(54) 发明名称
一种利用流化床粉煤灰制备冶金级氧化铝的方法

(57) 摘要
本发明公开了一种利用流化床粉煤灰为原料制备冶金级氧化铝的方法，所述方法包括：
(a) 将粉煤灰粉碎后经湿法磁选除铁；
(b) 将磁选后的粉煤灰与盐酸反应得到盐酸浸液；
(c) 将盐酸浸液通过大孔型阳离子树脂柱深度除铁，得到精制氯化铝溶液；
(d) 将精制氯化铝溶液浓缩、结晶得结晶氯化铝；
(e) 将结晶氯化铝煅烧分解，即得冶金级氧化铝。本发明工艺简单、生产过程易于控制，
氧化铝提取率高、生产成本低、产品质量稳定。
1. 一种用粉煤灰制备冶金级氧化铝的方法，其特征在于，所述方法包括：
 a) 将粉煤灰破碎至100目以下，加水配制成固含量为20-40wt％的料浆，经湿法磁选除铁，使粉煤灰中铁含量降至1.0wt％以下，过滤得滤饼；
 b) 向步骤a)所得的滤饼中加入盐酸进行反应，并经固液分离和洗涤，得到pH为1-3的盐酸浸液；
 c) 将盐酸浸液通过大孔型阳离子树脂柱进行深度除铁，得到氯化铝精制液；
 d) 将氯化铝精制液进行减压浓缩，然后冷却析出结晶，固液分离，得结晶氯化铝；
 e) 将结晶氯化铝在900-1200℃进行煅烧，煅烧时间1-4小时；或先将结晶氯化铝在300-500℃煅烧1-2小时，然后升温至900-1200℃煅烧1-3小时，即得冶金级氧化铝。

2. 根据权利要求1所述的方法，其特征在于，所述步骤b)中盐酸浓度为20-37wt％，优选20-30wt％，其中盐酸中HCl与粉煤灰中氧化铝的摩尔比为4:1-9:1，优选4.5:1-6:1。

3. 根据权利要求2所述的方法，其特征在于，所述步骤b)中反应的温度为100-200℃，优选130-150℃；反应的时间为0.5-4.0小时，优选1.5-2.5小时；反应的压力为0.1-2.5MPa，优选0.3-1.0MPa。

4. 根据权利要求3所述的方法，其特征在于，所述步骤c)中大孔型阳离子树脂为D001、732、742、720H、7120H、JK008或SPC-1树脂。

5. 根据权利要求4所述的方法，其特征在于，所述步骤c)中将盐酸浸液通过大孔型阳离子树脂柱的步骤为：在20℃-90℃，优选60-80℃下，将盐酸浸液以自下而上的方式通过树脂柱，盐酸浸液的流速为1-4倍树脂体积/小时。

6. 根据权利要求5所述的方法，其特征在于，所述步骤d)中减压浓缩的压力为-0.03-0.07MPa，优选-0.04-0.06MPa；减压浓缩的温度为50-110℃，优选70-80℃。

7. 根据权利要求6所述的方法，其特征在于，所述步骤d)中在冷却析出晶体时，控制析出的晶体重量占氯化铝精制液原重量的40-65%之间。

8. 根据权利要求1-7所述方法，其特征在于，所述步骤a)中湿法磁选除铁所用的设备为立环磁选机，其中所述立环磁选机包括：转环、感应介质、上铁轭、下铁轭、励磁线圈、进料口、尾矿斗和冲水装置，感应介质安装在转环中，励磁线圈设置在上铁轭和下铁轭周围，以使上铁轭和下铁轭成为一对产生垂直方向磁场的磁极，所述上铁轭和下铁轭分别设置在转环下方的环内、环外两侧，其中，所述感应介质为多层钢板网，每层钢板网由丝管编成，所述丝环的边缘具有棱状尖角；所述上铁轭与进料口连接，所述下铁轭与出料的尾矿斗连接，所述冲水装置位于转环上方，所述进料口与上铁轭的侧部连接；所述立环磁选机还包括冷却装置，所述冷却装置是设置在励磁线圈周围的均压槽水套。

