wo 2013/052894 A 1[I N0F V000000 000

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/052894 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

11 April 2013 (11.04.2013) WIPOIPCT
International Patent Classification:
GO6F 19/00 (2011.01)
International Application Number:
PCT/US2012/059097

International Filing Date:
5 October 2012 (05.10.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/543,680 5 October 2011 (05.10.2011) US

Applicant: OPTEON CORPORATION [US/US]; 124
Mount Auburn Street, Suite 200 North, Cambridge, MA
02138 (US).

Inventors: FRAZER, Mark J.; 16 Bingham Avenue,
Toronto, Ontario M4E 3P9 (CA). HOPKINS, T. Eric; 1
Old Farm Road, Wellesley, MA 02481 (US). SCHAEF-
FER, Timothy N.; 12 Newbury Street #3, Somerville, MA
02144 (US).

Agents: TEJA, Joseph, Jr. et al.; Foley & Lardner LLP,
3000 K Street N.W., Suite 600, Washington, DC 20007-
5109 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: METHODS, APPARATUS, AND SYSTEMS FOR MONITORING AND/OR CONTROLLING DYNAMIC ENVIRON-
MENTS

100a
T 66 -
158a—1 | Co-Processor 160a=1
Input
Signals
s | f 68
N
140a—-1 Dedicated
/ 190 [T~ Memory
142a-1| __ |[Program/Data
Master | 192 144a-1
194 Processor
5 -
roEjensi‘s 9 C it Co-;’zroozeszor
Interface —
Input [= | OQuiput [T
J Inte?face 2
Memory 1580—2 1 [-160a—2 168
13002
196 140a-2- [Dedicated
110a Memory
Tl 142g-2
et |[Frgoa]
Action Engine

(57) Abstract: A dynamic environment having multiple conditions in response to which corresponding actions are required, and
comprises various equipment, control device(s) to control the equipment, and one or more sensors to generate input signal(s) repres-
enting a monitored condition of the environment. A control system for the environment comprises a master processor and one or
more co-processors, wherein the master processor configures a given co-processor to evaluate only a first subset of conditions expec-
ted to occur in the environment within a specified time period, and to provide first control information representing an action to be
taken if a particular condition of the first subset is satisfied. The co-processor receives the input signal(s) representing the monitored
condition, processes the input signal(s) so as to determine if the particular condition of the first subset is satisfied, and provides the
first control information to the control devices so as to control the equipment.

10

15

20

25

WO 2013/052894 PCT/US2012/059097

METHODS, APPARATUS, AND SYSTEMS FOR MONITORING AND/OR
CONTROLLING DYNAMIC ENVIRONMENTS

BACKGROUND

[0001] A programmable logic controller (PLC) is a special form of computer-based controller
typically employed to control equipment, machinery and/or instrumentation in automated
industrial electromechanical processes. A common example of such an automated industrial
electromechanical process is given by the operation of a factory assembly line. In the dynamic
environment of a factory assembly line, there may be multiple pieces of industrial equipment,
machinery and/or instrumentation (collectively referred to as “equipment” for simplicity)
associated with the fabrication, assembly, and/or packaging of parts/components, as well as the
transport of the parts/components amongst various stages of fabrication, assembly and/or

packaging.

[0002] FIG. 1 provides a general illustration of the typical role of a conventional PLC 50 in
connection with an automated industrial process 10 such as the operation of a factory assembly
line. In addition to multiple pieces of equipment 20, the dynamic environment of a factory
assembly line typically includes several control devices 30 (e.g., actuators) for operating the
multiple pieces of equipment 20, as well as multiple input devices 40 (e.g., sensors) to provide
indications of equipment status and/or various conditions associated with fabrication, assembly,
packaging and/or transport of parts/components. Such indications provided by the input devices
40 often are referred to as “states” or “conditions” of the dynamic environment. Some examples
of control devices 30 used to operate the equipment 20 include magnetic relays, solenoids,
electric motors, and pneumatic or hydraulic cylinders. Some examples of input devices 40
include limit switches, position sensors, analog sensors (e.g., pressure or temperature sensors),

and imaging devices (e.g., cameras).

[0003] Generally speaking, the PLC 50 is employed to monitor input signals 66 provided by
input devices 40. These input signals, respectively or in various combinations, represent

different states (conditions) of the dynamic environment as a function of time. In response to the

10

15

20

25

WO 2013/052894 PCT/US2012/059097

input signals present at a given time, the PLC 50 generates output signals 68 to the control
devices 30 for operating the industrial equipment 20, to ensure the automated process 10 is
implemented efficiently and predictably. To this end, the PLC 50 generally is employed to
coordinate predetermined sequences of actions to be taken by the equipment 20 implementing
the process 10, in which respective actions may need to occur within a certain time window

contingent on information provided by the input devices 40 (via the input signals 66).

[0004] A typical PLC includes programmable memory to store processor-executable
instructions and employs various other electronic components to implement functions such as
logic, sequencing, timing, counting, and arithmetic. In terms of general architecture and various
aspects of functionality, PLCs are in many respects similar to general-purpose computers (e.g.,
desktop or laptop personal computers); however, whereas general-purpose computers typically
are optimized for calculation and display tasks, PLCs generally are optimized for control tasks in
a dynamic environment such as an automated industrial process. Accordingly, PLCs generally
are thought of as special-purpose control computers for controlled dynamic environments. Since
PLCs often are employed in the demanding conditions of an automated industrial process, from a
package design standpoint conventional PLCs often tend to be ruggedly designed so as to
withstand demanding environments in which the PLC may be exposed to one or more of
physical vibrations, challenging temperature and humidity conditions, dust or potentially

damaging materials, and electrically noisy environments.

[0005] FIG. 2 illustrates a generalized block diagram of the typical electrical
components/circuitry (e.g., “hardware”) constituting the conventional PLC 50 of FIG. 1. As
shown in FIG. 2, the basic functional components of the PLC 50 include a processor unit 52,
memory 54, power supply 56, input interface 58, output interface 60, and one or more
communications interfaces 62 all communicatively and/or electrically coupled to one another.
FIG. 2 also shows a programming device 64 communicatively coupled to the PLC 50 and

employed to program the PLC.

[0006] In FIG. 2, the processor unit 52 includes a microprocessor to interpret input signals 66

received by the input interface 58, and in turn provide output signals 68 via the output interface

10

15

20

25

WO 2013/052894 PCT/US2012/059097

60 so as to implement control actions according to a program (e.g., series of processor-
executable instructions) stored in the memory 54. In particular, the memory 54 stores the
program containing instructions representing the control actions to be implemented by the
microprocessor, as well as various data relating to input signals, output signals and operation of
the microprocessor as it carries out various instructions. The input interface 58 provides to the
processor unit 52 information via input signals 66 received from external input devices (e.g.,
sensors, switches, meters, counters, etc.). The processor unit 52 in turn communicates control

actions to external output devices (e.g., valves, motors, etc.) via the output signals 68.

[0007] In FIG. 2, examples of components constituting the respective input and output
interfaces may include analog-to-digital converters, optocouplers/optoisolators, buffers, latches,
and drivers so as to appropriately interface with various external input and output devices
associated with the controlled dynamic environment. Although four input signals and four
output signals are shown for purposes of illustration in FIG. 2, it should be appreciated that
different types of conventionally available PLCs may be configured to accept different numbers
of input signals (some number N of input signals) and provide different numbers of output
signals (some number X of output signal), and that the number of input signals and output signals
need not necessarily be the same. In general, the number N of input signals and the number X of
output signals is dictated at least in part by the number of input devices 40 employed to monitor
the automated process 10 of FIG. 1 and the number of control devices 30 employed to control the

equipment 20.

[0008] In the PLC 50 shown in FIG. 2, the communications interface(s) 62 is/are used to
receive and transmit various data (which may relate to one or more of the programs for execution
by the processor unit 52, the input signals, the output signals, other data to be utilized by the
processor unit 52 in executing the program, etc.) via one or more communication networks from
or to one or more network-based external input/output devices and/or other remote PLCs. In
general, the communications interface(s) 62 implement such functions as device verification,
data acquisition, synchronization between user applications, and connection management. The

power supply 56 converts AC voltage to a low DC voltage (e.g., 5 Volts) required for the various

10

15

20

25

WO 2013/052894 PCT/US2012/059097

circuitry in the PLC to operate. Finally, the programming device 64 (which in some examples
may be coupled to the PLC 50 via the communication interface(s) 62) is employed to enter into
the memory 54 the program to be executed by the processing unit 52; typically, the program is
developed/written in the programming device 64 and then transferred to the memory 54 of the

PLC 50.

[0009] FIG. 3 provides additional details of the internal architecture of the PLC 50 shown in
FIG. 2, particularly in connection with the processor unit, various elements of memory,
input/output interfaces, and busses to facilitate information transfer. For example, FIG. 3
illustrates that the processor unit 52 (denoted as CPU in FIG. 2) is associated with a clock 52A,
the frequency of which determines the operating speed of the PLC and provides the timing and
synchronization for various elements in the PLC. Information within the PLC is carried amongst
the processor unit, various memory elements, and to and from the input/output interfaces 58 and
60 via multiple busses; in particular, the PLC employs a data bus for transporting data to and
from the PLC’s constituent clements, an address bus to send the addresses of locations for
accessing stored data, and a control bus for signals relating to internal control actions. The PLC
architecture also may include an I/O system bus for communications between the input/output
interfaces 58 and 60 (from which the input signals 66 are received from external input devices,
and the output signals 68 are provided to external output devices, respectively) and an
input/output unit 55 configured to transfer input/output information between the I/O system bus

and the PLC’s data bus.

[0010] In general, the processor unit 52 (CPU) of the architecture shown in FIG. 3 includes an
arithmetic and logic unit (ALU) that is responsible for data manipulation and carrying out
arithmetic operations (e.g., addition, subtraction, multiplication, division) and digital logic
operations (e.g., AND, OR, NOT, and EXCLUSIVE-OR), internal memory registers used to
store information involved in program execution, and an internal control unit to receive the
output of the clock 52A and control the timing of operations. The various memory elements
constituting memory 54 may include read-only-memory (ROM) 54A to provide permanent

storage for the operating system and fixed data used by the processor unit, user program random-

10

15

20

25

WO 2013/052894 PCT/US2012/059097

access memory 54B (User program RAM) employed for the program to be executed by the PLC,
and data random-access memory 54C (Data RAM) used for data (information regarding the
status of input and output signals, values of timers and counters and other internal devices, etc.).

The program to be executed by the PLC may also be stored in non-volatile memory.

[0011] From the PLC architecture illustrated in FIG. 3, it may be appreciated that although
conventional PLCs often are considered special-purpose computers rather than general-purpose
computers, both PLCs and general-purpose computers share many aspects of a “Von Neumann”
computer architecture. In a Von Neumann computer architecture, computer instructions (the
“user program” stored in User program RAM 54A) as well as any data required for program
execution (e.g., stored in Data RAM 54C) are accessed from various memory elements over a
common bus architecture (i.e., via the address, data and control busses shown in FIG. 3).
Although conventional PLCs attempt to tailor computer performance by being special-purpose
computing devices implementing specific functionality corresponding to a particular automated
industrial process, the architecture of conventional PLCs nonetheless places fundamental limits

on their performance, as they execute instructions serially and hence effectively have no capacity

for parallel execution.

[0012] Programming of a PLC primarily is concerned with specifying digital logic functions
that process one or more input signals representing a sensed condition (“state”) associated with
the automated process being implemented by various equipment at a given time. The digital
logic functions acting on the monitored condition of the automated process generate one or more
control signals in response to the monitored condition. As noted above, these control signals are
applied to control devices that in turn control the various equipment to take some action involved
in further implementing the automated process. At a high level, a PLC program generally
implements a sequence of one or more actions in response to monitored conditions as a function
of time (e.g., if A or B occurs, actuate C; if A and B occurs, actuate D). The automated process
evolves over time as actuators control equipment to drive the process to new conditions. Hence,
as noted above, the automated process constitutes a dynamic environment in which an evolution

of conditions is monitored by the PLC, and wherein the PLC makes decisions and updates

10

15

20

25

WO 2013/052894 PCT/US2012/059097

control signals to actuators, based on respective monitored conditions, to drive the environment

to new conditions.

[0013] Many conventional PLCs are programmed via a “ladder logic” programming language
to codify the digital logic that is used to evaluate inputs signals representing monitored
conditions. Common ladder logic programming languages typically employ graphical diagrams
that resemble “rungs” of a ladder, wherein respective rungs represent circuit diagrams for
electromechanical relays (which were used in older logical control systems) to facilitate intuitive
programming by control system engineers. Ladder logic is best suited to implement control
solutions in which primarily binary variables are involved (e.g., the monitored conditions in a
dynamic environment each may be represented as TRUE, i.e., logic one, or FALSE, i.c., logic

Zero).

[0014] However, in a variety of automated process environments, outputs of sensors may be
analog signals. Accordingly, in some instances, if the direct output of a given input
device/sensor is not in the form of a binary signal, the output of the input device/sensor may be
pre-conditioned in some respects to provide the input signals 66 in binary form. For example, an
analog output of a temperature sensing device may be first applied to a comparator circuit having
a temperature set point voltage as another input so as to provide, as one of the input signals 66, a
binary indication of whether or not the monitored temperature is above or below the particular
temperature set point. Alternatively, an analog value may be converted to a quantitative value
encoded into a multi-bit digital word used by the system to perform mathematical operations
and/or make decisions. Similarly, a multi-bit output of a counter serving as an input device may
be compared to a pre-determined count to in turn provide, as one of the input signals 66, a binary
indication of whether or not the counter output is above or below the pre-determined count
(alternatively, an output of a counter having some number B of bits may be provided directly as a
number B of input signals 66). Yet other types of input devices may generate highly transient
signals; for such devices, a latch may be employed to facilitate the detection of a signal edge or
transient so as to provide an input signal of suitable duration to the PLC indicating the

occurrence of the edge/transient. In other examples, input devices may include various

10

15

20

25

WO 2013/052894 PCT/US2012/059097

networked devices, for which one or more communication status signals (e.g., data packet

transmitted/received) may serve as one of the input signals 66.

[0015] Ladder logic and other languages for programming conventional PLCs generally are
considered to be rules-based programming languages. A typical PLC program may be
constituted by a series of rules, wherein each rule is constituted by one or more binary input
signals (e.g., A, B, C, D) representing a monitored condition of the automated process, and a
corresponding control signal (e.g., X) that is generated in response to particular digital logic
evaluating the input signals. Accordingly, in some aspects a rule in a PLC program may be
viewed in a manner similar to an “IF/THEN” statement (e.g., If (A AND NOT B) AND (C OR
D), THEN X). The PLC program includes all of the rules necessary to implement all of the
actions that are required in response to different combinations of input signals representing all of
the different possible conditions of the automated process that may be monitored via the set of

available input signals.

[0016] With reference again to FIG. 2, the programming device 64 (which may be a handheld
programming device, a desktop console, or a personal computer such as a laptop or tablet
computer) is typically employed to create, store and download to the PLC executable programs
including a set of rules. When the program is executed by the PLC, the rules are typically
executed sequentially from first to last and then repeated, wherein each pass through the set of
rules in sequence often is referred to as a “scan” or “control loop.” Thus, consecutive repetitions
of the scan or control loop represent a continuous cycle of the PLC reading input signals,
examining input signal using the logic encoded in the program rules, and then changing control

signals output by the PLC as appropriate.

[0017] More specifically, with respect to general operation, including various housekeeping
activities and performing scans or control loops, conventional PLCs typically function in a
cyclical manner. For example, when power is initially applied to a PLC, the PLC may perform a
self-check or diagnostic routine to ensure that various hardware components are functioning
properly. With reference again to FIGs. 2 and 3, if no fault or error conditions are detected, the

PLC then controls the input interface 58 and memory 54 so as to read each of the input signals

10

15

20

25

WO 2013/052894 PCT/US2012/059097

66 sequentially and store each read instance of a given input signal in a dedicated memory
location. The PLC then executes its program by sequentially testing each rule (i.e., fetching,
decoding and executing the program instructions in sequence) and solving the logic encoded in

the rule.

[0018] In particular, for each rule, the stored instances of certain input signals as specified in
the rule are retrieved from memory, the rule is evaluated based on the retrieved input signals, and
if the rule is satisfied (i.e., all of the pre-requisite conditions specified in the rule are met), a
control signal corresponding to the satisfaction of the rule is generated. If such a control signal is
generated, it is stored in a dedicated memory location. Evaluation of a given rule may involve
multiple read operations from, and write operations to, different memory locations (e.g.,
registers) as the digital logic codified in the rule is solved. As noted above, respective rules are
evaluated sequentially as the PLC executes the ladder logic program; accordingly, while the PLC

is evaluating a particular rule, it is inattentive to the other rules codified in the program.

[0019] If the PLC generates any control signals in response to evaluation of the rules, it may
provide these for output as a set of updated control signals 68. These control signals in turn are
transmitted to one or more actuators or other equipment to be controlled in connection with the
automated process. The PLC then returns to performing the self-check, reading each of the input
signals and storing them to memory, executing the program rules to complete the control loop,

updating the control signals for output (if any), and repeating this cycle iteratively.

[0020] The time period required by the PLC to complete the cycle described above commonly
is referred to as a “cycle time” or “scan time.” Typical cycle times of conventional PLCs are on
the order of approximately 10 milliseconds to hundreds of milliseconds. The cycle time
generally is determined by the particular CPU used in the processor unit, the size of the program
to be scanned (e.g., the number of rules constituting the program, which in turn depends at least
in part on the number of input signals to be read, the number of input signal combinations for
which independent evaluations are required, and the number of control signals to be generated),
and the system functions that are in use pursuant to execution of the program. Thus, the more

complex the program, the longer the cycle time will be.

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0021] It should be appreciated that, in a conventional PLC, the vast majority of rules when
evaluated in a given cycle are not satisfied (i.e., no control signal is generated pursuant to
evaluation of the rule); if a rule is not satisfied, the program merely moves to the next rule for
evaluation. In this manner, it is common in conventional PLCs for a substantial portion of a

given cycle to be spent evaluating successive rules without generating any control signals.

[0022] Although relatively quick compared to general-purpose computers programmed to
implement similar functionality, the cycle time of a PLC is not instantancous. As a result, the
PLC does not “watch” its input signals all of the time, but instead the PLC samples the states of
the input signals periodically depending on the cycle time. Furthermore, the cycle time
constitutes a minimum delay in updating control signals (if generated pursuant to a satisfied rule)
that are output by the PLC in response to sampled input signals. In this manner, the cycle time
also may be viewed as a minimum response time (a “reaction time”) of the PLC to a particular
monitored condition (i.e., represented by a particular value for one or more of the input signals),
and is often referred to as a “latency” of the PLC. Thus, it should be appreciated that due to this
latency, an input signal that lasts for a duration shorter than the cycle time may be missed by the
program (in general, any input signal must be present for longer than the cycle time). In some
instances, external circuitry may be employed to latch transient signals so that they will not be
missed entirely by the PLC. Even if a particular input signal is not “missed” due to latching,
however, a control signal that is to be generated in response to the input signal may be generated

by the PLC too late to be effective for the correct operation of the equipment being controlled.

[0023] Because of the cyclical nature in which a conventional PLC executes a program, all
possible combinations of input signals (representing all possible conditions of the automated
process being controlled for which some action is required) must be contemplated in a single
control loop of the program. Stated differently, as noted above, as long as a monitored condition
represented by one or more input signals is in some manner involved in causing some action to
occur (via one or more control signals) at some point during the duration of an automated
process, there needs to be one or more rules in the program that evaluate the particular monitored

condition. As noted above, the latency of a conventional PLC scales with program complexity;

10

15

20

25

WO 2013/052894 PCT/US2012/059097

hence, as the number of possible conditions of the process for which actions are required
increases, the program becomes larger and the latency becomes greater. Furthermore, in many
automated processes, some conditions occur more frequently than others, and in some instances
conditions that may occur rarely may be associated with a rule representing complicated logic
that needs to be evaluated (which requires more processing time). Accordingly, significant
portions of the cycle time may be “used up” (and latency exacerbated) by executing one or more

rules to evaluate one or more monitored conditions that occur rarely.
SUMMARY

[0024] The Inventors have recognized and appreciated that typical latencies associated with
conventional programmable logic controllers (PLCs) may be excessively long for monitoring
and/or controlling some types of dynamic environments (e.g., involving automated systems
and/or processes). More generally, conventional PLCs as well as other more general-purpose
computers often are not appropriately suited for applications involving monitoring and/or
controlling dynamic environments in which significant speed and/or precision is/are required in
connection with response or reaction time (e.g., taking some action, such as controlling

equipment, machinery and/or instrumentation, in response to one or more monitored conditions).

[0025] In particular, processor-based control devices employing a general-purpose computer
architecture (or related computer architectures with a small and finite set of general purpose
processors), and executing programs sequentially or cyclically, are not sufficiently fast to
implement control functions in dynamic environments that require reflex-like reactions in
response to evolving conditions of the environment, which may benefit from essentially
simultaneous evaluation of multiple possible conditions and taking immediate action based on
same. Examples of dynamic environments requiring reflex-like reactions include, but are not
limited to, aircraft control, complex chemical process control, and machine vision applications
(e.g., analysis of images to extract data for controlling various processes, such as automatic

inspection and robot guidance).

[0026] In view of the foregoing, various inventive embodiments described herein are directed

to methods, apparatus and systems for monitoring and/or controlling dynamic environments, in

10

10

15

20

25

WO 2013/052894 PCT/US2012/059097

which reactions to evolving conditions of the environment may be provided with significantly
lower latency and/or lower variability latency than possible with conventional PLCs and/or other

conventional computing devices.

[0027] For purposes of the present disclosure, a “dynamic environment” refers to a process
and/or system, whether implemented physically and/or virtually (e.g., for purposes of
simulation), in which a condition of the process and/or system (also referred to herein as a
“state” of the environment) may be monitored as a function of time, and one or more actions may
be taken (e.g., in the form of control stimuli applied to the process and/or system) in response to
a particular condition or evolution of conditions. In exemplary implementations discussed in
greater detail below, actions taken in response to a particular condition or evolution of conditions
of the dynamic environment may be “reflexive” in nature, in that they are nearly instantancous as
a result of the appreciably low latency achieved by the inventive methods, apparatus and systems
disclosed herein. While many practical applications of the concepts disclosed herein are
contemplated for physical implementations of automated industrial control processes and
systems, for example, it should be appreciated that the inventive concepts disclosed herein are
not limited in this respect, and may be applied advantageously in a variety of physical and/or

virtual dynamic environments.

[0028] In connection with achieving appreciably low latency for controlling a dynamic
environment, the Inventors have recognized and appreciated that for a given dynamic
environment, different conditions requiring action may occur on different time scales and/or
within different time frames (e.g., some conditions may occur more often than others, and/or in
close temporal proximity with certain other conditions). Furthermore, some conditions may
occur more often in particular sequences, and/or as a result of one or more particular actions
previously having been taken. Accordingly, in one aspect of some inventive embodiments
described herein, rather than considering the entire dynamic environment as a whole and
contemplating all possible conditions of the dynamic environment over all time for which actions
may be required, the Inventors have recognized and appreciated that by breaking up the dynamic

environment into multiple sub-environments (e.g., sub-processes and/or sub-systems) based on a

11

10

15

20

25

WO 2013/052894 PCT/US2012/059097

variety of criteria (e.g., time scale/time frame, particular patterns of evolution or change in
condition), a control methodology may be implemented with significantly low latency. Stated
differently, the Inventors have recognized that by identifying particular categories of conditions
that can occur and corresponding required actions that may be taken in a dynamic environment
(e.g., a subset of conditions that could all occur within a certain time period, a subset of
conditions that could only occur after a particular action was taken, etc.), the control solution
may be subdivided and shared amongst multiple assessment and control resources to

significantly reduce latency.

