重量为3.50重量％），混合作为烧结促进成分的乙酸3.66g（相对于微细氧化锌的重量为0.61重量％），制备浓度为600g/L的浆料。接着，将该浆料用实验室喷雾干燥机DCR型（坂本技术研究所制造）喷雾干燥，由此得到造粒颗粒。将其放入莫来石、莫来石和堇青石等的匣钵中，于1200℃静置烧制3小时。将其冷却后，分散在1L升水中，然后通过200目（网孔75μm）的筛，将过筛后的浆料过滤、干燥，
由此得到颗粒之间几乎不发生熔和，致密烧结至颗粒内部的球状且中值径(D50)为28.5µm的填料颗粒。

【0170】（比较例2）

将微细氧化锌(株式会社工业社制造中值径(D50)0.2µm)600g在水中进行再制浆，混合作为金属M的化合物的乙酸钙一水合物96.0g（相对于微细氧化锌的重量为16.0重量％），混合作为烧结促进成分的乙酸3.66g（相对于微细氧化锌的重量为0.61重量％），制备浓度为320g/1的浆料。接着，将该浆料用实验室喷雾干燥机DCR型（坂本技术研究所制造）喷雾干燥，由此得到造粒颗粒。将其放入龙来石、龙来石和金来石制等的匣钵中，于1200℃静置烧制3小时。将其冷却后，通过200目（筛孔75µm）的筛，由此得到颗粒之间几乎不发生熔和。致密烧结至颗粒内部的球状且中值径(D50)为28.7µm的填料颗粒。用扫描型电子显微镜JSM-5400（日本电子社制造）观察到所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图43。

【0172】（比较例3）

将微细氧化锌(株式会社工业社制造中值径(D50)0.2µm)600g在水中进行再制浆，混合作为金属M的化合物的乙酸四水合物102g（相对于微细氧化锌的重量为17.0重量％），混合作为烧结促进成分的乙酸3.66g（相对于微细氧化锌的重量为0.61重量％），制备浓度为330g/1的浆料。接着，将该浆料用实验室喷雾干燥机DCR型（坂本技术研究所制造）喷雾干燥，由此得到造粒颗粒。将其放入龙来石、龙来石和金来石制等的匣钵中，于1200℃静置烧制3小时。将其冷却后，通过200目（筛孔75µm）的筛，由此得到颗粒之间几乎不发生熔和。致密烧结至颗粒内部的球状且中值径(D50)为33.3µm的填料颗粒。用扫描型电子显微镜JSM-5400（日本电子社制造）观察到所得到的填料颗粒的尺寸和形态。所得到的电子显微镜照片见图50。

【0174】对于实施例和比较例的各填料颗粒，基于以下基准进行评价，结果列于表1.2。

【0175】（中值径(D50)、D10、D90）

称量填料颗粒1.0g，使其分散在0.025重量％六偏磷酸钠水溶液100ml中，将该分散液投入激光衍射/散射式粒度分布测定装置LA-750（堀场制作所社制造）的用0.025重量％六偏磷酸钠水溶液涂满的试样槽中，循环速度；15、超声波强度；7、超声波时间；3分钟的设定条件下进行测定。由于室温下的氧化锌的折射率为1.9～2.0、水的折射率为1.3，所以将相对折射率设定为1.5，求出中值径(D50)、D10、D90。

【0177】（纵横比）

对于用扫描型电子显微镜JSM-5400（日本电子社制造）拍摄的电子显微镜照片中100个颗粒，用尺测量通过颗粒中心的长径和短径的长度，求出长径、短径的比，将其平均值作为纵横比。进而，对250个颗粒测定纵横比，计算出纵横比为1.10以下的颗粒的个数的比例(％)。

