A N O O

WO 03/069510 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 August 2003 (21.08.2003)

00000

(10) International Publication Number

WO 03/069510 Al

(51) International Patent Classification’: GO6F 17/30 (72)

(21) International Application Number: PCT/US03/04685 (74)

(22) International Filing Date: 14 February 2003 (14.02.2003)
(25) Filing Language: English (81)
(26) Publication Language: English
(30) Priority Data:
60/356,812 14 February 2002 (14.02.2002) US

10/365,828 13 February 2003 (13.02.2003) US

(71) Applicant: INFOGLIDE SOFTWARE CORPORA- (84)
TION [US/US]; 6300 Bridge Point Parkway, Building 3,
Suite 200, Austin, TX 78730 (US).

Inventor: RIPLEY, John R.,; 1415 Baffin Cove, Round
Rock, TX 78664 (US).

Agent: RUSSELL, Douglas D.,; Taylor Russell & Rus-
sell, P.C., 4807 Spicewood Springs Road, Building One,
Suite 1200, Austin, TX 78759 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: SIMILARITY SEARCH ENGINE FOR USE WITH RELATIONAL DATABASES

150 150 150 150
\ CLENT 1 \ CLIENT2 Q:UENT N-1 K CLIENT N

] L] _J L]
I

(57) Abstract: The invention provides a system
and method for defining a schema and sending a
query to a Similarity Search Engine to determine
a quantitative assessment of the similarity of
attributes between an anchor record and one or
more target records (Figure 1). The Similarity
Search Engine makes a similarity assessment in
a single pass through the target records having
multiple relationship characteristics. The Similarity

100 10 CLIENT Search Engine is a server (190) configuration that
NETWORK ; comprises a Gateway for command and response
/ %0 routing (110), a Virtual Document Manager (120)
_______________________ or document generation, a Search Manager
| for d tg ti Search Manager (130)
| 110 ' for document scoring, and an Relational Database
[.
| » CATEWAY |e : Man'agement System '(140) for providing data
| persistence, data retrieval and access to User
| v v _530 l Defined Functions (145). The Similarity Search
| 120 SEARGH MANAGER ' Engine uses a unique command syntax based on
1 wmliﬁ\z Eé(écz%ﬁ;ﬂ (SM) : ;he Extensible Mark;lp Lvan'glua}ge to iI}Illplemenc;
______________________________ 135 unctions necessary for similarity searching an
| RELATIONAL DATABASE | 125 STATISTICS PROCESSING j | : y y g
| DRIVER (RDD) MODULE (SPM) | scoring.
} |

by
RELATIONAL DATABASE
MANAGEMENT SYSTEM
(RDMS) 145

R -

" USEROERNED
FUNCTIONS (UDFs

w0 03/069510 A1 NN 000 0 0 OO R

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, For two-letter codes and other abbreviations, refer to the "Guid-
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, ance Notes on Codes and Abbreviations" appearing at the begin-
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ning of each regular issue of the PCT Gazette.

GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

10

15

20

25

30

WO 03/069510 PCT/US03/04685

SIMILARITY SEARCH ENGINE FOR USE WITH RELATIONAL DATABASES
by John R. Ripley of Round Rock, Texas

This application claims benefit of U. S. Provisional Application No. 60/356,812, filed
on February 14, 2002.

Background

The invention relates generally to the field of search engines for use with large
enterprise databases. More particularly, the present invention enables similarity search
engines that, when combined with standard relational database products, gives users a
powerful set of standard database tools as well as a rich collection of proprietary similarity
measurement processes that enable similarity determinations between an anchor record and
target database records.

Information resources that are available contain large amounts of information that
may be useful only if there exists the capability to segment the information into manageable
and meaningful packets. Database technology provides adequate means for identifying and
exactly matching disparate data records to provide a binary output indicative of a match.
However, in many cases, users wish to determine a quantitative measure of similarity
between an anchor record and target database records based on a broadly defined search
criteria. This is particularly true in the case where the target records may be incomplete,

contain errors, or are inaccurate. It is also sometimes useful to be able to narrow the number

" of possibilities for producing irrelevant matches reported by database searching programs.

Traditional search methods that make use of exact, partial and range retrieval paradigms do
not satisfy the content-based retrieval requirements of many users. This has led to the
development of similarity search engines.

Similarity search engines have been developed to satisfy the requirement for a
content-based search capability that is able to provide a quantitative assessment of the
similarity between an anchor record and multiple target records. The basis for many of these
similarity search engines is a comparison of an anchor record band or string of data with
target record bands or strings of data that are compared serially and in a sequential fashion.
For example, an anchor record band may be compared with target record band #1, then target .
record band #2, etc., until a complete set of target record bands have been searched and a
similarity score computed. The anchor record bands and each target record band contain
attributes of a complete record band of a particular matter, such as an individual. For

example, each record band may contain attributes comprising a named individual, address,

10

15

20

25

30

WO 03/069510 PCT/US03/04685

social security number, driver’s license number, and other information related to the named
individual. As the anchor record band is compared with a target record band, the attributes
within each record band are serially compared, such as name-name, address-address, number-
number, etc. In this serial-sequential fashion, a complete set of target record bands are
compared to an anchor record band to determine similarity with the anchor record band by
computing similarity scores for each attribute within a record band and for each record band.
Although it may be fast, there are a number of disadvantages to this “band” approach for
determining a quantitative measure of similarity.

Using a “band” approach in determining similarity, if one attribute of a target record
band becomes misaligned with the anchor record band, the remaining record comparisons
may result in erroneous similarity scores, since each record attribute is determined relative to

the previous record attribute. This becomes particularly troublesome when confronted with

large enterprise databases that inevitably will produce an error, necessitating starting the

scoring process anew. Another disadvantage of the “band” approach is that handling large
relational databases containing multiple relationships may become quite cumbersome,
slowing the scoring process. Furthermore, this approach often requires a multi-pass operation
to fully process a large database. Oftentimes, these existing similarity search engines may
only run under a single operating system.

There is a need for a similarity search engine that provides a system and method for
determining a quantitative measure of similarity in a single pass between an anchor record
and a set of multiple target records that have multiple relationship characteristics. It should be
capable of operating under various operating systems in a multi-processing environment. It
should have the capability to similarity search large enterprise databases without the

requirement to start over again when an error is encountered.

Summary
The present invention of a Similarity Search Engine (SSE) for use with relational

databases is a system and method for determining a quantitative assessment of the similarity
befween an anchor record or document and a set of one or more target records or documents.
It makes a similarity assessment in a single pass through the target records having multiple
relationship characteristics. It is capable of running under various operating systems in a
multi-processing environment and operates in an error-tolerant fashion with large enterprise

databases.

10

15

20

25

30

WO 03/069510 PCT/US03/04685

The present invention comprises a set of robust, multi-threaded components that
provide a system and method for scoring and ranking the similarity of documents that may be
represented as Extensible Markup Language (XML) documents. This search engine uses a
unique command syntax known as the XML Command Language (XCL). At the individual
attribute level, attribute similarity is quantified as a score having a value of between 0.00 and
1.00 that results from the comparison of an anchor value attribute (search criterion) vs. a
target value attribute (database field) using a distance function that identifies am attribute
similarity measurement. At the document or record level, which comprises a “roll-up” or
aggregation of one or more attribute similarity scores determined by a parent computing or
choice algorithm, document or record similarity is a value normalized to a score value of
between 0.00 and 1.00 for the document or record. A single anchor document containing
multiple attributes, usually arranged in a hierarchical fashion, is compared to multiple target
documents also containing multiple attributes.

The example of Table 1 illustrates the interrelationships between attributes, anchor
attribute values, target attribute values, distance functions and attribute similarity scores.
There is generally a single set of anchor value attributes and multiple sets of target value
attributes. The distance functions represent measurement algorithms to be executed to
determine an attribute similarity score. There may be token level attributes at a lowest
hierarchical level as well as intermediate level attributes between the highest or parent level
and the lowest or leaf level of a document or record. Attribute similarity scores at the token
level are determined by designated measurement functions to compute a token attribute

similarity score of between 0.00 and 1.00. Choice or aggregation algorithms are designated to

~-roll-up or aggregate scores in a hierarchical fashion to determine a document or record

similarity score. Different weighting factors may also be used modulate the relative
importance of different attribute scores. The measurement functions, weighting functions,
aggfegation algorithms, anchor document, and target documents are generally specified in a
“schema” document. In Table 1, anchor value attributes of “John”, “Austin”, and “Navy” are
compared with target value attributes of “Jon”, “Round Rock”, and “Dark Blue” using
distance functions “String Difference”, “GeoDistance”, and “SynonymCompare” to compute

attribute similarity scores of “0.75”, “0.95”, and “1.00”, respectively.

ATTRIBUTE ANCHOR TARGET DISTANCE SCORE
VALUE VALUE FUNCTION
Name John Jon StringDifference 0.75

10

15

20

25

30

WO 03/069510 PCT/US03/04685

City Austin Round Rock GeoDistance 0.95
Shirt Color Navy Dark Blue SynonymCompare 1.00
TABLE 1

In this example, all attributes are weighted equally, and the document score is determined by
taking the average of similarity scores. The anchor document would compare at 0.90 vs. the
target document. Although the example demonstrates the use of weighted average in
determining individual scores, it is one of many possible alternatives of aggregation
algorithms that may be implemented.

This Similarity Search Engine (SSE) architecture is a server configuration comprising
a Gateway, a Virtual Document Manager (VDM), a Search Manager (SM) and an
SQL/Relational Database Management System (RDMS). The SSE server may serve one or
more clients. The Gateway provides command and response routing as well as user
management functions. It accepts commands from clients and routes those commands to
either the VDM or the SM. The purpose of the VDM is XML document generation,
particularly schema generation. The purpose of the SM is XML document scoring, or
aggregation. The VDM and the SM each receive commands from the Gateway and in turn
make calls to the RDMS. The RDMS provides token attribute similarity scoring in addition to
data persistence, data retrieval and access to User Defined Functions (UDFs). The UDFs
include measurement algorithms for computing attribute similarity scores. The Gateway,
VDM and SM are specializations of a unique generic architecture referred to as the XML

Command Framework (XCF), which handles the details of threading, distribution,

" communication, resource management and general cofiimand handling.

There are several system objects that the SSE relies on extensively for its operation.
These include a Datasource object, a Schema object, a Query object and a Measure object. A
Datasource object is a logical connection to a data store, such as a relational database, and it
manages the physical connection to the data store. A Schema object, central to SSE
operation, is a structural definition of a document with additional markup to pr(;vide database
mapping and similarity definitions. A Query object is a command that dictates which
elements of a database underlying a Schema object should be searched, their search criteria,
the similarity measures to be used and which results should be considered in the final output.

A Measure object is a function that operates on two strings and returns a similarity score

10

15

20

25

30

WO 03/069510 PCT/US03/04685

indicative of the degree of similarity between the two strings. These Measure objects are
implemented as User Defined Functions (UDFs).

A method having features of the present invention for performing similarity searching

~ comprises the steps of receiving a request instruction from a client for initiating a similarity

search, generating one or more query commands from the request instruction, each query
command designating an anchor document and at least one search document, executing each
query command, including computing a normalized document similarity score having a value
of between 0.00 and 1.00 for each search document in each query command for indicating a
degree of similarity between the anchor document and each search document, and creating a
result dataset containing the computed normalized document similarity scores for each search
document, and sending a response including the result dataset to the client. The step of
generating one or more query commands may further comprise identifying a schema
document for defining structure of search terms, mapping of datasets providing target search
values to relational database locations, and designating measures, choices and weight to be
used in a similarity search. The step of computing a normalized document similarity score
may comprise computing attribute token similarity scores having values of between 0.00 and
1.00 for the corresponding leaf nodes of the anchor document and a search document using
designated measure algorithms, multiplying each token similarity score by a designated
weighting factor, aggregating the token similarity scores using designated choice algorithms
for determining a document similarity score having a value of between 0.00 and 1.00 for the
search document. The step of computing attribute token similarity scores may further

comprise computing attribute token similarity scores in a relational database management

- gystem, the stepof multiplying-each token-similarity-score may further-comprise multiplying --

each token similarity score in a similarity search engine, and the step of aggregating the token
similarity scores may further comprise aggregating the token similarity scores in the
similarity search engine. The step of generating one or more query commands may comprise
populating an anchor document with search criteria values, identifying documents to be
searched, defining semantics for overriding parameters specified in an associated schema
document, defining a structure to be used by the result dataset, and imposing restrictions on
the result dataset. The step of defining semantics may comprise designating overriding
measures for determining attribute token similarity scores, designating overriding choice
algorithms for aggregating token similarity scores into document similarity scores, and
designating overriding weights to be applied to token similarity scores. The step of imposing

restrictions may be selected from the group consisting of defining a range of similarity indicia

5

10

15

20

25

30

WO 03/069510 PCT/US03/04685

scores to be selected and defining percentiles of similarity indicia scores to be selected. The
step of computing a normalized document similarity score may further comprise computing a
normalized document similarity score having a value of between 0.00 and 1.00, whereby a
normalized similarity indicia value of 0.00 represents no similarity matching, a value of 1.00
represents exact similarity matching, and values between 0.00 and 1.00 represent degrees of
similarity matching. The step of computing attribute token similarity scores having values of
between 0.00 and 1.00 may further comprise computing attribute token similarity scores
having values of between 0.00 and 1.00, whereby a attribute token similarity value of 0.00
represents no similarity matching, a value of 1.00 represents exact similarity matching, and
values between 0.00 and 1.00 represent degrees of similarity matching. The step of
generating one or more query commands may further comprise generating one or more query
commands whereby each query command includes attributes of command operation, name
identification, and associated schema document identification. The method may further
comprise receiving a schema instruction from a client, generating a schema command
document comprising the steps of defining a structure of target search terms in one or more
search documents, creating a mapping of database record locations to the target search terms,
listing semantic elements for defining measures, weights and choices to be used in similarity
searches, and storing the schema command document into a database management system.
The method may further comprise the step of representing documents and commands as
hierarchical XML documents. The step of sending a response to the client may further
comprise sending a response including an error message and a warning message to the client.

The step of sending a response to the client may further comprise sending a response to the

- client containing the result datasets, whereby-each result dataset-includes-at Jeast-one - - - - -~ - —--

normalized document similarity score, at least one search document name, a path to the
search documents having a returned score, and at least one designated schema. The method
may further comprising receiving a statistics instruction from a client, generating a statistics
command from the statistics instruction, which may comprise the steps of identifying a
statistics definition to be used for generating statistics, populating an anchor document with
search criteria values, identifying documents to be searched, delineating semantics for
overriding measures, parsers and choices defined in a semantics clause in an associated
schema document, defining a structure to be used by a result dataset, imposing restrictions to
be applied to the result dataset, identifying a schema to be used for the basis of generating
statistics, designating a name for the target statistics table for storing results, executing the

statistics command for generating a statistics schema with statistics table, mappings and

6

10

15

20

25

30

WO 03/069510 PCT/US03/04685

measures, and storing the statistics schema in a database management system. The method
may further comprise the step of executing a batch command comprising executing a
plurality of commands in sequence for collecting results of several related operations. The
method may further comprise selecting measure algorithms from the group consisting of
name equivalents, foreign name equivalents, textual, sound coding, string difference,
numeric, numbered difference, ranges, numeric combinations, range combinations, fuzzy,
date oriented, date to range, date difference, and date combination. The method may further
comprise selecting choice algorithms from the group consisting of single best, greedy sﬁm,
overall sum, greedy minimum, overall minimum, and overall maximum.

Another embodiment of the present invention is a computer-readable medium containing
instructions for controlling a computer system to implement the method above.

In an alternate embodiment of the present invention, a system for performing
similarity searching comprises a gateway for receiving a request instruction from a client for
initiating a similarity search, the gateway for generating one or more query commands from
the request instruction, each query command designating an anchor document and at least one
search document, a search manager for executing each query command, including means for
computing a normalized document similarity score having a value of between 0.00 and 1.00
for each search document in each query command for indicating a degree of similarity
between the anchor document and each search document, means for creating a result dataset
containing the computed normalized document similarity scores for each search document,
and the gateway for sending a response including the result dataset to the client. The means

for computing a normalized similarity score may comprise a relational database management

“system for computing attribute token similarity-scores having values-of between 0.00 -and -

1.00 for the corresponding leaf nodes of the anchor document and a search document using
designated measure algorithms, and the search manager for multiplying each token similarity
score by a designated weighting factor and aggregating the token similarity scores using
designated choice algorithms for determining a document similarity score having a value of
between 0.00 and 1.00 for the search document. Each one or more query commands may
further comprise a measure designation, and the database management system further
comprises designated measure algorithms for computing a token similarity score. Each query
command may comprise an anchor document populated with search criteria values, at least
one search document, designated measure algorithms for determining token similarity scores,
designated choice algorithms for aggregating token similarity scores into document similarity

scores, designated weights for weighting token similarity scores, restrictions to be applied to

7

10

15

20

— -~ instruction, the-search-manager-for-identifying a-statistics-definition-to-be-used-for-generating - - -

25

30

WO 03/069510 PCT/US03/04685

a result dataset document, and a structure to be used by the result dataset. The computed
document similarity scores may have a value of between 0.00 and 1.00, whereby a
normalized similarity indicia value of 0.00 represents no similarity matching, a value of 1.00
represents exact similarity matching, and values between 0.00 and 1.00 represent degrees of
similarity matching. The relational database management system may include means for
computing an attribute token similarity score having a value of between 0.00 and 1.00,
whereby a token similarity indicia value of 0.00 represents no similarity matching, a value of
1.00 represents exact similarity matching, and values between 0.00 and 1.00 represent
degrees of similarity matching. Each query command may include attributes of command
operation, name identification, and associated schema document identification for providing a
mapping of search documents to database management system locations. The system may
further comprise the gateway for receiving a schema instruction from a client, a virtual
document manager for generating a schema command document, the schema command
document comprising a structure of target search terms in one or more search documents, a
mapping of database record locations to the target search terms, semantic elements for
defining measures, weights, and choices for use in searches, and a relational database
management system for storing the schema command document. The system of claim 18,
wherein each result dataset may include at least one normalized document similarity score, at
least one search document name, a path to the search documents having a returned score and
at least one designated schema. Each result dataset may include an error message and a
warning message to the client. The system may further comprise the gateway for receiving a

statistics instruction from a client and for generating a statistics command from the statistics

statistics, populating an anchor document with search criteria values, identifying documents
to be searched, delineating semantics for overriding measures, weights and choices defined in
a semantics clause in an associated schema document, defining a structure to be used by a
result dataset, imposing restrictions to be applied to the result dataset, identifying a schema to
be used for the basis of generating statistics, designating a name for the target statistics table
for storing results, and a statistics processing module for executing the statistics command for
generating a statistics schema with statistics table, mappings and measures, and storing the
statistics schema in a database management system. The system may further comprise the
gateway for receiving a batch command from a client for executing a plurality of commands
in sequence for collecting results of several related operations. The system may further

comprise selecting measure algorithms selected from the group consisting of name

8

10

15

20

25

30

WO 03/069510 PCT/US03/04685

equivalents, foreign name equivalents, textual, sound coding, string difference, numeric,
numbered difference, ranges, numeric combinations, range combinétions, fuzzy, date
oriented, date to range, date difference, and date combination. The system may further
comprise choice algorithms selected from the group consisting of single best, greedy sum,
overall sum, greedy minimum, overall minimum, and overall maximum.