[0029] With the foregoing in mind, some embodiments of the present invention relate to a
control system for a dynamic environment (e.g., as a replacement for the conventional PLC 50
shown in FIG. 1), wherein the control system employs a “master” processor (also referred to
herein as a “housekeeping” processor) and one or more independent (i.e., asynchronous) “slave”
co-processors (also referred to herein as “responsive” co-processors) each dedicated to
evaluating one or more conditions constituting a subset of all possible conditions that need to be
evaluated in a given dynamic environment. The subset of conditions for which a given co-
processor in the control system is tasked to evaluate may be based on a number of different
criteria, as noted above (e.g., time scale/time frame, particular patterns of evolution or change in
condition). For purposes of the present disclosure, “evaluating” a condition refers to determining
the presence of the condition (“satisfying” the condition, e.g., by comparing some number N of
monitored input signals at a given time to particular input signal values representing the
condition) and taking appropriate action in response to the condition (e.g., generating one or

more corresponding control signals, or particular instructions for generating same).

[0030] Such a control system including a master “housekeeping” processor and one or more
slave “responsive” co-processors respectively dedicated to evaluating some subset of conditions
in a dynamic environment may be viewed as adopting a “divide and conquer” approach to
monitoring and controlling the dynamic environment. In particular, rather than employing a
single processor to evaluate all possible conditions of the environment for which actions are

required, the master processor may task one or more co-processors to evaluate only some subset

12

10

15

20

25

WO 2013/052894 PCT/US2012/059097

of possible conditions for which actions are required, thereby relieving the master processor of
significant processing burden. In this manner, the latency of the entire control system is a
function of co-processor latency (e.g., if multiple co-processors are employed, the latency of the

control system as a whole may be a function of the largest co-processor latency).

[0031] By distributing the condition evaluation process for the dynamic environment amongst
multiple co-processors in the foregoing fashion, the latency of the control system as a whole may
be significantly reduced (e.g., in some cases by several orders of magnitude) as compared to
conventional control approaches employing a single PLC and/or general-purpose computer. In
various implementations discussed in greater detail below, not only is appreciably low control
system latency realized by such a “divide and conquer” approach, but predictable and repeatable
latencies also may be realized with exemplary control system and/or co-processor architectures.
One or both of low latency and low variability latency may be particularly advantageous in some
machine vision applications, in which reliable/predictable machine behavior, including
acquisitions of images correctly synchronized with machine and lighting system operation, is
important. Low latency and low variability latency also may be important for coordinating
control activities as indicated above with decisions resulting from computer analysis that may

take place in a different time domain.

[0032] In one embodiment of a control system according to the present invention, a master
processor (e.g., which in some cases may be implemented as a general-purpose computer) is
communicatively coupled to one or more slave co-processors. Each slave co-processor includes
its own dedicated memory (i.c., not shared with other co-processors, if they are present, and
accessible only to the co-processor itself and the master processor), as well as associated
hardware (e.g., processing and/or logic circuitry) to act on the contents of the dedicated memory.
The contents of a given co-processor’s dedicated memory may be provided (i.e., loaded into the
co-processor) by the master processor. In exemplary system architectures discussed in greater
detail below, in some aspects a given slave co-processor also has substantially unfettered access
to input signals representing different conditions of a dynamic environment, as well as

communication paths (e.g., with the master processor and the dynamic environment), such that

13

10

15

20

25

WO 2013/052894 PCT/US2012/059097

multiple co-processors are capable of monitoring the same set of input signals at the same time

and evaluating their associated conditions based on the same set of input signals.

[0033] In one exemplary implementation, the contents of the co-processor’s dedicated memory
includes information (e.g., a program) relating to evaluation of a single condition of the dynamic
environment; hence, in such an implementation, a given co-processor is configured (e.g., to
execute the program stored in the dedicated memory, or otherwise implement particular digital
logic functions on the memory contents) to evaluate only the single condition of the dynamic
environment pursuant to the particular information stored in the co-processor’s dedicated
memory (in other embodiments discussed below, a co-processor may be configured to evaluate
multiple conditions). When a slave co-processor determines that its condition is present, it takes
the corresponding prescribed action according to the co-processor’s program/logic (e.g., the co-
processor provides some output that in turn generates one or more control signals as appropriate)
and notifies the master processor that its condition is satisfied. In other implementations, rather
than the co-processor itself taking the corresponding prescribed action, the co-processor may
merely notify the master processor that its condition is satisfied (e.g., by generating an interrupt
to the master processor), and the master processor in turn may be appropriately configured to
take the corresponding prescribed action. In either situation, by “offloading” from the master
processor at least the evaluation of the condition, the co-processor significantly improves the

response time of the control system as a whole.

[0034] In some embodiments discussed in further detail below, in response to a notification
from a co-processor that its condition is satisfied, the master processor may “re-task” the co-
processor by loading into the co-processor’s dedicated memory new information relating to a
new condition to evaluate (and corresponding action to be taken if the new condition is satisfied).
In this manner, the master processor facilitates effective control of the dynamic environment as it
evolves over time by dynamically re-tasking one or more co-processors of the control system (to

evaluate new conditions and/or take new/different actions).

[0035] In some implementations of a control system according to the present invention,

multiple slave co-processors may be employed if there are multiple conditions to be evaluated in

14

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the dynamic environment within a given time frame, such that respective co-processors are
configured to evaluate different possible conditions and take appropriate action as necessary. In
one aspect of such an implementation, the set of N available input signals representing different
possible conditions of the dynamic environment may be provided identically (e.g., in parallel, via
a bus architecture) and available simultaneously to all of the co-processors for evaluation.
Accordingly, the respective co-processors independently (i.c., asynchronously) may monitor the
set of N available input signals, evaluate their respective conditions, take action if/as appropriate,
and notify the master processor when their conditions are satisfied. In this manner, as noted
above, the latency of the control system is a function of a given co-processor’s latency. In
situations in which a co-processor is configured to evaluate a single condition, not only is the
latency of the co-processor appreciably low, but the latency variation is appreciably low as well

(and, for many practical purposes, substantially zero).

[0036] A variety of co-processor implementations are contemplated according to various
embodiments of the invention. For example, in one embodiment, a co-processor may be
implemented as a full-featured processor running an appreciably short program loaded in its
dedicated memory (e.g., a single IF THEN statement inside a loop for evaluating a particular
condition). In this type of co-processor implementation, typical latencies for the co-processor
(based on conventional processors evaluating a relatively small number of instructions
representing the IF THEN loop) may be on the order of about one microsecond. For applications
in which space and/or hardware costs may be important practical considerations, however, the
implementation of a co-processor as a full-featured processor, particularly if control of a
dynamic environment entails evaluation of numerous conditions and implicates multiple co-
processors in a control system, may be impractical in some instances (¢.g., the processing
resources being spent on evaluating a single condition may be greater than necessary, and may

take up excessive chip space).

[0037] In view of the foregoing, in other co-processor implementations according to various
embodiments of the invention, a significantly streamlined special-purpose co-processor includes

pared-down digital logic to specifically implement a comparator function (e.g., the functional

15

10

15

20

25

WO 2013/052894 PCT/US2012/059097

equivalent of an IF THEN statement) based on the contents of the co-processor’s dedicated
memory and the monitored input signals; in essence, the functional capability of the co-processor
is reduced to the particular evaluation of a single condition via a significant reduction in
hardware. Such a co-processor implementation accomplishes the goal of a low-cost, space-
saving, low-latency solution. In exemplary implementations, several such co-processors may be
implemented inexpensively in a field programmable gate array (FPGA), an application specific

integrated circuit (ASIC), or a fully-customized circuit, for example.

[0038] In one aspect of a streamlined co-processor implementation as discussed above, to
alternatively or further facilitate low latency, a particular memory structure is employed for the
co-processor’s dedicated memory to store information in the form of a “condition/action pair.”
In one example of such a memory structure, a condition/action pair comprises particular data
stored in a memory location (e.g., a single memory register, or multiple adjacent memory
registers) arranged as a first number of bits representing the condition to be evaluated, and a
second number of bits representing an action to be taken if the condition is satisfied. Such a
memory structure facilitates a straightforward and relatively simple digital logic implementation
to compare monitored input signals to the first number of bits representing the condition to be
evaluated and, if there is a match (i.e., the condition is satisfied), provide the second number of
bits representing the corresponding action to be taken as a gated output of the co-processor.
Accordingly, based on structured memory contents constituting a “condition/action pair” and
relatively simple digital logic implementing a comparator and a gate to provide a gated output,

and effective low-latency, low-footprint, and low-cost co-processor may be realized.

[0039] The configuration of a control system in which each co-processor is tasked with
evaluating only a single condition (i.c., the smallest subset) of all possible conditions for the
dynamic environment may be viewed as a “degenerate” case of minimum latency for the control
system. More generally, the latency for the control system is dictated by the physical
implementation of a given co-processor in the control system (e.g., full-featured microprocessor
vs. pared-down simplified digital logic implementation), and/or the functions (e.g., programmed

logic functions) being implemented by the co-processor. As discussed below, in some

16

10

15

20

25

WO 2013/052894 PCT/US2012/059097

embodiments the physical implementation and/or the functions implemented by a co-processor
are particularly designed such that an upper bound on a latency of the co-processor is below a
required response time for the condition(s) being evaluated by the co-processor. In some cases,
meeting such a requirement may require that the co-processor only be configured to evaluate a
single condition, while in other cases the co-processor may be configured to evaluate a subset of
some predetermined number of conditions (e.g., sequentially rather than “simultaneously,” but
on a purposefully limited number of conditions). In general, by purposefully limiting the
function of the co-processor (e.g., size of the program executed by the co-processor and/or the

information to be processed), an upper bound on latency may be essentially guaranteed.

[0040] Based on the foregoing premise of purposefully limiting the function(s) of a given co-
processor, some implementations of a control system according to various embodiments of the
present invention may be predicated at least in part on appropriately balancing the following
design constraints in the context of controlling a particular dynamic environment: 1) ensuring
that the co-processor is configured to evaluate a sufficiently comprehensive subset of conditions
that may be present in the dynamic environment pursuant to some criteria (e.g., within a
particular time frame, in a particular sequence, following previous particular actions being taken,
etc.); 2) ensuring that the co-processor has sufficiently low (but not necessarily minimum
achievable) latency to take action in response to satisfied conditions in an appropriate time frame
(i.e., ensuring that there is a predictable and sufficiently low upper bound on the co-processor’s
latency); and 3) ensuring that realization of the co-processor entails reasonably low hardware

costs and/or space requirements.

[0041] In view of the foregoing, some embodiments of the present invention are directed to a
control system that includes an “action engine” that may comprise one or more Co-processors,
wherein a given co-processor of the action engine may be configured to evaluate a particular
subset of multiple conditions that may arise in a dynamic environment. In one implementation
of an action engine including multiple co-processors, each co-processor may function

autonomously and simultaneously evaluate at any given time one or more particular conditions

17

10

15

20

25

WO 2013/052894 PCT/US2012/059097

represented by some number N of input signals being monitored at the same time by all co-

processors of the action engine.

[0042] In another implementation of an action engine according to one embodiment, the action
engine is configured to evaluate up to some fixed maximum number of conditions so as to
establish an upper bound on latency and ensure sufficiently low variation in latency. To this end,
in one example an action engine comprises an “event table” realized by a memory structure that
includes some number of multiple sequentially-indexed memory locations (e.g., registers, or
contiguous groups of registers) each having a particular size. In one aspect, each such memory
location is configured to store information in the form of a “condition/action” pair as discussed
above, ¢.g., some first number of bits representing a condition to be evaluated, and some second
number of bits representing some action to be taken if the condition is satisfied. In another
aspect, respective memory locations of the event table store different condition/action pairs such
that a given memory location in the event table is “dedicated” to evaluating a particular condition

that may be represented by the N input signals.

[0043] In the foregoing example, the action engine further may include a “scanner,”
communicatively coupled to the event table and configured to receive the N input signals, to
sequentially evaluate the conditions represented by the condition/action pairs stored in the
respective memory locations of the event table. To this end, the scanner includes appropriate
digital logic circuitry (e.g., logic gates to implement a comparator and a gated output) to read the
contents of a given memory location and compare the condition portion of the condition/action
pair to the respective values of the N input signals. In one example, the condition portion of the
condition/action pair includes N bits of the overall information stored in the given memory
location, such that there is a one-to-one correspondence between the condition portion of the
condition/action pair and the N input signals. Regardless of whether or not the particular
condition is satisfied (i.e., the respective values of the N input signals do or do not match the
condition portion of the condition/action pair), the scanner proceeds to reading the contents of

the next memory location in the event table so as to compare the condition portion of the

18

10

15

20

25

WO 2013/052894 PCT/US2012/059097

condition/action pair stored in the next memory location to the respective values of the N input

signals.

[0044] If a particular condition represented by the condition portion of a condition/action pair
stored in a given memory location of the event table is satisfied (i.c., the respective values of the
N input signals match the condition portion of the condition/action pair), the scanner provides as
an output the action portion of the condition/action pair (e.g., as a gated output enabled by a
comparator upon a match). This output itself may constitute one or more control signals, or
represent an instruction that in turn generates one or more control signals, for controlling
equipment in the dynamic environment. The scanner then proceeds to reading the contents of the
next memory location in the event table so as to compare the condition portion of the
condition/action pair stored in the next memory location to the respective values of the N input
signals and, if there is a match, the scanner provides the action portion of the condition/action
pair as a gated output. Once the scanner reaches the last memory location of the event table and
appropriately processes the condition/action pair stored in this last memory location, the scanner
returns to the first memory location in the event table and repeats the cycle of sequentially

processing the contents of successive memory locations of the event table.

[0045] In some embodiments, an action engine including an event table and scanner as
described above may be communicatively coupled to a master (or “housckeeping”) processor
that provides the contents of the event table (e.g., the condition/action pairs, and possibly other
information) and oversees the appropriate mapping of particular condition/action pairs to
particular memory locations of the event table (e.g., based on a particular order or sequence in
which the master processor wants the action engine to process the condition/action pairs). In one
aspect, the master processor may occasionally or periodically “re-task” the action engine by
loading one or more new condition/action pairs into its event table for processing by the scanner
of the action engine. To this end, the scanner may provide an indication to the master processor
that the condition corresponding to a particular condition/action pair being processed is satisfied,
in response to which indication the master processor may load one or more new condition/action

pairs into the event table. Such an indication of a satisfied condition may be constituted by the

19

10

15

20

25

WO 2013/052894 PCT/US2012/059097

generation of the output itself representing an action to be taken (which output may be monitored
by the master processor), or in the form of a separate status signal or interrupt generated by the
action engine and monitored by the master processor. Additionally (or alternatively), the scanner
may provide an indication to the master processor that a full scan of the event table is complete
(e.g., after processing of the condition/action pair stored in the last memory location of the event
table), at which point the master processor may reload the event table with one or more new
condition/action pairs, or a complete new set of condition/action pairs, for processing during a

subsequent scan of the event table by the scanner.

[0046] In embodiments of a control system according to the present invention that include a
master processor and an action engine as described above, in one aspect the housekeeping and
“re-tasking” functions accomplished by the master processor facilitate a “divide and conquer”
approach to controlling a dynamic environment, as discussed earlier. In particular, in some
implementations, given some total number 7 of possible conditions for which corresponding
actions may be required in a dynamic environment, the master processor is configured (e.g.,
programmed) to select only a particular subset of the total number 7 of possible conditions, and
task the action engine at a given time to evaluate only this particular subset of conditions. As
noted above, the master processor may be programmed to make the selection of a particular
subset of conditions for evaluation by the processor based on various criteria. In one example,
the master processor selects a subset of conditions for evaluation by the action engine based at
least in part on a time period in which the subset of conditions is expected to occur in the
dynamic environment, and in consideration of the response time (e.g., longest or “worst-case”
response time) of the master processor itself in attending to its various duties (e.g., monitoring
and/or controlling functions for which the master processor itself may be tasked in the overall

context of the dynamic environment).

[0047] For example, in carrying out its own duties in the context of a given dynamic
environment, the master processor itself has a limit on its ability to receive, process, and respond
to information within a certain time period. In particular, a general purpose computer serving as

the master processor is subject to various scheduling constraints (e.g., pursuant to scheduling and

20

10

15

20

25

WO 2013/052894 PCT/US2012/059097

dispatching software) that governs the manner in which multiple processes that need to be
attended to by the processor are assigned to execute. Given the serial nature in which processes
need to be scheduled, there is necessarily some lag time, or “response time” of the master
processor, representing an amount of time between a request to initiate a given process and
providing some response pursuant to execution of that process. The response time of the master
processor typically is based at least in part on the number of such processes that need to be
scheduled in order for the master processor to attend to its required functions in the context of
the dynamic environment, as well as the complexity of the respective processes being scheduled.
In some respects, this situation is similar to that of a conventional PLC, in which the scan time or
cycle time of the PLC is based on the number and complexity of rules encoded in the PLCs
program, which places fundamental limits on the ability of the PLC to provide control signals

within a particular time frame in response to monitored conditions.

[0048] The response time of the master processor may have some nominal expected or typical
value, based at least in part on the number of respective processes that need to be scheduled and
the complexity of those processes (which in turn is dictated at least in part by the requirements of
the dynamic environment being monitored and controlled, and the complexity of control tasks at
hand). Given the variability of functions potentially performed by the master processor in a
given dynamic environment, however, there is typically a longest potential response time, or a
“worst-case” response time, to which the master processor may be subject in processing
information. If there are conditions of the dynamic environment (for which actions may be
required) that may occur within a time period that is shorter than the worst-case response time of
the master processor, the master processor itself effectively would be incapable of reliably
responding to these conditions. Accordingly, the longest potential response time or “worst-case”
response time of the master processor in the context of a given dynamic environment may serve
as one example of a criterion upon which the master processor may select a subset of conditions
for evaluation by the action engine. In this manner, the master processor essentially charges the

action engine with “paying attention” to monitoring certain conditions of the dynamic

21

10

15

20

25

WO 2013/052894 PCT/US2012/059097

environment during a time period in which the master processor effectively is incapable of doing

so itself.

[0049] Stated differently, based on at least the criterion of time scale/time frame in which
certain conditions may be expected in the dynamic environment, the master processor selects a
subset of conditions that could arise in the dynamic environment during a time period
corresponding to a worst-case response time of the master processor, and loads condition/action
pairs into the action engine for processing during that time period. During that time period, the
action engine may complete many hundreds or even thousands of scanning cycles before
identifying that a particular condition represented in the action engine’s event table is satisfied.
Once the conditions are evaluated, appropriate action taken if/as necessary, and the master
processor is again able to correspond with the action engine (i.e., within the worst-case response
time of the master processor), the master processor may load one or more new condition/action
pairs into the action engine’s event table, for evaluation during the next time period during which
the master processor may be preoccupied with other tasks (other scheduled processes). In one
aspect, the newly loaded condition/action pairs may be based at least in part on the previously
evaluated conditions and actions taken, if any. In this manner, the master processor is responsive
to an evolution of conditions in the dynamic environment, and offloads significant processing
burden to the action engine by repeatedly re-tasking the action engine to evaluate, at any given
time, only a subset of conditions that are expected to occur within a particular time period (e.g.,

corresponding to the response time of the master processor).

[0050] In the foregoing example of an action engine, it should be appreciated that in one
aspect, the combination of a dedicated memory location of the event table storing a particular
condition/action pair, when coupled to the digital logic circuitry of the scanner to evaluate the
condition (and, if satisfied, provide an output representing the action to be taken), is functionally
equivalent to a co-processor as discussed above dedicated to evaluating a single condition.
However, rather than only evaluating a single condition, the configuration of the scanner allows
the digital logic circuitry performing the evaluation to be “shared” (e.g., in a scanned or time

division multiplexed manner) amongst the respective memory locations of the event table, such

22

10

15

20

25

WO 2013/052894 PCT/US2012/059097

that the combination of the scanner and the event table of the action engine essentially
constitutes a co-processor configured to evaluate multiple conditions and take action as
appropriate. Such a component arrangement facilitates efficient and conservative use of

hardware resources.

[0051] In various aspects, the size (e.g., number of bits) of the respective memory locations in
an event table of the action engine, the total number of dedicated memory locations in the event
table, and the configuration of the scanner itself (e.g., the digital logic implemented by the
scanner) are specified so as to achieve a desired latency for control of a particular dynamic
environment, wherein the latency has a sufficiently low upper bound and/or sufficiently
predictable (and in some cases insubstantial) variation. In one particular implementation
discussed in greater detail below, an appropriately configured action engine based on an event
table and a scanner achieves a latency for the action engine on the order of 10 nanoseconds per
condition/action pair (e.g., based on a 100 MHz clock driving the logic functionality of the
scanner); accordingly, for an event table having 128 memory locations respectively storing 128
condition/action pairs, for example, an action engine latency on the order of approximately 1.28
microseconds (128 x 10 nanoseconds) may be realized. Such a latency metric is several orders
of magnitude lower than the typical latency of tens to hundreds of milliseconds observed in

conventional PLCs.

[0052] It should be appreciated that all combinations of the foregoing concepts and additional
concepts discussed in greater detail below (provided such concepts are not mutually inconsistent)
are contemplated as being part of the inventive subject matter disclosed herein. In particular, all
combinations of claimed subject matter appearing at the end of this disclosure are contemplated

as being part of the inventive subject matter disclosed herein.
BRIEF DESCRIPTION OF THE DRAWINGS

[0053] The skilled artisan will understand that the drawings primarily are for illustrative
purposes and are not intended to limit the scope of the inventive subject matter described herein.
The drawings are not necessarily to scale; in some instances, various aspects of the inventive

subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to

23

10

15

20

25

WO 2013/052894 PCT/US2012/059097

facilitate an understanding of different features. In the drawings, like reference characters

generally refer to like features (e.g., functionally similar and/or structurally similar elements).

[0054] FIG. 1 is a general illustration of the typical role of a conventional programmable logic

controller (PLC) in connection with an automated industrial process.

[0055] FIG. 2 is a generalized block diagram of the typical electrical components/circuitry
(e.g., “hardware”) constituting the conventional PLC of FIG. 1.

[0056] FIG. 3 is a block diagram that shows additional details of the internal architecture of the
conventional PLC shown in FIG. 2, particularly in connection with the processor unit, memory,

and input/output interfaces.

[0057] FIG. 4 is a block diagram illustrating a control system for monitoring and controlling a
dynamic environment, wherein the control system includes a master processor communicatively
coupled to an action engine comprising one or more co-processors, according to one embodiment

of the present invention.

[0058] FIG. 5 is a block diagram of an action engine that includes multiple co-processors that
operate in parallel to monitor, synchronize, and/or control at least one aspect of a dynamic

environment, according to one embodiment of the present invention.