9. 根据权利要求8所述的方法，其特征在于，所述立环磁选机是双玻璃丝包漆包铝扁线电磁线圈。

10. 根据权利要求9所述的方法，其特征在于，所述立环磁选机还包括脉动机构，所述脉动机构通过橡胶鼓膜与尾矿斗相连。

11. 一种大孔型阳离子树脂的洗脱再生方法，其特征在于，所述方法包括：
 1) 将权利要求1-10任一所述步骤c)中吸附饱和的大孔型阳离子树脂用再生或盐酸作为洗脱剂进行洗脱，其中盐酸的浓度为2-10wt％；
2) 将步骤 1) 中洗脱后的大孔型阳离子树脂用 2-10wt%浓度的盐酸进行再生。

12. 根据权利要求 11 所述的方法，其特征在于，所述步骤 1) 中洗脱的条件为：洗脱剂自上而下通过大孔型阳离子树脂柱，洗脱温度为 20℃-60℃，洗脱剂的用量为 1-3 倍树脂体积，洗脱速度为 1-3 倍树脂体积 / 小时。

13. 根据权利要求 12 所述的方法，其特征在于，所述步骤 2) 中再生的条件为：盐酸自上而下通过大孔型阳离子树脂柱，再生温度为 20℃-60℃，盐酸的用量为 1-2 倍树脂体积，盐酸的流速为 1-3 倍树脂体积 / 小时。
一种利用流化床粉煤灰制备冶金级氧化铝的方法

技术领域
[0001] 本发明涉及一种生产冶金级氧化铝的工艺，具体涉及一种以循环流化床粉煤灰为原料，经联合除杂一步酸溶法直接生产冶金级氧化铝的工艺。

背景技术
[0002] 粉煤灰是燃煤电厂排出的废弃物，我国是以煤炭为主要能源的国家，每年从电厂排放的粉煤灰高达上亿吨，粉煤灰的排放不仅侵占大量土地，而且严重污染环境，如何处理和利用粉煤灰成为一个十分重要的问题。另一方面，粉煤灰中含多种可以利用的组分，研究表明，循环流化床燃烧中通常含有30-50%的氧化铝，但铝土矿资源日益贫乏的今天，从粉煤灰中提取氧化铝是使粉煤灰变废为宝，综合利用的有效途径，具有很好的社会、环保效益。
[0003] 粉煤灰根据煅烧条件的不同可分为煤粉炉粉煤灰和循环流化床粉煤灰。煤粉炉粉煤灰是经过高温（1400-1600℃）煅烧生成的，其中的氧化铝组分呈玻璃态或高温含铝矿物莫来石晶体、刚玉晶体的矿物形式而存在，稳定性非常高，而循环流化床燃烧温度在850℃左右，较传统的煤粉炉灰燃烧温度大大降低，燃烧温度的不同决定了循环流化床灰与传统的煤粉炉粉煤灰在原料组分上的本质差异，其主要组成为无定形偏高岭石，其中的二氧化硅、氧化铝及氧化铁等均具有很好的活性。
[0004] 目前，从粉煤灰中提取氧化铝的方法大致可分为碱法和酸法两大类。其中碱法又可以分为石灰石（石灰）烧结法和碳酸钠烧结法。
[0005] 石灰石（石灰）烧结法是将粉煤灰与石灰石（石灰）混合后，在高温（1320-1400℃）煅烧活化，在此过程中，粉煤灰中的氧化铝与二氧化硅分别与石灰石反应生成铝酸钙和硅酸二钙。煅烧后的产物用碳酸钠溶液浸取，过滤后，铝酸钙以偏铝酸钠的形式进入溶液，经脱硅、碳分（或碳化）后得到氧化铝，最后煅烧得到氧化铝产品；而过滤后硅酸二钙形成硅钙渣，可以用作生产水泥的原料。如专利CN101070173A、CN105068026A、CN101499353A、CN10284668A、CN101302021A、CN101125656A、CN10143449A、CN10430127A、CN1644506A、CN10128936A、CN1548374A、CN10185679A、CN1539735A 都采用石灰石（石灰）烧结法或改进的石灰石烧结法工艺。石灰石烧结法使用的烧结原料为廉价的石灰石，使氧化铝的生产成本相对降低。该法有很多缺点：首先，在提取氧化铝的同时，会产生大量的硅钙渣，每生产1吨氧化铝要产生3-5吨左右的硅钙渣，如果建材市场不能完全消化这些硅钙渣的话，势必会造成新的、堆放量更大的废弃物排放，使二氧化硅成分没有得到高附加值利用；其次，石灰石烧结法需要高温煅烧，属高能耗方法，其工艺过程及设备的要求也较高，第三，碱溶过程中由于渣量过大，使碱的回收率降低，造成成本上升。
[0006] 碳酸钠烧结法是将粉煤灰与碳酸钠在高温（750-1450℃）下煅烧。在煅烧过程中粉煤灰中的氧化铝和氧化硅同时被活化，因此需要进一步酸化（通过碳酸钠反应或与硫酸/盐酸反应）对硅铝进行分离。由于采用了先碱后酸的工艺，此方法也被称为混合法，如专利CN101414580A、CN101290029A、CN10117263A、CN101254933A 均采用碳酸钠烧结法工艺。
与石灰石烧结法相比，碳酸钠烧结法产生的残渣量较小，粉煤灰中的二氧化硅成分得到了高附加值应用。但是，由于需要在高温下煅烧，且煅烧后需要进一步与酸反应以实现硅铝分离，因此能耗较高，工艺过程较复杂。