In another embodiment of the present invention a system for performing similarity
searching comprises a gateway for handling all communication between a client, a virtual
document manager and a search manager, the virtual document manager connected between
the gateway and a relational database management system for providing document
management, the search manager connected between the gateway and the relational database
management system for searching and scoring documents, and the relational database
management system for providing relational data management, document and measure
persistence, and similarity measure execution. The virtual document manager may include a
relational database driver for mapping XML documents to relational database tables. The
virtual document manager may include a statistics processing module for generating statistics
based on similarity search results. The relational database management system may include
means for storing and executing user defined functions. The user defined functions include
measurement algorithms for determining attribute token similarity scores.

Another embodiment of the present invention is a method for performing similarity searching
that comprises the steps of creating a search schema document by a virtual document
manager, generating one or more query commands by a gateway, executing one or more

query commands in a search manager and relational database management system for

- determining-the degree-of'similarity between an anchor-document-and-search-documents, and- -

assembling a result document containing document similarity scores of between 0.00 and
1.00. The step of creating a schema document may comprise designating a structure of search
documents, datasets for mapping search document attributes to relational database locations,
and semantics identifying measures for computing token attribute similarity search scores
between search documents and an anchor document, weights for modulating token attribute
similarity search scores, choices for aggregating token attribute similarity search scores into
document similarity search scbres, and paths to the search document structure attributes. The
step of generating one or more query commands may comprise designating an anchor
document, search or schema documents, restrictions on result sets, structure of result sets, and
semantics for overriding schema document semantics including measures, weights, choices

and paths. The step of executing one or more query commands may comprise computing

9

10

15

20

25

30

WO 03/069510 PCT/US03/04685

token attribute similarity search scores having values of between 0.00 and 1.00 for each
search document and an anchor document in a relational database management system using
measures, and modulating the token attribute similarity search scores using weights and
aggregating the token attribute similarity scores into document similarity scores having
values of between 0.00 and 1.00 in the search manager using choices. The step of assembling
a result document may comprise identifying associated query commands and schema
documents, document structure, paths to search terms, and similarity scores by the search
manager. The search schema, the query commands, the search documents, the anchor
document and the result document may be represented by hierarchical XML documents. The
method may further comprise selecting measure algorithms from the group consisting of
name equivalents, foreign name equivalents, textual, sound coding, string difference,
numeric, numbered difference, ranges, numeric combinations, range combinations, fuzzy,
date oriented, date to range, date difference, and date combination. The method may further
comprise selecting choice algorithms from the group consisting of single best, greedy sum,
overall sum, greedy minimum, overall minimum, and overall maximum. Another
embodiment of the present invention is a computer-readable medium containing instructions

for controlling a computer system to implement the method above.

Brief Description of the Drawings

These and other features, aspects and advantages of the present invention will become
better understood with regard to the following description, appended claims, and

accompanying drawings wherein:

-~ Pigure 1-depicts a-high level-architecture of-the Similarity Search-Engine-(SSE); - -- - - -

Figure 2 depicts an example of mapping an XML document into database tables;

Figure 3 depicts an example of an XML document resulting from a single READ;

Figure 4 depicts an example of a RESULT from a QUERY;;

Figure 5A depicts a process for handling a statistics command in a Search Manager
(SM);

Figure 5B depicts a dataflow of a statistics command process in a Search Manager
(SM);

Figure 6 describes the Measures implemented as UDFs;

Figure 7 depicts an architecture of the XML Command Framework (XCF);

Figure 8 depicts the format of a RESPONSE generated by a CommandHandler;

Figure 9A depicts a process for handling an XCL command in a CommandServer;

10

10

15

20

25

30

WO 03/069510 PCT/US03/04685

and

Figure 9B depicts a dataflow of an XCL command process in a CommandServer;
Figure 10 depicts a general XCL command format;

Figure 11 depicts an example of multiple tables mapped onto a search document;
Figure 12 depicts the format of a SCHEMA command,

Figure 13 depicts an example of a RESPONSE from a list of SCHEMA commands
Figure 14 depicts the format for a STRUCTURE clause;

Figure 15 depicts an example of a STRUCTURE clause for a hierarchical search;
Figure 16 depicts the format of the MAPPING clause;

Figure 17 depicts an example of a MAPPING clause;

Figure 18 depicts the format of the SEMANTICS clause;

Figure 19 depicts the structure of a SCHEMA com(mand and it related clauses;
Figure 20 depicts the format of the QUERY command,

Figure 21 depicts an example of the WHERE clause;

Figures 22A and 22B depict examples of a FROM clause;

Figure 23 depicts the format of the RESTRICT clause;

Figure 24 depicts an example of the RESTRICT clause;

Figure 25 depicts an example of the SELECT clause;

Figures 26A, 26B and 26C depict formats of a RESPONSE structure;

Figure 27 depicts an example of a RESPONSE with results of a similarity search;
Figure 28 depicts the format of a DOCUMENT command,

Figure 29 depicts a search document example for the layout depicted in Figure 11;

Figure 30 depicts a format of a statistics definition template;

Figure-31-depicts-an example-of a-simple-statistics-definition; -- -

Figure 32 depicts a RESPONSE to a statistics generation command,
Figure 33 depicts the format of a BATCH command;

Figure 34 depicts the process of setting up a schema;

Figure 35 depicts an example of a SCHEMA command,

Figure 36 depicts the process of executing an SSE search;

Figure 37 depicts an example of a QUERY command; "

Figure 38 depicts an example of a data and similarity results of a QUERY command,;

Figure 39 depicts an example RESPONSE resulting from a QUERY command.

11

WO 03/069510 PCT/US03/04685

Detailed Description of the Drawings

Before describing the architecture of the Similarity Search Engine (SSE), it is useful
to define and explain some of the objects used in the system. The SSE employs a command
language based on XML, the Extensible Markup Language. SSE commands are issued as

5 XML documents and search results are returned as XML documents. The specification for
Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6
October 2000 is incorporated herein by reference. The syntax of the SSE Command
Language XCL consists of XML elements, their values and attributes that control the
behavior of the SSE. Using SSE commands, a client program can define and execute searches

10 employing the SSE.
The SSE commands are shown here in abstract syntax notation using the following

conventions:

Regular type Shows command words to be entered as shown (uppercase or

lowercase)
15 Italics Stands for a value that may vary from command to command

XML tags are enclosed in angled brackets. Indentations are used to demark parent-
child relationships. Tags that have special meaning for the SSE Command Language are
shown in capital letters. Specific values are shown as-is, while variables are shown in italic

type. The following briefly defines XML notation:

20
<XXX> Tag for XML element named XXX

e = XXX attribute="value”/> - “XMI:-element-named XXX with specified value for attribute

25 <XXX>value</XXX> XML element named XXX containing value
<XXX> XML element named XXX containing element
<YYY>value</YYY> named YYY with the value that appears between the tags. In
</XXX> xpath notation, this structure would be written as XXX/YYY
30

The SSE relies primarily on several system objects for its operation. Although there
are other system objects, the primary four system objects include a Datasource object, a
Schema object, a Query object and a Measure object.
A Datasource object describes a logical connection to a data store, such as a relational
35 database. The Datasource object manages the physical connection to the data store. Although

the SSE may support many different types of datasources, the preferred datasource used in

12

10

15

20

WO 03/069510

PCT/US03/04685

the SSE is an SQL database, implemented by the vdm. RelationalDatasource class. A

relational Datasource object is made up of attributes comprising Name, Driver, URL,

Username and Password, as described in Table 2.

ATTRIBUTE PURPOSE

Name Within the context of an SSE, the name uniquely identifies this
datasource

Driver The actual class name of the JDBC driver used to connect to the
relational data store

URL The URL, as defined by the driver, used to locate the datasource on
a network

Username The username the SQL database requires for a login

Password The password the SQL database requires for a login

TABLE 2

A Schema object is at the heart of everything the SSE does. A Schema object is a

structural definition of a document along with additional markup to provide SQL database

mapping and similarity definitions. The definition of a Schema object comprises Name,

Structure, Mapping and Semantics, as described in Table 3.

ATTRIBUTE PURPOSE

Name Within the context of an SSE, the name uniquely identifies this
schema

Structure The structure clause of a schema defines the XML output format of
documents which are built based on this schema.

Mapping The mapping clause of a schema defines how each of the elements
of the structure map to relational fields and tables as defined by the
datasource -~~~ -~~~ - - - — - - =

Semantics The semantics clause of a schema defines the default similarity

settings to be used when issuing a query against this
schema/datasource

TABLE 3

A Query object is an XCL command that dictates which elements of a Schema object

(actually the underlying database) should be searched, their search criteria, the similarity

measures to be used and which results should be considered in the final output. The Query

object format is sometimes referred to a Query By Example (QBE) because an “example” of

what we are looking for is provided in the Query. Attributes of a Query object comprise a

Where clause, Semantics, and Restrict, as described in Table 4.

13

15

WO 03/069510 PCT/US03/04685

ATTRIBUTE PURPOSE
Where clause The WHERE clause serves as the QBE portion of the query, this is
what we are looking for.
Semantics The SEMANTICS clause of a query determines how we want to

search the database. This includes:

similarity functions to use to compare values

weights of elements in the overall score

how to combine the element scores into an overall score

Restrict The RESTRICT clause of a query dictates which portions of the
result we are interested in. E.g. those document that score 0.80 or
greater, or the top 20 documents etc..

TABLE 4

A Measure object is a function that takes in two strings and returns a score (between
0.000 and 1.000) of how similar the two strings are. These Measure objects are implemented
as User Defined Functions (UDFs) and are compiled into a native library in an SQL
Database. Measure objects are made up of attributes comprising Name, Function and Flags,

as described in Table 5.

ATTRIBUTE PURPOSE
Name Within the context of an SSE, the name uniquely identifies this
measure
Function The associated native measure implementation associated to this

name. For example, a measure named “String Difference” may
actually call the STDIFF() function

Flags There are several other flags that indicated whether the function
operates on character data, numeric data, date data etc. or a
_| combination of them.

TABLE 5

Turning now to Figure 1, Figure 1 depicts a high level architecture 100 of the
Similarity Search Engine (SSE). The SSE architecture 100 includes an SSE Server 190 that
comprises a Gateway 110, a Virtual Document Manager (VDM) 120, a Search Manager
(SM) 130 and a Relational Database Management System (RDMS) 140. The Gateway 110
provides routing and user management. The VDM 120 enables XML document generation.
The SM 130 performs XML document and scoring. The RDMS 140 (generally an SQL
Database) provides token attribute scoring as well as data persistence and retrieval, and

storing User Defined Functions (UDFs) 145. The SSE Server 190 is a similarity search server

14

10

15

20

WO 03/069510 PCT/US03/04685

that may connect to one or more Clients 150 via a Client Network 160. The SSE Server also
connects to a RDMS 140.

The Gateway 110 serves as a central point of contact for all client communication by
responding to commands sent by one or more clients 150. The Gateway 110 supports a
plurality of communication protocols with a user interface, including sockets, HTTP, and
JMS. The Gateway 110 is implemented as a gateway.Server class, a direct descendent of the
xcf.BaseCommandServer class available in the unique generic architecture referred to as the
XML Command Framework (XCF), which handles the details of threading, distribution,
communication, resource management and general command handling. The XCF is discussed
below in more detail. Therefore, the Gateway 110 inherits all the default command handling
and communication functions available in all XCF Command Servers. The Gatew.ay 110
relies on several types of command handlers for user definition, user login and logout, and
command routing.

To add a user to the system, the Gateway 110 makes use of a user class to encapsulate
what a “user” is and implements a component class interface, which is inherited from the
generic XCF architecture. Instances of XCF Component command handlers used by the

Gateway 110 to add, remove or read a user definition are shown in Table 6.

COMMAND HANDLER FUNCTIONALITY

Adds a user to the server. In order to properly create the
User object to hold a user’s information as opposed to a
(gateway.commands.UserWrite) standard component, the ComponentAdd command
handler is subclassed by UserWrite.

xcf.commands.ComponentAdd

.| xcf.commands.ComponentRemove_| Remove a user from the server, =

xcf.commands.ComponentRead Reads one or all user definitions from the server.

TABLE 6

When a user definition has been added to the system, a user must log in and log out of
the system. Instances of command handlers used only by the Gateway 110 for user login and

user logout are shown in Table 7.

COMMAND HANDLER FUNCTIONALITY

gateway.commands.UserLogin Retrieves username and password from USER/login
XCL command and validates against list of registered
users. If successful, validation is returned to requestor
and user is added to list of logged in users. If not

15

10

WO 03/069510

PCT/US03/04685

successful, an error condition is returned to requestor.

gateway.commands.UserLogout

users.

Retrieves username and password from USER/logout
XCL command and removes user from list of logged in

TABLE 7

The Gateway 110 includes several instances of command handlers inherited from the

generic XCF architecture to properly route incoming XML Command Language (XCL)

commands to an appropriate target, whether it is the VDM 120, the SM 130, or both. These

command handlers used by the Gateway 110 for routing are shown in Table 8.

COMMAND HANDLER

FUNCTIONALITY

xcf.commands.SynchronizedPassthrough

(SPT)

Passes an XCL command through to one or more
targets, one after the other. If one of the
commands passed through fails, the command
handler reports the failure and terminates
execution.

xcf.commands.Passthrough

(®T)

Passes an XCL command to one target. The target
must determine and report success or failure.

TABLE 8

Table 9 shows the routing of command types processed by the Gateway 110, and

which command handler shown in Table 8 is relied upon for the command execution.

COMMAND COMMAND ROUTING | COMMAND
TYPE - - - . .OPERATION . _..|... . . - |HANDLER . . __ [
SCHEMA Write, Delete VDM, SM SPT
DATASOURCE Write, Delete VDM, SM SPT
DOCUMENT Write, Delete VDM, SM SPT
MEASURE All SM PT
CHOICE All SM PT
STATISTICS All SM PT
QUERY All SM PT
All others --- VDM PT

TABLE 9

16

10

15

20

25

WO 03/069510 PCT/US03/04685

The communication between the Gateway 110 and the VDM 120, and between the Gateway
110 and the SM 130 is via the XML Command Language (XCL).

The VDM 120 is responsible for XML document management, and connects between
the Gateway 110 and the RDMS 140. The VDM 120 is implemented by the vdm.Server class,
which is a direct descendent of the xcf BaseCommandServer class available in the unique
generic architecture referred to as the XML Command Framework (XCF), which handles the
details of threading, distribution, communication, resource management and general
command handling. The XCF is discussed below in more detail. Therefore, the VDM 120
inherits all the default command handling and communication functions available in all XCF
Command Servers. Unlike XML databases having proprietary storage and search formats, the
VDM 120 uses existing relational tables and fields to provide dynamic XML generation
capabilities without storing the XML documents.

The VDM 120 provides its document management capabilities through Document
Providers. The most visible function to a Client 150 of the VDM 120 is the creation and
maintenance of SCHEMA documents, which define parameters used for similarity searching.
A Document Provider is defined by the vdm.DocProvider interface and is responsible for
generating and storing XML documents based on a schema definition. Although described
embodiments of the SSE Server 190 only implement one DocProvider, which is an SQL
based document provider, if the DocProvider implements the interface, the document
provider can be any source that generates an XML document. For example, document
providers may be file systems, web sites, proprietary file formats, or XML databases. For a

user to retrieve relational data, the user must know where the data resides and how it is

--connected.” A Datasource object-encapsulates all-the-connection information: - - -~ - -~ -~ - - -

There are several types of command handlers required by the VDM 120 in order to
satisfactorily execute XCL commands. These include the document related command

handlers shown in Table 10.