[0059] FIG. 6 is a block diagram of an action engine that includes an event table and a scanner
that operate to monitor, synchronize, and/or control at least one aspect of a dynamic

environment, according to one embodiment of the present invention.

[0060] FIG. 7 is a block diagram of a scanner suitable for use in the action engine of FIG. 6,

according to one embodiment of the present invention.

[0061] FIG. 8 is a diagram that illustrates the use of chained registers in the event table of FIG.

6, according to one embodiment of the present invention.

[0062] FIG. 9 is a block diagram of an action engine that includes multiple co-processors, each

of which includes an event table and a scanner, that are configured to respond to operate in

24

10

15

20

25

WO 2013/052894 PCT/US2012/059097

parallel to control at least one aspect of a dynamic environment, according to one embodiment of

the present invention.

[0063] FIG. 10 is a block diagram of a dynamic environment in which machine vision
techniques and equipment are employed, as well as a control system according to one

embodiment of the present invention, for monitoring and controlling the dynamic environment.
DETAILED DESCRIPTION

[0064] Following below are more detailed descriptions of various concepts related to, and
embodiments of, inventive systems, methods and apparatus for monitoring and/or controlling
dynamic environments. It should be appreciated that various concepts introduced above and
discussed in greater detail below may be implemented in any of numerous ways, as the disclosed
concepts are not limited to any particular manner of implementation. Examples of specific

implementations and applications are provided primarily for illustrative purposes.

[0065] FIG. 4 is a block diagram illustrating a control system 100a for monitoring and
controlling a dynamic environment, according to one embodiment of the present invention. With
reference again to FIG. 1, in which a conventional programmable logic controller (PLC) 50 is
shown as monitoring and controlling an automated process 10, in exemplary implementations
discussed in greater detail below the control system of FIG. 4 is configured as a replacement for
the PLC 50 shown in FIG. 1. However, it should be appreciated that the control system of FIG.
4 is not limited in this respect, and various control systems according to embodiments of the
present invention, as well as constituent elements thereof, may have wide applicability for
monitoring and/or controlling a variety of dynamic environments, particularly those requiring
low latency (i.e., significantly fast response time) and/or low variability latency. One exemplary
application of control systems according to the present invention is given by a dynamic
environment in which machine vision techniques and/or equipment are employed, as discussed

in greater detail below in connection with FIG. 10.

[0066] As illustrated in FIG. 4, the control system 100a of this embodiment includes a master

processor 190 (also referred to as a “housekeeping CPU”) that is communicatively coupled to an

25

10

15

20

25

WO 2013/052894 PCT/US2012/059097

action engine 110a. The action engine 110a may comprise one or more responsive co-processors
(respectively indicated in FIG. 4 as co-processors 120a-1 and 120a-2; collectively indicated as
co-processors 120a). Each co-processor 120a includes an input interface 158a and an output
interface 160a that are coupled to co-processor logic (indicated respectively as controllers 130a-1
and 130a-2; collectively controllers 130a). Exemplary input interfaces 158a output interfaces
160a may include, but are not limited to RS232 interfaces, Ethernet interfaces, universal serial
bus (USB), and/or any other suitable parallel or serial communications interfaces. Each co-
processor controller 130a is communicatively coupled to a dedicated memory (indicated
respectively as memory 140a-1 and 140a-2; collectively memory 140a) that stores one or more
conditions (indicated respectively as conditions 142a-1 and 142a-2; collectively conditions 142a)
and at least one predetermined action (indicated respectively as action 144a-1 and 144a-2;
collectively actions 144a) corresponding to the condition 142a stored in the same memory 140a.
Although the action engine 110a shown in FIG. 4 includes only two co-processors 120a, it
should be appreciated that action engines according to other embodiments are not limited in this

respect, and may include only one co-processor or more than two co-processors.

[0067] In one aspect of the control system 100a shown in FIG. 4, the control system 100a
monitors, controls, and/or synchronizes a dynamic environment by using the action engine 110a
to evaluate conditions that occur on relatively fast time scales and by using the housekeeping
CPU 190 to evaluate conditions that occur on relatively slower time scales. More generally, as
discussed above, in some embodiments the housekeeping CPU 190 essentially tasks the action
engine with “paying attention” to monitoring certain conditions of the dynamic environment
during a time period in which the housekeeping CPU 190 effectively is incapable of doing so
itself. In one aspect, the time period during which the action engine 110a is particularly tasked
with monitoring certain conditions (and taking action in response to same if necessary) is based
at least in part on a “response time” (also referred to as “latency”) of the housekeeping CPU 190
(which response time results from limits placed on the housekeeping CPU’s ability to process
information given the number of different tasks or processes that the housekeeping CPU itself

needs to attend to). In some examples discussed below, the time period during which the

26

10

15

20

25

WO 2013/052894 PCT/US2012/059097

housekeeping CPU delegates certain monitoring and control tasks to the action engine is based
on a longest or worst-case response time of the housekeeping CPU that may be expected in the

context of the particular dynamic environment being controlled.

[0068] In view of the foregoing, in one exemplary implementation of the control system shown
in FIG. 4, the action engine 110a screens for fast-occurring events by evaluating input signals 66
representing the dynamic environment against conditions 142a that benefit from reflexive
responses, i.¢., responses executed faster than the latency of the housekeeping CPU 190.
Exemplary input signals 66 include, but are not limited to: discrete inputs, such as digital values
(bits), analog values, or digital representations of analog inputs; real-time versions of discrete
inputs; latched versions of discrete inputs; derived versions of discrete inputs, such as counter
values that are derived from a pair of counters clocked in quadrature; and decoded contents of
messages (¢.g., packets) received from one or more communication ports. The input signals 66
may represent a single parameter (e.g., temperature, pressure, position) constituting a condition
of the dynamic environment or a collection of such parameters constituting a condition of the

dynamic environment.

[0069] To achieve this reflexive behavior, the controller 130a of each co-processor 120a in the
action engine 110a compares the input signals 110a to a particular condition 142a (or set of
conditions 142a). Unlike a general-purpose processor, each co-processor 120a evaluates only the
particular condition 142a (or set of conditions 142a) stored in its memory, which enables the co-
processor 120a to operate with low (and predictable) latency. If the controller 130a determines
that the input signals 66 match the particular condition 142a, the controller 130a executes the
corresponding action 144a. For example, execution of a corresponding action 144a may include
transmitting one or more output signals 68 to other devices and/or systems. Alternatively, the
action 144a may include forwarding an interrupt to the housekeeping CPU 190 to implement the

reésponsc.

[0070] At the same time, the housekeeping CPU 190 monitors the evolution of the dynamic
environment through analysis of the input signals 66 and output signals 68. In certain

circumstances (e.g., for slow evolutions of the dynamic environment), the housekeeping CPU

27

10

15

20

25

WO 2013/052894 PCT/US2012/059097

190 may respond directly to particular input signals 66 by transmitting its own output signals. In
other circumstances, the housekeeping CPU 190 responds indirectly to evolutions of the dynamic
environment by re-tasking the co-processors 120a, ¢.g., by updating and/or replacing some or all
of the conditions 142a and/or (predetermined) actions 144a stored in the memories 140a. If the
dynamic environment is an assembly line, for instance, the housekeeping CPU 190 may re-task
co-processors 120a originally dedicated to tracking a first part to instead tracking a second part

once the first part has moved off the assembly line.

[0071] Dividing responsibility between the housekeeping CPU 190 and the action engine 110a
allows the housekeeping CPU 190 to place the processing burden for the subset of events (e.g.,
fast-occurring events likely to occur given a particular evolution of the dynamic environment)
represented by conditions 142a on the action engine 110a. At the same time, the housekeeping
CPU 190 may continue to process conditions associated with slower evolutions of the dynamic
environment. This divide-and-conquer approach may reduce the overall latency and/or jitter
(latency variation) of the system’s response to events represented by the input signals 66. In
some cases, shifting the processing burden for fast-occurring events may also make the latency

of the entire control system 100a substantially a function of co-processor latency.
[0072] Action Engines with Comparator Logic

[0073] FIG. 5 shows another illustrative action engine 110b for monitoring, synchronizing,
and/or controlling at least one aspect of a dynamic environment. Examples of such environments
with which the system shown in FIG. 5, and particularly the action engine 110b, may be
employed include, but are not limited to, an assembly line, inspection line, autonomous or semi-
autonomous vehicle (or vehicle convoy), power management system (e.g., a smart grid),
warchouse, industrial space, parking facility, airport, shipping port, surveillance system,
amusement ride, and/or communications network. For instance, the action engine 110b may be

used for machine control and/or image triggering.

[0074] The action engine 110b includes multiple co-processors (respectively indicated in FIG.
5 as co-processors 120b-1 through 120b-n; collectively indicated as co-processors 120b). Each

co-processor 120b is a special-purpose computer processor that executes a limited number of

28

10

15

20

25

WO 2013/052894 PCT/US2012/059097

operations at high speed, i.¢., speeds higher than can be achieved executing the same operations
with a general-purpose computer or CPU, e.g., housekeeping CPU 190. Illustrative co-processors
120b may be implemented in FPGAs, ASICs, and/or any other suitable implementation known in

the art.

[0075] Each co-processor 120b in the action engine 110b includes a respective input port
(respectively indicated in FIG. 5 as input ports 158b-1 through 158b-n; collectively indicated as
input ports 158) coupled to an input bus 102 that is operably coupled to receive data from
sensors, actuators, receive queues (e.g., Ethernet receive queues), and other sources of
information about the dynamic environment. Although FIG. 5 depicts # entries, those of skill in
the art will readily appreciate that exemplary action engines may have any number of co-

processors 120b, e.g., 1,2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024 co-processors 120b.

[0076] Each co-processor 120b also includes a respective register (respectively indicated in
FIG. 5 as registers 140b-1 through 140b-n; collectively indicated as registers 140b) that stores
representations of one or more states or conditions (respectively conditions 142b-1 through
142b-n; collectively conditions 142b) and representations of one or more actions (respectively
actions 144b-1 through 144b-n; collectively conditions 144b) to be executed by the co-processor
120b as described below. Each condition 142b may be independent of (and possibly overlap
with) the other conditions 142b in the action engines registers 140b. A condition 142b may also
be contingent upon satisfaction of one or more other conditions 142b in the action engine 110b—
for example, they may be logically “ANDed” together into supersets as described in greater

detail below.

[0077] The registers 140b can be implemented in any suitable type of memory, including but
not limited to computer readable storage media such as a volatile or nonvolatile computer
memory, flash memories, compact discs, optical discs, magnetic tapes, one or more floppy discs,
circuit configurations in FPGAs or other semiconductor devices, or other non-transitory media or
tangible computer storage media. Each register 1400 is dedicated to its respective co-processor
120Db; that is, the co-processors 120b do not share memories. Dedicating a register 140b to each

co-processor helps reduce or eliminate contention issues.

29

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0078] Each co-processor 1200 also includes a comparator (respectively comparator 130b-1
through 130b-n; collectively comparators 130b) or other logic element(s) that compare input
signals 66 received via the input bus 102 and input port 158 to the conditions 142b. Because all
the co-processors 120b have their own comparators 130b and receive the inputs 101
simultaneously via the input bus 101, the co-processors 120b can compare the inputs 101 to their
respective conditions 142b simultancously. As a result, the number of co-processors 120b in the

action engine 110b does not affect the speed with which the comparisons are performed.

[0079] If the input signals 66 match the conditions 142b, the comparator 130b emits an output
(respectively outputs 132-1 through 132-n; collectively, outputs 132) indicative of the match. It
is possible for one, more than one, or none of the co-processors 120b to include conditions 142b
that match the input signals 66. Each co-processor 120b may couple its output 132 to an output
bus 103 via an output port (respectively output ports 160b-1 through 160b-n; collectively output
ports 160b).

[0080] Each co-processor 120b also executes the action 144b stored in its respective register
140b upon detection of inputs 101 that match its respective conditions 142b. The action 144b are
coupled to a logic element (respectively, logic elements 134-1 through 134-n; collectively, logic
clements 134) controlled by the output 132 of the comparator 130b. When the logic element 134
receives an output 132 indicative of a match between the inputs 101 and the conditions 142b, the
logic element 134 executes the action represented by the action 144b. In some cases, the logic
clement 134 may transmit additional information or instructions, shown here as output signals
68, to other devices, such as sensors, actuators, and other devices associated with the dynamic
environment, via the output port 160b and output bus 104. Illustrative output signals 68 include,
but are not limited to: discrete outputs, such as digital values, analog values, and/or digital
representations of analog values; latched versions of discrete outputs; and/or output data and
machine operation commands encoded in message packages sent via one or more
communication ports (e.g., output port 160b). In other cases, the action 144b may be a “no-op”

instructions in which the co-processor 120b does not perform any action.

30

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0081] The action engine 110b is also coupled to a housekeeping CPU 190 via the input bus
102, output bus 104, and additional connections to the registers 140b. (In other embodiments,
one or more registers 140b in the action engine 110b may be operably coupled to the
housekeeping CPU 190 via input ports 158 and input bus 102.) The housekeeping CPU 190
performs general housekeeping task and loads and maintains the conditions 142b and/or action
144b in the co-processor registers 140b. For example, the housekeeping CPU 190 may replace or
update condition/action pairs in one or more co-processors 120b in response to the action
engine’s identification of a particular state of the dynamic environment, indications that op-codes
are out of date, instructions from the action engine, instructions from users and/or other devices,
etc. Since the action engine 110b can respond “directly” to inputs from the dynamic environment
without necessarily requiring resources from the housekeeping CPU 190, the housekeeping CPU
190 therefore remains substantially free of any processing burden in connection with responding
to successive input states (i.c., the housekeeping CPU 190 remains substantially “unloaded”);
accordingly, the housekeeping CPU 190 is available when needed to perform tests and actions
that may not be possible or practical for the action engine 110b to perform itself. In addition, the
housekeeping CPU 190 is not in a critical path for responding to evolutions of the dynamic

environment, so it does not delay the action engine’s response.
[0082] Action Engines with Event Tables and Scanners

[0083] FIG. 6 shows a system configuration of various components, including an illustrative
action engine 110c for monitoring, synchronizing, and/or controlling at least one aspect of a
dynamic environment. Examples of such environments with which the system shown in FIG. 6,
and particularly the action engine 110c, may be employed include, but are not limited to, an
assembly line, inspection line, autonomous or semi-autonomous vehicle (or vehicle convoy),
power management system (e.g., a smart grid), warchouse, industrial space, parking facility,
airport, shipping port, surveillance system, amusement ride, and/or communications network.

For instance, the action engine 110c may be used for machine control and/or image triggering.

[0084] The action engine 110c includes an event table 112, which in turn includes event table

registers (collectively, event table registers 140c; respectively registers 140c-1 through 140c¢-5),

31

10

15

20

25

WO 2013/052894 PCT/US2012/059097

cach of which stores a representation of one or more conditions (collectively indicated in FIG. 6
as conditions 142c; respectively indicated in FIG. 8§ as conditions 142¢-1 through 142¢-5). Each
event table register 140c also stores a representation of one or more actions corresponding to the
condition(s) stored in the register 140c (collectively indicated in FIG. 6 as instructions 144c;
respectively indicated in FIG. 8 as instructions 144c-1 through 144c¢-5). The event table 112 and
event table registers 140c can be implemented in any suitable type of memory, including but not
limited to computer readable storage media such as a volatile or nonvolatile computer memory,
flash memories, compact discs, optical discs, magnetic tapes, one or more floppy discs, circuit
configurations in field programmable gate arrays or other semiconductor devices, or other non-

transitory media or tangible computer storage media.

[0085] Each event table register 140c¢ stores an independent condition 142¢. Taken together,
the event table registers 140c can store conditions 142¢ representing every possible state of the
dynamic environment that can be measured by one or sensors 40 coupled to the input bus 110. In
many cases, however, the event table registers 140c may hold a reprogrammable subset of
conditions 142c¢, e.g., only those conditions 142¢ that benefit from actions 144¢ executed more
quickly than the latency of the housekeeping CPU 190. In some cases, the conditions 142¢ may
overlap; for instance, condition 142¢-1 may include temperature and pressure thresholds, and
condition 142¢-2 may include temperature and position thresholds. Although FIG. 6 shows only
five event table registers 140c¢ for purposes of illustration, it should be appreciated that, in other
embodiments, an event table 112 may have more or fewer registers 140c, ¢.g., tens, hundreds, or
even thousands of entries. In general, virtually any number of conditions 142¢ germane to a
particular environment, pursuant to which some response/reaction may be required, may be

represented in an event table 112 as an event table register 140c.

[0086] In addition to representations of conditions 142¢, each event table register 140c also
includes representations of one or more actions 144c¢ to be carried out if the state input matches
the condition(s) 144c. Accordingly, if a scanner 130c of the action engine 110c determines that
the input signals 66 match a given condition 142c¢ stored in an event table register 140c, the

scanner 130c accesses the corresponding action(s) 144c¢ stored in the event table register 140c,

32

10

15

20

25

WO 2013/052894 PCT/US2012/059097

and executes the action(s) 144c so as to control one or more aspects of the dynamic environment.
To this end, the action engine 110c also includes an input port 158¢, an output port 160c, and/or
one or more other communication interfaces (e.g., input/output buses, Ethernet ports) to
communicate instructions accessed in the event table to one or more external devices, as well as
receive the state input, as well as other information relevant to the dynamic environment, from

one or more sources of such information.

[0087] As shown in FIG. 6, the action engine 110c¢ further comprises a scanner 130c. The input
port 158c that provides a connection from the event table 112 and scanner 130c to an input bus
102. FIG. 6 also illustrates that the input bus 102 of the action engine 110c is coupled to a
variety of external devices, including (but not limited to) a CPU 190, as well as a semaphore
register 150, a counter 42, one or more sensors 40, and a communications interface in the form of
a receive queue 44 (e.g., an Ethernet receive queue). The scanner 130c, which is also connected
to the input bus 102, includes digital logic (not shown in FIG. 6) that compares the set of
conditions 142¢ in each event table register 140c to input signals 66 coupled to the input bus 102
from the housekeeping CPU 190, the counter 42, the sensor(s) 40, the receive queue 44, and/or
any other suitable data source. In some cases, the input signals 66 may include data derived from
the dynamic environment by one or more embedded application systems, such as a processor that
evaluates image data from a camera, position information from a robotic controller, and/or flow
information from a mixer or flow control system in a continuous process chemical reactor. In
some implementations, pre-conditioning or pre-processing raw data may reduce the number of
bits required to represent the data, which in turn makes it possible to reduce the size of the

registers 140c.

[0088] FIG. 7 is a block diagram that shows one possible embodiment of the scanner 130c¢ in
greater detail. The scanner 130c¢ includes comparator logic 131 that is coupled to action logic
132, sequencing logic 133, and one or more flag registers 135. Input signals 66, including but
not limited to counter 42 value(s), sensor 40 value(s), state change inputs, and flag states, are

evaluated by the comparator logic 131 with respect to the data representing conditions 142¢ from

33

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the event table 112 to determine if the conditions 142¢ are met. This “condition met” status is

passed to the action logic 132.

[0089] Referring again to FIG. 7, the scanner 130c also includes action logic 132 that receives
the “condition met” status from the comparator logic 131 along with data representing
instructions 144c¢ from the event table 112. The action logic 132 is also coupled to one or more
flag registers 135, semaphore registers 150 (FIG. 6), output registers 136, communication logic
(not shown), counters, and data input circuitry. Depending on the state of the “condition met”
status and the data representing instructions 144c, the action logic 132 may perform operations
affecting the state of the flag registers 135, semaphore registers 150, output registers 136 coupled
to an output port 160b, communication logic 34, counters, and data input circuitry, as delineated
in more detail below. In addition, the action logic 132 is coupled to event table write arbitration
logic 134, which facilitates the changing of conditions 142¢ and/or instructions 144c in the event
table 112, when, for example, an action has been executed and further evaluations of the

condition/action pair are to be inhibited.

[0090] The sequencing logic 133 in the scanner 130c (FIG. 7) synchronizes the activities of the
comparator logic 131, the action logic 132, and the event table 112 (FIG. 6). It provides the read
address to the event table 112, which determines which register 140c in the event table 112 is to
be evaluated. The sequencing logic 133 also provides the write address to the event table write
arbitration logic 134 when the action engine 110c determines that conditions 142¢ and/or
instructions 144c in the event table 112 are to be modified. The event table write arbitration
logic 134 receives inputs from the housekeeping CPU 190 as well as from other logic within the
scanner 130c to govern write activity to the event table 112. When contention arises between
write operations from the CPU 190 and write operations from other logic within the scanner
130c, priority may be given to the logic within the scanner 130¢ so that the scanner operation can
continue uninterrupted. In this case of contention, a wait signal is asserted to the housekeeping
CPU 190 so that the CPU write operation is suspended until the event table write arbitration
logic 134 determines that the event table 112 is available to accept the write data from the CPU

34

10

15

20

25

WO 2013/052894 PCT/US2012/059097

190. In one embodiment of the scanner 130c, the sequencing logic 133 causes a new

condition/action pair to be evaluated on every cycle of the master clock (not shown).

[0091] In various aspects, the scanner 130c and event table 112 may be implemented in a
single co-processor, ¢.g., in an FPGA using a working hardware description language (HDL)
code. The scanner 130c may also be implemented as a unitary digital logic structure coupled to
the one or more storage media in which the event table is stored. Alternatively, the scanner 130c
may be implemented as multiple distributed logic components communicatively coupled to the
event table. For example, in one embodiment, the scanner 130c may be implemented as multiple
digital logic components respectively dedicated to one event table register 140c, such that there
is a one-to-one correspondence between an event table entry and dedicated digital logic to
compare input signals to one or more conditions in a given event table register and access one or
more corresponding instructions as appropriate. In yet other embodiments, digital logic
components constituting a portion of the scanner may be dedicated or assigned to particular
groups of multiple event table registers. Accordingly, it should be appreciated that the scanner
of the action engine, and the digital logic circuits constituting the scanner, may be implemented

in any of numerous ways according to various embodiments of the present invention.

[0092] In one exemplary implementation, the scanner of the action engine compares the state
input substantially simultaneously (e.g., in parallel) to multiple sets of conditions in the event
table so that appropriate instructions for responding/reacting to the state input may be accessed
(and in turn communicated to one or more external devices) with appreciably high speeds. Asa
result, the action engine exhibits a significantly low latency with respect to processing
information relating to respective states of the dynamic environment and taking actions in

response to same.

[0093] For instance, the scanner 130c may be implemented as a state machine that processes a
single register 140c every two clock cycles. During the first clock cycle, the scanner 130c¢ reads
the condition 142c¢. The scanner 130c performs the corresponding action 144c¢ during the second
clock cycle if the condition 142¢ is met. The second clock cycle may involve a write back to the

action 144c¢ in the event table 112 to indicate that the appropriate operation has been completed

35

10

15

20

25

WO 2013/052894 PCT/US2012/059097

for the next scan. Implementations that involve especially complex conditions and/or a large
number of input states may use more than two clock cycles to process a single register. In
scanners 130c that use multi-cycle executions, a dual ported memory having concurrent read and
write cycles can be implemented, where the write cycle writes back the register 140¢ processed
during a previous read cycle. State machine pipeline registers (as described below) in
conjunction with the concurrent read and write cycles of the dual port memory will allow a new

register to be processed every cycle, significantly reducing latency.