【0179】（密度）

对清洗、干燥的容量为100ml的甘氏(Gay-Lussac)比重瓶的重量a(g)称重精确至0.1mg，加蒸馏水至标线，称重其重量b(g)精确至0.1mg。接着，将该甘氏比重瓶干燥后，加入试样5g，称重，计算出试样的重量c(g)。加蒸馏水至没过试样，在真空干燥器中除去蒸馏水中的空气。加蒸馏水至标线，称重其重量d(g)精确至0.1mg，通过下式计算出密度。
密度 \(\rho = \frac{1}{V} \) \(\left(\frac{g}{cm^3} \right) = c/(d-a+c-(a-d)) \)

（表观密度）

按照JIS K 5101-12-1颜料试验方法 - 表观密度或表观容重（静置法）测定表观密度。

（振实堆积密度）

按照JIS R 1639-2进行振实堆积密度的测定。

（填充的填充率）

按照表1,2,将(1)EEA树脂(日本聚乙烯社制造REXPEARLA150)和实施例1～8的填料颗粒、(ii)EEA树脂和比较例1～3的填料颗粒进行混配。填料的填充率(体积%)是假设EEA树脂的比重为0.945、氧化锌颗粒的比重为5.55而求出的。将填料的重设为a(g),将填料的比重设为A,将EEA树脂的重设为b(g),将EEA树脂的比重设为B时,通过下式计算出填料的填充率(体积%)。

填充率(体积%) = (a/A)/[(a/A+b/B) × 100]

（纤维组合物的片材的制作）

以表1,2所示的填充率(体积%)的比例将(1)EEA树脂和实施例1～8的填料颗粒、(ii)EEA树脂和比较例1～3的填料颗粒用LABO PLASTMILL(东海精机制作所社制造)以40rpm的混合器的转速于150℃加热混炼10分钟。取出填料和树脂的混炼物，置于厚度2mm的不锈钢制铸模(150mm × 200mm)的中央，从上下用不锈钢制板(200mm × 300mm)夹持，设置在MINI TEST PRESS-10(东海精机制作所社制造)的试样台上，一边于150℃加热一边以0.5MPa加压5分钟，进而将压力提高至25MPa，一边于150℃加热一边加压3分钟。接着，设置在蒸汽压力机(Gonno油压机制作所社制造)的试样台上，在通蒸汽进行加热的状态下将压力升高至25MPa后，通冷却水，于25MPa冷却5分钟，由此得到树脂组合物的片材。

（体积固体电阻值）

将所得到的片材放入调整为30℃的温槽内，放置30分钟以上后，在温槽内用70mm φ 的黄铜制的负电极板和100mm φ 的黄铜制的正电极板夹持片材，施加500V的直流电压，测定充电1分钟后后的体积电阻。用数字超高电阻/微电流计（株式会社ADC社制造）进行测定。

体积固体电阻值 \(\sigma (\Omega \cdot cm) \) 通过下式求出。

\[\sigma = \frac{\pi d^2}{4t \cdot R_u} \]

\(t: \) 试验片(片材)的厚度(cm)

\(d: \) 最内侧的电极的直径

\(R_u: \) 体积电阻(Ω)

（导热系数）

接着, 将片材用冲床切下55mm φ 的形状, 制成55mm φ 、厚度2.0mm的成型体, 设置于AUTO A HC-110(英弘精机制作所, 热流计法)的试样台上，进行导热系数的测定。AUTO A HC-110在测定前用厚度6.45mm的Pyrex标准板进行校正。将高温加热器的温度设定为35℃、低温加热器的温度设定为15℃进行测定, 由此求出25℃下达到热平衡状态时的导热系数(W/m·K)。结果列于表1,2。
表 1