COMMAND HANDLER FUNCTIONALITY

vdm.commands.DocumentRead Builds an XML document based on a schema, its
mapping, and a primary key, by assembling from
records and fields.

vdm.commands.DocumentWrite Writes an XML document based on a schema, its
mapping, and a primary key, by disassembling into
records and fields.

vdm.commands.DocumentDelete Deletes an XML document based on a schema, its
mapping, and a primary key, by removing relevant

17

10

15

WO 03/069510 PCT/US03/04685
records.
vdm.commands.DocumentCount Counts the number of unique documents for a
particular schema.

vdm.commands.DocumentLock

Locks a document based on its schema name and
primary key. Subsequent locks on this document will
fail until it is unlocked.

vdm.commands.DocumentUnlock

Unlocks a document based on its schema name and
primary key.

TABLE 10

Schema related command handlers required by the VDM 120 are shown in Table 11.

COMMAND HANDLER

FUNCTIONALITY

vdm.commands.SchemaWrite

Initializes a DocProvider based on the schema and
mapping defined for the schema.

xcf.commands.ComponentRead

Provides a means to read a schema.

vdm.commands.SchemaDelete

Uninitializes a DocProvider and drops it from the list
of available schemas.

TABLE 11

Datasource related command handlers required by the VDM 120 are shown in Table 12.

COMMAND HANDLER

FUNCTIONALITY

vdm.commands.DatasourceWrite

Creates and initializes the vdm.Connectionlnfo object
that contains all relevant datasource information.

vdm.commands.DatasourceDelete

Uninitializes a datasource and removes it from the list
of available datasources.

“Xef.commands;:ComponentRead

‘Provides a-means to-read-a datasource.- e e

vdm.commands.DatasourceMetadata

Connects to the datasource and examines all the
tables, field types and lengths, indices, view defined
in the datasource so that the DocProvider may make
informed decisions on how to best handle the data.

TABLE 12

The VDM 120 communicates with the RDMS 140 via the Java Database Connectivity

(JDBC) application programming interface.
The VDM 120 includes a Relational Database Driver (RDD) 125 for providing a link
between XML documents and the RDMS 140. The RDD 125 implements the DocProvider

interface, supporting standard functions defined in that class, including reading, writing and

deleting XML documents.

18

10

15

20

25

30

WO 03/069510 PCT/US03/04685

The RDD 125 is initialized by calling the initialize(String map) function, where this
map is an XML document describing the relationships between the XML documents to be
dealt with and the relational database. For instance, consider an example XML document 210
that follows the form shown in Figure 2. When building an XML document 210 from the
RDMS 230, Datasets 220 can specify that the data in claim/claimant/name should come from
the Claimants table 240 of the RDMS 230, while /claim/witness/name should come from the
Witnesses table 250. Conversely, when writing an existing XML document 210 of this form
out to the RDMS 230, the Datasets 220 will tell the RDD 125 that it should write any data
found at /claim/claimant/name out to the “name” field of the Claimants table 240, and write
the data found at /claim/witness/name out to the “name” field of the Witnesses table 250.
Through describing these relationships, the Datasets 220 allows the RDD 125 to read, write,
and delete XML documents for the VDM 120.

Internally, these Datasets 220 define relationships that are stored in a Java model. At
the beginning of initialization, the XML map 210 is parsed and used to build a hierarchy of
Datasets 220, one level of hierarchy for each database table referenced in the Datasets 220.
This encapsulation of the XML parsing into this one area minimizes the impact of syntax
changes in the XML map 210. These Datasets 220 have an XML form and may describe a
document based on a relational table or a document based on a SQL statement. If based on a
relational table, then initializing the RDD 125 with these Datasets 220 will allow full
read/write functionality. However, if based on an SQL statement, then the initialized RDD
125 will allow documents to be generated from the RDMS 230, but not to be written out to it.

In the common usage, in which the Dataset 220 is describing a relational table, <BIND> tags

- define the key fields-used in-the master-detail relationship: The-topmost Dataset’s <BIND> . . - -

tag simply describes its primary key, since it has no relationship with any higher-level
Dataset. Dataset <PATH> tags describe where the data being read from the tables in the
RDMS 230 should be stored in the XML document 210, and visa-versa when writing XML
document data to the RDMS. A Dataset <EXPRESSION> tag indicates whether the Dataset
describes a document based on a relational table or a document based on an SQL statement.
The VDM 120 relies on three functions to provide the functionality of building XML
documents from underlying RDMS. Each of these three functions returns the resultant
document(s) as a String. The functions are singleRead, multipleRead and expressionRead.
Consider the singleRead function:

singleRead(String primaryKey, boolean createRoot, String contentFilter).

19

5

10

15

20

25

30

WO 03/069510 PCT/US03/04685

In this function, primaryKey is a String that represents the primary key of the document being
produced. The boolean createRoot indicates whether or not the user wants the function to
wrap the resultant XML document in a root-level <RESULT> tag. The String contentFilter is
an XML structure represented as a String that describes the structure that the result must be
formatted in. This structure is always a cut-down version of the full document. For instance,
if we initialize the RDD 125 with an example, and then call
singleRead(“1”, true, “<claim><witness><city/></witness></claim>"),
the resulting XML document may look like that shown in Figure 3.
Consider the expressionRead function:
expressionRead(String expression, int start, int blockSize, boolean createRoot,
String contentFilter).
The expressionRead method allows the user to request a group of documents that can be
described in a SQL statement. For instance, all documents whose primary key would be
included in the ResultSet of “SELECT Inventory Code FROM Products WHERE
Product_Code = ‘Clearance’.” The results of executing the SQL expression, if there are any,
are assumed to have the primary key included in the first column of the results. These
primary keys are loaded into a Set as they are read, and the multipleRead is called with this
information. In the event that the SQL expression describes too general a set of primary keys,
expressionRead has two int parameters that allow a user to describe a subset of the keys
returned by the SQL expression. For example, there are several hundred clearance items but
only the first one hundred clearance items are of interest. To read the first one hundred

clearance items, the SQL expression would be the same as above, start would be passed in as

~avalue of 1, and blockSize-would be 100:"Toread the second one hundred-clearance-items; - - - -

start could be reset to 100, and blockSize would remain at its value of 100. The remaining
two parameters, createRoot and contentFilter, function similarly to the way that they are
described in singleRead.

Consider the multipleRead function:

multipleRead(Set primaryKeys, boolean createRoot, String contentFilter).

In multipleRead, the boolean createRoot and String ContentFilter behave just as they did in
singleRead. The only parameter that is different is that instead of a single primaryKey String,
multipleRead takes a set of primaryKeys. The other two read functions, singleRead and
expressionRead, may be considered to be special cases of the multipleRead method. A

singleRead may be considered as a multipleRead called on a primaryKey set of one. When an

20

10

15

20

25

30

WO 03/069510 PCT/US03/04685

expressionRead is executed, the results may be fed into a set that is then sent to a
multipleRead.

Composition of documents follows a basic algorithm. A row is taken from the
topmost array of arrays, the one representing the master table of the document. The portion of
the XML document that takes information from that row is built. Next, if there is a master-
detail relationship, the detail table is dealt with. All rows associated with the master row are
selected, and XML structures built from their information. In this manner, iterating through
all of the table arrays, the document is built. Then, the master array advances to the next row,
and the process begins again. When it finishes, all of the documents will have been built, and
they are returned in String form.

The VDM relies on two functions for writing XML documents out to an underlying
RDMS. These functions are singleWrite and multipleWrite. Consider the singleWrite
function: '

singleWrite(String primaryKey, String document).
The parameter primaryKey is the document number to be written out. The parameter
document is an XML document in String form, which will be parsed and written out to the
RDMS. During initialization, the driver has created a series of PreparedStatements to handle
the data insertion. The driver iterates through the document, matching each leaf’s context to a
context in a Dataset. When a context match is made, the relevant Insert statement has another
piece plugged into it. When all of the necessary data has been plugged into the prepared
Insert statement, it is executed and the data is written to the RDMS.

Consider the multipleWrite function:

“= - -~ multipleWriteMap-documents). = - - v s s s s e s e
The multipleWrite function takes as a parameter a Map which holds pairs of primary keys
and documents. The multipleWrite function iterates through this Map, calling the singleWrite
function with each of the pairs.

The VDM relies on three methods for deleting the data represented in an XML
document from the underlying RDMS. The functions are singleDelete, multipleDelete and
expressionDelete. Consider the singleDelete function:

singleDelete(String primaryKey, String document).
The singleDelete method takes in a String primaryKey, which identifies the document to be
deleted. While the DocProvider interface requires a second parameter, the String document,
the relational driver does nothing with this information and is able to function with only the

document’s primary key. In order to delete a given document, the driver first iterates through

21

10

15

20

25

30

WO 03/069510 PCT/US03/04685

the Dataset structure, executing selects for relevant columns in each table. This is required to
properly map the master-detail relationship. For instance, there is no guarantee that the
master table’s primary key will be the same key used in the detail table. Running the
Dataset’s selects as if a read command had been called allows the driver access to the
necessary information, and insures that all components of the document are deleted. Once the
selects have been executed, the driver iterates down through the Dataset executing each
prepared delete statement with the proper relevant data now plugged in.

Consider the multipleDeléte function:

multipleDelete(Map documents).

The multipleDelete method is bottlenecked through the singleDelete method, just as
multipleWrite was through singleWrite. In this case, multipleWrite takes as a parameter a
Map of paired primary keys and documents. The key set of primary keys is iterated through,
and singleDelete is called on each one.

Consider the expressionDelete function:

expressionDelete(String expression).

The expressionDelete method takes as its sole parameter a SQL expression which describes
the set of primary keys of documents which the user wishes to delete. The expression is
executed, with the assumption that the first column of the resulting rows will be the primary
key. These primary keys are iterated through, each being loaded into a call to singleDelete.

The SM 130 is responsible for XML document and SQL searching and scoring, and
connects between the Gateway 110 and the RDMS 140. The SM 130 is implemented as a

search.Server class, which is a direct descendent of the xcf.BaseCommandServer class

—available in-the unique-generic architecture referred-to-as the XML €Command Framework:

(XCF), which handles the details of threading, distribution, communication, resource
management and general command handling. The XCF is discussed below in more detail.
Therefore, the SM 130 inherits all the default command handling and communication
functions available in all XCF Command Servers. The SM 130 does not maintain any of its
own indexes, but uses a combination of relational indexes and User Defined Functions
(UDFs) 145 to provide similarity-scoring methods in addition to traditional search
techniques. The SM 130 sends commands to the RDMS 140 to cause the RDMS 140 to
execute token attribute similarity scoring based on selected UDFs. The SM 140 also performs
aggregation of token attribute scores from the RDMS 140 to determine document or record

similarity scores using selected choice algorithms. SQL commands sent by the SM 130 to the

22

WO 03/069510 PCT/US03/04685

RDMS 140 are used execute functions within the RDMS 140 and to register UDFs 145 with
the RDMS 140.

There are several types of command handlers required by the SM 130 in order to
satisfactorily execute XCL commands. These include schema, datasource, measure (UDF),
and choice related command handlers. The schema related command handlers are shown in

Table 13.

COMMAND HANDLER FUNCTIONALITY
search.commands.SchemaWrite Stores a simple XML version of a schema.
xcf.commands.ComponentRead The default component reader provides a means to

read a schema.

vdm.commands.ComponentRemove | The default component deleter provides a means to
delete a schema.

TABLE 13

Datasource related command handlers required by the SM 130 are shown in Table 14.

COMMAND HANDLER FUNCTIONALITY

search.commands.DatasourceWrite | Creates and initializes the vdm.ConnectionInfo object
that contains all relevant datasource connection
information.

vdm.commands.ComponentRemove | The default component deleter provides a means to
delete a datasource.

xcf.commands.ComponentRead The default component reader provides a means to
read a datasource.

TABLE 14

Measure (UDF) related command handlers required by the SM 130 are shown in Table 15.

COMMAND HANDLER FUNCTIONALITY
search.commands.MeasureWrite Stores an XML version of a measure
xcf.commands.ComponentRead The default component reader provides a means to

read a measure.

vdm.commands.ComponentRemove | The default component deleter provides a means to
delete a measure.

TABLE 15

Choice related command handlers required by the SM 130 are shown in Table 16.

23

10

15

20

25

WO 03/069510 PCT/US03/04685

COMMAND HANDLER FUNCTIONALITY
search.commands.ChoiceWrite Stores an XML version of a choice.
xcf.commands.ComponentRead The default component reader provides a means to

read a choice.

vdm.commands.ComponentRemove | The default component deleter provides a means to
delete a choice.

TABLE 16

The SM 130 communicates with the RDMS 140 via the Java Database Connectivity (JDBC)
application programming interface.

A similarity search is generally initiated when the Gateway 110 receives a QUERY
command containing a search request from a Client 150, and the Gateway 110 routes the
QUERY command to the SM 130. The SM 130 generally executes the QUERY command by
accessing a SCHEMA previously defined by a Client 150 and specified in the QUERY
command, and parsing the QUERY command into a string of SQL statements. These SQL
statements are sent to the RDMS 140 where they are executed to perform a similarity search
of token attributes and scoring of the attributes of the target documents specified in the
SCHEMA and stored in the RDMS 140. The attribute similarity scores are then returned to
the SM 130 from the RDMS 140 where weighting factors specified in the SCHEMA are
applied to each score and Choice algorithms specified in the SCHEMA aggregate or “roll-up”
the attribute scores to obtain an overall similarity score for each target document or record

specified in the SCHEMA or QUERY command. The scores are then returned to the

Gateway.110.by the SM 130.in.a RESULT document, which is then returned to the Client

150.

As an example of attribute scoring by the SM 130, consider the following SQL
statement sent by the SM 130 to the RDMS 140:

SELECT CUSTOMER.ID,STRDIFF(CUSTOMER .FIRST NAME, ‘JOHN’) AS S1

FROM CUSTOMER
The measure “looks_like” is implemented by the User Defined Function (UDF) STRDIFF,
which takes in two varchars (string) and returns a float(0.0 .. 1.0). In this case, the two
strings are a field value (target) and literal value (search). The result of the UDF is a float
(score) of the comparison. Table 17 shows an example result of this SQL statement that is
returned by the RDMS 140 to the SM 130.

24

10

15

20

WO 03/069510

PCT/US03/04685

CUSTOMER ID SIMILARITY SCORE - FIRST NAME
1 1.0
2 0.0
3 0.75
4 0.50

Table 17

Taking this example further, with more attributes, we could score more data with the
SQL statement sent to the RDMS 140 by the SM 130:
SELECT CUSTOMER.ID,STRDIFF(CUSTOMER.FIRST NAME, ‘JOHN’) AS S1,
STRDIFF(CUSTOMER.MIDDLE_NAME, ‘R’) AS S2,
STRDIFF(CUSTOMER.SURNAME, ‘RIPLEY’) AS S3 FROM CUSTOMER
Table 18 shows an example result of this SQL statement received by the SM 130 from the

RDMS 140.
CUSTOMER ID SIMILARITY SCORE

FIRST NAME MIDDLE NAME LAST NAME
1 1.0 1.0 1.0
2 0.0 0.0 0.0
3 0.75 1.0 0.72
4 0.50 0 0.1

TABLE 18

The SM 130 has caused the RDMS 140 to score a series of attributes independently and the
RDMS 140 has returned a set of scores shown in Table 18 to the SM 130.

In addition to this behavior, we can selectively limit the documents returned/examined

by applying restriction logic to the search. Consider the SQL statement sent by the SM 130 to

the RDMS 140:

SELECT CUSTOMER.ID,STRDIFF(CUSTOMER FIRST NAME, ‘JOHN’) AS S1,
STRDIFF(CUSTOMER MIDDLE _NAME, ‘R’) AS S2,
STRDIFF(CUSTOMER.SURNAME, ‘RIPLEY’) AS S3 FROM CUSTOMER
WHERE STRDIFF(CUSTOMER.FIRST NAME, ‘JOHN’) > 0.72

In this example, only customers with a first name having a high degree of similarity (= 0.72)

to “John” are of interest, regardless of the other criteria (where 0.00 represents no similarity

25

10

15

20

25

WO 03/069510 PCT/US03/04685

and 1.00 represents an exact similarity or comparison match). Table 19 shows the expected

result received from the RDMS 140 by the SM 130.

CUSTOMER ID SIMILARITY SCORE
FIRST NAME MIDDLE NAME LAST NAME
1 1.0 1.0 1.0
3 0.75 1.0 0.72
TABLE 19

Records 2 & 4 are excluded because of their low similarity scores of first names (0.00 and
0.50, respectively) vs. “John”.

Once a set of attribute scores is returned from the RDMS 140, the SM 130 determines
the overall score of a record (or document) by aggregation through use of a Choice algorithm
specified in the associated SCHEMA. An example of aggregation may be simple averaging
the scores of the attribute after first multiplying them by relative weight factors, as specified
in a QUERY command. In the example case, all fields are weighted evenly (1.00), and
therefore the score is a simple average. Figure 4 depicts an example of a RESULT document
from the example of Table 19.

The Statistics Processing Module (SPM) 135 enables the acquisition of statistical
information about the data stored in search tables in the RDMS 140, using the built-in
functions available in the RDMS 140. This enables the definition of statistics after search
data has been stored in the RDMS 140. The Statistics Processing Module (SPM) 135 gives
the user the ability to specify the fields upon which they wish to obtain statistics. The list of
fields selected will act as a combination when computing occurrences. For~exrémf;le,‘the most
frequently occurring first, middle, and last name combination. In addition to the fields, the
user will be able to provide count restriction (e.g., only those with 4 or more occurrences)
along with data restriction (e.g., only those records in Texas).