[0094] Referring again to FIG. 6, it should be appreciated that a set of one or more input
signals 66, provided on the input bus 102 of the action engine 110c¢, may be obtained from a
variety of sources coupled to the input bus 102 (e.g., the housekeeping CPU 190, the counter(s)
42, the sensor(s) 40, etc.) and may be provided by a single source at a given time or multiple
sources at a given time. Such a set of one or more input signals 66 may, at least in part, represent
the dynamic environment at a given point in time, and these input signals 66 may be compared
(e.g., by the scanner 130c) to each of the sets of conditions 142¢ stored in respective event table

registers 140c.

[0095] The input signals 66 are evaluated constantly to detect a change of state (rising or
falling edge). At the beginning of each scan of the event table 112, any input state changes
discovered during the previous scan are presented as latched inputs (not shown) to the scanner
logic. This means that any signals that pass through the input filters will be detected, no matter
how short their duration. Hence any change of state for any input signal can be presented to the

scanner logic, even if their duration of the state change is shorter than the duration of a scan.

[0096] In one exemplary implementation of the action engine 110¢ shown in FIG. 6, if the set
of input signals 66 provided on the input bus 102 matches the condition(s) 142¢ for a particular
event table register 140c, the scanner 130c executes the corresponding action 144¢ from that
event table register 140c. In some cases, these actions 144c may include acquiring or releasing a
semaphore, or setting or clearing a flag coupled to the scanner 130c, which uses the semaphore
or flag to evaluate conditions 142¢ as described in greater detail below. The scanner 130c in turn

transmits output signals 68 corresponding to a matched set of conditions to the dynamic

36

10

15

20

25

WO 2013/052894 PCT/US2012/059097

environment, the housekeeping CPU 190, and a transmit queue 34 (e.g., an Ethernet transmit

queue) via an output bus 104.

[0097] Alternatively, or in addition, the scanner 130c may be operably coupled to various
peripherals. For example, the scanner 130c may reset or latch counters, latch input registers, set
or clear output registers, or load entries into the transmit queue 34. In the case of multiple
scanners, various ways of handling contention may be employed. For instance,
reset/latch/set/clear input contention can be handled by OR gates. The transmit queue 34 may be
dedicated to the scanner 130c and have its own circuit process for managing data. The scanner
130c may alternatively share the transmit queue 34 (possibly with other scanners 130c), and the

circuit process may manage ownership of the queue 34.

[0098] In some cases, the actions 144c¢ are executed to one or more devices external to the
action engine 110c (e.g., via one or more communication interfaces of the action engine) as a
data packet (e.g., as employed in various packet-mode computer networks, such as TCP/IP
packets). In implementations in which data packets are employed to transmit instructions
relating to actions 144c, in some embodiments the contents of such packets may include not only
the instructions themselves, but additional data (e.g., metadata) that relates in some manner to the
instructions, the set of conditions corresponding to the instructions, and/or one or more other
aspects of the dynamic environment. The additional data may include, but is not limited to,
address information (e.g., an Ethernet media access control (MAC) address header) and/or
payload buffers, which may be filled in by the housekeeping CPU 190 in a location referenced

by an index stored in the event table register 140c.

[0099] In some implementations, the action engine 110c selects or generates such data for
inclusion in a packet payload (e.g., based on monitoring various information sources coupled to
the input bus 102, and/or based on various information that may be stored in memory in addition
to the event table 112). For example, when a given condition 142c¢ is satisfied, the scanner 130c
may select a corresponding payload buffer based on an index stored in the corresponding register
140c, then copy corresponding payload buffer to the transmit queue 34. In other cases, the data

may include the number of a part being tracked through an assembly or inspection line.

37

10

15

20

25

WO 2013/052894 PCT/US2012/059097

Alternatively, the data may include information about one or more data sources (e.g., the location
and/or orientation of a camera serving as a sensor 40 and providing image information for
evaluation) and/or the data may be associated with and/or represent some aspect of the state

input itself (that is compared to sets of conditions stored in the event table).
[0100] Master Processor (“Housekeeping CPU”) — Programming and Operation

[0101] In embodiments of a system configuration employing the action engine 110c and
various other components, such as shown in FIG. 6, the housckeeping CPU 190 loads and
maintains the conditions 142¢ and instructions 144c¢ in the event table 112. In some cases, the
housekeeping CPU 190 may replace some or all of the conditions 142¢ and the instructions 144c¢
in the event table 112 in response to an evolution of the dynamic environment (i.e., changing
conditions as a function of time). Since the action engine 110¢ can respond “directly” (e.g.,
autonomously, without intervention of the CPU 190) to input signals representing conditions of
the dynamic environment without necessarily requiring resources from the housekeeping CPU
190 (e.g., during time periods in which the action engine is commissioned to evaluate particular
conditions), the housekeeping CPU 190 therefore remains substantially free of any processing
burden in connection with evaluating these particular conditions; accordingly, the housekeeping
CPU 190 is available to attend to other processes (e.g., perform tests and actions that may not be

possible or practical for the action engine 110c to perform itself).

[0102] With respect to commissioning the action engine 110c to evaluate particular conditions
during a given time period (or more generally, tasking one or more co-processors with evaluating
one or more conditions), in one embodiment the housekeeping CPU 190 is configured to allocate
tasks to co-processors by segregating application-specific machine coordination algorithms into
distinct (e.g., orthogonal) procedural steps distinguished by their being conditional on the
passage of time (e.g., either a known period of time, or an unknown period of time that may
occur given its being conditional on a collection of future external inputs or a particular sequence
of monitored conditions). To this end, and with reference again to FIG. 6, the housekeeping
CPU or master processor 190 includes one or more communication interfaces 192 and/or one or

more input/output (I/O) ports for receiving input signals 66 representing conditions of the

38

10

15

20

25

WO 2013/052894 PCT/US2012/059097

dynamic environment (as a function of time), as well as one or more processing units 194 and
memory 196 to store processor-executable instructions, and various program data as necessary,
for the processing unit(s) 194 to implement orthogonal procedural steps for controlling an action

engine (or more generally one or more co-processors according to various embodiments).

[0103] Procedural steps as disclosed herein can be executed independently of each other (e.g.,
by the processing unit(s) 194 of the master processor 190) completely in parallel and in any order
as their conditions are met (e.g., particular conditions are evaluated by either the master
processor 190 or the action engine 110c to initiate a given procedural step). Each procedural step
may include one or more of the following: 1) starting one or more processes, or instances of one
or more processes; 2) stopping one or more processes, or instances of one or more processes; 3)
performing one or more mathematical transformations; 4) presenting one or more outputs; 5)
transmitting one or more messages, €.g., between the housekeeping processor 190 and one or
more action engines 110c¢, between action engines 110c, to devices in the dynamic environment,
and any other specified destinations; 6) acquiring or releasing binary semaphores to allow
multiple processes to guarantee mutual exclusion from desired sections of program code; 7)
latching the state of peripherals, such as the inputs and counters; and 8) setting or clearing “flag”
variables for inter-process synchronization and communication. (Flag variables may be Boolean
variables that are implemented by register peripherals that the event-table scanners have access

to as opposed to variables stored in the master processor’s memory.)

[0104] In one embodiment of the present invention, computer-implementable instructions (e.g.,
written in the SCORE™ programming language) encoded on non-volatile, non-transitory
computer-readable media accessible by the master processor 190 describe machine coordination
tasks specific to each real world application (e.g., generation of output signals from one or more
co-processors/an action engine to ultimately control various equipment in the dynamic
environment). These instructions cause the master processor 190 to implement one or more
processes, or state machines, possibly using one or more action engines 110c and/or one or more
co-processors. Each process may also be implemented multiple times by the same system, either

in parallel, in sequence, or both. Concurrently executed copies of a given process are known as

39

10

15

20

25

WO 2013/052894 PCT/US2012/059097

“instances” of the process, with each instance executed by a different slot 140 or set of slots in

the action engine 110c or different co-processor.

[0105] Each process can be considered as a state machine, with each state in the state machine
corresponding to a particular condition of the dynamic environment. The processes (state
machines) include one-shot processes, which are executed once, and continuous processes,
which are performed (e.g., repetitively) without interruption. Both one-shot and continuous
processes may be halted or terminated before finishing, e.g., in response to a command from the
master processor 190 or other source or upon reaching a predetermined point in the sequence of

computer-implementable instructions.

[0106] Each state machine includes one or more states, each of which may be implemented as
a “wait” statement, executed by an action engine/co-processor, during which the action
engine/co-processor monitors the dynamic environment for the occurrence of the particular
condition. In one significant aspect, the computer-implementable instructions include a particular
definition of a “wait” statement, having as arguments one or more conditions of the dynamic
environment that, when satisfied, trigger execution of one or more actions and a notification of
the master processor that the condition has been met. The “wait” statement essentially specifies
that one or more actions will be executed when one or more real world conditions are met. The
housekeeping processor 190 may off-load wait statement conditions and associated actions that
are compatible with the action engine’s operations to the action engine. Pursuant to the
programming language once compiled to be executed by the processing unit(s) 194 and the
master processor 190, blocks of instructions between wait statements are executed by the action
engine/co-processor and/or the master processor 190 until the next wait statement. For example,
an action engine may execute one or more actions directly following a wait statement provided

that those actions are compatible with the action opcodes of the co-processor.

[0107] In at least one implementation, a wait statement causes the progress of a process to
pause until the condition clause is satisfied. This enables the master processor 190 to schedule
processes by querying the current wait statement condition of each process and continuing a

process when its condition is satisfied. Wait statements can have the format “wait for <Boolean-

40

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

expression>,” where <Boolean-expression> represents a condition of the dynamic environment.
Subroutine calls may be made as desired to evaluate the condition of the statement. For instance,
the condition may involve evaluation of a Boolean counter condition. Counter variables can
accessed by name, optionally preceding the counter name with the keyword counter. Counter
comparisons can be made from an initial value, such as a belt position when a part detect signal
is generated. Automatically declared counter time can also be used to compare durations
precisely (e.g., with microsecond precision). Some examples include (hash marks “#” indicate
comments):

wait for total > 2;

wait for canContinue(); # the subroutine canContinue returns a Boolean

wait for computeTotal() > 99

wait for counter position »>= 100 from detectLocation

wait for time >= 100us from detectTime; # includes “from” keyword

wait for flagA and flagB or booleanC

The “from” keyword removes the need for the developer to worry about counter roll-over for

applications where a counter reset is not desirable.

[0108] A wait statement may also be used to wait for a particular time period to elapse by
using the argument <duration-expression>: “wait for <duration-expression>.” This time period
may be expressed as an absolute value, such as a time in milliseconds; a relative period, such as a
time period required by another process; or a time expressed as a variable. If the expression
involves calling subroutines or evaluating variable values, those variable values are evaluated
only when the wait statement is processed the first time. Some examples include:

wait for I1ms;

wait for pauseDuration; # where the variable is type timespan

wailt for computewWaitTime(); # will call the subroutine once

[0109] A wait statement may also be used to wait for a rising or falling edge of a particular
input: “wait for <edge> of input <input>.” The input given can be either the input index or the

named input which would be previously declared. Multiple inputs can be given with an edge on

41

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

any one of them satisfying the condition. Named and indexed inputs can be mixed in the OR’d
list of inputs. Multiple inputs can be separated by either the OR keyword or a comma. Input
indexes start at 0. Some examples include:

wait for rising edge of input 0

wait for falling edge of inputs PartDetect, DisableSwitch

wait for rising edge of input 1,2,3 or 4 or DisableSwitch

[0110] A wait statement may also be used to wait for one or more inputs to change to a desired
state (c.g., a set state or a cleared state): “wait for <state> input(s) <input-list>.” The “AND”
keyword may be used to indicate all inputs are required to be in the desired state to satisfy the
condition. Similarly, the “OR” keyword may indicate that the condition is satisfied if any of the
inputs reaches the desired state. Some examples include:

wait for set input 3

wait for set input 3, 12 and Enable

wailt for set inputs 3 and 12 and Enable

wait for clear inputs inProgress or Abort

[0111] A wait statement can be used to wait for one or more flags to be set or cleared: “wait for
<state> flag(s) <flag-list>.” This is analogous to waiting one or more inputs to be set or cleared
as above. Multiple flags can be given and the “flag” keyword can be used in the plural form for
readability. Flags are indicated by a declared flag variable. Some examples include:

wait for set flag gohhead;

wait for set flags doneA, doneB and doneC

wait for set flag finished set or finished clear

wait for cleared flag available[i]

[0112] A wait statement can be used to wait for one or more trigger ladder to fire: “wait for
trigger ladder <integer-expression>.” A trigger ladder may be specified by its index., with trigger

ladder indexes starting at 0. Examples include:

wait for trigger ladder 1

42

10

15

20

25

WO 2013/052894 PCT/US2012/059097

wait for trigger ladders 1 or 3

wait for trigger ladders 0, 1, 2 or 3

[0113] Other types of wait statements include, but are not limited to:

Waiting for a quadrature encoder counter to decrease: “wait for decreasing counter
<counter>.” This may be used with another condition, such as a rising edge of a part

detection input;

Waiting a for quadrature encoder counter to increase: “wait for increasing counter
<counter>". This may also be used with another condition, such as a rising edge of a part

detection input;

Waiting for a previous send statement in the same process to complete transmission “wait for
send (sender) to finish”. For example, it may be used to wait for an Ethernet SureSync™
event transmission to finish before the process modifies the payload so as to avoid corrupting

the payload for the transmission in progress;

Waiting for messages to arrive at an event packet receiver ports in the co-processor or action
engine: “wait for message.” The device IDs of the sending devices may be either stored in
the power on configuration or configured at runtime by a host computer. If the event sender
is relevant, the wait statement can be followed by an “if—else if” statement that switches on
the message port value. In certain embodiments, a process that waits for a message will not
wait for anything else. This enables the process to either run continuously or wait for a
message, which in turn enables the scheduler to give a received message to the process. If the
scheduler reads a message from a receiver peripheral and there is no process waiting for a

message, however, the message may be discarded.

[0114] Multiple conditions can be combined together so that all must be satisfied at the same
time before the wait statement is completed. This can done by combining the “for” clauses in the

wait statement with the “AND” keyword. Examples include:

wait for set flag goAhead and for set input Enabled;

wailt for set input Enabled and for counter ticker > 100;

43

10

15

20

25

WO 2013/052894 PCT/US2012/059097

In some instances, the action engine/co-processor may not execute a wait statement until all
outstanding message sends have been completed. For communication with a 1x1 device, which
may have a high latency in performing a message acknowledgement/no acknowledgement
handshake, this can result in delays of over a millisecond. If this is not desirable, a separate one-

shot process may be used to send the message, removing this latency from the main process.

[0115] In general, the master processor 190 delegates as many conditions as possible to the
action engine(s) 110c and/or co-processors. Typically, the master processor 190 assigns one
condition to each slot 140 in the event table 112 of the action engine 110¢ and/or to each co-
processor. It may assign the conditions to the respective slots 140 and/or co-processors based on
the initial compiling of the instructions, a desired latency, the capabilities of the action engine
110c and the co-processors, the conditions themselves, and/or its own capabilities. For instance,
the master processor 190 may determine a first subset of conditions for evaluation by a particular
co-processor based on at least one of: a time period in which the first subset of the plurality of
conditions is expected to occur in the dynamic environment; a particular sequence in which the
plurality of conditions is expected to occur in the dynamic environment; at least one previous
action taken in the dynamic environment; a present state of the dynamic environment; a response
time of the master processor; and at least one attribute of the at least one co-processor (e.g.,
functioning status, processing speed, memory size, input signal number, input signal type, output
signal number, and output signal type). In some examples, the co-processor is configured to
evaluate a number of conditions that is smaller than some fixed maximum number of conditions,
which may be based at least in part on a maximum permissible latency defined by a required

response time in the dynamic environment

[0116] The master processor may also re-assign conditions dynamically, ¢.g., in response to the
evolution of the dynamic environment, new instructions, and/or previously stored instructions.
By delegating conditions to the action engine(s) 110c and/or co-processors, the master processor
190 can perform other processing tasks instead of monitoring the conditions in a serial fashion.
For example, the master processor may configure a given co-processor at a first time to evaluate

only first subset of conditions and to provide control information representing the first action in a

44

10

15

20

25

WO 2013/052894 PCT/US2012/059097

plurality of actions if the first subset of conditions is satisfied. Later, at a second time, the master
processor reconfigures the co-processor to evaluate only a second subset of conditions and to
provide additional control information representing another action if the second subset is of
conditions is satisfied. In some cases, the master processor may determine the second subset of
conditions based at least in part on whether or not the first subset of conditions is satisfied. In at
least one of these cases, the master processor determines the second subset of conditions based
on at least one of: a time period in which the second subset of conditions is expected to occur in
the dynamic environment; a particular sequence in which the conditions is expected to occur in
the dynamic environment; a present state of the dynamic environment; at least one previous
action taken in the dynamic environment; and the master processor’s response time. The master
processor may determine the second subset of conditions based on at least one of the co-
processor’s attributes, which include but are not limited to: the co-processor’s functioning status
(e.g., idle, active, etc.); a first number of the input signal processed by the co-processor; a first
type of the input signal processed by the co-processor; a second number of the output signal
processed by the co-processor; and a second type of the output signal processed by the co-

Processor.

[0117] In one aspect, the master processor 190 determines how to delegate conditions (and
possibly actions as well) according to compiled computer-implementable instructions from an
optimizing compiler (not shown). As understood by those of skill in the art, the compiler
transforms the user-written source code (e.g., in the SCORE™ programming language) into a
target language, such as object code, that can be executed by the master processor, the action
engine(s), and/or the co-processor(s). In performing this transformation, the compiler may
compile the source code in the order presented in the source code and produce object code with

similar or roughly analogous ordering.

[0118] The compiler may also analyze the state machine(s) generated by compiling the source
code, e.g., by going from state to state along the edges (actions) connecting the states (wait
statements/conditions). In one example, a user supplies the compiler with a profile of the

available action engine(s) and/or co-processor(s), ¢.g., by providing command-line arguments to

45

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the compiler. The compiler uses this profile to designate certain conditions and certain actions in
the compiled object code as within the capabilities of the available action engine(s) and/or co-
processor(s). The master processor may assign these conditions (and possibly the actions as well)
to the action engines or co-processors designated in the compiled object code. In some
embodiments, the compiler determines these allocations of action engine/co-processor resources

to designated conditions (and actions) at compile time, and these allocations remain static.

[0119] In other embodiments, the master processor may allocate or re-allocate action
engine/co-processor resources to designated conditions (and actions) in a dynamic fashion, e.g.,
in response to the evolution of the dynamic environment or changes in system or component
status. In such a dynamic environment, the master processor may create and/or maintain a profile
of the available action engine/co-processor resources. For instance, the master processor may
obtain information about the available action engine/co-processor resources by polling the
operably coupled action engine/co-processor device(s), by receiving status updates from the
operably coupled device(s), and/or by receiving the profile from a user via command-line

arguments or any other suitable interface.

[0120] The master processor 190 may also create and maintain a list of processes (state
machines), including the status (state(s)) of those delegated in whole or in part to the action
engine(s) 110c and those that it reserves for itself. During operation, the master processor 190
uses this list to advance each of the state machines implemented by the system. For example, a
given co-processor may be tasked with monitoring the dynamic environment for a particular
condition (e.g., the arrival of a part at a designated point in an assembly line). The process then
enters a “wait” state during which it monitors the dynamic environment for the condition. When
the co-processor determines that the condition has been met (e.g., the part arrives at designated
point), the process exits the wait state to perform a predetermined action (e.g., it instructs a
camera to take a picture of the part). The co-processor also notifies the master processor 190 that
its condition has been met by transmitting a notification signal (‘“notification” for short) to the

master processor 190. For instance, the co-processor may generate a match signal if a particular

46

10

15

20

25

WO 2013/052894 PCT/US2012/059097

condition of the dynamic environment matches the condition monitored by the co-processor and

provide the match signal to the master processor as the notification signal.

[0121] Upon receiving a notification signal (match signal) from the co-processor that a
condition has been met, the master processor 190 advances those state machines waiting for the
notification on its list of state machines, including the one implemented by the co-processor.
Depending on the state machine, the master processor 190 may note that the condition has been
met and allow the co-processor to continue implementing the process, or it may halt the state
machine (process) implemented by the co-processor and cause the co-processor to implement
another state machine. It may also use the notification to start, halt, or advance other state

machines implemented by the system.

[0122] In sum, in some implementations, the wait statement condition evaluated by the co-
processor for a single processor may have several sub-conditions combined with Boolean logic
followed by one or more procedural steps to be taken on satisfaction of the condition as a whole
and/or sub-conditions; this is what the co-processor is commissioned to do for a single process
instance at any given time. When the condition is satisfied and the actions are completed, the co-
processor notifies the master processor, which can re-commission the co-processor for the next

wait statement in the process.

[0123] Each state (condition) may have associated with it at least one particular action. If
possible, the master processor 190 also delegates the action(s) associated with a particular
condition to the same slot 140 or co-processor assigned to monitor the particular condition. In
some embodiments, the master processor 190 delegates actions involving inputs and outputs to
the action engine 110c and/or co-processors 140. These actions may include, but are not limited
to: sending packets, setting outputs, clearing outputs, adding outputs, latching counters, setting
flags, clearing flags, acquiring semaphores, releasing semaphores, and no operations (no-ops). In
some cases, the master processor 190 delegates actions based on the capabilities of the slot 140
or co-processor assigned to monitor the associated condition. It may also assign the condition to
the slot 140 or co-processor based on the associated action and the ability of the slot 140 or co-

processor to perform the associate action.

47

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0124] The master processor 190 may also delegate a condition to a slot 140 or co-processor
while reserving execution of the associated action to itself. For instance, the master processor
190 may execute all actions related to accessing information in memory, including but not
limited to: storing information in memory; retrieving information from memory; incrementing
variables in memory; and arithmetic involving numbers stored in memory. The master processor

190 may also execute other types of actions as well on an as-needed or as-desired basis.

[0125] Below are several pseudo-code examples of processes (state machines) and sub-
processes suitable for implementation using the systems and devices disclosed herein, including

the system shown in FIG. 6. Hash marks (#) indicate comments in each example.

[0126] Example 1: Continuous One-State Process

continuous process send_on_edge with instances i := 0..7

begin
wait for rising edge of input i # state (condition no. 1)
send sender 1 # action (executed by co-processor)

end

[0127] Example 1 is a continuous process, called “send on_edge,” in which a co-processor is
tasked with waiting for a rising edge (the condition) of input i and sending a packet (the action)
to another device upon satisfaction of the condition. The co-processor also notifies the master
processor that its condition has been met upon detecting the rising edge. In this example, once
the co-processor has sent the packet, the master processor reloads the same condition and action
opcode pair in the co-processor’s memory. The co-processor continues to monitor the rising edge
of input 1 until the co-processor is halted or interrupted, e.g., by the master processor 190. This
process is implemented eight times (1 =0 ... 7), with each instance running on a separate slot in

the action engine or on a corresponding co-processor.