<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>添加剂 (金属 M 的化合物/烧结促进成分)</td>
<td>乙酸钠/乙酸</td>
<td>乙酸钠/乙酸</td>
<td>乙酸钠/乙酸</td>
<td>乙酸钠/乙酸</td>
<td>乙酸钠/乙酸</td>
<td>氯化铁六水合物</td>
<td>氯化钠六水合物</td>
<td></td>
</tr>
<tr>
<td>金属 M 的化合物的添加量</td>
<td>铝粉 (98.9 重量%) (以 MgO 计为 6.3 重量%)</td>
<td>铝粉 (10.3 重量%) (以 CoO 计为 3.8 重量%)</td>
<td>铝粉 (1.5 重量%) (以 K₂O 计为 0.23 重量%)</td>
<td>铝粉 (3.8 重量%) (以 Na₂O 计为 2.5 重量%)</td>
<td>铝粉 (5.8 重量%) (以 CuO 计为 5.0 重量%)</td>
<td>铝粉 (22.25 重量%) (以 MgO 计为 5.0 重量%)</td>
<td>铝粉 (5.0 重量%)</td>
<td></td>
</tr>
<tr>
<td>烧结促进成分的添加量</td>
<td>相对于氧化铝为 0.61 重量%</td>
<td>相对于氧化铝为 0.61 重量%</td>
<td>相对于氧化铝为 0.61 重量%</td>
<td>相对于氧化铝为 0.61 重量%</td>
<td>相对于氧化铝为 0.50 重量%</td>
<td>相对于氧化铝为 0.50 重量%</td>
<td>相对于氧化铝为 1.00 重量%</td>
<td></td>
</tr>
<tr>
<td>分散剂(POIZ 532'A)的添加量</td>
<td>相对于氧化铝为 3.50 重量%</td>
<td></td>
</tr>
<tr>
<td>浆料的浓度(g/l)</td>
<td>590</td>
<td>340</td>
<td>500</td>
<td>1470</td>
<td>690</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>烧结温度/烧结时间</td>
<td>1200℃/3小时</td>
<td>1200℃/3小时</td>
<td>1000℃/3小时</td>
<td>1000℃/3小时</td>
<td>1100℃/3小时</td>
<td>1150℃/3小时</td>
<td>1000℃/3小时</td>
<td></td>
</tr>
<tr>
<td>中值径(D50(μm))</td>
<td>29.0</td>
<td>31.7</td>
<td>31.9</td>
<td>34.4</td>
<td>33.4</td>
<td>28.7</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>D10(μm)</td>
<td>19.0</td>
<td>21.1</td>
<td>20.5</td>
<td>20.2</td>
<td>21.4</td>
<td>17.5</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>D90(μm)</td>
<td>45.3</td>
<td>49.2</td>
<td>50.6</td>
<td>56.6</td>
<td>51.4</td>
<td>45.0</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>D90/D10</td>
<td>2.4</td>
<td>2.3</td>
<td>2.5</td>
<td>2.8</td>
<td>2.4</td>
<td>2.6</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>累积比</td>
<td>1.04</td>
<td>1.04</td>
<td>1.01</td>
<td>1.06</td>
<td>1.02</td>
<td>1.03</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>250 个颗粒中极小横比为 1.10 以下的颗粒的比例(%)</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>96</td>
<td>95</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>密度(g/cm³)</td>
<td>5.05</td>
<td>5.01</td>
<td>4.85</td>
<td>4.84</td>
<td>4.87</td>
<td>4.32</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>表观密度(g/ml)</td>
<td>2.35</td>
<td>2.81</td>
<td>2.88</td>
<td>2.84</td>
<td>2.83</td>
<td>2.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>真实堆积密度(g/cm³)</td>
<td>3.43</td>
<td>3.56</td>
<td>3.32</td>
<td>3.51</td>
<td>3.40</td>
<td>3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>填料填充率(体积%)</td>
<td>63.3</td>
<td>62.9</td>
<td>62.9</td>
<td>62.9</td>
<td>62.9</td>
<td>62.9</td>
<td>62.9</td>
<td></td>
</tr>
<tr>
<td>导热系数(W/m·K)</td>
<td>2.8</td>
<td>3.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.1</td>
<td>3.3</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>体积电阻(Ω·cm)</td>
<td>3.7×10¹³</td>
<td>2.1×10¹¹</td>
<td>1.1×10¹³</td>
<td>5.1×10¹³</td>
<td>1.3×10¹³</td>
<td>2.3×10¹³</td>
<td>9.4×10¹³</td>
<td></td>
</tr>
<tr>
<td>体积固有电阻(Ω·cm)</td>
<td>3.1×10¹³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>金属M的化合物的添加量</td>
<td>烧结温度/烧结时间</td>
<td>烧结温度/烧结温度</td>
<td>烧结温度/烧结温度</td>
<td>烧结温度/烧结温度</td>
<td>烧结温度/烧结温度</td>
<td>烧结温度/烧结温度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250g/500g/1000g</td>
<td>200℃/5h</td>
<td>200℃/5h</td>
<td>200℃/5h</td>
<td>200℃/5h</td>
<td>200℃/5h</td>
<td>200℃/5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>烧结速度</td>
<td>4mm/min</td>
<td>4mm/min</td>
<td>4mm/min</td>
<td>4mm/min</td>
<td>4mm/min</td>
<td>4mm/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>烧结厚度</td>
<td>1mm-3mm</td>
<td>1mm-3mm</td>
<td>1mm-3mm</td>
<td>1mm-3mm</td>
<td>1mm-3mm</td>
<td>1mm-3mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>导电率</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>导热性能 (W/m·K)</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>体积均匀性 (Ω·cm)</td>
<td>3.1×10^6</td>
<td>3.1×10^6</td>
<td>3.1×10^6</td>
<td>3.1×10^6</td>
<td>3.1×10^6</td>
<td>3.1×10^6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0201] 由实施例和比较例的结果可知，本发明的填料颗粒在颗粒内部均匀地存在金属M，导热性优异，且显示出良好的绝缘性能。形成了这样金属M均匀地分布于颗粒内部的固溶体的填料颗粒在绝缘性能方面特别优异，与不形成固溶体而金属M未均匀地分布于颗粒内部的填料颗粒相比，具有优异的绝缘性能。