[0007] 以上所述石灰石烧结法和碳酸钠烧结法均需将粉煤灰与石灰石/碳酸钠在高温反应活化，这种方法适合于反应活性较差的煤粉炉粉煤灰。对于活性较高的循环流化床粉煤灰，可不经过活化直接将粉煤灰与酸反应。

[0008] 酸法是将粉煤灰直接与酸溶液反应，得到铝盐溶液，然后将铝盐煅烧分解制备氧化铝。如专利CN923695A、CN920067A、CN01045543A、CN01397146A、CN792802A、CN927716A均采用酸法从粉煤灰中提取氧化铝。粉煤灰与酸的反应通常在低于300℃下的温度进行，与石灰石烧结法和碳酸钠烧结法的高温煅烧相比，能耗大大降低。此外由于氧化硅不与酸反应，完全留在固相渣中，且酸法不会引入钙、钠等杂质，理论上能够获得纯度较高的氧化铝。但酸法的缺点是在酸溶的过程中，粉煤灰中的可溶性杂质如铁等会进入溶液，使得酸法制备的氧化铝产品中含有较多铁等杂质，难以去除。其中一种解决办法是将酸法得到的氧化铝用碱溶解，使铝转变为可溶的偏铝酸钠进入溶液，而铁等杂质形成氢氧化铝沉淀，经固液分离铁。这种光酸溶后碱溶的方法使生产工艺复杂化，也增加了生产成本。

发明内容

[0009] 针对以上技术缺陷，本发明提供一种以粉煤灰为原料制备冶金级氧化铝的方法。

所述方法包括：

[0010] a) 将粉煤灰粉碎至100目以下，加水配制成固含量为20~40wt%的浆料，经湿法磁选除铁，使粉煤灰中铁（以氧化铁计）含量降至1.0wt%以下，过滤得滤饼；

[0011] b) 向滤饼中加入盐酸进行反应，并经固液分离和洗涤，得到pH为1~3的盐酸浸液；

[0012] c) 将盐酸浸液通过大孔型阳离子树脂柱进行深度除铁，得氯化铝精制液；

[0013] d) 将氯化铝精制液进行减压浓缩，然后冷却析出结晶，固液分离，得结晶氯化铝；

[0014] e) 将结晶氯化铝在900~1200℃进行煅烧，煅烧时间1~4小时；或先将结晶氯化铝在300~500℃煅烧1~2小时，然后升温至900~1200℃煅烧1~3小时，即得冶金级氧化铝。

[0015] 本发明所述步骤a)中，所述粉煤灰包括但不限于循环流化床粉煤灰，首先，将粉煤灰粉碎至100目以下，加水配制成固含量为20~40wt%，优选30~35wt%的浆料，通过磁选机进行湿法磁选至粉煤灰中的铁（以氧化铁计）含量降低至1.0wt%以下，经固液分离得到固含量为25~50wt%，优选为30~45wt%的滤饼。