[0128] Example 2: Continuous Two-State Process

continuous process send_on_pulse with instances 1 := 0..7
begin

wait for rising edge of input i # state no. 1 (condition no. 1)

48

10

15

20

25

WO 2013/052894 PCT/US2012/059097

send sender i action no. la (executed by co-processor)

set output i+8 action no. 1lb (also executed by co-processor)

wait for 100ms state no. 2 (condition no. 2)

clear output 1i+8 action no. 2 (executed by co-processor)

end

[0129] Example 2 is a continuous process, called “send_on pulse,” in which a co-processor
alternates between two states depending on the evolution of the dynamic environment. In the
first state, the co-processor waits for a rising edge to appear on input i as in Example 1 (this is
the first condition of this process). Once the co-processor detects the input, it sends a packet to
another device and notifies the master processor that the first condition has been met as above. It
also performs another action—it sets output i+8—before proceeding to its second state (“wait for
100ms”). In this second state, the co-processor waits for occurrence of the second condition,
clapsation of 100 ms. Once this condition is met (i.e., once 100 ms has elapsed), the co-processor
performs its second action—clearing output i+8—and notifies the master processor that the
second condition has been met. It then transitions back to the first state to wait for the first
condition to occur again. Like the process in Example 1, the Example 2 process continues until it
is halted or interrupted, e.g., by the master processor 190. It is also implemented eight times (i =
0 ... 7), which each instance running on a separate pair of slots in the action engine or on a

corresponding co-processor.

[0130] Example 2 is performed with at least two slots in the action engine because it involves
two actions associated with one condition—both “send sender i” (action no. 1a) and “set output
1+8” (action no. 1b) are triggered by satisfaction of “rising edge on input i’ (condition no. 1).
Condition no. 1 and action no. la are loaded into the first slot, and action no. 1b is loaded into
the second slot, which is chained to the first slot. The second slot is also loaded with the
condition “do always” which is implemented as “counter[0] >= 0,” and which causes it to

execute whenever condition no. 1 is met (see below for a more detailed discussion of “chaining’

slots together).

[0131] Example 3: Continuous Process with Master Processor Action

49

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

continuous process send_sequence with instances i := 0..7
begin
static unsigned integer sequence := 0 # declaration
pavload p; # declaration
p.dword[0] := sequence; # master processor action
wait for rising edge of input i # condition no. 1
send sender 1 with pavload p # action no. la (co-processor)
sequence++; # action no. 1lb (master processor)
wait for sender to finish # condition no. 2; action 2 is a no-op

end

[0132] Example 3 is another continuous process, entitled “send sequence,” in which a co-
processor monitors conditions and the co-processor and the master processor each execute
actions in response to detection of the conditions. In this case, the process begins with the
declaration of a static variable named “sequence” (“static unsigned integer sequence”) and a 16-
byte payload p that goes out with every event packet. Once these have been initialized, the
master processor sets a word (“p.dword”) in the payload to the value of the “sequence” variable.
The co-processor then enters a wait state in which it monitors the dynamic environment for a
rising edge on input i. When it detects the rising edge, it notifies the master processor that its
condition has been met and sends the payload, which may trigger a camera or other device that

receives the payload.

[0133] Upon receiving the notification that the condition has been met, the master processor
increments the variable “sequence.” The master processor performs this action because
incrementing a variable involves accessing information in memory, which is often beyond the
capabilities of an action engine or a co-processor. The master processor also advances the state
machine to its next state, in which the co-processor waits for the sender to finish its action. If the
co-processor detects fulfillment of this condition, it performs the corresponding action. In this
case, the corresponding action is a “no operation,” or “no-op,” so the code does not include a
specific command. The co-processor also notifies the master processor that the condition has

been met, and the master processor advances the state machine to its next state (here, back to the

50

10

15

20

25

WO 2013/052894 PCT/US2012/059097

“wait for rising edge of input 1” state) in response to the notification. Like the processes in
Examples 1 and 2, the Example 3 processes runs until it is halted or interrupted and is

implemented in eight separate instances.

[0134] In example 3, condition no. 2 (“‘wait for sender to finish”) is intended to prevent
procedural statements from overwriting a payload buffer (p in Example 3) until the send is
completed, which happens in a non-deterministic time period due to network contention and
variance in communication protocol latency. This is because the co-processor might not be able
to get access to the desired physical network resource when a send action is used. There are
several possible ways to deal with access issues, including but not limited to: (a) adding queues
to store the payloads and port numbers for storage before processing; (b) holding the notification
to the master processor until the send has completed; and (c) adding another notification to the
master processor that the send has completed and notifying the master processor of the condition
satisfaction and action completion immediately. Option (a) may not be optimal in field-
programmable gate array (FPGA) implementations due to FPGA resource restriction. Option (b)
may introduce extra delay because a send completion can take up to 1 ms due to slow
handshaking speed in the event message protocol with non-real time peers (e.g., host computers
running MS Windows®). Option (c) allows the master processor to run non-co-processor-
compatible actions after a wait statement immediately, but prevents the master processor from
modifying the event-table slots until the send has completed. In some implementations, each wait
statement has an implicit “wait for send to finish” since the slots cannot be overwritten until all
send statements ahead of the wait statement have been completed.[0135] In some cases,
including the one illustrated in Example 4 below, the master processor evaluates a “flow control
statement,” such as an “if”’ statement, to determine how to advance the state machine. For
instance, the evaluation may yield a first result that causes the master processor to advance one
or more state machines to particular first states or a second result that causes the master
processor to advance one or more state machines to particular second states. Flow control
statements may also be used to decide to interrupt, pause, or halt on-going processes and to

initiate other processes.

51

WO 2013/052894 PCT/US2012/059097

[0136] Example 4: Flow Control Statements

quadrature counter PartPosition on inputs 0, 1 # declaration

wait for counter partPosition >= rejectDistance from position
5 # condition (co-processor)
if votes < 2 OR input DoReject is set # flow control statement
set output reject # co-processor action
failure_count++ # master processor action
wait for counter time >= rejectDuration from now
10 # condition (co-processor)
clear output reject # co-processor action
else
wait for counter partPosition >= acceptDistance from position

condition (co-processor)

15 set output accept # co-processor action
wait for acceptDuration # condition (co-processor)
clear output accept # co-processor action
endif

20 [0137] Example 4 is a sub-process that includes a flow control statement. The sub-process of
Example 4 includes four states, each of which is indicated by a “wait” statement and a particular
condition of the real-world environment, e.g., is the part position counter greater than or equal to
a predetermined value from a part’s current position (“‘counter partPosition >= rejectDistance
from position”). As in Examples 1-3, an action engine or co-processor evaluates each condition

25 and, if the condition is met, notifies the master processor and performs an appropriate action,
such as a no-op, clearing an output, or setting an output. The master processor advances the state

machine and, optionally, acts in response to the notification.

[0138] In Example 4, the master processor controls the flow of the state machine by evaluating
a flow statement (“if votes <2 OR input DoReject is set”) relating to whether or not a part has
30 passed inspection at two different inspection stations. In another part of the overall process (not

listed above), the inspection stations “vote” on the part’s quality, and the master processor

52

10

15

20

25

WO 2013/052894 PCT/US2012/059097

increments a variable “votes” in response to the inspection stations’ outputs. At the same time,
the co-processor monitors the part’s position. If the co-processor senses that the part has reached
a particular position, it notifies the master processor, which evaluates the flow control statement
in response to the notification. If the master processor determines that the part has failed
inspection (e.g., because the “votes” variable is less than 2 or the “DoReject” input is set), the
master processor increments a failure count (“failure _count”) and causes or allows the co-
processor to reject the part by setting the “reject” output. The state machine then advances to a
state in which the co-processor waits for the counter time to equal or exceed a specified time
period (“rejectDuration”). If the part has not failed inspection, the master processor advances the
state machine to a state in which the co-processor waits for the part position counter to equal or

exceed another variable (“acceptDistance”).

[0139] Examples 3 and 4 also illustrate the use of declaration statements to set variables and to
configure peripheral devices, e.g., cameras, etc. Declarations may be used to set variables stored
in the master processor’s memory, like the “sequence” variable in Example 3 or the (implicitly)
declared “rejectDistance” and “position” variables in Example 4. They can also set counter
values, like the “partPosition” counter in Example 4, which is declared to be a quadrature
counter “partPosition” on inputs 0 and 1. It could also be declared to be a pulse counter

“partPosition” on the rising edge of input 2.

[0140] Other declarations may set peripheral variables, including input and output variables.
Inputs can be declared to have pulse filters. Outputs can be declared to have pulse widths and
polarity inversions. The counter and other peripheral variable declarations get compiled into
instructions executed by the master processor, which loads the configuration registers of the
peripheral devices. When the counter is used in the program, the event table conditions and

actions access the counter allocated by the compiler.

[0141] Example 5: Setup Process

one-shot process setup
begin
for 1 := 0..7 do

53

10

15

20

25

WO 2013/052894 PCT/US2012/059097

start process send_on_sequencel[i]
done

end

[0142] Example 5 is a set-up process that the master processor uses to task the action
engine/co-processors with different instances of a particular process. Unlike the processes in
Examples 1-4, the Example 5 process does not involve any conditions. Instead, it is a simple
one-shot process that creates eight instances of another process (here, the “send on_sequence”
process from Example 3). Each of these instances runs on a corresponding slot in an action

engine or on a separate co-processor.

[0143] In various embodiments, any language statement (computer-implementable instruction)
can be executed on the housekeeping CPU 190, but greater or smaller sets of language
statements can also be executed by one or more action engines described herein. Any statements
that cannot be executed on the action engines of a particular embodiment of the invention may be
run on the housekeeping CPU 190. In general any statements that can be run on the action
engine of a particular embodiment will be allocated by the housekeeping CPU 190 to the action
engines. Statements or groups of statements may be cancelled at any time prior to their

execution.

[0144] In one embodiment, the computer-implementable instructions permit that any processes
described in an appropriate computer language (e.g., SCORE™) can be run simultaneously and
that multiple instances of a given process may also run concurrently. In one aspect, the language
is compiled into condition/action pairs described in greater detail above; in exemplary
implementations, such condition/action pairs are assembled into an event table which may be
scanned at a high and fixed rate (e.g., as discussed above in connection with the event table 112
and action engine 110c of FIG. 6). The condition/action pairs may also be chained as described

in greater detail below.

[0145] With reference to FIG. 6, in one embodiment the housekeeping CPU 190 may add and

remove entries to the event table 112 of an action engine 110c without affecting or interrupting

54

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the operation of the action engine 110c. If necessary due to the housekeeping CPU word size
(which may be, e.g., 32 bits) being less than the width of the event table register 140c (which
may be, e.g., 64 bits) a given register 140c can be written in part by writing the input conditions
to zero first, then writing the action second. Registers 140c that are currently not in use may have
a zero first word which indicates a “not in use” conditional operation which can never be
satisfied. The scanner 130c will not consider any event table conditions 142¢ in its scan that
have a “not in use” condition, so instructions 144c in a partially written event table register 140c
will not be executed before the housekeeping CPU 190 finishes writing the partially written

event table register 140c.

[0146] In another aspect, any statement or chained group of registers 140c that the
housekeeping CPU 190 may allocate to the action engine 110c¢ will either run in their entirety, or
not at all. In particular, by writing chained groups into contiguous event table registers 140c
from the first to the last (with respect to the scan direction) with zeros, then the last to the first
(again with respect to the scan direction) with the new conditions 142¢ and actions 144c, no
condition/action pairs will be processed (e.g., by the scanner 130c of the action engine 110c¢)
unless all are processed, even if the scanner 130c¢ passes through the addresses of the
corresponding section of memory multiple times while the housekeeping CPU 190 is writing the
chained group; the scanner’s rules are such that it will not execute the actions of an event table
register 140c in a chained group, even if that event table register’s own input conditions are met,
unless all of the input conditions of all of the preceding event table registers 140c up to and
including the next previous event table register 140c whose chain bit is not set are also met.
Since each new event table register 140c is being written in a section of event table registers
140c set to zero, the prior event table register 140c¢ will not have valid input conditions and so

neither it nor the event table register 140c just written will be executed.

[0147] Similarly, by clearing a set of chained event table registers 140¢ from the first to the
last (e.g., by filling the registers 140c with all zeros or all ones), and for each event table register
140c beginning by clearing the input conditions for each event table register 140c first, at a rate

equal to or slower than the rate at which the scanner 130c is addressing the event table registers

55

10

15

20

25

WO 2013/052894 PCT/US2012/059097

140c, the housekeeping CPU 190 may replace or clear even a chain of event table registers 140c
for a procedural step that had been allocated to a particular co-processor/action engine in such a

way that either the entire set of chained registers 140c will be executed, or none will be executed.

[0148] The foregoing techniques for programming the master processor 190, efficiently
compiling the program language to provide executable code (e.g., for the processing unit(s) 194
and the master processor 190), and the resulting procedure implemented by the master processor
190 for updating an event table 112 of an action engine 110c¢ (or more generally “programming”
one or more co-processors to evaluate particular conditions) yields several unique advantages.
This methodology produces an extremely compact set of code that can run very rapidly on any
general-purpose processor (with or without one or more action engines or other co-processors).
However, when employed in connection with the action engine 110c shown in FIG. 6, and in
particular with the scanner 130c, these techniques yield completely deterministic operation even
when the evolution of conditions in the dynamic environment would require code execution to
branch, and/or function calls to be made and/or cancelled for conventional systems. In fact these
transitions can be made without rearranging memory pointers in the action engine 110c, since the
inventive techniques described above allow multiple subroutines (e.g., chains of event table
register 140c) to run to completion without signaling back to the calling process (in the master
processor 190). The simplicity of the instruction set, which does not have any loops or jumps,

keeps the run time of the co-processor/action engine program space deterministic.

[0149] Also note that the housekeeping CPU 190 does not need to be dedicated to
housekeeping for the action engine(s). Housekeeping could be done by a process and/or device
driver on a general-purpose operating system such as Linux or Windows. The action engine
could be on a peripheral card (such as a PCI) along with the counters, digital and/or analog I/O
interfaces, etc., allowing a general-purpose computer to achieve the same precision in event
handling as a special-purpose embedded computer when working in tandem with the action
engine(s) described herein. The action engine and/or seperate co-processors may also be
implemented in one or more field-programmable gate arrays (FPGAs) or as a collection of other

suitable processors.

56

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0150] Pipelining, Latency, and Jitter

[0151] In one exemplary implementation of the action engine 110c shown in FIG. 6, the
scanner 130c is configured to implement a “pipelining” technique to make comparisons of the
input signals 66 to the conditions 142¢. As understood by those of skill in the art, “pipelining” is
a computational technique that increases throughput by splitting a computation into a series of
stages that are connected to form a computational “pipe.” Each stage of the pipe performs its
part of the computation (e.g., the comparison of the input signals 66 to the set of conditions
142c¢) in parallel with the other stages, much like a worker on an assembly line. Pipelining
accelerates the action of the scanner 130c such that regardless of how long it may take to
compare the input signals 66 to a given condition 142c, the time spent on each register 140c is

limited to one clock cycle.

[0152] With respect to calculating a “latency” of the action engine, i.e., the time period
required to compare a particular input state of the dynamic environment at a given time to the
multiple sets of conditions contained in the event table and transmit one or more instructions in
response to the input state, in some exemplary embodiments such a latency may be derived in
consideration of a pipelining technique implemented by the action engine 110c. For example,
the time it takes for the action engine 110c to compare the input signals 66 and/or discovered
state changes (see paragraph 89 above) to a particular set of conditions 142¢ and transmit one or
more instructions in response equals the time it takes the scanner 130c to reach the
corresponding event table register 140c¢ plus the propagation time through the pipeline, which
depends on the number of stages in the pipeline. For an event table 112 with 128 registers 140c
and a scanner 130c clocked at 100 MHz with a three-stage pipeline, the longest possible time
from input to output is 1.31 us, which corresponds to a condition 142¢ that occurs at the very
beginning of a scan through the event table 112 but is not used until the very end of the scan
through the event table 112 plus a 0.03 us propagation time through the pipeline (i.e., three clock
cycles). The shortest possible time from input to output is 0.030 us. Thus, the action engine 110c

compares the input signals 66 and/or discovered state changes to the sets of conditions 142¢ with

57

10

15

20

25

WO 2013/052894 PCT/US2012/059097

a latency, or time delay, that is bounded by the number of registers 140c in the event table 112,

the number of stages in the pipeline, and the clock frequency.

[0153] An additional advantage of using an event table register 140c to evaluate a small
number of conditions 142¢ very quickly is that the variation in latency is very low. Jitter can be
defined as the difference between the longest latency and shortest latency. For an event table
register 140c that evaluates a single condition 142c, the variation in latency is minimal, and may
even border on zero depending on how incoming and outgoing data is transmitted. In the
example above, the longest possible latency is 1.31 us, and the shortest possible latency is about
0.03 ps, which corresponds to a jitter of 1.28 us, or one scan time. (Applying input filters,
discovering input state changes, or receiving and transmitting data via Ethernet packets may

introduce variable delay independent of the action engine 110c.)

[0154] Low jitter is especially useful in applications—e.g., triggering images—in which long
response delays are perfectly acceptable so long as the latency is very repeatable, and in which
even much shorter maximum latencies are not acceptable if the individual latencies were highly
variable. In machine vision applications, for instance, reducing the jitter makes it possible to
reduce the sensor field of view, which in turn allows for higher resolution images of the scene of
interest. Consider a situation in which the time window for imaging a fast-moving part is about
10 ps, but the jitter is much larger than 100 us as it would be with a PLC. Capturing an image of
the part requires expanding the time window to substantially greater than 110 us by increasing
the field of view to be well over eleven times the size of the part itself, which in turn reduces the
number of pixels on the sensor dedicated to imaging the part by a factor of more than eleven. In
contrast, an action engine 110c with a jitter of about 2.5 us can be used to acquire an image of

the same part with about 80% of the sensor’s active arca dedicated to imaging the part itself.
[0155] Condition/Action Pair Memory Structures and Execution

[0156] Embodiments of the present invention may include particular memory structures to
store the one or more “condition/action pairs.” In the action engine 110c shown in FIG. 6, for
example, the event table 112 provides dedicated memory in the form of multiple registers 140c,

respective ones of which store a condition/action pair as a particular sequence of bits

58

10

15

20

25

WO 2013/052894 PCT/US2012/059097

(represented generally in FIG. 6 by a condition 142¢ and an action or “instruction” 144c).
Alternatively, one or more registers 140c¢ may include multiple adjacent memory registers,
arranged as a first number of bits representing the condition to be evaluated, and a second
number of bits representing an action to be taken if the condition is satisfied. Generally
speaking, various embodiments, such as those shown in FIGS. 5 and 6, may include memory
structures in the form of one or more registers (e.g., registers 140b in FIG. 5; registers 140c in
FIG. 6) that hold respective condition/action pairs as some arrangement of bits in a given

register.

[0157] It should be appreciated that, in some instances, a given action corresponding to a
particular condition that is satisfied may be to take no action relating to control of one or more
devices in the dynamic environment. Stated differently, one possible action for a given
condition/action pair is to take no affirmative action in the dynamic environment, also referred to
herein as a “no-op.” In some instances of a no-op, as discussed in greater detail below, the
action engine may nonetheless notify the master processor if the particular condition being
evaluated is satisfied, and/or move on to evaluation of one or more other conditions as specified

in subsequent registers of the event table.

[0158] It should also be appreciated that the concept of a “condition/action pair” may be
implemented in diverse manners according to various embodiments disclosed herein. For
example, in some implementations, the contents of memory representing the condition portion of
a particular condition/action pair may include some number of adjacent bits within a given
register, and/or may include some number of bits dispersed in the given register with intervening
register contents not necessarily pertaining to the condition portion. Similarly, the contents of
memory representing the action portion of a particular condition/action pair may include some
number of adjacent bits within a given register, and/or may include some number of bits
dispersed in the given register with intervening register contents not necessarily pertaining to the
action portion. Accordingly, a wide variety of content organization within a given memory
location/register representing a given condition/action pair is contemplated according to the

inventive concepts disclosed herein.

59

10

15

20

WO 2013/052894 PCT/US2012/059097

[0159] In one example discussed in detail below, a memory structure to contain a
condition/action pair may include a 64-bit word-sized register (e.g., that may be accessed and
read in a single clock cycle), some number of bits of which represent or relate to the condition
142c¢ to be evaluated, and another number of bits of which represent or relate to the action 144c¢
to be taken if the condition is satisfied. In one non-limiting example, the 64-bit register is
segregated into three portions, and the condition 142¢ and action 144c are encoded in these three
different portions respectively as: 1) an “op-code” represented by a 16-bit unsigned integer; 2) a
16-bit “action parameter”’; and 3) a 32-bit “condition operand”, wherein the information
contained in the action parameter and the condition operand may facilitate implementation of an
operation contained in the op-code. TABLE 1 below illustrates the general format of such a 64-
bit register, in which the op-code portion is represented in bits 48-63, the action parameter is

represented in bits 32-47, and the condition operand is represented in bits 0-31.

TABLE 1: lllustrative Encoding of Condition/Action Pair

63-48 47-32 31-0

Op-code Action Parameter Condition Operand

[0160] With respect to the op-code portion of the 64-bit register illustrated in TABLE 1,
TABLE 2 below provides an exemplary format for different fields of the 16-bit op-code:

TABLE 2: Illustrative Encoding of Condition/Action Op-code

OP ACT C|X|IN|S|L CTR

In the example above, the four most significant bits of the op-code (bits 15-12, respectively
labeled in TABLE 2 as “F”, “E”, “D”, and “C”) specify a condition type code (labeled as “OP”)
for the condition 142¢ to be evaluated. The four next most significant bits (bits 11-8, respectively

labeled in TABLE 2 as “B”, “A”, “9”, and “8”) represent an action operand (labeled as “ACT”)

60

10

15

20

25

WO 2013/052894 PCT/US2012/059097

for the action 144c. The remaining bits of the op-code include a chain bit C, an XOR bit X, a
notify bit N, a satisfied bit S, a last condition bit L, and one or more counter values CTR, each of

which is described in turn in greater detail below.

[0161] In the present example, with reference again to TABLE 1, the 32-bit “condition
operand” in bits 0-31 of the 64-bit register may be used together with the condition type code
specified in the OP field of the op-code to determine whether or not a particular condition has
been satisfied. Additionally, the 16-bit “action parameter” in bits 32-47 of the 64-bit register
may be used together with the action operand specified in the ACT field of the op-code to
specify a corresponding action to be taken if the particular condition is satisfied. Moreover, the
op-code fields C (chain), X (XOR), and CTR (counter) may be employed for evaluation of a
particular condition, and the op-code fields N (notify), S (satisfied) and L (last condition) may be
employed to specify a corresponding action. Thus, as discussed in greater detail below, a first
set of bits/fields of the 64-bit register shown in TABLE 1, namely OP, C, X, CTR and the
“condition operand,” may collectively define the condition 142¢ of the condition/action pair
represented in the 64-bit register; similarly, a second set of bits/fields of the 64-bit register,
namely ACT, N, S, L and the “action parameter,” may collectively define the action 144c¢ of the

condition/action pair represented in the 64-bit register.