Turning now to Figure 5A, Figure 5A depicts a process 500 for handling a
STATISTICS command in a Search Manager (SM) 130 when the SSE Server 190 receives a
STATISTICS command and a CommandHandler is invoked to handle the process. When the
M 130 receives a STATISTICS command, the Statistics Definition to be used in the
generation process is identified 510. The SCHEMA (search table) from which these statistics
are based is then identified 520. Next, an SQL statement is issued to extract the necessary

statistical information from the SCHEMA 530. If the results of a QUERY command are not

26

10

15

20

25

30

WO 03/069510 PCT/US03/04685

already present, a new statistics table is created to store the results of a QUERY command
540, The statistics table is then populated with the results of the QUERY command 550. A
statistics SCHEMA (with mapping and measures) is generated 560. And lastly, the newly
created statistics SCHEMA is added to the SM 130 so that the statistics table becomes a new
search table and is exposed to the client as a searchable database 570. Figure 5B depicts the
dataflow 502 in the statistics command process of Figure 5B.

Statistic Definitions are considered Components that fit into the ComponentManager
architecture with their persistence directory being “statistics”, as described below with regard
to the CommandServer of the XCF. The management commands are handled by the
ComponentAdd, ComponentRemove and ComponentRead CommandHandlers available in
the CommandServers registered CommandHandlers.

Turning back to Figure 1, the RDMS 140 is generally considered to be an SQL
database, although it is not limited to this type of database. In one embodiment of the present
invention, the RDMS 140 may comprise a DB2 Relational Database Management System by
IBM Corporation. The SM 130 communicates with the RDMS 140 by sending commands
and receiving data across a JDBC application programming interface (API). The SM 130 is
able to cause the RDMS 140 to execute conventional RDBMS commands as well as
commands to execute the User Defined Functions (UDFs) 145 contained in a library in the
RDMS 140 for providing similarity-scoring methods in addition to traditional search
techniques. The VDM 120 also communicates with the RDMS 140 via a JDBC application
programming interface (API).

UDFs 145 provide an extension to a Relational Database Management System

~(RDMS) suite of built-in functions. The built-in functions include a series of math, string, and

date functions. However, none of these built-in functions generally provide any similarity or
distance functional capability needed for similarity searching. The UDFs 145 may be
downloaded into the RDMS 140 by the SSE server 190 provide the functions required for
similarity searching. UDFs 145 may be written in C, C++, Java, or a database-specific
procedure language. The implementations of these UDFs 145 are known as Measures. The
Measures compare two strings of document attributes and generate a score that is normalized
to a value between 0.00 and 1.00. They can be called from any application that has
knowledge of the signature of the function, for example, parameters, type, and return type.
For a RDMS 140 to be capable of calling UDFs 145, the function signatures must match what
the database expects a UDF 145 to be, and the function library and entry point must be
declared to the RDMS 140. The library of functions are compiled and deployed into the UDF

27

10

15

20

25

30

WO 03/069510 PCT/US03/04685

library directory of the host RDMS 140, and the UDFs 145 are registered with the RDMS
140 by an SQL command. The measures are described below in more detail.

Turning now to Figure. 6, Figure 6 describes the Measures implemented as UDFs 145
in an embodiment of the SSE. The term “tokenized Compare” is used in the Measure
descriptions of Figure 6. In the present context, it means to use domain-specific (and thus
domain-limited) knowledge to break the input strings into their constituent parts. For
example, an attribute of a street address can be broken down into tokens comprising Number,
Street Name, Street Type, and, optionally, Apartment. This may improve the quality of
scoring by allowing different weights for different tokens, and by allowing different, more
specific measures to be used on each token.

Turning now to Figure 7, Figure 7 depicts an architecture of the XML Command
Framework (XCF) 700. The Gateway, VDM and SM described above each rely on the
flexible design of the XCF 700 for core processing capability. The XCF 700 functions as
XML in and XML out, that is, it generates an XML response to an XML command. It is
based upon a unique XML command language XCL that strongly focuses on the needs of
search applications. The details of XCL are described below. The architecture of the XCF
700 comprises the following major entities: CommandServer 710 for configuration, overall
flow, and central point of contact; CommandExecutor 720 for executing XML commands
and providing XML result; CommandResponse 730 for receiving XML results;
CommandHandlerFactory 740 for registration and identification of CommandHandlers 742;
Component Manager 750 for management of Components 752, Acceptors 756 and

Connectors 754, Interceptors 758, and LifetimeManagers 760; and CommandDispatcher 770

- containing a Queue 772 for CommandHandler 742 thread management. CommandHandlers

742 process individual XML commands. Components 752 are pluggable units of
functionality. Connectors 754 and Acceptors 756 provide for communication into and out of
the CommandServer 710. Interceptors 758 hook to intercept incoming commands.
LifetimeManagers 760 manage lifetime of CommandHandler 742 execution. Each of these
entities is defined as an interface that allow for multiple implementations of an entity. Each
interface is an object that has at least one base implementation defined in XCF. Each
interface is limited to the contract imposed by the interface.

The CommandServer 700 is the central point-of-contact for all things in the XCF. It is
responsible for overall execution flow and provides central access to services and
components of the system. Most objects that reference the XCF services are passed a

CommandServer reference in a constructor or in a setter method. Central access to

28

10

15

20

WO 03/069510 PCT/US03/04685

synchronization objects can be placed here, as all supporting objects will have access. Being
the central point of most things, it is also responsible for bootstrapping, initialization and
configuration.
The interface to the CommandExecutor 720 is defined as:
void execute(String command, CommandResponse response),
where command is the XML command to be executed by a CommandHandler 742, and
CommandResponse is any object that implements the interface to the CommandResponse
730. It is this object that will be called asynchronously when the command has been
completed.
The CommandResponse interface 730 must be implemented when calling a
CommandExecutor 720 execute method. The contract is:
void setValue(String value).
Once a command has been completed, it will call this method. It is here where a particular
CommandResponse 730 implementation will get a response value and process it accordingly.
The CommandHandlers 742 provide means for interpreting and executing XML
commands for solving a particular problem. For each problem that needs a solution, there is
an assigned CommandHandler 742. First, consider a standard XML command:
<TYPE op=*“action” version="version”/>
A CommandHandler 742 is uniquely identified in the system by the three attributes shown in
Table 20. These attributes are known as the signature of the CommandHandler 742.

ATTRIBUTE DESCRIPTION

Type - This is the name by which common commands are grouped. It is-
analogous to a noun representing an object. There are many types of
CommandHandlers, including DATASOURCE, SCHEMA,
DOCUMENT, etc. They are shown above in Table 4.

Action This is the action or operation that is to be performed on this object. This
is analogous to a verb. Examples include READ, WRITE, DELETE,
EXECUTE, etc.

Version This indicates the version of the command that this CommandHandler is
expecting. For example, there could be multiple DOCUMENT/READs
registered, each with its own version. As the XML Command Language
(XCL) evolves, the version allows maintaining of backward compatibility
for old syntaxes while enabling the addition of new CommandHandlers in
different versions for supporting new syntaxes.

TABLE 20

The command handlers 742 provide template methods for the following functions:

29

10

15

WO 03/069510

PCT/US03/04685

1) ensure proper initialization of the CommandHandler 742;

2) register the CommandHandler 742 with the LifeTimeManager 760;

3) catch any uncaught exceptions; and

4) ensure proper uninitialization of the CommandHandler 742.

Figure 8 depicts the format of a RESPONSE generated by a CommandHandler 742.

There are several standard CommandHandlers 742 that are responsible for overall

management of the CommandServer 710. These are shown in Table 21 along with the

CommandHandler PassThrough, which is not automatically registered.

COMMANDHANDLERS DESCRIPTION

ComponentAdd Serves as a general-purpose handler to add new components to
the system. It is a template for ensuring components are
configured, activated and added properly. The
BaseCommandServer makes use of this CommandHandler 742
for CONNECTORS, ACCEPTORS and INTERCEPTORS.

ComponentRemove Serves as a general-purpose handler to remove existing
components from the system and ensuring they are deactivated
correctly. This CommandHandler 742 is used for
CONNECTORS, ACCEPTORS and INTERCEPTORS.

ComponentRead, Dedicated to return component configuration information.

ComponentList ComponentRead returns a configuration for a particular item or
items, whereas ComponentList only returns the names of the
items.

CommandStatus, These CommandHandlers 742 handle command status and

CommandCancel command cancellation.

SystemCleanup This CommandHandler 742 calls a garbage collector.

DoNothing This is a utility handler that makes sure the system can respond
to commands.

BatchExecute This handler is a general-purpose wrapper for executing sub-
commands nested in a BATCH op="execute” command.

PassThrough If a command will not be handled by one CommandServer 710,

this CommandHandler 742 can be registered to pass the
command to a CommandConnector for passage to another
CommandServer 710.

TABLE 21

The CommandHandlerFactory 740 serves as a factory for CommandHandlers 742.

There is only one instance of this object per CommandServer 710. This object is responsible

for the following functions:

1) registering/unregistering CommandHandlers;

2) parsing incoming XML commands;

30

10

15

20

25

30

WO 03/069510 PCT/US03/04685

3) identifying registered CommandHandlers responsible for handling XML
commands;
4) cloning a particular CommandHandler; and
5) giving a cloned CommandHandler run-time state information.

A Component 752 is identified by its type and name. The type enables grouping of
Components 752 and name uniquely identifies Components 752 within the group. The
Component 752 is responsible for determining its name, and ComponentManager 750
handles grouping on type. The lifecycle of a component 752 is:

1) create a Component 752;

2) configure the Component 752, specified in XML;

3) activate the Component 752,

4) add the Component 752 to the ComponentManager 750;

5) ...

6) remove the Component 752 from the ComponentManager 750; and

7) deactivate the Component 752.
A Component 752 is generally created, activated and added to the ComponentManager 750 at
CommandServer 710 startup, and is removed and deactivated at CommandServer 710
shutdown. However, this procedure is not enforced and Components 752 can be added and
removed at any time during the lifetime of a CommandServer 710.

Since the Component interface is very flexible and lightweight, many system objects
are defined as Components 752. These include CommandAcceptors 756,

CommandConnectors 754, CommandInterceptors 758, and LifetimeManager 760. If a

- Component 752 does not perform any function, but is simply a definition, a generic utility

Component 752 implementation may be used. This utility only ensures that the configuration
of the Component 752 is valid XML and it has a name=“xxx" at the root level.

The CommandDispatcher 770 exposes a single method for InterruptedException.
The CommandDispatcher interface 770 differs from the CommandExecutor 720 because it
expects an initialized CommandHandler 742 rather than an XML string, and it delegates the
command response functionality to the CommandHandler 742 itself. Internally, the
BaseCommandDispatcher uses a PooledExecutor. As a command is added, it is placed in this
bounded pool and when a thread becomes available, the CommandHandler’s run() method is
called.

The function of the LifetimeManager 760 is to keep track of any objects that requires

or requests lifetime management. A LifetimeManager 760 is an optional part of a

31

10

15

20

25

30

WO 03/069510 PCT/US03/04685

CommandServer 710 and is not explicitly listed in the CommandServer interface 710. It can
be registered as a separate Component 752, and can manage anything that implements the
LifetimeManager interface 760. The only objects that require Lifetime management are
CommandHandlers 742. During its setup, the BaseCommandServer creates a
CommandLifetimeManager component that is dedicated to this task of managing the lifetime
of commands/CommandHandlers 742 that enter the system. CommandHandlers themselves
do not implement the Lifetime Manager interface 760.

CommandInterceptors 758 are components that can be added to a CommandServer
710. Their function is to intercept commands before they are executed. Implementations of
CommandInterceptor 758 should raise a CommandInterceptionException if evaluation fails.
BaseCommandServer 710 will evaluate all registered Interceptors 758 before calling the
dispatcher. If one fails, the dispatcher will not be called and the
CommandInterceptorException’s getMessage() will be placed in the error block of the
response.

The Acceptor 756 and Connector 754 pair is an abstraction of the communication
between clients and CommandServers 710, and between a CommandServers 710 and other
CommandServers 710. CommandAcceptors 756 and CommandConnectors 754 extend the
Component interface 752, and are therefore seen by the CommandServer 710 as Components
752 that are initialized, configured, activated and deactivated similar to all other Components
752. The ComponentManager 750 manages acceptors 756 and Connectors 754.

A CommandAcceptor 756 is an interface that defines how commands are accepted
into a CommandServer 710. It is the responsibility of the CommandAcceptor 756 to
encapsulate all the communication logic necessary to receive commands. It passes those
commands (in string form) to the CommandServer 710 via its CommandExecutor interface
720. Once a command is successfully executed, it is the responsibility of the
CommandAcceptor 756 to pass the result back across the communication channel.

Similar to the CommandAcceptor 756, the CommandConnector 754 encapsulates all
the communication logic necessary for moving commands across a “wire”, but in the case of
a Connector 754, it is responsible for sending commands, as opposed to receiving commands.
Tt is a client’s connection point to a CommandServer 710. For every CommandAcceptor
implementation 756, there is generally a CommandConnector implementation 754. The
CommandConnector interface 754 extends the CommandExecutor interface 720, thereby

implying that it executes commands. This enables location transparency as both

32

10

15

20

25

WO 03/069510 PCT/US03/04685

CommandServer 710 and CommandConnector 754 expose the CommandExecutor interface
720.

As discussed, CommandAcceptors 756 and CommandConnectors 754 are
Components 752 that are managed by a CommandServer’s ComponentManager 750. The
Acceptors 756 and Connectors 754 are the clients' view of the CommandServer 710. Several
implementations of Acceptor/Connector interfaces provide most communication needs.

These classes are shown in Table 22.

PROTOCOL ACCEPTOR CONNECTOR
Sockets raw.RawAcceptor raw.RawConnector
HTTP http. HTTP Acceptor http. HTTPConnector
IMS jms.JMSAcceptor jms.JMSConnector

TABLE 22

All Connectors 754 are asynchronous to a user, even if internally they make use of threads
and socket pools to provide an illusion of asynchronous communication.

Turning now to Figure 9, Figure 9A depicts a process 900 for handling an XCL
command in a CommandServer 710. An XCL command is formulated, a CommandResponse
object is provided, and a CommandServer’s CommandExecutor interface is called 910. Inside
the CommandServer 710, the CommandExecutor 720 calls a CommandHandlerFactory 740
with a raw XCL command string 920. Inside the CommandHandlerFactory 740, the XCL

command string is parsed, a registered CommandHandler 742 is found with the same TYPE,

~ action and version signature as the XCL command, a CommandHandler prototype is cloned - - - -~

with the runtime state information, and it is passed back to the CommandServer 930. The
CommandServer 710 gives the newly cloned CommandHandler 742 a reference and the same
CommandResponse object provided in the first step 940. The CommandServer 710 then
delegates execution of the CommandHandler 742 to the CommandDispatcher 770 by placing
it in its Queue 772, 950. When ready, the CommandDispatcher 770 will grab a thread from
the Queue 772, 960. The CommandDispatcher 770 will then call the CommandHandler run()
method 970. Once running, the CommandHandler 742 can do whatever is required to satisty
the request, making use of system services of the CommandServer 710, 980. Once a result (or
error) has been generated, the CommandHandler 742 places the value in setResult(), loads its

CommandResponse object setValue() with result, and the result passes back to the caller 990.

33

10

15

20

25

30

WO 03/069510 PCT/US03/04685

Figure 9B depicts a dataflow 902 of an XCL command process steps shown in Figure 9A in a
CommandServer architecture.

The SSE employs a Command Language based on XML, the Extensible Markup
Language. This Command Language is called XCL. XCL commands are issued as XML
documents and search results are returned as XML documents. The syntax of XCL consists
of XML elements, their values and attributes, which control the behavior of the Similarity
Search Engine Server. Usihg XCL commands, a client program can define and execute
searches employing the SSE Server.

This description introduces the Application Programming Interface (API) for the SSE
Server. All SSE commands are formed in XML and run through the execute interface, which
is implemented for both Java and COM. For Java, there are synchronous and asynchronous
versions. For COM, the interface is always synchronous. For both versions, there are similar
methods. The first accepts a string and would be appropriate when the application does not
make extensive use of XML, or when it wants to use the SAX parser for speed and does not
employ an internal representation. The other method accepts a DOM instance and opens the
door to more advanced XML technologies such as XSL. ,

Turning now to Figure 10, Figure 10 depicts the general XCL command format.
Logically, XCL commands look like XML documents. Each command is a document and its
clauses are elements. Command options are given by element or attribute values. The XCL
command language provides three main types of commands for building similarity
applications — a SCHEMA command that defines the document set for the similarity search, a
QUERY command that searches the document set, and some administrative commands for
managing documents, queries, measures, and so-on. The SCHEMA command has three main
clauses. A STRUCTURE clause describes the structure of the documents to be searched,
arranging data elements into an XML hierarchy that expresses their relationships. A
MAPPING clause maps search terms with target values from the datasources. A
SEMANTICS clause indicates how similarity is to be assessed. The QUERY command also
has several clauses. A WHERE clause indicates the structure and values for the search terms.
A FROM clause describes the datasources to be accessed. SELECT and RESTRICT clauses
describe the result set and scoring criteria. And an optional SEMANTICS clause overrides
semantics defined in the SCHEMA. The administrative commands allow the application to
read, write, and delete the documents, queries, schemas, measures, parsings, choices, and

datatypes used in the search. For multi-user situations, a simple locking protocol is provided.