[0016] 本发明所述湿法磁选除铁所采用的设备可以选用各种常用的适于粉质物料除铁的磁选设备。

[0017] 所述磁选设备优选为如下立环磁选机，该磁选机包括：转环，感应介质，上铁轭，下铁轭，励磁线圈，进料口，尾矿斗和冲水装置。其中，感应介质安装在转环中，励磁线圈设置在上铁轭和下铁轭周围，以使上铁轭和下铁轭成为一对产生垂直方向磁场的磁极。所述上铁轭和下铁轭分别设置在转环下方的环内，环外两侧，其中，所述感应介质为多层钢板网，每层钢板网由丝编织成，所述铁的边缘具有棱状尖角，所述上铁轭与进料口连接，所述下铁轭与用于出料的尾矿斗连接，所述冲水装置位于转环上方。
优选地，所述进料口与上铁轭的侧部连接。

优选地，所述立环磁选机还包括冷却装置，所述冷却装置是设置在励磁线圈周围的均压腔水套。

优选地，所述钢板网由1Cr17制成。

优选地，所述励磁线圈是双玻璃丝包漆包铝扁线电磁线圈。

优选地，钢板网的介质层间距为2~5mm。

优选地，钢板网的介质层间距为3mm。

优选地，钢板网的厚度0.8~1.5mm，网格大小为3mm×8mm~8mm×15mm，丝梗宽度1~2mm。

优选地，钢板网的厚度1mm，网格大小为5mm×10mm，丝梗宽度1.6mm。

优选地，所述立环磁选机还包括脉动机构，所述脉动机构通过橡胶鼓膜与尾矿斗相连。

所述密选设备的磁选条件包括但不限于场强1.0~2.0万GS，优选为1.5~1.75万GS，电流30~40A。所述磁选过程可重复2~4次，优选2~3次。

本发明所述步骤b)中，所得滤饼中加人浓度为20~37wt%的盐酸进行酸溶反应，控制盐酸中HCl和粉煤灰中氧化铝的摩尔比为4:1~9:1，优选为4.5:1~6:1，其中控制酸溶反应温度为100~200℃，优选为130~150℃；反应压力为0.1~2.5MPa，优选为0.3~1.0MPa；反应时间为0.5~4.0h，优选为1.5~2.5h，再经过滤分离与洗涤，得到PH值为1~3的酸浸液。所述固液分离可采用常用的固液分离方法，例如，使用沉降、过滤、加压过滤等。

所述洗涤采用常规洗涤方法，用水对酸溶渣进行洗涤。所述洗涤过程可重复2次或以上的，例如2~4次，至酸溶渣接近中性为止，例如，酸溶渣的PH值为5~6左右。

本发明所述方法c)中，所述大孔型阳离子树脂可以选用D001，732，742，7020H，7120H，JK008或SPC-1。

将步骤c)所得酸液通过大孔型阳离子树脂柱以进一步除去其中的铁杂质，从而制得氯化铝精制液。其中酸液通过树脂柱的方法为本领域常规的方法，本发明优选采用以下方法：在20℃~90℃，优选60~80℃下，盐酸液以1~4倍树脂体积/小时，优选为2~3倍树脂体积/小时的速度下进上出的方式通过树脂柱，溶液在树脂空隙中呈活塞状向上流动。树脂柱可以采用单柱或双柱串联的方式。

本发明所述步骤d)中，对步骤c)所得氯化铝精制液进行负压浓缩，浓缩压力为-0.03~-0.07MPa，优选为-0.04~-0.06MPa；浓缩温度为50~110℃，优选为70~80℃。浓缩后的液体冷却析出结晶氯化铝，在冷却时控制析出的晶体重量占氯化铝精制液原重量的40%~65%之间，以使大部分氯化铝结晶析出，而少量氯化铁等杂质由于浓度较低，仍留在溶液中。

析出结晶后，进行固液分离，而剩余母液返回精制液重新浓缩结晶。当母液循环到一定次数，杂质含量较高时，需要对母液重新进行树脂除铁处理，或另作它用。其中所述固液分离可采用常规操作方法，使用离心分离或真空带式过滤。