[0202] （树脂组合物的片材的切断）
树脂组合物的片材的切断利用截面离子抛光仪(Cross section polisher)(日本电子制造)进行，将上述制作的混配了填料颗粒的树脂组合物的片材切割成1mm以下的厚度，对该薄膜垂直地照射Ar离子束而进行蚀刻，由此进行片材的切断。

利用扫描型电子显微镜JSM-7000F(日本电子制造)对所得到的填料颗粒的截面进行观察，根据以下详细说明的测定方法利用波长色散型X射线分析进行绘图和谱线分析，利用能量色散型X射线分析进行定量分析。绘图和谱线强度分析的结果的图像示于图3～6(实施例1)；图10～13(实施例2)；图19～22(实施例5)；图25～28(实施例6)；图31～34(实施例7)；图38～41(实施例8)；图45～48(比较例2)；图52～55(比较例3)。此外，基于能量色散型X射线分析的定量分析的结果列于表3。

(Zn和金属M的绘图)

填料颗粒的截面的Zn和金属M的绘图利用扫描型电子显微镜JSM-7000F(日本电子社制造)的波长色散型X射线分析模式进行，图像分析利用分析软件INCA(Oxford Instruments社制造)进行。

(Zn和金属M的谱线强度分析)

关于填料颗粒的截面的Zn和金属M的谱线强度分析，利用扫描型电子显微镜JSM-7000F(日本电子社制造)的波长色散型X射线分析模式进行绘图，结果利用分析软件INCA(Oxford Instruments社制造)对在绘图图像中央的直线上检测出的Zn和金属M的强度进行图像分析，并进行表示。

(Zn和金属M的定量分析、Δ(%)的测定方法)

关于填料颗粒的截面的Zn和金属M的定量分析，利用扫描型电子显微镜JSM-7000F(日本电子社制造)的能量色散型X射线分析模式进行填料颗粒的截面的绘图，利用分析软件INCA(Oxford Instruments社制造)进行图像上制作的各正方形中的定量分析值的表示。

