USE OF PIGMENT DYES FOR DISPERSION DYING FROM AQUEOUS MEDIA

Inventor: Helmut Sieber, Rheinfelden (DE)
Assignee: Clariant Finance (BVI) Limited, Tortola (VG)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1 day.

Appl. No.: 10/466,827
PCT Filed: Jan. 21, 2002
PCT No.: PCT/IB02/00187
Date: Jul. 18, 2003
PCT Pub. No.: WO02/057537
PCT Pub. Date: Jul. 25, 2002

Foreign Application Priority Data

Field of Classification Search 8/637.1, 8/685, 8/922, 8/933

References Cited
U.S. PATENT DOCUMENTS
3,676,051 A 7/1972 Kange et al. 8/65
5,830,931 A 11/1998 Pelster et al. 524/90

FOREIGN PATENT DOCUMENTS
DE 2 009 465 9/1970
DE 34 13 603 10/1985
EP 1 111 124 6/2001
FR 1 445 371 8/1993
GB 1 061 525 8/1967
GB 1 095 535 12/1967
GB 1 413 512 11/1975
GB 1 505 009 3/1978
GB 2 164 231 4/1980
GB 2 165 348 3/1983

OTHER PUBLICATIONS

Use of pigments according to formula (I)

\[
\begin{align*}
\text{R}_1 & \quad \text{Ni} \\
\text{R}_2 & \quad \text{O} \\
\text{R}_3 & \quad \text{O} \\
\text{R}_4 & \quad \text{O} \\
\text{R}_5 & \quad \text{N} \\
\text{R}_6 & \quad \text{C} \\
\text{R}_7 & \quad \text{N} \\
\text{R}_8 & \quad \text{C} \\
\text{R}_9 & \quad \text{N} \\
\text{R}_{10} & \quad \text{R}_{11} \\
\end{align*}
\]

wherein the substituents have the meanings as defined in claim 1 for dying semisynthetic or synthetic hydrophobic fiber materials characterized in that the dying process takes place in aqueous media as well as semisynthetic or synthetic hydrophobic fiber materials dyed by such an use.

8 Claims, No Drawings
USE OF PIGMENT DYES FOR DISPERSION DYING FROM AQUEOUS MEDIA

The invention relates to the use of certain pigments as disperse dyestuffs in aqueous media.

The word "pigment" is of Latin origin (pigmentum) and originally denoted a color in the sense of a coloring matter, but was later extended to indicate colored decoration (e.g., makeup). In the late Middle Ages, the word was also used for all kinds of plant and vegetable extracts, especially those used for coloring. The word pigment is still used in this sense in biological terminology; it is taken to mean dyestuffs of plant or animal organisms that occur as very small grains inside the cells or cell membranes, as deposits in tissues, or suspended in body fluids.

The modern meaning associated with the word pigment originated in this century. According to accepted standards (DIN 55943 and DIN 55945) the word pigment means a substance consisting of small particles that is practically insoluble in the applied medium and is used on account of its coloring, protective, or magnetic properties. Both pigments and dyes are included in the general term "coloring materials", which denotes all materials used for their coloring properties. The characteristic that distinguishes pigments from soluble organic dyes is their low solubility in solvents and binders. Pigments can be characterized by their chemical composition, and by their optical or technical properties.

In the Color Index (C.I.) pigments are usually named "C.I. Pigment XY xx". Some compounds may be named "C.I. Solvent XY xx" due to their migration tendency in polymer application, although in water or organic solvents these compounds may fulfill the insolvibility criteria for pigments, according to DIN 55943 and DIN 55945.

Pigments can be classified into two categories:
(i) inorganic pigments
(ii) organic pigments

The most important areas of use of pigments are paints, varnishes, plastics, artists' colors, printing inks for paper and textiles, leather decoration, building materials (cement, renderings, concrete bricks and tiles—mostly based on iron oxide and chromium oxide pigments), leather imitates, floor coverings, rubber, paper, cosmetics, ceramic glazes, and enamels.