34

10

15

20

25

30

WO 03/069510 PCT/US03/04685

XCL commands return result sets in the form of XML documents. The QUERY
command contains similarity scores for the documents searched. The result set can return
scores for entire documents or for any elements and attributes they contain. In case of
problems, the result set contains error or warning messages. Results can be returned
synchronously or asynchronously. The synchronous calls block until the result set is ready,
while the asynchronous calls return immediately with results returned via a callback coded in
the client. Depending on the needs of the application, the results can be retrieved in either
string or DOM format. The ResultSet class used by SSE Command Language mimics the
ResultSet class for JDBC, allowing applications to iterate through the results to access their
contents.

All XCL commands operate on XML documents and produce document sets as
results. An XML document begins at a top node (the root element), and elements can be
nested, forming a hierarchy. The bottom or “leaf” nodes contain the document’s content (data
values). A document set is a collection of documents with the same hierarchical layout, as
defined by the schema for the search. An anchor document is a hierarchy of XML elements
that represent the data values to be used as search criteria. Currently, there can be only one
instance of each element in the anchor document. However, the target documents can have
repeated groups.

Turning now to Figure 11, Figure 11 depicts a hierarchical layout 1100 that allows
multiple tables 1110, 1120 to be mapped onto the search document 1160 via datasets 1130,
1140 through the use of the VDM Relational Database Driver 1150 discussed above. The

Database values are mapped to their corresponding places in the virtual XML document to be

- searched. A target document 1160 is a hierarchy of values drawn from a relational database

1110, 1120. Values from the Relational Database 1110, 1120 are captured via OBDC or
JDBC. Target documents can span multiple tables, joined by master/detail fields. Documents
examined by the SSE Server are virtual in the sense that they provide hierarchical
representations that match the structure of the search schema while the data they contain still
resides in the database tables 1110, 1120. In many cases, the target documents are a direct
reflection of tables being tapped in the search. Each valued element corresponds to field
(column) in a table, and group elements correspond to the tables themselves 1110, 1120. The
hierarchical layout allows multiple tables 1110, 1120 to be mapped onto the virtual XML
search document 1160, even tables from other databases in the case of a cross-database

search. The relationship between the target documents and datasource is mapped as part of

35

10

15

20

25

30"

WO 03/069510 PCT/US03/04685

the schema defined for the search. A database can have many schemas, providing different
ways of searching it.

Turning now to Figure 12, Figure 12 depicts the format of a SCHEMA command. The
SCHEMA command enables a user to manage the schema for a search document, defining
the hierarchical structure of the document and mapping its elements to data sources and
similarity measures. A SCHEMA command for a search document comprises of its
STRUCTURE clause, its MAPPING clause, and its SEMANTICS clause. The STRUCTURE
clause defines the search terms and their relationships in XML format. The MAPPING clause
defines the target values and where they reside. The SEMANTICS clause can include
overrides to the default similarity measures, choices, and weights. Schemas can be listed,
read, written, deleted, locked, and unlocked by the SCHEMA command, as required. Search
schemas must be coded manually according to the syntax given here. Predefined datatypes
provide shortcuts for those wishing to use standard domain-oriented elements and measures.
Search schemas normally reside in an SSE schema repository. The “list” operator of the
SCHEMA command returns a childless <SCHEMA> element for each schema in the
repository. With a “read” operator, the SCHEMA command returns the schema indicated. Or
if the schema name is given as “*”, the “read” operator returns all schemas in the directory.
The “write” operator causes the SCHEMA command to write the specified search schema
into the directory, overwriting any existing schema with the same name. The “delete”
operator purges the specified document. The “lock” and “unlock” operations provide a simple
locking protocol to prevent conflicting updates in case several DOCUMENT operations are
attempted at once by different clients. The operation attribute returns as “locked” or “denied”
to indicate the success of the operation. For example, the command <SCHEMA op="list"
name="*"/> calls for a list of schemas shown in Figure 13.

Turning now to Figure 14, Figure 14 depicts the format for a STRUCTURE clause.
The SSE Server uses the hierarchical structure of the XML anchor document to express
definitions, options, and overrides throughout the XCL command language. The XML
structure of the anchor document is defined in the STRUCTURE clause, specifying the data
elements involved in the search along with their positions in the search document. The
SEMANTICS clause refers to this structure in mapping these elements to information
sources, similarity measures, and so on. A unique aspect of the XML hierarchy shown in the
STRUCTURE clause is that no values are given. Elements that represent search terms are
shown as empty — i.e., just the XML tag. The values are to be supplied by the associated

datasources. In the case of a “flat” search, all the target values are for child elements

36

10

15

20

25

30

WO 03/069510 PCT/US03/04685

belonging to the parent. In a “hierarchical” search, the search terms may occur at different
levels of the hierarchy with multiple occurrences of values for child elements. However, the
anchor document cannot specify repeated values. Figure 15 depicts an example of a
STRUCTURE clause for a hierarchical search.

Turning now to Figure 16, Figure 16 depicts the format of the MAPPING clause,
which associates elements in the anchor document with target fields in the database. The
MAPPING clause governs the mapping between elements of the XML search document and
the elements of a relational database. Its contents are: database name, location, driver,
username, and password. When multiple databases are connected, the mapping also indicates
the node in the search document schema to populate with data from the database. Each
database table or view is represented by a dataset, which gives the bindings of database fields

to elements and attributes in the search schema. Datasets bind with each other to join the

. database tables into a hierarchy that matches the structure of the search schema. The

MAPPING clause for a relational datasource contains a <DATASET> element for every table
in the database that contains target values for the search. <DATASET> contains the
datasource attribute that identifies the object used as the datasource. The <DATASET> also
contains an <EXPRESSION> element that tells SSE that the datasource is a relational table.
The <DATASET> also includes a <PATH> element that indicates which element in the
search schema contains the search terms for target values drawn from the table. Target values
are mapped to the search schema with a <FIELD> element for each field to be included. The
<DATASET> for a relational table also contains a <BIND> element that defines
master/detail relationships with other tables. This binding resembles a JOIN operation by the
DBMS, associating a foreign key in-the detail table with a primary key in the master table.
Figure 17 depicts an example of a MAPPING clause. For example the <MAPPING> may
include two <DATASET> elements, the first to describe the master Product table, and the
second to describe the detail Model table.

Turning now to Figure 18, Figure 18 depicts the format of the SEMANTICS clause,
which assigns measures, choices, and weights to search terms. The SEMANTICS clause
provides intelligence to guide the search. By default, standard measures based on datasource
datatypes are assigned to the search terms. Sometimes these provide adequate results, but
other times applications require measures that take into account the way the data is used. New
semantics are assigned with the APPLY clause, which consists of a repeatable PATH clause
and up to one each of'the following: MEASURE clause, CHOICE clause, and WEIGHT

clause. The PATH clause indicates an element in the search schema that is to receive new

37

10

15

20

25

30

WO 03/069510 PCT/US03/04685

semantics. The xpath notation traces a hierarchical path to the element beginning at the root.
When several elements are to receive the same semantics, they can be listed in the same
<APPLY> clause. The MEASURE clause allows the use of refined measures for the elements
indicated in the APPLY clause. For those elements, the measure specified in the MEASURE
clause takes precedence over any measure specified in the original schema. The specified
measure can either be a variation on the standard measure, a new measure defined using the
SSE syntax, or a user-coded measure. The CHOICE clause enables a different pairing
algorithm to be assigned to parsed values of the elements indicated in the APPLY clause.
These algorithms perform aggregation of the similarity search scores of the attributes
determined by the measure algorithms. The WEIGHT clause allows a relative weight to be
assigned to the scores of the elements listed in the APPLY clause. By default, all elements
and attributes belonging to the same parent are assigned equal weights. That is, the scores of
the child elements and attributes are averaged to produce the score for the parent. If
necessary, the scores are normalized to produce an overall score in the range 0.00 to 1.00. For
example, in scoring a name, <LAST> might be assigned a WEIGHT of .70, <MIDDLE> a
WEIGHT of .10, and <FIRST> a WEIGHT of .20. The resulting score for would then be
calculated as:

score = (.70)*(score<LAST>) + (.10)*(score<MIDDLE>) + (.20)*(score<FIRST>).
Without the WEIGHT clause, the calculation would be:

score= (score<LAST> + score<MIDDLE> + score <FIRST>)/3.

Turning to Figure 19, Figure 19 depicts the hierarchical structure 1900 of the
SCHEMA command 1910. As described above, the SCHEMA command 1910 comprises a
STRUCTURE clause 1915, a SEMANTICS clause 1920 and a MAPPING clause 1925. The
SEMANTICS clause 1920 comprises a MEASURE clause 1930 for identifying Measures
1950 to be used for scoring document attribute tokens, a CHOICE clause 1935 for identifying
the Aggregation algorithms 1955 for “rolling up” token scores to obtain document scores, a
WEIGHTING clause 1940 for emphasizing or de-emphasizing token scores, and a PATH
clause 1945 for indicating a path to an element of a search schema in a RDMS to which the
SEMANTICS clause 1920 will apply. The MEASURE clause 1930 contains a partial list of
MEASURES algorithms 1950 for determining token attribute scores. Figure 6 above
describes a more detailed list of MEASURE algorithms. The CHOICE clause 1935 contains a
partial list of CHOICE algorithms 1955 for aggregating token scores into document scores.

Turning now to Figure 20, Figure depicts the format of the QUERY command. The

QUERY command initiates a similarity search, which scores matches between search terms

38

10

15

20

25

30

WO 03/069510 PCT/US03/04685

indicated in a WHERE clause and target values drawn from the relational datasource
indicated in the FROM clause. The RESTRICT clause and SELECT clause determine what
results are returned. The QUERY command looks to the search schema for the structure and
semantics of the search, or to subordinate SEMANTICS clauses that override the default
settings in the schema document.

The format of the WHERE clause is shown in Figure 20. The WHERE clause
indicates the anchor to be compared to target values drawn from the datasources specified in
the FROM clause. The anchor document is structured as a hierarchy to indicate parent/child
relationships, reflecting the STRUCTURE clause of the search schema. For the SSE Server,
the WHERE clause takes the form of an XML document structure populated with anchor
values, i.e. the values that represent the “ideal” for the search. This document’s structure
conforms to the structure of the search schema. However, only the elements contributing to
the similarity need to be included. Hierarchical relationships among elements, which would
be established with JOIN operations in SQL, are represented in SSE Command Language by
the nesting of elements in the WHERE clause. No matter where they occur in the document
structure, all elements included in the WHERE clause are scored against the target values
drawn from the associated datasource. Unlike its SQL counterpart, the SSE Server’s WHERE
clause does not always qualify or select a collection of records for further processing. In a
similarity search, every target value receives a score. The results returned to the application
client can be controlled with RESTRICT and SELECT clauses, but the similarity search
looks at every document. The SSE’s WHERE clause tells the SSE Server which elements and
attributes to score. A more direct comparison in SQL might be the list of data items in the
main clause of the command. Figure 21 depicts an example of the WHERE clause.-A
WHERE clause is required in any QUERY that does similarity scoring. Without a WHERE
clause, a QUERY can still return documents according the SELECT clause.

The format of the FROM clause is shown in Figure 20. The FROM clause associates
the QUERY with the document set being searched. The FROM clause identifies the set of
documents to be examined in the search. These are virtual documents drawn from relational
datasources according to a predefined mapping. The FROM clause offers two ways to
identify search documents. The first draws target values from a relational datasource through
the VDM. The second presents the documents themselves as part of the FROM clause. Figure
22A depicts examples of a FROM clause that indicates the search should examine the entire
set for “acme_products”. Figure 22B depicts an example of a FROM clause that indicates the

search should examine the documents shown.

39

10

15

20

25

30

WO 03/069510 PCT/US03/04685

Turning now to Figure 23, Figure 23 depicts the format of the RESTRICT clause. The
RESTRICT clause places limits on the results returned by the QUERY. The RESTRICT
clause offers three methods for culling the results of a QUERY before they are returned to the
client. When a RESTRICT clause contains multiple methods, they are applied in the order
listed, each working on the result of the one before it. The SCORE clause includes <START>
and <END> elements (both required, neither repeating) to define the range of scores for
documents to be returned. If the <START> score is greater than the <END> score, the
documents receiving scores in that range are returned in descending order by score. That is,
the score closest to 1.00 comes first. When the <END> score is the larger, the results are in
ascending order. The INDEX clause includes <START> and <END> elements (both
required, neither repeating) to define a sequence of documents to return. For this purpose,
candidate documents are numbered sequentially and the documents with sequence numbers
falling in the range between <START> and <END> are returned. This is useful for clients
that need a fixed number of documents returned. The sequence numbers must be positive
integers. Figure 24 depicts an example of the RESTRICT clause. This RESTRICT clause first
limits the scores to those over 0.80. Then it returns the first three. If there are not at least three
remaining, it returns what*s left.

The format of the SELECT clause is shown in Figure 19. The SELECT clause allows
the application to determine the structure of the result set. Otherwise, the results consist of a
list of all documents examined with a similarity score for each document. The SELECT
clause governs the contents of the result set returned to the client. By default, the client

receives a list of DOCUMENT elements, each with a score that indicates its degree of

-similarity to the search terms in the QUERY- The score is reported as an-added attribute for

the <DOCUMENT> element, along with its name and schema. If the boolean for scoring is
set to false, only the document name and schema are returned. Likewise, if the QUERY does
not include a WHERE clause, no scoring is performed. A SELECT clause that includes a
structure from the search schema returns <DOCUMENT> elements containing that structure,
each with the target value considered in the search. If the boolean for scoring is set to true
(default), the result set includes <DETAIL> elements that contain a <PATH> element
structure given in the WHERE clause and a <SCORE> element with the similarity score.
Figure 25 depicts an example of a SELECT clause that returns both target values and
similarity scores.

The QUERY command also contains a SEMANTICS clause, as shown in Figure 20.
The SEMANTICS clause in a QUERY command has the same format as a SEMANTICS

40

10

15

20

25

30

WO 03/069510 PCT/US03/04685

clause in a SCHEMA command, and is discussed above in the description of Figure 18 and
Figure 19. A SEMANTICS clause specifies the semantics to use in the QUERY, and will
override the default SEMANTICS clause contained in the SCHEMA command. For details
on the MEASURE clause, CHOICE clause, and WEIGHT clause and PATH clause
comprising a SEMANTICS clause, refer to their descriptions above in Figure 18 and Figure
19 relative to the SCHEMA command.

For traditional exact-match searches, results are just a list of the documents that
satisfy the search’s matching criteria. However, similarity searches normally regard all
documents as similar to some degree, so the result of a similarity search is a list of all the
documents searched, each with a similarity score that tells how similar it is to the search
criteria. Optionally, the client can limit the result set to documents with a specified degree of
similarity — for example a score of 90% or above — according to the requirements of the
application. The client may also request details showing the anchor and target values that
were compared to produce the document score. |

Turning now to Figure 26, Figure 26A depicts the format of a RESPONSE structure.
A successful QUERY command returns a <RESULT> element whose contents are
determined by the SELECT clause as just described above. An unsuccessful QUERY may
return an <ERROR> or <WARNING>> to the client. A RESPONSE format showing only
scores of a similarity search is depicted in Figure 26B, and a RESPONSE format showing
details of a similarity search is depicted in Figure 26C. Commands other than a QUERY
command return results, but not similarity scores. For these other commands, <RESULT>
contains an element that echoes the original command and contains set of elements of the
type requested. A “list” operation-produces a set of childless elements of the type requested,
each with an identifying name attribute. A “read” operation returns complete XML structures
for the elements requested. The <DETAIL> element depicted in Figure 26C is included when
the score attribute of a QUERY command SELECT clause is set to “true”. This produces a
list of elements and attributes used in the WHERE clause of the QUERY command and the
target values used to produce the scores. Each score is reported in a <SCORE> element of an
APPLY clause along with a <WHERE> element with the xpath of the search term and a
<FROM> element with the xpath of the target value. When multiple target values are
involved, the xpath includes an index to indicate which one was chosen for scoring, e.g. the
third value (in tree order) for a product’s model number would be Product/Model/Number. In
addition to the name attribute, which indicates which result document the details concern, the

<DETAIL> element preserves any attributes from the original command. When the DETAIL

41

10

15

20

25

30

WO 03/069510 PCT/US03/04685

concerns an unnamed document, such as the result of an embedded QUERY, an index
attribute is added and its value indicates the document’s sequence number among others in
the set. Figure 27 shows an example of a RESPONSE with results of a similarity search
containing scores for three documents, where document's score is based on comparing its
values with the search terms, a unique name identifies the document, and a search schema
used in the command.

Turning now to Figure 28, Figure 28 depicts the format of a DOCUMENT command.
The DOCUMENT command enables the application to manage document sets involved in
the search. The DOCUMENT command includes operations for managing the document set
used in the search. The “list” operation returns a childless <DOCUMENT> element for each
document in the set. The “read” operation retrieves documents from the datasource according
to the mapping defined in the schema. The “lock” and “unlock” operations provide a simple
locking protocol to prevent conflicting updates in case several DOCUMENT operations are
attempted at once by different clients. The operation attribute returns as “locked” or “denied”
to indicate the success of the operation. When “*” is specified instead of the document name,
the “read” operation returns all documents. Likewise, the “*” tells the “delete”, “lock”,
“unloék’;, and “index” operations to affect all documents in the set. Currently, the “list”
operation requires name="*" and returns only the first 100 documents. Search documents
need an identifier to serve as the primary key. The document name can be anything as long as
it is unique within the set. Where documents are drawn from relational datasources, it is
customary to use the primary key for the root table as the document name. Figure 29 depicts
an example of a search document representative of the search document depicted in Figure 11
above. To carry out a search of this document, the structure would be populated with the
values used in the search to form the anchor document. The same structure is used to return
the results of a search, including the documents found to be similar to the search criteria, in
addition to the scores indicating the degree of similarity for each document.