对于图7(实施例1)、图14(实施例2)、图35(实施例7)、图42(实施例8)、图49(比较例2)、图56(比较例3)的填料颗粒的截面的图像上直径方向分割的10个正方形，从各图的左侧编码为1、2、3、4、5、6、7、8、9、10，由各正方形中检测出的Zn和金属M的含量数值化，由此作为定量分析值(重量％)。接着，由各正方形中的Zn和金属M的定量分析值(重量％)求出各正方形中的相对于100重量％ZnO的金属M的以氧化物换算的定量分析值Q(重量％)。进而，通过下式求出正方形1～10中金属M的以氧化物换算的定量分析值的平均值A(重量％)的偏差：Δ(%)。

\[\Delta(\%) = \left| Q - A \right| / A \times 100 \]

此时，

Q：正方形1～10中相对于100重量％ZnO的金属M的以氧化物换算的定量分析值(重量％)

A：正方形1～10中相对于100重量％ZnO的金属M的以氧化物换算的定量分析值的平均值(重量％)。

结果列于表3。
表 3

<table>
<thead>
<tr>
<th>正方形1～10中的金属M的含量%</th>
<th>正方形1～10中的ZnO的含量%</th>
<th>正方形1～10中的MgO的含量%</th>
<th>正方形1～10中的CoO的含量%</th>
<th>正方形1～10中的Ni的含量%</th>
<th>正方形1～10中的CaO的含量%</th>
</tr>
</thead>
<tbody>
<tr>
<td>正方形No.1</td>
<td>4.44</td>
<td>1.8</td>
<td>2.01</td>
<td>31.5</td>
<td>1.17</td>
</tr>
<tr>
<td>正方形No.2</td>
<td>3.14</td>
<td>30.6</td>
<td>1.38</td>
<td>53.1</td>
<td>0.84</td>
</tr>
<tr>
<td>正方形No.3</td>
<td>5.83</td>
<td>28.8</td>
<td>1.74</td>
<td>40.9</td>
<td>0.85</td>
</tr>
<tr>
<td>正方形No.4</td>
<td>4.94</td>
<td>9.2</td>
<td>3.67</td>
<td>25.0</td>
<td>0.52</td>
</tr>
<tr>
<td>正方形No.5</td>
<td>3.94</td>
<td>12.9</td>
<td>4.63</td>
<td>57.6</td>
<td>0.45</td>
</tr>
<tr>
<td>正方形No.6</td>
<td>4.77</td>
<td>5.3</td>
<td>1.34</td>
<td>54.2</td>
<td>0.53</td>
</tr>
<tr>
<td>正方形No.7</td>
<td>4.26</td>
<td>5.9</td>
<td>3.79</td>
<td>29.2</td>
<td>1.14</td>
</tr>
<tr>
<td>正方形No.8</td>
<td>6.13</td>
<td>35.5</td>
<td>4.63</td>
<td>57.7</td>
<td>0.65</td>
</tr>
<tr>
<td>正方形No.9</td>
<td>4.32</td>
<td>4.5</td>
<td>2.82</td>
<td>4.1</td>
<td>1.29</td>
</tr>
<tr>
<td>正方形1～10中的平均值%</td>
<td>4.53</td>
<td>2.94</td>
<td>0.81</td>
<td>2.21</td>
<td>3.82</td>
</tr>
</tbody>
</table>
部，形成了固溶状态。
【0220】另一方面，可知：在添加了Ca、Ni的比较例2、3的填料颗粒中，1至10的各正方形中的金属M相对于平均值的偏差：△(％)为60(％)以上，金属M集中存在于氧化锌颗粒表层或内部，未形成均匀的固溶状态。
【0221】此外，由各图的结果还可知：对本发明的填料颗粒而言，金属M均匀地分布至氧化锌颗粒内部，形成了固溶状态，与此相对，对比较例的填料颗粒而言，金属M集中存在于氧化锌颗粒表层或内部，未形成均匀的固溶状态。
【0222】工业实用性
【0223】本发明的填料颗粒能够适合用于使用填料的各种用途中。例如，能够添加到树脂组合物、脂膏、涂料组合物等中。特别是，能够适合用于要求散热性能和绝缘性能两者的用途中。
图28

图29
图30

图31
图34

图35
图36

图37
图42

图43
图44

图45
图46

图47
图48

图49
图56