本发明所述步骤e)中，将步骤d)中得到的结晶氯化铝产品在900~1200℃，优选范围为950~1100℃进行煅烧分解，得到冶金级氧化铝产品。所述煅烧可采用一段式煅烧或分
段式煅烧。一段式煅烧是将结晶氯化铝直接加热至 900-1200℃, 煅烧时间 1-4 小时, 热分解后得到氧化铝产品; 二段式煅烧是首先将结晶氯化铝在 300-500℃ 加热 1-2 小时, 使大部分结晶氯化铝分解, 然后升温至 900-1200℃ 煅烧 1-3 小时, 得到氧化铝产品。热分解产生的氯化氢气体在吸收塔内循环吸收后配制为盐酸, 在酸溶中重复使用。

[0035] 本发明还提供一种大孔型阳离子树脂的洗脱再生方法, 本发明所述洗脱再生方法包括：

[0036] 1) 将上述方法步骤 c) 中吸附饱和的大孔型阳离子树脂用水或盐酸作为洗脱剂进行洗脱, 其中, 盐酸的浓度为 2-10wt%；

[0037] 2) 将步骤 1) 中洗脱后的大孔型阳离子树脂用 2-10wt% 浓度的盐酸进行再生。

[0038] 其中, 步骤 1) 中优选盐酸的浓度为 2-10wt%。洗脱条件为; 洗脱温度为 20℃-60℃, 洗脱时脱附剂用量为 1-3 倍树脂体积, 洗脱剂流速为 1-3 倍树脂体积 / 小时, 洗脱时脱附剂以上述下出的方式通过树脂柱。

[0039] 其中,步骤 2) 中将步骤 1) 中脱附后的大孔型阳离子树脂采用 2-10wt% 的盐酸进行再生, 优选再生的条件为; 洗脱以上述下出的方式通过大孔阳离子型树脂柱, 再生温度为 20℃-60℃, 盐酸的用量为 1-2 倍树脂体积, 盐酸的流速为 1-3 倍树脂体积 / 小时。经再生的大孔型阳离子树脂恢复吸附能力。

[0040] 与现有技术相比较, 本发明所具有的有益效果是生产工艺简单, 生产过程易于控制, 氧化铝提取率高, 生产成本低, 产品质量稳定。本发明选用具有高活性的循环催化床粉煤灰作为原料, 采用直接脱附的方法从粉煤灰中浸取氧化铝, 省略了酸洗和高温煅烧活化步骤, 从而简化了工艺流程, 并降低了生产成本; 此外, 由于没有碱的加入, 避免了氧化钠杂质的引入, 酸浸时采用耐酸反应釜在中温下 (100-200℃) 浸出, 氧化铝的浸取率高, 达到 80% 以上; 采用磁选和树脂吸附结合的方法除铁, 与以往碱法除铁的工艺相比, 此方法操作步骤简单, 生产成本低, 除铁效果好。本发明涉及方法所得到的氧化铝产品, 其 Al2O3 含量不低于 98.9wt%, Fe2O3 含量不高于 0.004wt%, SiO2 含量不高于 0.02wt%, Na2O 含量不高于 0.008wt%, 均达到或高于中华人民共和国有色金属行业标准《YS/T274-1998 氧化铝》中对冶金级氧化铝一级品的纯度要求。其中 Fe2O3 和 Na2O 含量比标准的 0.02wt%、0.5wt% 低两倍。

[0041] 另外, 采用本发明的磁选设备, 铁去除效果提高了 20% 以上, 铁的有效去除率由原来的 60% 提高到 80%, 这极大地缓解了后续工艺溶液中除铁的压力, 从而降低了生产成本, 提高了生产效率。