Turning now to Figure 30, Figure 30 depicts a format of a STATISTICS command
definition template, where bold italic represents optional sections. The Statistics Processing
Module (SPM), discussed above in regard to Figure 5 uses this definition template. Figure 31
is an example of a simple STATISTICS definition. The FROM clause identifies a document
Schema and the SELECT clause identifies a last, first and middle name of a claimant. Figure
32 depicts a SCHEMA response to a STATISTICS generation command.

42

10

15

20

25

30

WO 03/069510 PCT/US03/04685

Turning now to Figure 33, Figure 33 depicts the format of a BATCH command.
BATCH commands provide a way to collect the results of several related operations into a
single XML element. Each command in the batch is executed in sequence.

There are additional commands that are used for administrative and maintenance
purposes. The DATASOURCE command is used for identifying and maintaining datasources
in the Relational Database Management System (RDMS). The MEASURE command is used
for creating and maintaining the measures for determining document attribute and token
similarity scores stored in the RDMS as User Defined Functions (UDFs). The CHOICE
command is used for creating and maintaining aggregation (roll-up) algorithms stored in the
RDMS and used by the Search Manager for determining overall document similarity' scores.

Turning now to Figure 34, Figure 34 depicts the overall process of setting up a
schema. Prior to beginning this process, a target database must be imported into the
Relational Database Management System associated with the SSE Server, as shown in Figure
1. In addition, the user must have knowledge of the structure of the data within the imported
database. The structure knowledge is required for the user to set up a schema. With reference
to Figure 1, the VDM synthesizes XML documents from relational data, and the SM
synthesizes r@lational data from XML documents. Referring to Figure 34, a schema must be
established 3400 by the Client sending 3410 and the Gateway receiving 3420 a command.
The command is transmitted to the SSE Server from the Client using sockets, HTTP or JMS
protocol. The command is converted to XCL by the Gateway and it is determined if it is a
SCHEMA command. Figure 35 depicts an example of a SCHEMA command based on the
format shown in Figure 12. Turning back to Figure 34, after a client issues a Schema
command 3410 and the command is received by the Gateway 3420, the Gateway determines
that the command is a Schema command 3430. Since this is a SCHEMA command, the
Gateway sends the SCHEMA command to the VDM 3440. When the Schema command is
received by the VDM 3450, the VDM builds relational tables and primary key tables based
on the Schema command attributes 3460. These tables are then stored for future use 3470.

Turning now to Figure 36, Figures 36A, 36B, and 36C depicts the overall process of
executing a SSE search. After one or more schemas have been defined, the SSE is ready to
accept a QUERY command. A typical QUERY command based on the format shown in
Figure 19 might resemble the example QUERY command shown in Figure 37. Turning now
to Figure 36A, when a client issues a QUERY command 3602 that is received by the
Gateway 3604, it is determined if there is a WHERE clause in the command 3608. If there

were no WHERE clause in a QUERY command 3608, the command would be examined to

43

10

15

20

25

30

WO 03/069510 PCT/US03/04685

determine if there was a SELECT clause in the QUERY command 3612. If there were no
SELECT clause 3612, RESULT would be returned to the client 3616. If there werea
SELECT clause in the Query command 3612, indicating a selection of the structure for the
result set to be produced by the QUERY command, the QUERY command would be sent to
the VDM 3614. Upon receipt of the QUERY command by the VDM, the VDM extracts the
SELECTed values from the RDMS 3618 and includes the SELECTed values in a RESULT
set 3620, which is returned to the client 3616. If there were a WHERE clause in a QUERY
command 3608, the QUERY command would be sent to the SM 3610.

Turning now to Figure 36B, the QUERY command is received at the SM 3630. It is
then determined if the QUERY command is a side-by-side comparison 3632. If it is a side-
by-side comparison 3632, a recursive process for scoring nested elements is initiated. If it is
not a side-by-side comparison 3632, it is determined if the target is a valid schema 3634. If it
is not a valid schema 3634, an error condition is returned to the client as a RESULT 3646.
Otherwise, the process moves to a determination of a REPEATING GROUP query 3660 in
Figure 36C. The recursive process for scoring nested elements that is entered if the Query
requires a side-by-side comparison 3632 comprises determining if a root element of a
document has been scored 3636. If it has, RESULT is returned to the client 3638, otherwise it
is determined if the element has unscored children 3640. If the root element has unscored
children 3640, the next unscored child type is examined 3644 and it is determined if this
element has unscored children 3640. If this element does not have unscored children 3640,
MEASURE and CHOICE are applied to this element type 3642, and the next unscored child
type is examined 3644. This process continues until the root element of the document has
been scored 3636 and RESULT returned to the client.

Turning now to Figure 36C, if a target is a valid schema 3634 from Figure 36B, a
determination is made of whether the QUERY is a REPEATING GROUP query 3660. If it is
a REPEATING GROUP query 3660, a score and primary key is determined for every record
in the underlying dataset. If it is not a REPEATING DATASET 3660, the process continues
by beginning a SQL statement with primary key 3662, building a UDF call for every attribute
and measure 3664, building FROM/JOIN clauses for all tables used 3666, building WHERE
clauses for any restrictive measure used 3668, and executing the SQL statement 3670. Next,
for every record in the SQL result set, overall score for records using weights in
SEMANTICS is calculated 36384, dismissing a record 3690 if the score does not meet ’
restriction 3686, and appending score/pkey to results 3688 if the score does meet restriction

3686. The pkeys and scores replace FROM clause 3682 and control is returned to the

44

10

15

20

WO 03/069510 PCT/US03/04685

Gateway to determine if there is a SELECT clause 3612, and processed as described above in
Figure 36A. If the QUERY is a REPEATING GROUP query 3660, a score and primary key
is determined for every record in the underlying dataset. This process comprises retrieving an
XML document from the VDM 3672 and performing a side-by-side scoring 3674 using the
recursive process for scoring nested elements describe above including steps 3636, 3638,
3640, 3642 and 3644. A record is dismissed 3678 if the score does not meet restriction 3676,
and appending score/pkey to results 3680 if the score does meet restriction 3666. The pkeys
and scores replace FROM clause 3682 and control is returned to the Gateway to determine if
there is a SELECT clause 3612, and processed as described above in Figure 36A.

An SQL command from the example SCHEMA and QUERY commands shown
above may be as follows:
SELECT PKEY STRDIFF(PERSONS.FIRST.“JOE”), STRDIFF(PERSON.LAST.SMITH)

Turning now to Figure 38, Figure 38 depicts an example data table in the RDMS and
associated RESULT from the example SQL command above. Figure 39 depicts the result of
the Query command described above that would be returned to the client as a RESULT
within a RESPONSE. This RESPONSE corresponds to the results illustrated in Figure 38.

Although the present invention has been described in detail with reference to certain
preferred embodiments, it should be apparent that modifications and adaptations to those
embodiments might occur to persons skilled in the art without departing from the spirit and

scope of the present invention.

45

10

15

20

25

30

WO 03/069510 PCT/US03/04685

What is claimed is:

1. A method for performing similarity searching, comprising the steps of:
receiving a request instruction from a client for initiating a similarity search;
generating one or more query commands from the request instruction, each query
command designating an anchor document and at least one search document;
executing each query command, including:
computing a normalized document similarity score having a value of between
0.00 and 1.00 for each search document in each query command for
indicating a degree of similarity between the anchor document and each
search document;
creating a result dataset containing the computed normalized document
similarity scores for each search document; and

sending a response including the result dataset to the client.

2. The method of claim 1, wherein the step of generating one or more query commands
further comprises identifying a schema document for defining structure of search terms,
mapping of datasets providing target search values to relational database locations, and

designating measures, choices and weight to be used in a similarity search.

3. The method of claim 1, wherein the step of computing a normalized document similarity
score comprises:
computing attribute token similarity scores having values of between 0.00-and 1.00-- -
for the corresponding leaf nodes of the anchor document and a search document
using designated measure algorithms;
multiplying each token similarity score by a designated weighting factor;
aggregating the token similarity scores using designated choice algorithms for
determining a document similarity score having a value of between 0.00 and 1.00

for the search document.
4. The method of claim 3, wherein:

the step of computing attribute token similarity scores further comprises computing

attribute token similarity scores in a relational database management system;

46

10

15

20

25

30

WO 03/069510 PCT/US03/04685

the step of multiplying each token similarity score further comprises multiplying each
token similarity score in a similarity search engine; and
the step of aggregating the token similarity scores further comprises aggregating the

token similarity scores in the similarity search engine.

5. The method of claim 1, wherein the step of generating one or more query commands
comprises:
populating an anchor document with search criteria values;
identifying documents to be searched,;
defining semantics for overriding parameters specified in an associated schema
document;
defining a structure to be used by the result dataset; and

imposing restrictions on the result dataset.

6. The method of claim 5, wherein the step of defining semantics comprises:
designating overriding measures for determining attribute token similarity scores;
designating overriding choice algorithms for aggregating token similarity scores into
document similarity scores; and

designating overriding weights to be applied to token similarity scores.

7. The method of claim 5, wherein the step of imposing restrictions is selected from the
group consisting of defining a range of similarity indicia scores to be selected and defining

percentiles of similarity indicia scores to be selected.

8. The method of claim 1, wherein the step of computing a normalized document similarity
score further comprises computing a normalized document similarity score having a value of
between 0.00 and 1.00, whereby a normalized similarity indicia value of 0.00 represents no

similarity matching, a value of 1.00 represents exact similarity matching, and values between

0.00 and 1.00 represent degrees of similarity matching.
9. The method of claim 3, wherein the step of computing attribute token similarity scores

having values of between 0.00 and 1.00 further comprises computing attribute token

similarity scores having values of between 0.00 and 1.00, whereby a attribute token similarity

47

10

15

20

25

30

WO 03/069510 PCT/US03/04685

value of 0.00 represents no similarity matching, a value of 1.00 represents exact similarity

matching, and values between 0.00 and 1.00 represent degrees of similarity matching.

10. The method of claim 1, wherein the step of generating one or more query commands
further comprises generating one or more query commands whereby each query command
includes attributes of command operation, name identification, and associated schema

document identification.

11. The method of claim 1, further comprising:

receiving a schema instruction from a client;

generating a schema command document comprising the steps of:
defining a structure of target search terms in one or more search documents;
creating a mapping of database record locations to the target search terms;
listing semantic elements for defining measures, weights and choices to be

used in
similarity searches; and

storing the schema command document into a database management system.

12. The method of claim 1, further comprising the step of representing documents and

commands as hierarchical XML documents.

13. The method of claim 1, wherein the step of sending a response to the client further
comprises sending a response including-an error message and a warning message to the

client.

14. The method of claim 1, wherein the step of sending a response to the client further
comprises sending a response to the client containing the result datasets, whereby each result
dataset includes at least one normalized document similarity score, at least one search

document name, a path to the search documents having a returned score, and at least one

designated schema.

15. The method of claim 1, further comprising:

receiving a statistics instruction from a client;

48

10

15

20

25

30

WO 03/069510 PCT/US03/04685

generating a statistics command from the statistics instruction, comprising the steps
of:
identifying a statistics definition to be used for generating statistics;
populating an anchor document with search criteria values;
identifying documents to be searched,
delineating semantics for overriding measures, parsers and choices defined in
a semantics clause in an associated schema document;
defining a structure to be used by a result dataset;
imposing restrictions to be applied to the result dataset;
identifying a schema to be used for the basis of generating statistics;
designating a name for the target statistics table for storing results;
executing the statistics command for generating a statistics schema with statistics
table, mappings and measures; and

storing the statistics schema in a database management system.

16. The method of claim 1, further comprising the step of executing a batch command
comprising executing a plurality of commands in sequence for collecting results of several

related operations.

17. The method of claim 3, further comprising selecting measure algorithms from the group
consisting of name equivalents, foreign name equivalents, textual, sound coding, string
difference, numeric, numbered difference, ranges, numeric combinations, range

combinations, fuzzy, date oriented, date to range, date-difference, and date combination.

18. The method of claim 3, further comprising selecting choice algorithms from the group
consisting of single best, greedy sum, overall sum, greedy minimum, overall minimum, and

overall maximum.

19. A computer-readable medium containing instructions for controlling a computer system

to implement the method of claim 1.

20. A system for performing similarity searching, comprising:
a gateway for receiving a request instruction from a client for initiating a similarity

search;

49

10

15

20

25

30

WO 03/069510 PCT/US03/04685

the gateway for generating one or more query commands from the request instruction,
each query command designating an anchor document and at least one search
document;
a search manager for executing each query command, including:
means for computing a normalized document similarity score having a value
of between 0.00 and 1.00 for each search document in each query
command for indicating a degree of similarity between the anchor
document and each search document;
means for creating a result dataset containing the computed normalized
document similarity scores for each search document; and

the gateway for sending a response including the result dataset to the client.

21. The system of claim 20, wherein the means for computing a normalized similarity score
comprises:

a relational database management system for computing attribute token similarity
scores having values of between 0.00 and 1.00 for the corresponding leaf nodes
of the anchor document and a search document using designated measure
algorithms; and

the search manager for multiplying each token similarity score by a designated
weighting factor and aggregating the token similarity scores using designated
choice algorithms for determining a document similarity score having a value of
between 0.00 and 1.00 for the search document.

22. The system of claim 20, wherein:

each one or more query commands further comprises a measure designation; and

the database management system further comprises designated measure algorithms

for computing a token similarity score.

23. The system of claim 20, wherein each query command comprises:
an anchor document populated with search criteria values;
at least one search document;
designated measure algorithms for determining token similarity scores;
designated choice algorithms for aggregating token similarity scores into document

similarity scores;

50

10

15

20

25

30

WO 03/069510 PCT/US03/04685

designated weights for weighting token similarity scores;
restrictions to be applied to a result dataset document; and

a structure to be used by the result dataset.

24. The system of claim 20, wherein the computed document similarity scores have a value
of between 0.00 and 1.00, whereby a normalized similarity indicia value of 0.00 represents no
similarity matching, a value of 1.00 represents exact similarity matching, and values between

0.00 and 1.00 represent degrees of similarity matching.

25. The system of claim 21, wherein the relational database management system includes
means for computing an attribute token similarity score having a value of between 0.00 and
1.00, whereby a token similarity indicia value of 0.00 represents no similarity matching, a
value of 1.00 represents exact similarity matching, and values between 0.00 and 1.00

represent degrees of similarity matching.

26. The system of claim 20, wherein each query command includes attributes of command
operation, name identification, and associated schema document identification for providing a

mapping of search documents to database management system locations.

27. The system of claim 20, further comprising:

the gateway for receiving a schema instruction from a client;

a virtual document manager for generating a schema command document;

the schema command document comprising:
a structure of target search terms in one or more search documents;
a mapping of database record locations to the target search terms;
semantic elements for defining measures, weights, and choices for use in

searches; and

a relational database management system for storing the schema command document.
28. The system of claim 20, wherein each result dataset includes at least one normalized

document similarity score, at least one search document name, a path to the search documents

having a returned score and at least one designated schema.

51

10

15

20

25

30

WO 03/069510 PCT/US03/04685

29. The system of claim 20, wherein each result dataset includes an error message and a

warning message to the client.

30. The system of claim 20, further comprising:

the gateway for receiving a statistics instruction from a client and for generating a
statistics command from the statistics instruction;

the search manager for identifying a statistics definition to be used for generating
statistics, populating an anchor document with search criteria values, identifying
documents to be searched, delineating semantics for overriding measures, weights
and choices defined in a semantics clause in an associated schema document,
defining a structure to be used by a result dataset, imposing restrictions to be
applied to the result dataset, identifying a schema to be used for the basis of
generating statistics, designating a name for the target statistics table for storing
results; and

a statistics processing module for executing the statistics command for generating a
statistics schema with statistics table, mappings and measures, and storing the

statistics schema in a database management system.

31. The system of claim 20, further comprising the gateway for receiving a batch command
from a client for executing a plurality of commands in sequence for collecting results of

several related operations.

32. The system of claim 21, wherein the measure algorithms are selected-from-the group
consisting of name equivalents, foreign name equivalents, textual, sound coding, string
difference, numeric, numbered difference, ranges, numeric combinations, range

combinations, fuzzy, date oriented, date to range, date difference, and date combination.

33. The system of claim 21, wherein the choice algorithms are selected from the group
consisting of single best, greedy sum, overall sum, greedy minimum, overall minimum, and

overall maximum.

34. A system for performing similarity searching, comprising:
a gateway for handling all communication between a client, a virtual document

manager and a search manager;

52

10

15

20

25

30

WO 03/069510 PCT/US03/04685

the virtual document manager connected between the gateway and a relational
database manégement system for providing document management;

the search manager connected between the gateway and the relational database
management system for searching and scoring documents; and

the relational database management system for providing relational data management,

document and measure persistence, and similarity measure execution.

35. The system of claim 34, wherein the virtual document manager includes a relational

database driver for mapping XML documents to relational database tables.

36. The system of claim 34, wherein the virtual document manager includes a statistics

processing module for generating statistics based on similarity search results.

37. The system of claim 34, wherein the relational database management system includes

means for storing and executing user defined functions.

38. The system of claim 37, wherein the user defined functions include measurement

algorithms for determining attribute token similarity scores.