[0162] More specifically, the condition type code OP of the op-code shown in TABLE 2
specifies the type of condition to be monitored, one or more input signals to be monitored, and/or
the state of any monitored input signal(s) that satisfies the condition. For some condition type
codes OP, satisfaction of the condition depends at least in part upon one or more values of the
32-bit “condition operand” represented in bits 0-31 of the 64-bit register (refer to TABLE 1
above). Exemplary condition type codes that may be present in the OP field of the op-code

include, but are not limited to:

0 - Register is Unused

1 - Act when counter # CTR is less than or equal to the operand

2 - Act when counter # CTR is greater than or equal to the operand
3

- Act when rising edge detected on any inputs set in operand[0..15]

61

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

- Act when falling edge detected on any inputs set in operand[0..15]
- Act when trigger ladder fires on any ladder set in operand[0..3]
Act when high signal present on any inputs set in operand[0..15]

- Act when low signal present on any inputs set in operand[0..15]

o ~ o U
|

- Act when high signal present on all inputs set in operand[0..15]
9 - Act when low signal present on all inputs set in operand[0..15]
10 - Act when set state exists on any flags set in operand[0..31]

11 - Act when clear state exists on any flags set in operand[0..31]

12 - Act when set state exists on all flags set in operand[0..31]
13 - Act when clear state exists on all flags set in operand[0..31]
14 - Act when counter # CTR direction (condition[bit 0]: 1 -> inc, 0 ->

dec)
15 - undefined

[0163] Additional condition type codes specified in the OP field of the op-code can be
defined using the X bit, discussed below (e.g., condition type codes 3-15 above may be redefined
using the X bit). In this non-limiting example, the CTR bits are used for condition type codes 1,
2 and 14; in other examples, the CTR bits may be used to redefine the other condition type codes

when non-zero.

[0164] The action operand ACT of the op-code shown in TABLE 2 above specifies a
corresponding action to be taken when the condition specified by the condition type code and the
condition operand (and in some cases other fields of the 64-bit register) is satisfied. For some
action operands ACT, the action to be taken depends at least in part upon one or more values of
the 16-bit “action parameter” represented in bits 32-47 of the 64-bit register (refer to TABLE 1
above). Exemplary action operand codes that may be present in the ACT field of the op-code
include, but are not limited to:

0 - No-op -- do nothing (e.g., raise interrupt completion if N is set)

1 - Queue Message Transmit

The action-parameter is interpreted as containing the descriptor # in

bits 0-3, a notify housekeeping CPU on messade acknowledgement flag in bit 5,

62

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

a notify housekeeping CPU on message failure flag in bit 6, a payload index

in bits 12-6.

is

is

to

to
4
5

2 - Set outputs: A bit set in the action parameter indicates the output
set.

- Clear outputs: A bit set in the action parameter indicates the output
cleared.

- Latch data inputs. (No action parameter)

- Latch counter value: A bit set in the action parameter indicates the

counter is to latched.

6 - Zero counter: A bit set in the action parameter indicates the counter
is to zeroed.
7 - Set flags MSW: A bit set in the action parameter indicates the flag
is to be set.
8 - Set flags LSW: A bit set in the action parameter indicates the flag
is to be set.
9 - Clear flags MSW: A bit set in the action parameter indicates the flag
is to be cleared.
10 - Clear flags LSW: A bit set in the action parameter indicates the flag
is to be cleared.
11 - Get Semaphore: The semaphore index is given in the action parameter.
12 - Release Semaphore: The semaphore index is given in the action
parameter.
13 - 15 - reserved.
Action 15 may be an extension action with some number of bits
of the action parameter used to indicate the action with a reduced
number of bits to indicate the action operand.
[0165] The 16-bit action parameter used in conjunction with some of the action operands

specified above may include, but is not limited to: a descriptor # (e.g., bits 0-3), a notify ack

(e.g., bit 4), a notify exh (e.g., bit 5), a payload # (e.g., bits 6—12) or a bit field (e.g., bits 13-15).

[0166]

As described above, other bits of the 16-bit op-code contained in bits 48-63 of the 64-

bit register representing a condition/action pair may include a chain bit C from the previous

register. If the chain bit C is set, the condition 142¢ in the preceding event table register 140c

63

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

must be true before the condition 142¢ in this event table register 140c can be considered. They
may also include an XOR bit X that implements a shadow register so that comparisons do not
have to deal with overflow or underflow; a notify bit N, which, when set to 1, causes upon
satisfaction of the input conditions a completion message to be forwarded to the housekeeping

CPU 190, and a satisfied bit S that is set when the condition 142c¢ is satisfied.

[0167] The other bits may also include a last condition bit L that is used to cause the scanner to
reset the condition operand OP to zero when the condition 142c¢ is satisfied. In other words, the
last condition bit L prevents the next scan from of the event table 112 re-satisfying the condition.
When multiple conditions 142¢ are to be satisfied (e.g., using the chain bit C as described below)
before an action 144c is to be performed, the preceding registers will not have the L bit set so
that the operation can be re-evaluated. Event table registers that are chained together with a do-

always condition may have the last bit set to prevent the action from recurring.

[0168] The action engine 110c can be programmed using the SCORE™ programming
language. In particular, as discussed above, the housekeeping CPU (master processor) 190 may
be programmed via an inventive programming language according to one embodiment of the
present invention that, when compiled, enables the master processor to in turn provide
instructions to task the action engine, in the form of condition/action pairs. Examples of
SCORE™ gtatements and resulting event table settings are given below. The SCORE™
statements are formatted such that each line of SCORE™ code matches with a single

condition/action pair:

wait for counter[3] >= 0x1000 from 0x10000
and for set flag 4 send descriptor[l] with payloadl[2]
set output 0

OP ACT C X N S L CTR AP OPERAND
2 001000 3 0x0000 0x00101000 # xor ctr value
10 1100012 0 0x00B1 0x00000010 # notify ack/exh =1
2 210101 0 0x0001 0x00000000 # ctr[0] »>= 0 (always true)

64

10

15

20

25

30

35

WO 2013/052894

wait for rising edge of input 0

and for clear inputs 1 and 2 latch counter[2

set outputs 3 and 4

OP ACT C X N S L CTR AP OPERAND
3 000000 0 0x0000 0x00000001
9 510001 0 0x0004 0x00000006
2 210101 0 0x0018 0x00000000

wait for rising edge of input 0

and for clear inputs 1 and 2 set output 3

OP ACT C X N S L CTR AP OPERAND
3 000000 0 0x0000 0x00000001
9 210101 0 0x0008 (0x00000006

wait for rising edge of input 0 set output 3

OP ACT C X N S L CTR AP OPERAND
3 200101 0 0x0008 0x00000001

wait for counter([3]

and for set input 1 or 2 send descriptor[2]

set output 4

OP ACT C X N S L CTR AP OPERAND
2 000O0O00O0 3 0x0000 0x10204140
6 110001 0 Ox1FF2 (0x00000010
2 210101 0 0x0010 0x00000000

OP, C, X, CTR and OPERAND define the condition.

ACT, N, S,

L and AP define the action.

65

]

note we never set the S bit

>= (0x1100 from 0x10203040

PCT/US2012/059097

no xor

AP[12:6] =

op

ctr[0]

no payload
>= 0

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0169] Chain Bits for Monitoring More Complex Conditions

[0170] In some cases, the registers 140c of the event table 112 shown in FIG. 6 may not be
wide enough to describe more complex condition/action pairs. In such cases, the action engine
110c, event table 112, and scanner 130c can be configured to evaluate more complicated sets of
input conditions (e.g., multiple conditions upon satisfaction of which one or more actions are
predicated) using chain bits (denoted “C” in FIG. 6). Each chain bit is logically part of the
corresponding set of conditions 142¢ in that it includes the satisfaction of a particular condition
142c¢ represented in the previous event table register 140c. In effect, chain bits can be used to
increase the effective (and finite) size of a single event table register 140c by linking a group of
contiguous event table registers 140c to form a single “super register” for the purposes of
defining groups of input conditions, all of which must be satisfied for the actions described in
this chained group of event table entries to be taken. Chaining together contiguous blocks of
event table registers 140c logically “ANDs” the chained registers 140c together, i.¢., it causes
them to react to a particular combination of input signals 66 by issuing a particular set of

instructions (possibly in a predetermined order).

[0171] FIG. 8 illustrates how chained event table registers 140c identify and react to a group of
conditions 142c¢ that have been chained together. (For simplicity, FIG. 8 shows only the sets of
conditions 142¢ and outputs 144c¢ for each register 140c.) Each event table register 140c reacts to
a different combination of sensor inputs A—C and current counter values CTR (not shown in FIG.
8) as well as flag register values and whether a semaphore request earlier in the set of chained
event table registers was successful. By convention, the first event table entry in a chained group
140c-1 will not have its chain bit set. In this example, event table registers 140c-2 through 140c-
4 all have chain bits C set to 1. Event table register 140c-5 has a low chain bit C and therefore
operates independently of event table registers 140c-1 through 140c-4.

[0172] Chained registers 140c-1 and 140c¢-2 each include a respective condition 142¢-1 and
142¢-2 and a do-nothing (no-op) action 144c¢-1 and 144c-2, followed by a “critical register” —
here, a single register 140c-3 with both a “useful” condition 142¢-3 and an action 144c¢-3 other

than a no-op. Such a “critical register” may be, and in this case is, followed by another register

66

10

15

20

25

WO 2013/052894 PCT/US2012/059097

140c-4 with an additional action which should also be taken when the chained group’s input
conditions are met. To ensure that the useful action 144c-4 is also immediately taken when that
of the critical entry is executed, the input condition 142¢-4 is set to a condition that is
tautologically true i.e. counter[0] >= 0 (no XOR). This will not cause premature execution of the
action in this event table entry since as part of a chained group of event table entries, all of the
preceding input conditions in this chained group must also be satisfied. The last condition bit L
is set in register 140c-2, which means that registers 140c-1 and 140c-2 must be satisfied in a
single table scan before the satisfied bit S is set on the critical register 140c-3. Once the satisfied
bit S is set on the critical register 140c-3, the state of the preceding registers 140c-1 and 140c-2
does not matter as the action 144¢-4 in the critical register 140c-4 will be retried on every scan
(assuming it was a semaphore or send action, as all other actions complete on the first attempt).
The register 140c-4 in the chain after the critical register 144¢-3 will have the last condition bit L

set, indicating the satisfied bit S can be set by the scanner 130c.
[0173] Semaphores for Tracking Evolutions of a Dynamic Environment

[0174] The action engine 110c¢ shown in FIG. 6 can also issue a series of instructions in
response to an evolution of the real-world system. For evolutions that occur more slowly than the
maximum CPU response time (e.g. 10 to 1000 us), the scanner 130c may report matches
(satisfied conditions) to the housekeeping CPU 190, which responds by issuing instructions
and/or updating one or more of the event table registers 140c as described above. For faster
evolutions (i.e., those that may occur more quickly than the maximum CPU response time), the
action engine 110c may use one or more semaphores to make conditions 142¢ contingent upon
cach other and/or to prevent contention (collision) among different registers 140c whose
respective conditions 142c are at least partially satisfied by the same input signal(s) 66 without
intervention by the housekeeping CPU 190. Generally speaking, semaphores facilitate
management of resource contention, and may be acquired and released by the action engine to

ensure availability one or more resources on which evaluation of one or more conditions rely.

[0175] In some instances, an event table register 140c-1 in a chained group of event table

registers 140c may attempt to acquire one of a collection of semaphores which are managed by

67

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the scanner but which will typically be released by the scanner in response to semaphore release
action in a later event table entry or may be released unilaterally by the housekeeping CPU 190.
Together with their other input conditions, successful acquisition of the semaphore will
automatically be a necessary condition for the execution of any subsequent response actions

present in such a chained collection of event table registers.

[0176] In illustrative embodiments, semaphore handling is based on a test-and-set operation. A
semaphore can be considered to be an R/S flip-flop. A set operation involves reading the output
Q of the flop simultancously with clocking the S input of the R/S flip-flop. If the semaphore was
previously unset (result of the simultancous read of the output of the R/S flip-flop was a logic
low), then the set action is considered to be completed. If the semaphore was previously set,
then the set action is not considered to be successful and actions dependent on a successful
semaphore set will not be taken. Unlike other actions, the semaphore get action causes any
subsequent registers 140c¢ in this chain to be ignored until the semaphore get is successful (on a
future scan). A release of the semaphore is accomplished by clocking the R input to the flop.
Arbitrated versions of these semaphores may be used to coordinate the operation of multiple
event table scanners 130c (e.g., as described with respect to FIG. 9). For example, an action

engine with multiple scanners 130c may use a simple round robin arbitration scheme.

[0177] To see how the event table 112 uses semaphores, consider three concurrent processes
that are involved in setting a clocked output (clock on output 0, data on outputs 1-7): (a) a first
process responsible for waiting for a triggering event, acquiring a semaphore, setting the clock
output low, setting the output value on 1-7, and enabling the second & third processes; (b) a
second process that includes waiting for the setup time, setting the clock output high, and
enabling the third process; and (c) a third process that includes waiting for the combined setup
and hold times, releasing the semaphore, and notifying the housekeeping CPU 190. Each of the
three processes is represented by a group of chained registers 140c in the event table 112. (The
semaphore may be used by any process wanting to manipulate outputs 0—7, counter[1] and
flag[0], allowing multiple sets of these processes on the event table 112 to send a clocked output

without interfering with one another.) Assume further that the counter counter[1] has been set up

68

WO 2013/052894 PCT/US2012/059097

to count microsecond ticks and is used for timing the output signals. In this example, the setup

and hold time are both 1 ms on the output signals.

[0178] To begin, the first process acquires a semaphore. Once it has acquired the semaphore, it
clears outputs 0 and 2-7, sets output 1, resets a counter (counter[1]) configured to count timebase
pulses, in this case a 1 MHz timebase, and sets a flag (flag[0]) using a series of five registers that
are chained together. The first process may be expressed using the following SCORE™
statements (with comments) and condition/action pairs (coded as above and in hexadecimal

format):

wait for rising edge of input 9 get semaphorel0]

clear outputs 0, 2, 3, 4, 5, 6, 7 # these chained action are

set output 1 # deferred until the scan in which
reset counter[1l] # semaphore 0 acquisition succeeds
set flagl[0]
OP ACT C X N S L CTR AP OPERAND

3 1100001 0 0x0000 0x00000200 # on rising edge, get semaphore
2 310001 0 O0x00FD 0x00000000 # then, clear outputs 0, 2-7

2 210001 0 0x0002 0x00000000 # then, set output 1

2 610001 0 0x0002 0x00000000 # then, reset counter[1l]

2 81 0101 0 0x000L 0x00000000 # then, set flaglO0]

0x3B08_0000 0x0000_0200 # restatement of the condition/action pairs
0x2388_00FD 0x0000_0000 # given above in hexadecimal format
0x2288_0002 0x0000_0000

0x2688_0002 0x0000_0000

0x28A8_0001 0x0000_0000

[0179] The second process begins once the flag is set. It then sets an output at a given counter
value. The corresponding SCORE™ statements (with comments) and condition/action pairs

(coded as above and in hexadecimal format) for the second process are:

69

10

15

20

25

30

WO 2013/052894 PCT/US2012/059097

wait for flagl[0]

and for counter[l] >= 1000 set output 0

OP ACT C X N S L CTR AP OPERAND
12 00000O0C O 0x0000 0x00000001 # wait on flagl[0]
2 210101 1 0x0001 0x000003e8 # ctr[l] >= 1000, set output

0xC000_0000 0x0000_0001
0x22A9_0001 0x0000_03e8

[0180] The third process begins once the flag is set. Once the given counter reaches a second
value, it clears the first flag and releases the semaphore. The corresponding SCORE™
statements (with comments) and condition/action pairs (coded as above and in hexadecimal
format) for the third process are:

wait for flag[2]

and for counter[l] >= 2000 clear flagl[0] and flagll]

release semaphore[0]

OP ACT C X N S L CTR AP OPERAND

12 0000O0O0 O Ox0000 0x00000002 # wait on flagll]

2 101 0001 1 0x0001 0x000007D0 # ctrl[l] >= 2000, clear flagl0]
2 1210101 0 0x0000 0x00000000 # ctr[0] >= 0, rel semaphore[0]

0xC000_0000 0x0000_0002
0x2A89_0001 0x0000_07D0
0x2CA8_0000 0x0000_0000

[0181] Note that only one flag is used to enable the second and third processes, (b) and (c),
because the third process, (c), is waiting on the counter elapsing the combined setup and hold
times. The semaphore protects the use of the counter and the flag so that all groups of processes

can use the same counter and flag.

70

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0182] Alternatively, these three separate, concurrently running processes may written as a
single SCORE™ statement because the timing requirements of the setup-and-hold times are 1

ms, which is more than enough time for the housekeeping CPU 190 to act:

wait for rising edge of input 9 get semaphorel0]
clear outputs 0, 2, 3, 4, 5, 6, 7
set output 1
reset counter|[1l]

wait for counter[l] >= 1000 set output 0

wait for counter[l] >= 2000 release semaphore[0]

[0183] The housekeeping CPU 190 may replace the first four-register chain with a single-
register chain on completion. On the completion of that second chain, another single chain entry

would be written to execute the third wait and the semaphore release.
[0184] Action Engines with Multiple Event Table/Scanner Co-Processors

[0185] FIG. 9 shows an action engine 110c¢ that includes multiple parallel co-processors
(respectively, co-processors 120c¢-1 through 120c-n; collectively, co-processors 120¢) coupled to
an input bus 102 via a respective input port (respectively input ports 158¢-1 through 158c-n;
collectively input ports 158c). Each co-processor 120c includes a respective event table
(respectively event tables 110¢-1 through 110c¢-n; collectively event tables 110c¢) coupled to a
respective scanner (respectively scanners 130c-1 through 130c-n; collectively scanners 130c¢). As
above, each event table 112 includes multiple entries, each of which represents one or more sets

of independent conditions and corresponding actions.

[0186] The co-processors 120c operate in parallel to execute the condition/action pairs stored
in the event tables 110c with very low latency, ¢.g., latencies of about 1.6 us or less. During
parallel execution, each scanner 130c compares the conditions in the event table 112 to input
signals 66 received via the input bus 102 and input port 158c and executes instructions in the

event of a match as described with respect to FIGS. 6-8. If appropriate, the scanner 130c

71

10

15

20

25

WO 2013/052894 PCT/US2012/059097

transmits output signals 68 via a respective output port (respectively output ports 160c-1 through
160c-n; collectively output ports 160c¢) to the output bus 102. The action engine 110c may also
include counters, flag registers, and/or semaphore registers as described above with respect to

FIG. 6.

[0187] Examples of the action engines described above can be implemented as a single event
table scanner on a single FPGA (e.g., using HDL code) with a memory large enough to hold
144c¢ opcodes, or “condition/action” pairs. The scanner executes the event table by evaluating the
conditions sequentially. When the scanner finds a satisfied chain of conditions, it executes the
actions and notifies a master CPU, which may implemented on the same FPGA, as to which
register(s) in the event table is being used for the satisfied condition. The master CPU reloads the
register(s) in question with new op-codes as the process follows the evolution of the real-world
condition. Alternatively, action engines may be implemented as: a dedicated chip containing
event table memories and scanners embedded in a peripheral component interface (PCI) card and
used in a general-purpose computer; an embedded processor to decode an event table and run
native instructions instead of placing native op-codes in the co-processor memory; and multiple
FPGAs, cach of which has a separate FPGA program to evaluate the conditions at a very low

latency.

[0188] Dynamic Environments Employing Machine Vision Techniques/Equipment

[0189] As noted earlier, control systems according to various embodiments of the present
invention, as well as constituent elements thereof, may have wide applicability for monitoring
and/or controlling a variety of dynamic environments, particularly those requiring low latency
(i.e., significantly fast response time) and/or low variability latency. One exemplary application
of control systems according to the present invention is given by a dynamic environment in

which machine vision techniques and/or equipment are employed.

72

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0190] FIG. 10 is a block diagram of a dynamic environment in which machine vision
techniques and equipment are used, together with a control system according to embodiments of
the present invention for monitoring and controlling the dynamic environment. The dynamic
environment illustrated in FIG. 10 generally relates to an automated process 10, in which various
robotics equipment 22 as well as machine vision equipment (collectively equipment 20) may be
employed to facilitate implementation of the automated process 10, wherein the machine vision
equipment may include one or more image acquisition devices 42 and lighting equipment 44.
Examples of an automated process 10 for which the control concepts discussed herein are
applicable include, but are not limited to, counting, tracking, sorting and/or handling of parts on
an assembly line (e.g., for automotive, consumer goods manufacturing and/or agricultural
applications), quality control functions (e.g., automated inspection for defects) in connection
with a manufacturing process, measurement of position and/or orientation of parts for
manipulation by robotics equipment, and removing undesirable artifacts from bulk materials

(e.g., food stuffs, agricultural products, etc.).

[0191] In FIG. 10, the dynamic environment also includes various actuators or control devices
30 (in a manner similar to that shown in FIG. 1) to control the robotics equipment 22, the
lighting equipment 24 and/or the image acquisition device(s) 42. The environment also includes
various sensors or input devices 40 to monitor the automated process 10 and provide information
(e.g., one or more input signals 66) representing a monitored condition of the environment at a
given time. As shown in FIG. 10, the sensors may include the one or more image acquisition
devices 42 to acquire images relating to the automated process, as well as one or more other
sensors 44 (e.g., temperature, humidity, pressure, light and/or other environmental sensors;
counters; receive queues for information packets, some of which information packets may be
provided by one or more image acquisition devices or other devices, etc.), for providing input

signals representing monitored conditions.

[0192] FIG. 10 also shows a control system 100, including a master processor 190 and an
action engine 110 as described above in connection with various embodiments, to receive and

process one or more input signals 66 representing monitored conditions as a function of time so

73

10

15

20

25

WO 2013/052894 PCT/US2012/059097

as to provide one or more output signals 68 to the control devices 30 (which in turn control one
or more of the robotics equipment, the lighting equipment, and the image acquisition devices).
Additionally, the dynamic environment shown in FIG. 10 also may include an image processing
computer 200, communicatively coupled to the control system 100, to process image information
acquired by the one or more image acquisition devices and to control the lighting equipment. In
embodiments including the image processing computer 200, at least some of the information
otherwise provided by the one or more input signals 66 representing monitored conditions of the
dynamic environment may be provided by the image processing computer 200 to the control
system 100, particularly in connection with information derived from images acquired by the one

or more image acquisition devices.

[0193] In the dynamic environment shown in FIG. 10, the image acquisition device(s) 42 and
the lighting equipment 24 may be particularly employed to implement machine vision techniques
in connection with monitoring and control of the automated process 10. The term “machine
vision” very generally refers to analysis of images to extract data for purposes of controlling a
process. Machine vision techniques typically comprise a sequence of operations involving
acquisition of images using any of a variety of image acquisition devices (e.g., digital still or
video cameras), and in some cases lenses and various lighting equipment (which in some
instances may be particularly designed and configured to provide various differentiation of
certain objects from the general environment to facilitate subsequent image processing). Image
data provided by one or more image acquisition devices can be in a variety of formats (e.g.,
video sequences, views from multiple cameras, or multi-dimensional data, as from a medical
scanner). Acquired images are then processed (e.g., via execution of various image processing
software by an imaging processing computer 200 operably coupled to the machine vision
equipment 20 and the control system 100, and/or one or more other independent/external
computing devices) so as to extract various information from the images, which extracted

information then is used to make decisions in connection with controlling the automated process.