The paint industry uses high-quality pigments almost exclusively. An optimal, uniform particle size is important because it influences gloss, hiding power, tinting strength, and lightening power. Paint films must not be too thick, therefore pigments with good tinting strength and hiding power combined with optimum dispersing properties are needed.

White pigments are used for white coloring and covering, but also for reducing (lightening) colored and black pigments. They must have a minimal intrinsic color tone.

When choosing a pigment for a particular application, several points normally have to be considered. The coloring properties (e.g., color, tinting strength or lightening power, hiding power) are important in determining application efficiency and hence economics. The following properties are also important:
1) General chemical and physical properties: chemical composition, moisture and salt content, content of water-soluble and acid-soluble matter, particle size, density, and hardness
2) Stability properties: resistance toward light, weather, heat, and chemicals, anti-corrosive properties, retention of gloss
wherein R₁–R₈ independently from each other signify H, halogen, —NO₂, —CN, —OH, —COOH, —CH₃, —NH₂ or NHCH₃, characterized in that the dyeing process takes place in aqueous media.

Preferably, pigments or mixtures of pigments are use wherein R₁–R₈ independently from each other signify H, halogen, —COOH or —CN.

More preferably, pigments or mixtures of pigments are used wherein R₁–R₈ independently from each other signify H, —Cl, —COOH or —CN.

Especially preferably, a pigment is used wherein all R₁–R₈ are H.

The pigment, wherein all R₁–R₈ are H, is known as C.I. Solvent Brown 53 (Polysynth® Braun R, Trademark of CLARIANT).

The pigments of formula (I) can be used for dyeing and printing semisynthetic and, preferably, synthetic hydrophobic fiber materials, especially textile materials. Textile materials consisting of blended fabrics containing such semisynthetic hydrophobic fiber materials can also be dyed or printed by means of the dyes of this invention.

Suitable semisynthetic textile materials are mainly cellulose-2/3-acetate, cellulose triacetate polyamides and high molecular weight polysterols as well as mixtures thereof with cellulose.

Synthetic hydrophobic textile materials consist mainly of linear aromatic polyester, for example of those consisting of terephthalic acid and glycols, in particular ethylene glycol or condensate of terephthalic acid and 1,4-bis(hydroxymethyl)cyclohexane; of polycarbonates, e.g. those consisting of alpha,alpha-dimethyl-4,4'-dihydroxydiphenyl-methane and phosgene, and of fibers based on polyvinyl chloride and polyamide.

The hydrophobic synthetic materials can be in the form of sheet-like or thread-like structures, and can be processed, for example, to yarns or woven, knitted or looped textile fabrics. The novel dyes are also suitable for dyeing hydrophobic synthetic material in the form of micro fibers.

It is expedient to convert the pigments according to formula (I) before use, into a dye formulation. This is done by milling the dye to an average particle size of 0.1 to 10 micron. Milling can be carried out in the presence of dispersants. Typically, the dried pigment is milled with a dispersant, and thereafter dried under vacuum or by spray drying. Printing pastes and dyebaths can be prepared by adding water to the formulation so obtained.

The pigments according to formula (I) are applied to the textile materials by known dyeing or printing methods, e.g. those described in French patent application No. 1,445,371.

Typically, polyester fiber materials are dyed from an aqueous dispersion by the exhaust process in the presence of customary anionic or non-ionic dispersants and in the presence or absence of customary swelling agents (carrier) in the temperature range from 65°C to 140°C.

Cellulose-2½-acetate is preferably dyed at a temperature from 65°C to 85°C and Cellulose triacetate at temperatures of up to 125°C.

The pigments according to formula (I) are suitable for dyeing by the thermosol process, for the exhaust and continuous process and for printing as for modern imaging processes, e.g. therm-o-transfer printing or ink-jet printing.

The dyeings are carried out from an aqueous liquor by the exhaust process, and the liquor ratio can be chosen from a wide range, for example from 1:4 to 1:100, preferably from 1:6 to 1:50.

The dyeing time is from 20 to 90 minutes, preferably from 30 to 80 minutes.

The dye liquors can additionally comprise other additives, for example dyeing auxiliaries, dispersants, wetting agents and antifoams.