附图说明

[0042] 图 1 是用循环催化床粉煤灰制备冶金级氧化铝的工艺流程图；

[0043] 图 2 是用于粉煤灰除铁的立环磁选机的结构示意图。

具体实施方式

[0044] 下面通过实施例进一步详细说明本发明所提供的方法, 但本发明并不因此而受到任何限制。

[0045] 原料采用某热电厂产出循环催化床粉煤灰, 其化学成分如表 1 所示。
表 1 循环流化床粉煤灰化学成分（wt%）

<table>
<thead>
<tr>
<th>项目</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>TiO2</th>
<th>CaO</th>
<th>MgO</th>
<th>TFe2O3</th>
<th>FeO</th>
<th>K2O</th>
<th>Na2O</th>
<th>LOS</th>
<th>SO3</th>
<th>总和</th>
</tr>
</thead>
<tbody>
<tr>
<td>数值</td>
<td>34.70</td>
<td>46.28</td>
<td>1.48</td>
<td>3.61</td>
<td>0.21</td>
<td>1.54</td>
<td>0.22</td>
<td>0.39</td>
<td>0.17</td>
<td>7.17</td>
<td>1.32</td>
<td>95.77</td>
</tr>
</tbody>
</table>

实施例 1

（1）取流化床粉煤灰，粉碎至 200 目，加水制成固含量为 33wt%的浆料，使用实施例 12 用于粉煤灰除铁的立环磁选机，经磁选后固含量为 37.5wt%的滤饼。

（2）向滤饼中加入浓度为 28wt%的工业盐酸进行固溶液反应，盐酸中 HCl 和粉煤灰中氧化铝的摩尔比为 5：1，反应温度 150°C，反应压力 1.0MPa，反应时间 2h，反应产物经板筛压滤机压滤，洗涤后，得到 PH 值为 1.5 的盐酸浸液。

（3）将盐酸浸液经换热冷却至 65°C 后，用装有 D001（安徽皖东化工厂）树脂的树脂柱，用单柱的方式进行脱盐，处理时盐酸浸液流速为 2 倍树脂体积 / 小时，得到氯化铝精制液。

（4）将氯化铝精制液进行蒸发浓缩，浓缩时压力为 -0.05MPa，浓缩温度 80°C，经浓缩后冷却，结晶，控制析出的晶体重量占氯化铝精制液原重量的 50%，经离心分离得到结晶氯化铝。

（5）将步骤（4）所得结晶氯化铝在 400°C 烘干 2 小时，然后在 1100°C 烘干 2 小时，得到氧化铝。

经测定，氯化铝产品的化学成分如表 2 所示。

实施例 2

除步骤（1）外，其他操作工艺条件均与实施例 1 相同。步骤（1）中的操作工艺条件调整为：

取流化床粉煤灰，粉碎至 300 目，加水制成固含量为 25wt%的浆料，使用实施例 12 用于粉煤灰除铁的立环磁选机，在场强为 1.0 万 GS 下磁选三遍，经板筛压滤机压滤后得到固含量为 32.0wt%的滤饼。

经测定，氯化铝产品的化学成分如表 2 所示。

实施例 3

除步骤（1）外，其他操作工艺条件均与实施例 1 相同。步骤（1）中的操作工艺条件调整为：

取流化床粉煤灰，粉碎至 150 目，加水制成固含量为 40wt%的浆料，使用实施例 12 用于粉煤灰除铁的立环磁选机，在场强为 2.0 万 GS 下磁选三遍，经板筛压滤机压滤后得到固含量为 43.0wt%的滤饼。

经测定，氯化铝产品的化学成分如表 2 所示。
实施例4
除步骤(2)外，其他操作工艺条件与实施例1相同。步骤(2)中的操作工艺条件调整为：

(2) 向滤饼中加入浓度为20wt%的工业盐酸进行酸溶反应，盐酸中HCl和粉煤灰中氧化铝的摩尔比为9：1，反应温度200℃，反应压力3.15MPa，反应时间2h，反应产物经沉降分离、洗涤后，得到PH值为1.4的盐酸浸液。

实施例5
除步骤(2)外，其他操作工艺条件与实施例1相同。步骤(2)中的操作工艺条件调整为：

(2) 向滤饼中加入浓度为37wt%的工业盐酸进行酸溶反应，盐酸中HCl和粉煤灰中氧化铝的摩尔比为4：1，反应温度110℃，反应压力0.15MPa，反应时间2h，反应产物经减压过滤、洗涤后，得到PH值为1.7的盐酸浸液。