[0194] With respect to various lighting equipment and techniques that may be employed for

machine vision, two-dimensional visible light imaging techniques (using monochromatic or

74

10

15

20

25

WO 2013/052894 PCT/US2012/059097

color light sources) perhaps are most commonly adopted. However, other suitable imaging
techniques include, but are not limited to, selective infrared imaging in which infrared lighting
equipment (e.g., sources and/or filters) may be employed, line scan imaging, three-dimensional
imaging of surfaces, and X-ray imaging. Regarding the image acquisition devices, a number of
form factors, functionalities, and communication protocols may be employed in such devices; for
example, in some instances an image acquisition device may not have any particular image
processing capability, while in other instances image acquisition devices may be implemented
with some degree of image processing functionality (e.g., “smart” cameras or sensors). Also,
various commercially available image acquisition devices may be configured to communicate

data via any of a variety of interfaces, such as Ethernet, USB or FireWire connections.

[0195] Regarding exemplary image processing techniques that may be implemented by the
master processor 190 of the control system 100, the image processing computer 200, and/or one
or more other computing/processing devices, examples of typical techniques include, but are not
limited to, thresholding (converting a grayscale image to black and white, or using separation
based on a grayscale value), segmentation, blob extraction, pattern recognition, barcode and data
matrix code reading, optical character recognition, gauging (measuring object dimensions),
positioning, edge detection, color analysis, filtering (e.g. morphological filtering) and template

matching (finding, matching, and/or counting specific patterns).

[0196] In FIG. 10, various image information extracted from acquired images as a result of
using any one or more of the image processing techniques noted above may be included as part
of the overall information represented by one or more input signals 66 received by the control
system 100 from one or more sensors/input devices, and/or provided to the control system 100
by the image processing computer 200. For example, such extracted image information may
indicate that a particular object (e.g., a part on an assembly line) was present in one or more
images acquired at a particular time, that a particular position and/or orientation of an object was
detected in one or more images, that a particular defect was observed in an object present in one
or more images, and the like. Such information extracted from images may be used alone or in

combination with other information from one or more sensors to represent a monitored condition

75

10

15

20

25

WO 2013/052894 PCT/US2012/059097

of the automated process at a given time, upon which the control system may be configured to
prescribe one or more particular corresponding actions to be taken in connection with the

automated process 10.
[0197] Conclusion

[0198] While various inventive embodiments have been described and illustrated herein, those
of ordinary skill in the art will readily envision a variety of other means and/or structures for
performing the functions and/or obtaining the results and/or one or more of the advantages
described herein, and each of such variations and/or modifications, is deemed to be within the
scope of the inventive embodiments described herein. More generally, those skilled in the art
will readily appreciate that all parameters, dimensions, materials, and configurations described
herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or
configurations will depend upon the specific application or applications for which the inventive
teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no
more than routine experimentation, many equivalents to the specific inventive embodiments
described herein. It is, therefore, to be understood that the foregoing embodiments are presented
by way of example only and that, within the scope of the appended claims and equivalents
thereto, inventive embodiments may be practiced otherwise than as specifically described and
claimed. Inventive embodiments of the present disclosure are directed to each individual feature,
system, article, material, kit, and/or method described herein. In addition, any combination of
two or more such features, systems, articles, materials, kits, and/or methods, if such features,
systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within

the inventive scope of the present disclosure.

[0199] The above-described embodiments can be implemented in any of numerous ways. For
example, the embodiments may be implemented using hardware, software or a combination
thereof. When implemented in software, the software code can be executed on any suitable
processor or collection of processors, whether provided in a single computer or distributed

among multiple computers.

76

10

15

20

25

WO 2013/052894 PCT/US2012/059097

[0200] Further, it should be appreciated that a computer may be embodied in any of a number
of forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a tablet
computer. Additionally, a computer may be embedded in a device not generally regarded as a
computer but with suitable processing capabilities, including a Personal Digital Assistant (PDA),

a smart phone or any other suitable portable or fixed electronic device.

[0201] Also, a computer may have one or more input and output devices. These devices can be
used, among other things, to present a user interface. Examples of output devices that can be
used to provide a user interface include printers or display screens for visual presentation of
output and speakers or other sound generating devices for audible presentation of output.
Examples of input devices that can be used for a user interface include keyboards, and pointing
devices, such as mice, touch pads, and digitizing tablets. As another example, a computer may

receive input information through speech recognition or in other audible format.

[0202] Such computers may be interconnected by one or more networks in any suitable form,
including a local area network or a wide area network, such as an enterprise network, and
intelligent network (IN) or the Internet. Such networks may be based on any suitable technology
and may operate according to any suitable protocol and may include wireless networks, wired

networks or fiber optic networks.

[0203] The various methods or processes outlined herein may be coded as software that is
executable on one or more processors that employ any one of a variety of operating systems or
platforms. Additionally, such software may be written using any of a number of suitable
programming languages and/or programming or scripting tools, and also may be compiled as
executable machine language code or intermediate code that is executed on a framework or

virtual machine.

[0204] In this respect, various inventive concepts may be embodied as a computer readable
storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or
more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit
configurations in Field Programmable Gate Arrays or other semiconductor devices, or other non-

transitory medium or tangible computer storage medium) encoded with one or more programs

77

10

15

20

25

WO 2013/052894 PCT/US2012/059097

that, when executed on one or more computers or other processors, perform methods that
implement the various embodiments of the invention discussed above. The computer readable
medium or media can be transportable, such that the program or programs stored thereon can be
loaded onto one or more different computers or other processors to implement various aspects of

the present invention as discussed above.

[0205] The terms “program” or “software” are used herein in a generic sense to refer to any
type of computer code or set of computer-executable instructions that can be employed to
program a computer or other processor to implement various aspects of embodiments as
discussed above. Additionally, it should be appreciated that according to one aspect, one or
more computer programs that when executed perform methods of the present invention need not
reside on a single computer or processor, but may be distributed in a modular fashion amongst a
number of different computers or processors to implement various aspects of the present

invention.

[0206] Computer-executable instructions may be in many forms, such as program modules,
executed by one or more computers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. Typically the functionality of the program modules may

be combined or distributed as desired in various embodiments.

[0207] Also, data structures may be stored in computer-readable media in any suitable form.
For simplicity of illustration, data structures may be shown to have fields that are related through
location in the data structure. Such relationships may likewise be achieved by assigning storage
for the fields with locations in a computer-readable medium that convey relationship between the
fields. However, any suitable mechanism may be used to establish a relationship between
information in fields of a data structure, including through the use of pointers, tags or other

mechanisms that establish relationship between data elements.

[0208] Also, various inventive concepts may be embodied as one or more methods, of which
an example has been provided. The acts performed as part of the method may be ordered in any

suitable way. Accordingly, embodiments may be constructed in which acts are performed in an

78

10

15

20

25

WO 2013/052894 PCT/US2012/059097

order different than illustrated, which may include performing some acts simultaneously, even

though shown as sequential acts in illustrative embodiments.

[0209] All definitions, as defined and used herein, should be understood to control over
dictionary definitions, definitions in documents incorporated by reference, and/or ordinary

meanings of the defined terms.

[0210] The indefinite articles “a” and “an,” as used herein in the specification and in the

claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”

[0211] The phrase “and/or,” as used herein in the specification and in the claims, should be
understood to mean “either or both” of the elements so conjoined, i.¢., elements that are
conjunctively present in some cases and disjunctively present in other cases. Multiple elements
listed with “and/or”’ should be construed in the same fashion, i.e., “one or more” of the elements
so conjoined. Other elements may optionally be present other than the elements specifically
identified by the “and/or” clause, whether related or unrelated to those elements specifically
identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in
conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A
only (optionally including elements other than B); in another embodiment, to B only (optionally
including elements other than A); in yet another embodiment, to both A and B (optionally

including other elements); etc.

[0212] Asused herein in the specification and in the claims, “or” should be understood to have
the same meaning as “and/or” as defined above. For example, when separating items in a list,
“or” or “and/or” shall be interpreted as being inclusive, i.¢., the inclusion of at least one, but also
including more than one, of a number or list of elements, and, optionally, additional unlisted
items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or,
when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a
number or list of elements. In general, the term “or” as used herein shall only be interpreted as
indicating exclusive alternatives (i.e. “one or the other but not both’’) when preceded by terms of

2% ¢

exclusivity, such as “cither,” “one of,” “only one of,” or “exactly one of.” “Consisting

79

10

15

20

WO 2013/052894 PCT/US2012/059097

essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of

patent law.

[0213] Asused herein in the specification and in the claims, the phrase “at least one,” in
reference to a list of one or more elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of elements, but not necessarily
including at least one of each and every element specifically listed within the list of elements and
not excluding any combinations of elements in the list of elements. This definition also allows
that elements may optionally be present other than the elements specifically identified within the
list of elements to which the phrase “at least one” refers, whether related or unrelated to those
elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or,
equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in
one embodiment, to at least one, optionally including more than one, A, with no B present (and
optionally including elements other than B); in another embodiment, to at least one, optionally
including more than one, B, with no A present (and optionally including elements other than A);
in yet another embodiment, to at least one, optionally including more than one, A, and at least

one, optionally including more than one, B (and optionally including other elements); etc.

[0214] In the claims, as well as in the specification above, all transitional phrases such as

99 ¢cs

containing,” “involving,” “holding,”

99 ¢cs

“comprising,” “including,

2% ¢ 2% ¢

carrying,” “having,
“composed of,” and the like are to be understood to be open-ended, i.¢., to mean including but
not limited to. Only the transitional phrases “consisting of”” and “consisting essentially of”” shall
be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent

Office Manual of Patent Examining Procedures, Section 2111.03.

80

10

15

20

25

WO 2013/052894 PCT/US2012/059097

CLAIMS

1. A control system for monitoring and controlling a dynamic environment having a
plurality of conditions in response to which a plurality of actions are required, the control system
comprising:
a master processor; and
at least one co-processor communicatively coupled to the master processor,
wherein the master processor configures the at least one co-processor to:
evaluate only a first subset of the plurality of conditions; and
provide first control information representing at least one first action of the

plurality of actions if at least one condition of the first subset is satisfied.

2. The control system of claim 1, wherein:

A) the dynamic environment includes:

Al) equipment to implement an automated process;

A2) at least one control device to control the equipment in response to at least one
control signal; and

A3) at least one sensor to monitor the automated process and generate at least one
input signal representing a monitored condition of the plurality of conditions; and
B) the at least one co-processor:

B1) receives the at least one input signal representing the monitored condition;

B2) processes the at least one input signal so as to determine if the at least one
condition of the first subset is satisfied; and

B3) provides the first control information so as to generate the at least one control
signal for the at least one control device if the monitored condition matches the at least

one condition of the first subset.

81

10

15

20

25

3.

WO 2013/052894 PCT/US2012/059097

The control system of claim 2, wherein in B), the at least one co-processor further:

B4) transmits a notification signal to the master processor if the at least one condition of

the first subset is satisfied.

A machine vision system, comprising:
the control system of claim 3;
the equipment to implement the automated process in Al);
the at least one control device in A2) to control the equipment; and
the at least one sensor to monitor the automated process,
wherein:
the equipment to implement the automated process comprises:
robotics equipment; and
lighting equipment to provide controlled ambient lighting for the automated
process;

the at least one control device includes a plurality of actuators coupled to the robotics

equipment and/or the lighting equipment to control the robotics equipment and/or the lighting

equipment;

the at least one sensor comprises at least one image acquisition device to acquire at least

one image of at least a portion of the automated process; and

the control system is communicatively coupled to the at least one control device and the

at least one sensor, to receive the at least one input signal generated by the at least one sensor and

to control the plurality of actuators and/or the at least one image acquisition device based at least

in part on the at least one control signal generated in B3).

5.

The control system of claim 1, wherein the first subset of the plurality of conditions

configured by the master processor for evaluation by the at least one co-processor includes only

one condition.

82

10

15

20

25

WO 2013/052894 PCT/US2012/059097

6. The control system of claim 1, wherein the first subset of the plurality of conditions
configured by the master processor for evaluation by the at least one co-processor includes

multiple conditions expected to occur in the dynamic environment within a specified time period.

7. The control system of claim 6, wherein the specified time period within which the
multiple conditions are expected to occur in the dynamic environment is less than a response

time of the master processor.

8. The control system of claim 6, wherein the specified time period within which the
multiple conditions are expected to occur in the dynamic environment is less than a worst-case

response time of the master processor.

9. The control system of claim 1, wherein the master processor determines the first subset of
the plurality of conditions for evaluation by the at least one co-processor based on at least one of:
a time period in which the first subset of the plurality of conditions is expected to occur
in the dynamic environment;
a particular sequence in which the plurality of conditions is expected to occur in the
dynamic environment;
at least one previous action taken in the dynamic environment;
a present state of the dynamic environment;
a response time of the master processor; and

at least one attribute of the at least one co-processor.

10. The control system of claim 9, wherein:

the at least one co-processor is configured to receive and process at least one input signal
representing at least one monitored condition of the plurality of conditions;

the at least one co-processor is configured to output at least one output signal
corresponding to the first control information representing the at least one first action of the

plurality of actions; and

83

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the at least one attribute of the at least one co-processor comprises at least one of:

a functioning status of the at least one co-processor;

a first number of the at least one input signal processed by the at least one co-
processor;

a first type of the at least one input signal processed by the at least one co-
processor;

a second number of the at least one output signal processed by the at least one co-
processor; and

a second type of the at least one output signal processed by the at least one co-

Processor.

11. The control system of claim 1, wherein the master processor determines the first subset of
the plurality of conditions for evaluation by the at least one co-processor based on at least one
compiled executable instruction representing at least one source code wait statement, wherein the
at least one source code wait statement specifies the at least one condition of the first subset of

the plurality of conditions and the at least one first action of the plurality of actions.

12. The control system of claim 1, wherein:

the at least one co-processor is configured to evaluate a fixed maximum number of
conditions;

the maximum number of conditions is based at least in part on a maximum permissible
latency defined by a required response time in the dynamic environment for providing the first
control information if the at least one condition of the first subset is satisfied; and

the first subset of the plurality of conditions configured by the master processor for
evaluation by the at least one co-processor includes less than or equal to the maximum number of

conditions.

13. The control system of claim 1, wherein the at least one co-processor includes at least a

first co-processor and a second co-processor, and wherein:

84

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the master processor configures the first co-processor to evaluate only the first subset of
the plurality of conditions and to provide the first control information representing the at least
one first action of the plurality of actions if the at least one condition of the first subset is
satisfied; and

the master processor configures the second co-processor to evaluate only a second subset
of the plurality of conditions and to provide second control information representing at least one

second action of the plurality of actions if at least one condition of the second subset is satisfied.

14. The control system of claim 13, wherein the first subset of the plurality of conditions and
the second subset of the plurality of conditions both include at least one common condition for

evaluation by the first co-processor and the second co-processor, respectively.

15. The control system of claim 13, wherein:

a monitored condition of the plurality of conditions is represented by at least one input
signal;

at least the first co-processor and the second co-processor simultaneously receive the at
least one input signal representing the monitored condition; and

the first co-processor and the second co-processor independently evaluate the first subset
and the second subset of the plurality of conditions, respectively, based at least in part on the at

least one input signal.

16. The control system of claim 13, wherein the second subset of the plurality of conditions
evaluated by the second co-processor includes at least one second subset condition indicating

whether or not the at least one condition of the first subset is satisfied.
17. The control system of claim 1, wherein:

at a first time, the master processor configures the at least one co-processor to evaluate

only the first subset of the plurality of conditions and to provide the first control information

85

10

15

20

25

WO 2013/052894 PCT/US2012/059097

representing the at least one first action of the plurality of actions if the at least one condition of
the first subset is satisfied; and

at a second time, the master processor reconfigures the at least one co-processor to
evaluate only a second subset of the plurality of conditions and to provide second control
information representing at least one second action of the plurality of actions if at least one

condition of the second subset is satisfied.

18. The control system of claim 17, wherein the master processor determines the second
subset of the plurality of conditions for evaluation by the at least one co-processor at the second
time based at least in part on whether or not the at least one condition of the first subset is

satisfied.

19. The control system of claim 17, wherein the master processor determines the second
subset of the plurality of conditions for evaluation by the at least one co-processor based on at
least one of:

a time period in which the second subset of the plurality of conditions is expected to
occur in the dynamic environment;

a particular sequence in which the plurality of conditions is expected to occur in the
dynamic environment;

a present state of the dynamic environment;

at least one previous action taken in the dynamic environment;

the response time of the master processor; and

at least one attribute of the at least one co-processor.
20. The control system of claim 19, wherein:

the at least one co-processor is configured to receive and process at least one input signal

representing at least one monitored condition of the plurality of conditions;

86

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the at least one co-processor is configured to output at least one output signal
corresponding to the second control information representing the at least one second action of the
plurality of actions; and
the at least one attribute of the at least one co-processor comprises at least one of:
a functioning status of the at least one co-processor;
a first number of the at least one input signal processed by the at least one co-
processor;
a first type of the at least one input signal processed by the at least one co-
processor;
a second number of the at least one output signal processed by the at least one co-
processor; and
a second type of the at least one output signal processed by the at least one co-

Processor.

21. The control system of claim 17, wherein the master processor determines the second
subset of the plurality of conditions for evaluation by the at least one co-processor based on at
least one compiled executable instruction representing at least one source code wait statement,
wherein the at least one source code wait statement specifies the at least one condition of the
second subset of the plurality of conditions and the at least one second action of the plurality of

actions.

22. The control system of claim 1, wherein a monitored condition of the plurality of
conditions is represented by at least one input signal, and wherein the at least one co-processor
comprises:

at least one input interface to receive the at least one input signal representing the
monitored condition and/or first configuration information from the master processor relating to
evaluation of the first subset of conditions;

a dedicated memory to store at least the first configuration information received from the

master processor;

87

5

10

15

20

25

WO 2013/052894 PCT/US2012/059097

at least one output interface to provide the first control information representing the at
least one first action of the plurality of actions; and
at least one controller, communicatively coupled to the at least one input interface, the
dedicated memory, and the at least one output interface, wherein the at least one controller is
configured to:
process the at least one input signal based at least in part on the first configuration
information received from the master processor so as to determine if the at least one
condition of the first subset is satisfied; and
control the at least one output interface so as to provide the first control

information if the at least one condition of the first subset is satisfied.

23. The control system of claim 22, wherein the at least one controller of the at least one co-
processor further is configured to control the at least one output interface so as to transmit a
notification signal to the master processor if the at least one condition of the first subset is

satisfied.

24. The control system of claim 22, wherein:

the at least one input signal includes a plurality of input signals, wherein respective
values of the plurality of input signals at a given time represent the monitored condition of the
plurality of conditions; and

the at least one input interface of the at least one co-processor is configured to receive the

plurality of input signals.

25. The control system of claim 24, wherein the respective values of the plurality of input
signals comprise at least one of:

a plurality of real-time values representing the monitored condition;

a plurality of latched values representing the monitored condition;

at least one multi-bit digital value representing the monitored condition; and

88

10

15

20

25

WO 2013/052894 PCT/US2012/059097

a plurality of binary values respectively representing different sensed parameters

constituting the monitored condition.

26. The control system of claim 22, wherein:

the first configuration information received from the master controller by the at least one
co-processor includes a first executable program codifying the first subset of conditions for
evaluation by the at least one co-processor;

the at least one input interface of the at least one co-processor is configured to receive the
first executable program;

the dedicated memory of the at least one co-processor stores the first executable program
when received by the at least one input interface; and

the at least one controller of the at least one co-processor includes a central processing
unit to execute the first executable program so as to evaluate the first subset of conditions based

at least in part on the at least one input signal representing the monitored condition.

27. The control system of claim 22, wherein:

the first configuration information received from the master controller by the at least one
co-processor includes at least one condition/action pair representing the first subset of conditions
for evaluation by the at least one co-processor;

the at least one input interface of the at least one co-processor is configured to receive the
at least one condition/action pair;

the dedicated memory of the at least one co-processor stores the at least one
condition/action pair when received by the at least one input interface; and

the at least one controller of the at least one co-processor includes digital logic circuitry
to evaluate the at least one condition/action pair based at least in part on the at least one input

signal representing the monitored condition.

89

10

15

20

25

WO 2013/052894 PCT/US2012/059097

28. The control system of claim 27, wherein:
A) the dedicated memory includes at least one register to store the at least one
condition/action pair;
B) the at least one condition/action pair includes a first number of bits having respective
values representing a particular condition of the first subset of conditions to be evaluated, and a
second number of bits having respective values representing a corresponding action to be taken if
the particular condition is satisfied; and
C) the digital logic circuitry includes:
C1) at least one comparator to:
compare the respective values of the first number of bits representing the
particular condition and at least one value of the at least one input signal
representing the monitored condition; and
provide a match signal if the particular condition matches the monitored
condition; and
C2) at least one gate, coupled to the at least one register of the dedicated memory,
and coupled to the comparator to receive the match signal, to provide to the at least one
output interface, if the match signal is asserted by the comparator, the second number of
bits representing the corresponding action to be taken,
wherein the at least one output interface provides the second number of bits as the first

control information.

29. The control system of claim 28, wherein the at least one output interface provides the
match signal as a notification signal to the master processor to indicate that the particular

condition matches the monitored condition.
30. The control system of claim 28, wherein:

the dedicated memory is configured to store a fixed maximum number of

condition/action pairs; and

90

10

15

20

25

WO 2013/052894 PCT/US2012/059097

at least one of the maximum number of condition/action pairs and the size of the at least
one register is based at least in part on a maximum permissible latency defined by a required
response time in the dynamic environment for providing the first control information if the at

least one condition of the first subset is satisfied.

31. The control system of claim 28, wherein:

the dedicated memory includes a plurality of registers to store a plurality of
condition/action pairs, cach condition/action pair of the plurality of condition action pairs
including the first number of bits having respective values representing a particular condition of
the first subset of conditions to be evaluated, and the second number of bits having respective
values representing the corresponding action to be taken if the particular condition is satisfied;
and

the digital logic circuitry further comprises scanning circuitry to successively couple the
at least one comparator and the at least one gate to the plurality of registers of the dedicated

memory to sequentially process the plurality of condition/action pairs.

32. In a system comprising a master processor and at least one co-processor communicatively
coupled to the master processor, a method for monitoring and controlling a dynamic environment
having a plurality of conditions in response to which a plurality of actions are required, the
method comprising:

A) determining, via the master processor, a first subset of the plurality of conditions
expected to occur in the dynamic environment within a specified time period that is less than a
response time of the master processor; and

B) evaluating, via the at least one co-processor, the first subset of the plurality of
conditions determined in A) so as to provide first control information representing at least one

first action of the plurality of actions if at least one condition of the first subset is satisfied.

91

10

15

20

25

WO 2013/052894 PCT/US2012/059097

33. The method of claim 32, further comprising:
transmitting, from the at least one co-processor to the master processor, a notification

signal if the at least one condition of the first subset is satisfied.

34. The method of claim 32, wherein in A), the a specified time period is less than a worst-

case response time of the master processor.

35. The method of claim 32, wherein A) comprises determining the first subset of the
plurality of conditions based on at least one of:

a particular sequence in which the plurality of conditions is expected to occur in the
dynamic environment;

at least one previous action taken in the dynamic environment;

a present state of the dynamic environment; and

at least one attribute of the at least one co-processor.

36. The method of claim 35, wherein:
the at least one co-processor is configured to receive and process at least one input signal
representing at least one monitored condition of the plurality of conditions;
the at least one co-processor is configured to output at least one output signal
corresponding to the first control information representing the at least one first action of the
plurality of actions; and
the at least one attribute of the at least one co-processor comprises at least one of:
a functioning status of the at least one co-processor;
a first number of the at least one input signal processed by the at least one co-
processor;
a first type of the at least one input signal processed by the at least one co-
processor;
a second number of the at least one output signal processed by the at least one co-

processor; and

92

10

15

20

25

WO 2013/052894 PCT/US2012/059097

a second type of the at least one output signal processed by the at least one co-

Processor.