The liquor may also comprise mineral acids, such as sulfuric acid or phosphoric acid, or conveniently also organic acids, for example formic acid or acetic acid and/or salts, such as ammonium acetate or sodium sulfate. The acids mainly serve to adjust the pH of the dye liquors which is preferably in the range from 4 to 5.

The pigments are usually present in the dye liquors in the form of a fine dispersion. Suitable dispersants for the preparation of this dispersion are e.g. anionic dispersants, such as aromatic sulfonic acid/formaldehyde condensates, sulfonated cresol oil/formaldehyde condensates, lignin sulfonates or copolymers of acrylic acid derivates, preferably aromatic sulfonic acid/formaldehyde condensate or lignin sulfonated, or nonionic dispersants based on polyalkylene oxides obtainable, for example, by poly-addition reaction from ethylene oxide or propylene oxide. Further suitable dispersants are listed in U.S. Pat. No. 4,895,981 or U.S. Pat. No. 5,910,624.

The dyeings or printings thus obtained, have good all-round fastness, particularly noticeable are the thermo-migration fastness, light fastness, thermo-fixation- and pleating fastness, as well as the excellent wet fastness.

The invention further relates to semisynthetic or, preferably, synthetic hydrophobic fiber materials, which were dyed or printed by the abovementioned use.

In the following examples, the parts and percentages are by weight. The temperatures are given in degrees Celsius.

APPLICATION EXAMPLE

17.5 Parts of the Pigment of the Following Formula (Ia)

![Formula (Ia)](attachment:image)

with 32.5 parts of a commercial dispersing agent based on lignin sulfonates, and pulverized to a powder. 1.2 parts of this dye preparation are added to 2000 parts of demineralized water of 70°C, which contains 40 parts of ammonium sulfate; the pH value of the dye bath is set at 5 with 85% formic acid. 100 parts of washed polyester fiber fabric are placed in this dye bath, the container is closed, heated to 130°C over the course of 20 minutes, and dyeing continues...
for a further 60 minutes at this temperature. After cooling, the polyester fiber fabric is removed from the dye bath, rinsed, soaped and cleansed by reduction with sodium hydrosulphite in the usual way. After thermo-fixation (180° C, 30 min), a brown dyeing is obtained with very good all-round fastness, especially fastness to light and sublimation, in particular excellent wet fastness.

The invention claimed is:

1. A process for dyeing semisynthetic or synthetic hydrophobic fiber material comprising the steps of:
 - providing at least one pigment according to formula (I) and
 - contacting said polyester hydrophobic fiber material with said at least one pigment.

2. The process for dyeing semisynthetic or synthetic hydrophobic fiber material according to claim 1 where
 - R₁₋R₈ independently from each other signify H, halogen, —NO₂, —CN, —OH, —COOH, —CH₃, —NH, or NHCH₃ in an aqueous media;
 - providing a polyester hydrophobic fiber material;
 - contacting said polyester hydrophobic fiber material with said at least one pigment.

3. The process for dyeing semisynthetic or synthetic hydrophobic fiber material according to claim 1 where
 - R₁₋R₈ independently from each other signify H, —Cl, —COOH or —CN.

4. The process for dyeing semisynthetic or synthetic hydrophobic fiber material according to claim 1 where all R₁₋R₈ are H.

5. A process for the use of a pigment of formula (I) where
 - R₁₋R₈ independently from each other signify H, halogen, —NO₂, —CN, —OH, —COOH, —CH₃, —NH, or NHCH₃ for dyeing semisynthetic or synthetic hydrophobic fiber material where the dyeing process takes place in an aqueous media comprising the step of contacting at least one pigment according to formula (I) in an aqueous media with semisynthetic or synthetic hydrophobic fiber material.

6. The process for the use of a pigment according to claim 5 where R₁₋R₈ independently from each other signify H, halogen, —COOH, or —CN.

7. The process for the use of a pigment according to claim 5 where R₁₋R₈ independently from each other signify H, —Cl, —COOH or —CN.

8. The process for the use of a pigment according to claim 5 where all R₁₋R₈ are H.