39. A method for performing similarity searching, comprising the steps of:
creating a search schema document by a virtual document manager;
generating one or more query commands by a gateway;
executing one or more query commands in a search manager and relational database
management system for determining the degree of similarity between an anchor
document and search documents; and
assembling a result document containing document similarity scores of between 0.00

and 1.00.

40. The method of claim 39, wherein the step of creating a schema document comprises
designating a structure of search documents, datasets for mapping search document attributes
to relational database locations, and semantics identifying measures for computing token
attribute similarity search scores between search documents and an anchor document, weights

for modulating token attribute similarity search scores, choices for aggregating token attribute

53

10

15

20

25

30

WO 03/069510 PCT/US03/04685

similarity search scores into document similarity search scores, and paths to the search

document structure attributes.

41. The method of claim 39, wherein the step of generating one or more query commands
comprises designating an anchor document, search or schema documents, restrictions on
result sets, structure of result sets, and semantics for overriding schema document semantics

including measures, weights, choices and paths.

42. The method of claim 39, wherein the step of executing one or more query commands
comprises:
computing token attribute similarity search scores having values of between 0.00 and
1.00 for each search document and an anchor document in a relational database
management system using measures; and [
modulating the token attribute similarity search scores using weights and aggregating
the token attribute similarity scores into document similarity scores having values

of between 0.00 and 1.00 in the search manager using choices.

43. The method of claim 39, wherein the step of assembling a result document comprises
identifying associated query commands and schema documents, document structure, paths to

search terms, and similarity scores by the search manager.

44. The method of claim 39, wherein the search schema, the query commands, the search
documents, the anchor document and the result document are represented by hierarchical

XML documents.

45. The method of claim 40, further comprising selecting measure algorithms from the group
consisting of name equivalents, foreign name equivalents, textual, sound coding, string
difference, numeric, numbered difference, ranges, numeric combinations, range

combinations, fuzzy, date oriented, date to range, date difference, and date combination.
46. The method of claim 40, further comprising selecting choice algorithms from the group

consisting of single best, greedy sum, overall sum, greedy minimum, overall minimum, and

overall maximum.

54

WO 03/069510 PCT/US03/04685

47. A computer-readable medium containing instructions for controlling a computer system

to implement the method of claim 39.

55

WO 03/069510

150 150
\ CLIENT 1 K CLIENT 2

00 160

PCT/US03/04685

1/30

150 150
KCUENT N-1 k CLIENT N

CLIENT
NETWORK

VIRTUAL DOCUMENT
MANAGER (VDM)
" "RELATIONAL DATABASE |
DRIVER (RDD)

(SM)

" STATISTICS PROCESSING j5
MODULE (SPM)

|
|
l
|
|
SEARCH MANAGER |
|
|
|
|

RELATIONAL DATABASE
MANAGEMENT SYSTEM

(RDMS)) 145

~—

-
——

FUNCTIONS (UDFs)

FIG. 1

WO 03/069510 PCT/US03/04685
2/30

210 220

<claim> J /240

<claimant> > Claimant
<name/> P
250

</claimant>

Datasets NG

<witness>

<name/> } B —— :
) ¢ Withess
</witness>

</claim> /

230 RDMS

FIG. 2

<RESULT>
<DOCUMENT id="1">
<Claim>
<Witness>
<City>Jamestown</City>
</Witness>
<Witness>
<City>Alta</City>
</Witness>
<Witness>
<City>Antietam Creek</City>
</Witness>
</Claim>
</DOCUMENT>
- <RESULT>

FIG. 3

<RESULT>
<DOCUMENT schema="Sample” name="1" score="1.0"/>
<DOCUMENT schema="Sample” name="3" score="0.82"/>

</RESULT>
FIG. 4

WO 03/069510

o
o

3/30

Identify the Statistics Definition

l

ldentify Schema for Basis of
Statistics

l

Issue SQL Statement to Extract
Statistical Information

l

If not Present, Create Table to
Store Query Results

l

Populate the Table with Query
Results

l

Generate a Schema with
Mapping and Measures

l

Add Schema to Server so
Statistics Table Becomes
Searchable

FIG. 5A

510

520

530

540

550

560

570

PCT/US03/04685

WO 03/069510
4/30

(@)
(o]
N

> Search Manager (SM)

570

560

Statistics

PCT/US03/04685

510

Statistic
Definition

Schema

Statistics Generate
CommandHandler

540, 550

N

Statistics Table Search Table

Relational Database

FIG. 5B

K Management Systeri//’/

_/
520

Search
Schema

530

WO 03/069510

PCT/US03/04685
5/30

“MEASURE”
// METHOD

DESCRIPTION

“looks like”

// string_diff()

A strongly left-to-right biased general string comparison function

that returns a score of from 0.0 to 1.0.

“gspelled like”
// CompareEditDistance()

A non-biased general string comparison function that returns a score
of from 0.0 to 1.0.

“sounds_like”

// CompareSoundex()

Finds and groups family names that are variations on a root name

spelling.

“exact” Exact, but case-sensitive comparison with boolean-style return.

// CompareExact()

“near” A smart, lexical comparison of strings known to contain digits,

// CompareDigitStrings() which compensates for typographical errors by using weighting.
“numeric” A numeric comparison of strings known to contain all digits,

// CompareNumeric()

returning a fractional score value.

“date” Provides a “proximity comparison of dates that returns a score of

/! CompareDate() from 0.0 to 1.0.

“time” Provides a “proximity” comparison for times for a range of interest
// CompareTime() of less than two hours.

“name” Provides a tokenized comparison specifically for personal names.

// CompareNames() Last name is weighted most heavily, then first, then middle.
“telephone” Provides a tokenized comparison specifically for telephone numbers.

// ComparePhoneNumbers()

Area code and exchange are weighted most heavily.

“state”

// CompareStates()

Provides a smart comparison for U.S. states. Checks standard state

abbreviations and maps them to their full name.

“street_address”
// CompareStreetAddress()

Provides a tokenized comparison specifically for street addresses.

Street name weighted most heavily, then number, apartment, type.

“email” Provides tokenized comparison specifically for email addresses.
// CompareEmail() Name weighted most heavily, then extra, domain, high domain.
“url” Provides a tokenized comparison specifically for URL addresses.
// CompareURL() Domain weighted most heavily, then extra, high domain, www.

FIG. 6A

WO 03/069510

PCT/US03/04685
6/30

“MEASURE” DESCRIPTION
// METHOD
“ip_address” Provides a tokenized comparison specifically for IP addresses.
// CompareDottedIP() Groupl weighted most heavily, then group2, group3, group4.
“vin” Provides a tokenized comparison for Vehicle ID Numbers. Group4
/I CompareVIN() weighted most heavily, then group1, group2, group3.
“vehicle_tag” Provides a simple comparison for Vehicle Tags.
Y CompareVehicleTag()
“federal_id number” Provides a simple comparison for Federal ID Numbers.
// CompareFIN()
“credit_card” Provides a simple comparison for Credit Card Numbers.
// CompareCreditCard()
“drivers_license” Provides a simple comparison for Drivers License Numbers.
// CompareDLnumber()
“ssn” Provides a tokenized comparison for Social Security numbers.
{// CompareSSN()
“less_than” Provides a boolean-type comparison for any two strings. The strings
/I CompareLessThan() may be compared numerically or lexically.

“less_than_equal”

1l CpmpareLessThanEqual()

Provides a boolean-type comparison for two strings. The strings may

be compared numerically or lexically.

“greater than”

// CompareGreaterThan()

Provides a boolean-type comparison for two strings. The strings may

be compared numerically or lexically.

“greater than_equal”
// CompareGreaterThanEqual()

Provides a boolean-type comparison for two strings. The strings may

be compared numerically or lexically.

“metaphone” Provides groupings of differently, yet correctly spelled names. May
// CompareMetaphone() be used to provide phonetic comparisons.

“phonex” Provides phonetic comparisons.

// ComparePhonex()

“contains” Provides a boolean-type test for sub-string inclusion.

// ContainsString()

FIG. 6B

WO 03/069510 PCT/US03/04685
7/30
“MEASURE” DESCRIPTION
// METHOD
“starts_with” Provides a boolean-type test for sub-string inclusion.
// BeginsWith()
“ends with” Provides a boolean-type test for sub-string inclusion.
// EndsWith()
“pattern” Provides a boolean-type test for sub-string inclusion.
// ContainsPattern() ’
FIG. 6C
<RESPONSE>
<RESULT>
the contents of get/setResult (if any)
</RESULT>
<ERROR>
the contents of get/setError (if any)
</ERROR>
<WARNING>
the contents of get/setWarning (if any)
</WARNING>
</RESPONSE>
FIG. 8
<command op="operation">
clauses
</command>
where command is a command name:
DOCUMENT
SCHEMA
DATATYPE
DATASOURCE
QUERY
MEASURE
CHOICE
USER
operation is the operation to be performed
clauses are the clauses defined for the command

FIG. 10

PCT/US03/04685

WO 03/069510

8/30

L9l

0gL
N

siebeuepownay —_
! —
« sioydenisiu| B
—
e | —— | JSlpueHpuEwWWO) 9SUOdSa-PUBLILIOD Sloidenow }/
crL s10}03UU0D T
T Ja|puBHpUBLILLIOD TN
(472
\\\\II Ig|pueHpuewwod
YA jusuodwo) T
1 JsjpueHpuewwWo) /
v o] newodued |
Aiojoejpuewiwio)d 2/ _ jusuodwod I!/
ov. K \ Jayojedsjgpuewwon Jusuodwod T
0.2 \\ labeueppuauodwo)
0cL 0sL
10JN09XIIpUBLILLIOY) JOAISGpUBLLIOYD
004

o
©
N~

12572

47
474
472

47

01.

WO 03/069510 PCT/US03/04685
9/30

910

Formulate an XCL Command, %
CommandResponse Object
and call CommandExecutor

Interface

Y

CommandExecutor calls a 920
CommandHandlerFactory with —
a Raw XCL Command String

v

Parse XCL Command String, 930
Find Same Signature)
Registered CommandHandler,
Clone CommandHandler

v

Give Cloned CommandHandler 940
a Reference and)

CommandResponse Object
Provided Above

v

CommadnHandler placedin | __/
CommandDispatcher Queue

v

When Ready,
CommandDispatcher grabs -
THread from Queue

CommandDispatcher Calls

CommandHandler Run() 7
Method

v

CommandHandler Executesto| __/
Satisfy XCL Command

v

CommandHandler Places 990
Value in SetResult(), Loads)
CommandResponse Object

SetValue() and Returns to

Caller

©
o
o

950

960

970

980

FIG. 9A

PCT/US03/04685

WO 03/069510

10/30

~

g6 '9Old $59901d
J9[pueH puewwon
P, \\owm
» l
Y
slobeuepBwinei
. si0)dsosey|
-~]
sl0)deoo
JB|pUBHPUBWIWOD 0.6 , v
SJ0Jo8aUU0YH
J9|pUBHpUBLIWOD
$5900Yd -
J3|pUBHPURWIWOD Jayojedsid puewiwo)
, Jusuodwon
J9|pueHpuBILIOD c ,
096 " jueuodwod
|
0c6 0c6 JouoIEds|JPUBWILIOD Jusuodwod
N
0G6 ~ +
1abeuepjusuodwo)
$59901d
10INJ8XT puBIWOD
06
asuodseypuewiuio)
J0JNo9XpUBLLLLIOD JaAIOSpUBLLLIOYD
A

\\\H%cmx

0L6

asuodsay puewiwo)
+ pUBIWOD

AN
o
)|

PCT/US03/04685

WO 03/069510

11/30

|
|
|
|
|
|
1
|
|
|
|
|
1
1
!
|
|
]
l
l
i
|
|
]
I
|
|
|
!
]
|
|
|
|
|
i
|

<3onpoxd/>
<JISW/>66 * 6 LT<IISI>

<IOPUSA/ >UWOD * SWOY KTOPUSA>

kL "Old

0sLL

A\H@Hﬂ#OM%SCMEV
JaAlQ
<ToPOW/> .
/ burddowy
<oweN/>0Ad Todng<suweN>
/ SWeQy

<I=qUnN/>000 TI<ISUuIN>

<TePor>

<odA1/>39heTd and<edAg>

0oLl \

Juawnooq yodoag

TWX [PR4JIA

U R U U S ————

<1onpoId>

WAQA

oclLi

2§QL/2§T0 oA padnidpd
2.4p 53|qp} |pUOILD|2 Ulodf S2I1[DA

«QIOMSS V>
AWYNY3ASN>
<RI
QINTIQ
43S vjoQ :

<QUIOMSSVYd>
<AWVYNIISN>
<IN
<”AIAINQ>

4eg pjoQqQ '

\ov_‘_\

0zl /

geeel | 2R | giopy
and
o84ar
1ake
Jo 66'6.¢C- a >mn. 000LY
28q0 d4sSi adA]L [oPOIN
old
28QrL | aAagtedng olLoLY
Jo | @aqiedng 000LY
28Q0 | sweN jopopy | JoquinN~|opol

SWgqQ |puolip|ay \

PaY24pas 2q of JuauinIop TWX
JonydiA 2y ur s220)d buipuodsa..iod

JI3Yy 04 paddow a.4p sanjoA aspgpiDJ

OLLL

WO 03/069510

where:

12/30

<SCHEMA op="operation” schema ="schema” lock="status”>

<STRUCTURE>
Structure
</STRUCTURE>
<MAPPING>
datasets
</MAPPING>
<SEMANTICS>
<APPLY>
<PATH>xpath</PATH>
semantics
</APPLY>
</SEMANTICS>

</SCHEMA>

operation is one of the following operations:
list lists first 100 schemas in repository
read reads the schema from repository
write writes schema to repository

delete removes schema from repository

lock locks the schema
unlock unlocks the schema

schema is the name of the search schema

status

datasets

xpath

semantics

return to indicate status of lock request
granted lock successful

PCT/US03/04685

denied lock failed, schema already locked
structure is the XML structure of the search terms

is the hierarchy of datasets providing target values

is the XML path leading to an element in the structure

above :

is a list of elements defining measures, parsers, or choices

to be used in searches of values for the specified element

FIG. 12

<RESPONSE>

<RESULT>
<SCHEMA op="read" name="1"/>
<SCHEMA op="read" name="2"/>
<SCHEMA op="read" name="3"/>
</RESULT>

</RESPONSE>

FIG. 13

WO 03/069510

<STRUCTURE>
<parent >
<child/>
</parent>
</STRUCTURE>

where: parent
child

<STRUCTURE>
<Product>

<Type/>
<Model>

13/30

is the XML tag for parent element
is the XML tag for child element

FIG. 14

<Name/>
<Number/>

</Model>
<MSRP/>

<Manufacturer/>

<Vendor/>

</Product>
</STRUCTURE>

FIG. 15

PCT/US03/04685

WO 03/069510 PCT/US03/04685
14/30

<MAPPING implementation="Acme Software:mapping:relational”>
<DATASET datasource="datasource”>
<EXPRESSION type="table”/>
<PATH>xpath</PATH>
<BIND>
<FIELD>
<NAME>pkey</NAME>
<TYPE>dbtype</TYPE>
</FIELD>
<MASTER> :
<NAME>fkey</NAME>
<TYPE>dbtype</TYPE>
</MASTER>
<DETAIL>
<NAME>pkey</NAME>
<TYPE>dbtype</TYPE>
</DETAIL>
</BIND>
<FIELD>
<PATH>xpath</PATH>

<NAME>dbfield</NAME>
<TYPE>dbtype</TYPE>

</FIELD>
</DATASET>
</MAPPING>

where: datasource is the name of the datasource providing data to be mapped
xpath is the XML path of the element to which this table is mapped
pkey is the database field serving as the primary key for the import
dbtype is the database data type for the associated field
Jfkey is the foreign key used for join to primary key of parent table, if
any
dbfield is a database field mapped to elements in the xpath for the table

FIG. 16

WO 03/069510 PCT/US03/04685
15/30

<MAPPING>
<DATASET datasource="ProductDBConnInfo">
<EXPRESSION type="table">Product</EXPRESSION>
<PATH>Product</PATH>
<BIND>
<DETAIL>
<NAME>Man_Model Number</NAME>
<TYPE>Text</TYPE>
</DETAIL>
</BIND>
<FIELD pkey="true">
<NAME>Man_Model Number</NAME>
<TYPE>Text</TYPE>
<PATH>Product/Model/Number</PATH>
</FIELD>
<FIELD>
<NAME>Type</NAME>
<TYPE>Text</TYPE>
<PATH>Product/Type</PATH>
</FIELD>
<FIELD>
<NAME>MSRP</NAME>
<TYPE>Decimal</TYPE>
<PATH>Product/MSRP</PATH>
</FIELD>
<FIELD>
<NAME>Created On</NAME>
<TYPE>Date</TYPE>
<PATH>Product/@created_on</PATH>
</FIELD>

<DATASET>
<EXPRESSION type="table">Model</EXPRESSION>
<PATH>Product/Vendor</PATH>
<BIND>
<DETAIL>
- - - <NAME>Ven Model Number</NAME>
<TYPE>Text</TYPE>
</DETAIL>
<MASTER>
<NAME>Man Model Number</NAME>
<TYPE>Text</TYPE>
</MASTER>
</BIND>
<FIELD pkey="true">
<NAME>Ven Model Number</NAME>
<TYPE>Text</TYPE>
<PATH>Product/Vendor/Number</PATH>
</FIELD>
<FIELD>
<NAME>Name</NAME>
<TYPE>String</TYPE>
<PATH>Product/Vendor/Name</PATH>
</FIELD>
</DATASET>
</DATASET>
<MAPPING> FIG. 17