实施例6
除步骤(3)外，其他操作工艺条件与实施例1相同。步骤(3)中的操作工艺条件调整为：

(3) 将盐酸浸液经换热冷却至90℃后，用装有732(安徽三一树脂科技有限公司)树脂的树脂柱，用双柱串联的方式进行除铁，处理时盐酸浸液流速为4倍树脂体积/小时，得到氯化铝精制液。

实施例7
除步骤(3)外，其他操作工艺条件与实施例1相同。步骤(3)中的操作工艺条件调整为：

(3) 将盐酸浸液经换热冷却至30℃后，用装有JK008(安徽皖东化工厂)树脂的树脂柱，用双柱串联的方式进行除铁，处理时盐酸浸液流速为4倍树脂体积/小时，得到氯化铝精制液。

实施例8
除步骤(3)外，其他操作工艺条件与实施例1相同。步骤(3)中的操作工艺条件调整为：

(3) 将盐酸浸液经换热冷却至20℃后，用装有JK008(安徽皖东化工厂)树脂的树脂柱，用双柱串联的方式进行除铁，处理时盐酸浸液流速为4倍树脂体积/小时，得到氯化铝精制液。

实施例9
将实施例7中步骤(3)所使用的树脂换为SPC-1(上海树脂厂)树脂，其它工艺条件不变。
经测定，氧化铝产品的化学成分如表2所示。

实施例9

除步骤(4)外，其他操作工艺条件均与实施例1相同。步骤(4)中的操作工艺条件调整为：

（4）将氯化铝精制液进行蒸发浓缩，浓缩时压力为-0.03MPa，浓缩温度95℃，浓缩后冷却、结晶，控制析出的晶体重量占氯化铝精制液原重量的40%，经减压过滤得到结晶氯化铝。

经测定，氧化铝产品的化学成分如表2所示。

实施例10

除步骤(5)外，其他操作工艺条件均与实施例1相同。步骤(5)中的操作工艺条件调整为：

（5）将步骤(4)中得到的结晶氯化铝在直接在1200℃煅烧3小时得到氧化铝产品。

经测定，氧化铝产品的化学成分如表2所示。

实施例11

除步骤(5)外，其他操作工艺条件均与实施例1相同。步骤(5)中的操作工艺条件调整为：

（5）将步骤(4)所得结晶氯化铝在500℃煅烧2小时，然后在950℃煅烧2小时，得到氧化铝。

经测定，氧化铝产品的化学成分如表2所示。

对比实施例1

步骤(2)、(3)、(4)、(5)同实施例1，省略步骤(1)，即取苯胺水不经过磁选直接酸溶，得到氧化铝产品。

经测定，氧化铝产品的化学成分如表2所示。

对比实施例2

步骤(1)、(2)、(4)、(5)同实施例1，省略步骤(3)，即取盐酸浸液不经过树脂吸附后直接浓缩结晶、煅烧，得到氧化铝产品。

经测定，氧化铝产品的化学成分如表2所示。

表2氧化铝产品的化学成分
<table>
<thead>
<tr>
<th>实施例</th>
<th>化学成分（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al₂O₃</td>
</tr>
<tr>
<td>实施例 1</td>
<td>99.2</td>
</tr>
<tr>
<td>实施例 2</td>
<td>99.2</td>
</tr>
<tr>
<td>实施例 3</td>
<td>99.2</td>
</tr>
<tr>
<td>实施例 4</td>
<td>99.1</td>
</tr>
<tr>
<td>实施例 5</td>
<td>99.1</td>
</tr>
<tr>
<td>实施例 6</td>
<td>99.1</td>
</tr>
<tr>
<td>实施例 7</td>
<td>99.1</td>
</tr>
<tr>
<td>实施例 8</td>
<td>99.1</td>
</tr>
<tr>
<td>实施例 9</td>
<td>99.2</td>
</tr>
<tr>
<td>实施例 10</td>
<td>99.3</td>
</tr>
<tr>
<td>实施例 11</td>
<td>98.9</td>
</tr>
<tr>
<td>对比实施例 1</td>
<td>98.8</td>
</tr>
<tr>
<td>对比实施例 2</td>
<td>95.2</td>
</tr>
</tbody>
</table>