WO 03/069510

where:

where:

PCT/US03/04685
16/30
<SEMANTICS>
<APPLY>
<PATH>
xpath
</PATH>
<MEASURE name="measure”>
measure
</MEASURE>
<CHOICE name="choice”>
choice
</CHOICE>
<WEIGHT>
weight
</WEIGHT>
</APPLY>
</SEMANTICS>
xpath XML path for this element
measure name of similarity measure being applied
choice selection of pairing methods: must be “global_greedy”
weight relative weight for element (scale -1.00 to 1.00)
FIG. 18
<QUERY op="operation”>
<WHERE>
anchor
</WHERE>
<FROM>
documents
</FROM>
<RESTRICT>
restrictions
</RESTRICT>
<SELECT score="boolean”> .
structure
</SELECT>
<SEMANTICS>
semantics
</SEMANTICS>
</QUERY>
operation is “execute’ to run a query
anchor is an XML document structure populated with search terms
documents are DOCUMENT-clause(s) indicating documents to be searched
structure is the STRUCTURE-clause for the result set produced by the query
boolean is used to request similarity scoring in <SELECT> clause
true return similarity scores for selected elements
false return structure only, no scores
restrictions gives one or more ways of culling result set (in order listed)
by <SCORE> : <START>/<END> define range of scores
by <PERCENT>: <START>/<END> define percentiles of scores
semantics one or more properties as defined for SCHEMA command

FIG. 20

PCT/US03/04685

WO 03/069510

17/30

11461 /

—

Ga6l

0v6l .jmmme j

61 "Old

—

0s61

NANIXYIN TTVHINO
WNWININ TIVH3A0
WNNWININ AQ33HO
WNS TTVdJ34A0

NNS AQF3EO

1539 JTONIS

(9 @inbi4 ui 1s)| 88G)

Jle
NOILYNIGNOO 3Lvd
JONIY344IQ ILva
IONVY OL 31vAa
d4.1N3-"Oo 3Lva
AZZN4
NOILYNIFINOD FONVY
NOILYNIGINOD DI¥INWNN
SIAONVY
JONIYI4HId aIYIGANN
JIY3ANNN
JONIHI4HIA ONIYLS
ONIQOD ANNOS
IVNLX3L
SINITVAINDI ANVN NOITHOS
SINTTIVYAINDI INVYN

(uoneoo] (sal100g uay oL ($21008 JUBWIN20(] O] SBI03S (seInquyy usy o buloos
aseqeleq ol) 01 peljddy ©q o1) uay o] Bunebsibby 1oy pasn aq o]) Ajuejwg Joj pasn aq o)
osne|n Hivd asne|) 1HOIAM asne|) A0I0HD OSNELO JHNSVAN

“— 026l
asne[D ONIddVIN — asne|) SOILNVINIS 9snel) FHNLONYLS
0cel
/ Gcol gioel \
puewwo) YINIHOS
0L6L e 0061

WO 03/069510 PCT/US03/04685

18/30
<WHERE>
<Product>
<Type>DVD Player</Type>
<Model>
<Number>A1000</Number>
</Model>
<Manufacturer>Acme</Manufacturer>
</Product>
</WHERE>
FIG. 21
<FROM>
<DOCUMENT name="*" schema="acme_products"/>
</FROM>
FIG. 22A
<FROM>
<DOCUMENT schema="acme_products’>
<Product>
<Type>DVD Player</Type>
<Model>
<Number>A1000</Number>
</Model>
<Manufacturer>Acme</Manufacturer>
</Product>
</DOCUMENT>
<DOCUMENT schema="acme_products’>
<Product>
<Type>DVD Pro</Type>
<Model>
<Number>A1100</Number>
</Model>
<Manufacturer>Acme</Manufacturer>
</Product>
</DOCUMENT>
<DOCUMENT schema="acme_products”>
<Product>
<Type>Super DVD</Type>
<Model>
<Number>A1200</Number>
</Model>
<Manufacturer>Acme</Manufacturer>
</Product>
</DOCUMENT>
</FROM>

FIG. 22B

WO 03/069510 PCT/US03/04685

where:

19/30

<RESTRICT>
<SCORE>
<START>score</START>
<END>score</END>
</SCORE>
<INDEX>
<START>sequence</START>
<END>sequence</END>
</INDEX>
</RESTRICT>

score is a similarity score expressed as a number in the range of 0.00 to 1.00
sequence is a document’s place in the result set as expressed by a positive integer

FIG. 23

<RESTRICT>
<SCORE>
<START>1.00</START>
<END>0.80</END>
</SCORE>
<INDEX>
<START>1</START>
<END>3</END>
</INDEX>
</RESTRICT>

FIG. 24

<SELECT score="true">
<Product>
<Type/>
<Model>
<Number/>
<Name/>
</Model>
</Product>
</SELECT>

FIG. 25

WO 03/069510 PCT/US03/04685
20/30

<RESPONSE>
<RESULT>
<QUERY op="operation” name="name” schema="schema’>
<DOCUMENT score=""score”>
<element>value</element>
</DOCUMENT>
<SCORE>
<APPLY>
<PATH>xpath</PATH>
<VALUE>score</VALUE>
</APPLY>
</SCORE>
</QUERY>
</RESULT>
<ERROR>
<DOCUMENT name="name” schema="schema’>
<MESSAGE>text</MESSAGE>
</DOCUMENT>
</ERROR>
<WARNING>
<DOCUMENT name="name” schema="schema”>
<MESSAGE>text</MESSAGE>
</DOCUMENT>
</WARNING>
</RESPONSE>

where: operation is the operation performed
name is the unique name for the document (or “*” for all)
schema is the unique name for the search schema
document is a results document
element is a reflection of the document structure
xpath is the XML path of the search term whose score is returned
score is the similarity score for the element
text is text describing the error or warning

FIG. 26A

WO 03/069510 PCT/US03/04685
21/30

<RESPONSE>
<RESULT>
<DOCUMENT name="name” schema="schema’ score="score”>
<element>value</element>

</DOCUMENT>
</RESULT>
</RESPONSE>
FIG. 26B
<RESPONSE>
<RESULT>
<DETAIL name="name” schema="schema’ score="score”>
<APPLY>
<WHERE>xpath</WHERE>
<FROM>xpath</FROM>
<SCORE>score</SCORE>
</APPLY>
</DETAIL>
</RESULT>
</RESPONSE>
where: name is the unique name for the document
schema is the data model for the search
element is a reflection of the document structure
score is the similarity score for the element or attribute
value " isatarget value
xpath is the element or attribute whose score is shown
FIG. 26C
<RESPONSE>
<RESULT>

<DOCUMENT score="1.00" name="1" schema="acme_products"/>

<DOCUMENT score="0.95" name="2" schema="acme_products"/>

<DOCUMENT score="0.90" name="3" schema="acme_products"/>
</RESULT>

</RESPONSE>
FIG. 27

<DOCUMENT op="operation” name="name” schema="schema”/>

where: operation is one of the following operations:
list lists contents of document directory
read retrieves documents from the repository
lock locks documents
unlock unlocks documents
name is the unique name for the document
schema is the name of a search schema for the document

FIG. 28

WO 03/069510 PCT/US03/04685
22/30

<DOCUMENT name="1" schema=“acme_products”>
<Product>
<Type>DVD Player</Type>
<Model>
<Name>Super DVD</Name>
<Number>A1000</Number>
</Model>
<Model>
<Name>Super Display</Name>
<Number>A1000</Number>
</Model>
<MSRP>199.00</MSRP>
<Manufacturer>Acme</Manufacturer>
</Product>
</DOCUMENT>
<DOCUMENT name="2" schema="“acme_products”>
<Product>
<Type>DVD Player</Type>
<Model>
<Name>DVD Pro</Name>
<Number>A1010</Number>
</Model>
<MSRP>250.00</MSRP>
<Manufacturer>acme.com</Manufacturer>
</Product>
</DOCUMENT>
<DOCUMENT name="3" schema=“acme_products”>
<Product>
<Type>DVD</Type>
<Model>
<Name>DVD Pro</Name>
<Number>A100<Number>
</Model>
<MSRP>200.00</MSRP>
<Manufacturer>Acme.com</Manufacturer>
</Product>
</DOCUMENT>

FIG. 29

WO 03/069510 PCT/US03/04685
23/30

<STATISTIC name="name">
<WHERE>
standard where clause of an SSE query
</WHERE>
<SEMANTICS>
standard semantics clause of an SSE query
</SEMANTICS>
<FROM>
standard from clause of an SSE query
</FROM>
<SELECT>
standard select clause of an SSE query(fields used in stats)
</SELECT>
<RESTRICT>
<COUNT>
<START>minimum value</START>
<END>maximum</END>
</COUNT>
</RESTRICT>
<TARGET>
<TABLE>the tablename of the target stats table</TABLE>
<SCHEMA>the schema name of the target stats schema</SCHEMA>
</TARGET>

</STATISTIC>
FiG. 30

<STATISTIC name="Claimant Names”>
<FROM>
<DOCUMENT schema="CNAMES 1M" name="*"/>
</FROM>
<SELECT>
<CNAMES_ 1M> . . : L.
<NAME_LAST/>
<NAME FIRST/>
<NAME_ MIDDLE/>
</CNAMES_1M>
</SELECT>
</STATISTIC>

FIG. 31

<RESPONSE>
<RESULT>
<SCHEMA name="new stats schema”>
schema contents here
</SCHEMA>
</RESULT>
</RESPONSE>

FIG. 32

WO 03/069510 PCT/US03/04685
24/30

<BATCH op="execute”>
commands
</BATCH>

where: commands are SSE commands listed in the order of execution. These must all be of the same type.

FIG. 33
3400 3410
Client lssues Schema /
Command

l 3420

Command Received by _/
Gateway

-
< Schema Command?

YES
3440
Send Schema Command to /
VDM
T o Ty T 3450 - . -
Receive Schema Command _/
by VDM
Y 3460

Build Relational Tables and ’/
Primary Key Tables Based on
Schema Command Atiributes

l 3470

Store Tables —

FIG. 34

WO 03/069510 PCT/US03/04685
25/30

<SCHEMA name “People>

<STRUCTURE>
<PERSON>
<NAME>
<FIRST>
<MIDDLE>
<LAST>
</NAME>
</PERSON>
</STRUCTURE>
<MAPPING>
<DATASET>
<EXPRESSION> PERSONS </EXPRESSIONS>
<PATH> PERSON </PATH>
<FIELD>
<NAME> FIRST </NAME>
<TYPE> STRING </TYPE>
<PATH> PERSON/NAME/FIRST </PATH>
</FIELD>
<BIND> PRIMARYKEY = PKEY </BIND>
</DATASET>
</MAPPING>
<SEMANTICS>
<APPLY>
<PATH> PERSON/NAME/FIRST </PATH>
<MEASURE> NAME = “looks_like” </MEASURE>
<WEIGHT> .30 </WEIGHT>
</APPLY>
</SEMANTICS>
</STRUCTURE>
</SCHEMA>

FIG. 35

PCT/US03/04685

WO 03/069510

26/30

aseqelep Woly

V9¢ "Old

SeNeA P LOITAS |
sjoenxa WAaA

-~

}og nssy
ul senjea pa1 0314S
sapnoul WAA

walD synsey uinjey

dosnep 104714S
B 219y} S|

femajen

1ebeuepy yolesg
0} Alenp) puss

oLog \

wm>ﬂ2

N

asnep N\
FHIHMWN
B alsy} sl

y09€

femajen) je pAoey
puewwos Aienp

PUBLIWOD
Ad3NO sensst sty

PCT/US03/04685

WO 03/069510

27/30

g9¢ 'Old

opoe

Jusio o}
jou3 uney

JuaNQ o)
synsay uinjey

adfy piyo
pa1odsun }xsu 0} 09

\\\\ 0v9e
zroe

NS
|
|
1
1
I
]
_ | .
I { ot
1
i
| 7
i ¥roe
“
1
“
“ adA juswsaje
“ SIUY} 21008 0} B0I0YD |g———
" pue ainsesw Alddy ON
f
I
1
1
)
i
I
I
]
{

¢ UsIpjiyo
paloosun aAey
swis|e sy} sag

¢, paIoos
uaaq JUSWNJ0P JO
aLLS[S 100J SB}

9€9¢e

e e e e e

yeoe

¢ Blayos
pifea e 1861e} s

ON

¢uosuedwon
apis-Ag-opis
e siuj s|

[45°1%

NS je p,adsY
puewwo) Aenp

PCT/US03/04685

WO 03/069510

28/30

09¢ "Old

|- - - - - - - - T T T T T T T T T T —/
0.9¢ |
o e e e e e i e e e e e v v e - m— - — —— e ——— -
NS " ! A |
_ piooal J I _
ssjwsiq 069¢ _
“ 889¢ / o89c a0 “ Juswialels JOS anoexy | |
| R |
| SOLLNVWES | | A |
| s)nsaJ 0} Aayd ui syybrom Buisn | pasn
“ /aloos puaddy SpJ00al 10} 81008 | | 8INSEaLW 9A)OLISal Aue _
| lleoQ ejenoes | | \ loj esnep JYIHM PING | |
. 899¢
“ |||||||||||||| 39S JInsal O dY3 Ul piodal Aians tog| pasn ss|qe) jie 10} _
wXL=TLYS<STWVN FHTHM ¢ 8SneI NIOF/WOW Piing _
999¢
(ATTdRY, ‘TWYN LSYTSIWYNIXTANNOS (NHOF, 'TWYN LSHII"STWYNHLIGHLS einsesw/sinquye _
“ | Kiens JoyIe2 40N PIINg
STWYN WOXH 99¢ _
ADd 10FT3S Aexifrewnd yiim _
_ Nmom\\ waweyels 1oSs uibeg
| _
T TTTTTTTTTTTTTTT I T |
289¢ " pJooal 8/9¢ “
| 089¢ ssiwsI(] 2,98 | _
1 y.9¢ I _
Y | / !
_ _ _
(enoge se I
$9109s pue _ WAA !
sfayd yim ssnejo A|"| M_h_www._ %_w MMM_@ mwmwwmw SAISINos) - lWoOJ Juswnoop [—— _
NOY4 soe(dey | S sdS NX 2AsLIY I so ANONLLYIdTY _
_ wiopad |
! 9,98 | |
e wsoepbufuspunajuiplodsifiensioy 0 A ggoe |
009¢

WO 03/069510 PCT/US03/04685
29/30

<QUERY>
<WHERE>
<PERSON>
<NAME>
<FIRST> JOE </FIRST>
</NAME>
<NAME>
<FIRST> JOHN </FIRST>
</NAME>
</PERSON>
</WHERE>
<SEMANTICS>
<APPLY>
<PATH> PERSON/NAME/FIRST </PATH>
<MEASURE> ENGLISH-NAME </MEASURE>
</APPLY>
</SEMANTICS>
<FROM>
<DOCUMENT>
<PERSON>
<NAME>
<FIRST> JOHN </FIRST>
</NAME>
</PERSON>
</DOCUMENT>
</FROM>
</QUERY>
FIG. 37
DATA
PRIMARY | FIRST LAST
KEY NAME NAME
1 John Smith
2 Joe Jones
3 Fred Adams
4 Joan Smith
5 Frank Baker
RESULT
PRIMARY | SINGLE | COMBINED
KEY
1 0.3, 0.9 0.7
2 0.9, 0.3 0.5
3 0.1,0.1 0.1
4 0.3,0.9 0.7
5 0.1,0.1 0.1

FIG. 38

WO 03/069510 PCT/US03/04685
30/30

<RESPONSE>
<RESULT>
<DOCUMENT schema=“PERSON” id=*“1">
<SCORE=“0.8">
</DOCUMENT>
<DOCUMENT schema="“PERSON” id=*2”
<SCORE=“0.7">

</DOCUMENT>
<DOCUMENT>
<PERSON>
<NAME>
<FIRST> John
<MIDDLE> Q
<LAST> Smith
</NAME>
</PERSON>
<PERSON>
<NAME>
<FIRST> Joe
<MIDDLE> P
<LAST> Jones
</NAME>
</PERSON>
</DOCUMENT>
</RESULT>
</RESPONSE>

FIG. 39

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/04685

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOG6F 17/30
USCL 707/3, 4,5, 6, 10

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. :707/3,4,5, 6, 10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

YP -

27; column 17, line 50 - column 18, line 15.

and column 31, line 54 - column 32, line 3.

Y - US6,038,561 A (SNYDER et al) 14 March 2000 (14.03.2000), column 3, line 59 - column
4, line7; column 6, lines 48 - 62; column 17, line 65 - column 18, line 8.
US 6,041,323 A (KUBOTA) 21 March 2000 (21.03.2000), abstract, column 16, lines 6 -

US 6,446,065 B1 (NISHIOKA et al) 03 September 2002 (03.09.2002), abstract, column 7,
lines 28 - 62; column 12, lines 40 - 64; column 15, lines 1 - 16; column 25, lines 12 - 67;

1-47

1-47

Further documents are listed in the continuation of Box C.

[]

See patent family annex.

apn

ugn

wpr

agn

upn

Special categories of cited documents: .

document defining the general state of the art which is not considered to be
of particular relevance

earlier application or patent published on or after the international filing date
document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

document referring to an oral disclosure, use, exhibition or other means

document published prior to the international filing date but later than the
priority date claimed

wpn

ayn

wyn

A g

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such decuments, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

01 May 2003 (01.05.2003)

Date of mailing of the international search report

27 MAY 2003

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.0. Box 1450

Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Authorized officer
Shahid Al Alam

Db pepicblanol

Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