[0106] 注：Al₂O₃含量为100%减去表中所列杂质总和的余量。

[0107] 实施例12立环磁选机

[0108] 如图2所示，本发明立环磁选机包括：转环101、感应介质102、上铁轭103、下铁轭104、励磁线圈105、进料口106和尾矿斗107，还包括脉动机构108和冲水装置109。

[0109] 转环101为圆环形载体，其中载有感应介质102，转环101旋转时，带动感应介质102以及感应介质102吸附的物质运动，以便完成物料分选。转环101可以任何适合的材料制成，例如碳钢等。

[0110] 电机或其他驱动装置可以为转环101提供动力，使得转环101能够按照设定速度转动。

[0111] 当物料的含铁量或者处理量等参数低于预定值时，采用较低的转速，例如3转/分钟，使铁磁性杂质与磁场充分作用，并被吸附到感应介质网上选出。

[0112] 感应介质102安装在转环中，励磁线圈105产生的磁场使得上铁轭103和下铁轭104成为一对产生垂直方向磁场的磁极，上铁轭103和下铁轭104设置在转环101下方的内外两侧，以使转环101在磁极间立式旋转。当转环101旋转时，转环101中感应介质102会经过上铁轭103和下铁轭104构成的磁极对磁化除铁。

[0113] 所述感应介质102为多层钢板网。钢板网由1Cr17制成，每层钢板网由丝梗编成，网格为菱形。所述丝梗的边缘具有棱状尖角，所述上铁轭103与进料口106连接，所述下铁轭104与用于出料的尾矿斗107连接。钢板网的介质层间距为3mm。励磁线圈105为双
玻璃丝包漆包铝扁线，所述两玻璃丝包漆包铝扁线为实心导体，励磁线圈 105 电流采用连续可调控制，因而磁场也连续可调。

【0114】立环磁选机还包括脉动机构 108，所述脉动机构 108 通过橡胶鼓膜 111 与尾矿斗 107 相连。所述脉动机构由偏心连杆机构实现，脉动机构 108 与尾矿斗 107 相连，从而使脉动机构 108 所产生的变变力推动橡胶鼓膜 111 往复运动，可以使得尾矿斗 107 中的矿浆产生脉动。

【0115】冲水装置 109 位于转环 101 的上方，用于利用水流将磁性物料冲入精矿斗中。冲水装置 109 可以是各种适合的冲水、喷淋装置，例如喷头、水管等。

【0116】所述进料口 106 与上铁轭 103 的侧部连接，以使粉煤灰从转环的侧部流入。进料口 106 可以使料斗或进料管。用于入矿的进料口 106 以较小的落差进入上铁轭 103，避免了磁性颗粒由于重力作用而透过感应介质 102 的现象发生，从而提高了磁选除杂的效果。

【0117】所述立环磁选机还包括冷却装置 112，所述冷却装置 112 设置在励磁线圈周围，用于降低励磁线圈的工作温度，所述冷却装置为均压腔水套。

【0118】均压腔水套采用不锈钢材料制成，不易结垢。由于在水套的进出水处均安装均压腔，所述均压腔保证了水均匀地流经每一层水套，并在套内各处充满。从而防止局部水路短路，影响散热。每层水套的水道横截面积很大，可完全避免水垢堵塞，即使有处发生堵塞，也不会影响水套中循环水的正常流动。而且水套与线圈大面积紧密接触，可将线圈产生的大部分热量通过水流带走。

【0119】均压腔水套与普通空心铜管散热相比，散热效率高，绕组温升低，设备励磁功率低。在额定励磁电流是 40A 的情况下，与采用普通空心铜管散热的磁选机相比，励磁功率可由 35kw 降至 21kw。

【0120】在利用本发明的磁选设备工作时，进料的矿浆从侧部沿上铁轭 103 的缝隙流经转环 101，由于转环 101 内的感应介质 102 在背景磁场中被磁化，感应介质 102 表面形成梯度极高的磁场，矿浆中磁性颗粒在这种极高磁场作用下吸着在感应介质 102 表面，并随转环 101 转动，并被带至转环 101 顶部的无磁场区，再通过位于顶部的冲水装置 109 冲水将磁性物料冲入精矿斗中，而非磁性颗粒则沿下铁轭 104 的缝隙流入尾矿斗 107 中，进而由尾矿斗 107 的尾矿口排出。
图 1