37. The method of claim 32, wherein A) comprises determining the first subset of the
plurality of conditions based on execution by the master processor of at least one compiled
executable instruction representing at least one source code wait statement, wherein the at least
one source code wait statement specifies the at least one condition of the first subset of the

plurality of conditions and the at least one first action of the plurality of actions.

38. The method of claim 32, wherein A) further comprises:

determining a fixed maximum number of conditions for evaluation by the at least one co-
processor based on the response time of the master processor,

wherein the first subset of the plurality of conditions includes less than or equal to the

maximum number of conditions.

39. The method of claim 32, wherein the at least one co-processor includes at least a first co-
processor and a second co-processor, and wherein:

B) comprises evaluating, via the first co-processor, the first subset of the plurality of
conditions determined in A) so as to provide the first control information representing the at least
one first action of the plurality of actions if at least one condition of the first subset is satisfied,

and wherein the method further comprises:

C) determining, via the master processor, a second subset of the plurality of conditions
expected to occur in the dynamic environment within the specified time period; and

D) evaluating, via the second co-processor, the second subset of the plurality of
conditions determined in C) so as to provide second control information representing at least one

second action of the plurality of actions if at least one condition of the second subset is satisfied.

93

10

15

20

25

WO 2013/052894 PCT/US2012/059097

40. The method of claim 39, wherein the second subset of the plurality of conditions
determined in C) includes at least one second subset condition indicating whether or not the at

least one condition of the first subset is satisfied.

41]. The method of claim 39, wherein:

a monitored condition of the plurality of conditions is represented by at least one input
signal;

at least the first co-processor and the second co-processor simultaneously receive the at
least one input signal representing the monitored condition; and

the first co-processor and the second co-processor independently evaluate the first subset
and the second subset of the plurality of conditions, respectively, based at least in part on the at

least one input signal.

42. The method of claim 32, further comprising, at a time after execution of B):

C) determining, via the master processor, a second subset of the plurality of conditions
expected to occur in the dynamic environment within the specified time period; and

D) evaluating, via the at least one co-processor, the second subset of the plurality of
conditions determined in C) so as to provide second control information representing at least one

second action of the plurality of actions if at least one condition of the second subset is satisfied.

43. The method of claim 42, wherein C) comprises:
determining the second subset of the plurality of conditions based at least in part on

whether or not the at least one condition of the first subset is satisfied in B).

44, The method of claim 32, wherein:

a monitored condition of the plurality of conditions is represented by a plurality of input
signals, wherein respective values of the plurality of input signals at a given time represent the
monitored condition of the plurality of conditions; and

the respective values of the plurality of input signals comprise at least one of:

94

10

15

20

25

WO 2013/052894 PCT/US2012/059097

a plurality of real-time values representing the monitored condition;

a plurality of latched values representing the monitored condition;

at least one multi-bit digital value representing the monitored condition; and

a plurality of binary values respectively representing different sensed parameters

constituting the monitored condition.

45. A control system for monitoring and controlling a dynamic environment having a
plurality of conditions in response to which a plurality of actions are required, the dynamic
environment comprising equipment to implement an automated process, at least one control
device to control the equipment in response to at least one control signal, and at least one sensor
to monitor the automated process and generate at least one input signal representing a monitored
condition of the plurality of conditions, the control system comprising:
a master processor; and
at least one co-processor communicatively coupled to the master processor,
wherein:
the master processor configures the at least one co-processor to:
evaluate only a first subset of the plurality of conditions expected to occur in the
dynamic environment within a specified time period that is less than a response time of
the master processor; and
provide first control information representing at least one first action of the
plurality of actions if at least one condition of the first subset is satisfied; and
the at least one co-processor:
receives the at least one input signal representing the monitored condition;
processes the at least one input signal so as to determine if the at least one
condition of the first subset is satisfied; and
provides the first control information so as to generate the at least one control
signal for the at least one control device if the monitored condition matches the at least

one condition of the first subset.

95

10

15

20

25

WO 2013/052894 PCT/US2012/059097

46. A machine vision system, comprising:
the control system of claim 45;
the equipment to implement the automated process;
the at least one control device to control the equipment; and
the at least one sensor to monitor the automated process,
wherein:
the equipment to implement the automated process comprises:
robotics equipment; and
lighting equipment to provide controlled ambient lighting for the automated
process;
the at least one control device includes a plurality of actuators coupled to the robotics
equipment and/or the lighting equipment to control the robotics equipment and/or the lighting
equipment;
the at least one sensor comprises at least one image acquisition device to acquire at least
one image of at least a portion of the automated process; and
the control system is communicatively coupled to the at least one control device and the
at least one sensor, to receive the at least one input signal generated by the at least one sensor and
to control the plurality of actuators and/or the at least one image acquisition device based at least

in part on the at least one control signal for the at least one control device.

47. An action engine to evaluate a plurality of conditions of a dynamic environment, the
action engine comprising:

a memory to store at least one event table, the at least one event table being structured as
a plurality of successive contiguous memory locations, wherein each memory location of the
plurality of successive contiguous memory locations is configured to store contents representing
a particular condition of the plurality of conditions to be evaluated by the action engine and a
corresponding action to be taken if the particular condition is satisfied; and

at least one scanner, communicatively coupled to the memory so as to access the at least

one event table, the at least one scanner comprising processing circuitry configured to:

96

10

15

20

25

48.

49.

WO 2013/052894 PCT/US2012/059097

sequentially process the contents of the respective memory locations of the at
least one event table to evaluate the plurality of conditions represented in the contents;

generate a notification signal for each condition of the plurality of conditions that
is satisfied upon evaluation; and

generate control information representing at least one action to be taken in the

dynamic environment if any of the plurality of conditions is satisfied upon evaluation.

The action engine of claim 47, wherein:
A) the dynamic environment includes:

Al) equipment to implement an automated process;

A2) at least one control device to control the equipment in response to at least one
control signal; and

A3) at least one sensor to monitor the automated process and generate at least one
input signal representing a monitored condition of the plurality of conditions; and
B) the at least one scanner of the action engine:

B1) receives the at least one input signal representing the monitored condition;

B2) processes the at least one input signal so as to determine if at least a first
condition represented by the contents of at least a first memory location of the event table
is satisfied; and

B3) provides at least first control information representing at least one first action
to be taken corresponding to the at least one first condition if the monitored condition

matches the at least one first condition.

A control system, comprising:
the action engine of claim 48; and

a master processor communicatively coupled to the action engine, the master processor

configured to, upon execution of processor-executable instructions stored in the master

Processor:

97

10

15

20

25

WO 2013/052894 PCT/US2012/059097

provide to the action engine the contents of the respective memory locations of
the at least one event table; and
receive from the action engine a notification signal for each condition of the

plurality of conditions that is satisfied upon evaluation.

50. A machine vision system, comprising:
the action engine of claim 48;
the equipment to implement the automated process in Al);
the at least one control device in A2) to control the equipment; and
the at least one sensor to monitor the automated process,
wherein:
the equipment to implement the automated process comprises:
robotics equipment; and
lighting equipment to provide controlled ambient lighting for the automated
process;
the at least one control device includes a plurality of actuators coupled to the robotics
equipment and/or the lighting equipment to control the robotics equipment and/or the lighting
equipment;
the at least one sensor comprises at least one image acquisition device to acquire at least
one image of at least a portion of the automated process; and
the action engine is communicatively coupled to the at least one control device and the at
least one sensor, to receive the at least one input signal generated by the at least one sensor and
to control the plurality of actuators and/or the at least one image acquisition device based at least

in part on at least the first control information generated in B3).

51. The action engine of claim 47, further comprising:
at least one input interface, communicatively coupled to the at least one scanner, to
receive at least one input signal representing a monitored condition of the plurality of conditions

of the dynamic environment,

98

10

15

20

25

WO 2013/052894 PCT/US2012/059097

wherein:

the processing circuitry of the at least one scanner compares a value of the at least one
input signal to at least a first portion of the contents of at least one memory location of the at
least one event table, wherein the first portion of the contents of each memory location represents
the particular condition to be evaluated; and

if the value of the at least one input signal matches at least the first portion of the contents
of the at least one memory location and representing the particular condition to be evaluated, the
processing circuitry of the at least one scanner processes a second portion of the contents of the
at least one memory location representing the corresponding action to be taken in the dynamic

environment so as to provide at least some of the control information.

52. The action engine of claim 51, wherein:

the at least one event table includes a fixed maximum number of successive contiguous
memory locations; and

the maximum number of memory locations is based at least in part on a maximum
permissible latency defined by a required response time for providing the control information in

the dynamic environment if any condition of the plurality of conditions is satisfied.

53. The action engine of claim 51, wherein the processing circuitry of the scanner comprises:

comparator logic circuitry to compare the value of the at least one input signal to at least
the first portion of the contents of the at least one memory location;

action logic circuitry to process the second portion of the contents of the at least one
memory location and representing the corresponding action to be taken, and provide the at least
some of the control information;

sequencing logic circuitry to control the at least one event table so as to sequentially
provide the contents of the respective memory locations to the comparator logic circuitry and the
action logic circuitry; and

event table write arbitration logic circuitry to control the at least one event table so as to

write new contents to at least one memory register of the at least one event table.

99

10

15

20

25

WO 2013/052894 PCT/US2012/059097

54. The action engine of claim 51, wherein:

the contents of each memory location of the plurality of successive contiguous memory
locations includes a condition/action pair, the condition/action pair including a first number of
bits constituting the first portion and having respective values representing a particular condition
of the plurality of conditions to be evaluated, and a second number of bits constituting the second
portion and having respective values representing the corresponding action to be taken if the
particular condition is satisfied; and

the processing circuitry of the scanner comprises:

a comparator coupled to the at least one memory location to compare the
respective values of the first number of bits representing the particular condition and the
value of the at least one input signal representing the monitored condition of the plurality
of conditions, the comparator further configured to generate a match signal if the
particular condition matches the monitored condition; and

a gate, coupled to the at least one memory location and coupled to the comparator
so as to receive the match signal, to output the second number of bits having respective
values representing the corresponding action to be taken if the match signal is asserted by

the comparator.

55. The action engine of claim 51, further comprising at least one semaphore register,
communicatively coupled to the at least one scanner, to store at least one semaphore, wherein:
the at least one semaphore facilitates management of resource contention; and
the at least one scanner acquires and releases the at least one semaphore to ensure
availability of at least one resource on which evaluation of at least one condition of the plurality

of conditions relies.

56. The action engine of claim 51, wherein:

100

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the at least one input signal includes a plurality of input signals, wherein respective
values of the plurality of input signals at a given time represent the monitored condition of the
plurality of conditions; and

the at least one input interface is configured to receive the plurality of input signals.

57. The action engine of claim 56, wherein the respective values of the plurality of input
signals comprise at least one of:

a plurality of real-time values representing the monitored condition;

a plurality of latched values representing the monitored condition;

at least one multi-bit digital value representing the monitored condition;

a plurality of binary values respectively representing different sensed parameters
constituting the monitored condition; and

at least one binary value representing at least one semaphore.

58. The action engine of claim 51, wherein the at least one input interface further is
configured to receive the contents of each memory location of the event table from an external
device that receives the notification signal generated by the processing circuitry of the at least

one scanncer.

59. The action engine of claim 51, further comprising:

at least one output interface, communicatively coupled to the at least one scanner, to
provide the notification signal for each condition of the plurality of conditions that is satisfied
upon evaluation, and to further provide the at least some of the control information based at least
in part on the second portion of the contents of the at least one memory location representing the

corresponding action to be taken in the dynamic environment.
60. The action engine of claim 59, wherein the corresponding action to be taken in the

dynamic environment, as represented by the at least some of the control information, includes at

least one of:

101

10

15

20

25

WO 2013/052894 PCT/US2012/059097

sending at least one data packet to at least one control device in the dynamic
environment;

setting and/or clearing at least one flag bit;

setting and/or clearing at least one output bit;

setting and/or clearing at least one semaphore; and

latching and/or resetting at least one counter.

61. The action engine of claim 51, wherein:

cach memory location of the at least one event table includes at least one memory register
having a first number of bits; and

the first portion of the contents of each memory location representing the particular
condition to be evaluated includes a second number of bits smaller than the first number, wherein
at least some of the second number of bits are nonadjacent bits in the at least one memory

register.

62. The action engine of claim 61, wherein:

the second portion of the contents of each memory location representing the
corresponding action to be taken in the dynamic environment includes a third number of bits
smaller than the first number, wherein at least some of the third number of bits are nonadjacent

bits in the at least one memory register.

63. The action engine of claim 51, wherein:

the first portion of the contents of a first memory location of the plurality of successive
contiguous memory locations includes a chain bit to link the first memory location to a next
memory location of the plurality of successive contiguous memory locations, the first portion of
the contents of the first memory location representing a first condition to be evaluated;

the second portion of the contents of the first memory location representing a first
corresponding action to be taken in the dynamic environment includes a first action operand

indicating that no action is to be taken in the dynamic environment;

102

10

15

20

25

WO 2013/052894 PCT/US2012/059097

the first portion of the contents of the next memory location represents a second condition
to be evaluated; and

the second portion of the contents of the next memory location includes a second action
operand representing at least one action to be taken in the dynamic environment if both the first

condition and the second condition are satisfied.

64. The action engine of claim 51, wherein:

cach memory location of the at least one event table includes at least one memory register
having a first number of bits;

the first number of bits are partitioned as an op-code, an action parameter, and a
condition operand; and

the op-code comprises at least a condition type code and an action operand,

wherein:

the condition type code and the condition operand constitute at least part of the first
portion of the contents of each memory location representing the particular condition to be
evaluated; and

the action operand and the action parameter constitute at least part of the second portion
of the contents of each memory location representing the corresponding action to be taken in the

dynamic environment.

65. The action engine of claim 64, wherein:
the first number of bits for the at least one memory register is 64 bits;
the op-code is 16 bits;
the action parameter is 16 bits; and

the condition operand is 32 bits.

66. The action engine of claim 65, wherein the at least one event table includes 128 memory

locations.

103

10

15

20

25

WO 2013/052894 PCT/US2012/059097

67. The action engine of claim 64, wherein the op-code further comprises:
a counter field; and

at least one bit relating to processing of the condition type code.

68. The action engine of claim 67, wherein the at least one bit relating to processing of the
condition type code includes at least one of:

a chain bit;

an XOR bit;

a notify bit;

a satisfied bit; and

a last condition bit.

69. A method for evaluating a plurality of conditions of a dynamic environment, the method
comprising:

A) sequentially processing contents of respective memory locations of at least one event
table stored in a memory, the at least one event table being structured as a plurality of successive
contiguous memory locations, wherein each memory location of the plurality of successive
contiguous memory locations is configured to store a condition/action pair representing a
particular condition of the plurality of conditions to be evaluated and a corresponding action to
be taken if the particular condition is satisfied;

B) generating a notification signal for each condition of the plurality of conditions that is
satisfied upon evaluation in A); and

C) transmitting, to at least one control device so as to control at least one piece of
equipment in the dynamic environment, control information representing at least one action to be
taken in the dynamic environment if any of the plurality of conditions is satisfied upon

evaluation in A).

104

10

15

20

25

WO 2013/052894 PCT/US2012/059097

70. The method of claim 69, wherein A) comprises:

Al) receiving at least one input signal representing a monitored condition of the plurality
of conditions of the dynamic environment;

A2) comparing a value of the at least one input signal to at least a first portion of the
contents of at least one memory location of the at least one event table, wherein the first portion
of the contents of each memory location represents the particular condition to be evaluated; and

A3) if the value of the at least one input signal matches at least the first portion of the
contents of the at least one memory location and representing the particular condition to be
evaluated, processing a second portion of the contents of the at least one memory location
representing the corresponding action to be taken in the dynamic environment so as to provide at

least some of the control information transmitted in C).

71. The method of claim 70, further comprising:
acquiring and releasing at least one semaphore to ensure availability of at least one
resource on which A) relies, wherein the at least one semaphore facilitates management of

resource contention.

72. The method of claim 70, wherein:
the at least one input signal includes a plurality of input signals, wherein respective
values of the plurality of input signals at a given time represent the monitored condition of the

plurality of conditions.

73. The method of claim 72, wherein the respective values of the plurality of input signals
comprise at least one of:

a plurality of real-time values representing the monitored condition;

a plurality of latched values representing the monitored condition;

at least one multi-bit digital value representing the monitored condition;

105

10

15

20

25

WO 2013/052894 PCT/US2012/059097

a plurality of binary values respectively representing different sensed parameters
constituting the monitored condition; and

at least one binary value representing at least one semaphore.

74. The method of claim 69, further comprising:
receiving the contents of each memory location of the event table from an external device

that receives the notification signal generated in B).

75. The method of claim 69, wherein C) comprises at least one of:
sending at least one data packet to the at least one control device;
setting and/or clearing at least one flag bit;
setting and/or clearing at least one output bit;
setting and/or clearing at least one semaphore; and

latching and/or resetting at least one counter.

76. The method of claim 69, wherein:

cach memory location of the at least one event table includes at least one memory register
having a first number of bits; and

the first portion of the contents of each memory location representing the particular
condition to be evaluated includes a second number of bits smaller than the first number, wherein
at least some of the second number of bits are nonadjacent bits in the at least one memory

register.

77. The method of claim 76, wherein:

the second portion of the contents of each memory location representing the
corresponding action to be taken in the dynamic environment includes a third number of bits
smaller than the first number, wherein at least some of the third number of bits are nonadjacent

bits in the at least one memory register.

106

10

15

20

25

WO 2013/052894 PCT/US2012/059097

78. The method of claim 69, wherein:

the first portion of the contents of a first memory location of the plurality of successive
contiguous memory locations includes a chain bit to link the first memory location to a next
memory location of the plurality of successive contiguous memory locations, the first portion of
the contents of the first memory location representing a first condition to be evaluated;

the second portion of the contents of the first memory location representing a first
corresponding action to be taken in the dynamic environment includes a first action operand
indicating that no action is to be taken in the dynamic environment;

the first portion of the contents of the next memory location represents a second condition
to be evaluated; and

the second portion of the contents of the next memory location includes a second action
operand representing at least one action to be taken in the dynamic environment if both the first

condition and the second condition are satisfied.

79. The method of claim 69, wherein:

cach memory location of the at least one event table includes at least one memory register
having a first number of bits;

the first number of bits are partitioned as an op-code, an action parameter, and a
condition operand; and

the op-code comprises at least a condition type code and an action operand,

wherein:

the condition type code and the condition operand constitute at least part of the first
portion of the contents of each memory location representing the particular condition to be
evaluated; and

the action operand and the action parameter constitute at least part of the second portion
of the contents of each memory location representing the corresponding action to be taken in the

dynamic environment.

107

WO 2013/052894 PCT/US2012/059097

80. An action engine to evaluate a plurality of conditions of a dynamic environment and

generate control information representing at least one action to be taken in the dynamic

environment if any of the plurality of conditions is satisfied, the action engine comprising:
a plurality of co-processors, each co-processor comprising:

a memory register to store a condition/action pair, the condition/action pair
including a first number of bits having respective values representing one condition of the
plurality of conditions to be evaluated, and a second number of bits having respective
values representing a corresponding action to be taken if the one condition is satisfied;

a comparator coupled to the memory register to compare the respective values of
the first number of bits representing the one condition and at least one value representing
a monitored condition of the plurality of conditions, the comparator further configured to
generate a match signal if the one condition matches the monitored condition; and

a gate, coupled to the memory register and coupled to the comparator so as to
receive the match signal, to output, as at least some of the control information generated
by the action engine, the second number of bits having respective values representing the

corresponding action to be taken if the match signal is asserted by the comparator.

81. An apparatus for facilitating monitoring and control of a dynamic environment having a
plurality of conditions in response to which a plurality of actions are required to be taken in the
dynamic environment, the apparatus comprising:

at least one communication interface;

at least one memory to store processor-executable instructions; and

at least one processor communicatively coupled to the at least one memory and the at
least one communication interface, wherein, upon execution of the processor-executable
instructions, the at least one processor:

A) controls the at least one communication interface so as to configure at least
one co-processor, when the at least one co-processor is communicatively coupled to the

at least one communication interface, to evaluate only a first subset of the plurality of

108

10

15

20

25

WO 2013/052894 PCT/US2012/059097

conditions of the dynamic environment and to provide, if at least one condition of the
first subset is satisfied, first control information representing at least one first action of
the plurality of actions required to be taken in the dynamic environment,
wherein the at least one processor selects the first subset of the plurality of
conditions for evaluation by the at least one co-processor based on at least one of:
a time period in which the first subset of the plurality of conditions is
expected to occur in the dynamic environment;
a particular sequence in which the plurality of conditions is expected to
occur in the dynamic environment;
at least one previous action taken in the dynamic environment; and

a response time of the at least one processor.

82. The apparatus of claim 81, wherein the at least one processor selects the first subset of
the plurality of conditions for evaluation by the at least one co-processor based on:

the time period in which the first subset of the plurality of conditions is expected to occur
in the dynamic environment; and

the response time of the at least one processor.

83. The apparatus of claim 82, wherein the time period in which the first subset of the
plurality of conditions is expected to occur in the dynamic environment is less than the response

time of the at least one processor.

84. The apparatus of claim 83, wherein the response time is a worst-case response time of the

at least one processor.
85. A method implemented by at least one processor for facilitating monitoring and control

of a dynamic environment having a plurality of conditions in response to which a plurality of

actions are required to be taken in the dynamic environment, the method comprising:

109

10

15

20

25

WO 2013/052894 PCT/US2012/059097

A) specifying a first subset of the plurality of conditions for evaluation by at least one co-
processor based on at least one of:
a time period in which the first subset of the plurality of conditions is expected to
occur in the dynamic environment;
a particular sequence in which the plurality of conditions is expected to occur in
the dynamic environment;
at least one previous action taken in the dynamic environment; and
a response time of the at least one processor; and
B) configuring the at least one co-processor to evaluate only the first subset of the
plurality of conditions of the dynamic environment and to provide, if at least one condition of the
first subset is satisfied, first control information representing at least one first action of the

plurality of actions required to be taken in the dynamic environment.

86. A non-transitory computer readable storage medium encoded with processor executable
instructions that, when executed by at least one processor, perform a method for facilitating
monitoring and control of a dynamic environment having a plurality of conditions in response to
which a plurality of actions are required to be taken in the dynamic environment, the method
comprising:
A) specifying a first subset of the plurality of conditions for evaluation by at least one co-
processor based on at least one of:
a time period in which the first subset of the plurality of conditions is expected to
occur in the dynamic environment;
a particular sequence in which the plurality of conditions is expected to occur in
the dynamic environment;
at least one previous action taken in the dynamic environment; and
a response time of the at least one processor; and
B) configuring the at least one co-processor to evaluate only the first subset of the

plurality of conditions of the dynamic environment and to provide, if at least one condition of the

110

10

15

20

25

WO 2013/052894 PCT/US2012/059097

first subset is satisfied, first control information representing at least one first action of the

plurality of actions required to be taken in the dynamic environment.

87. A machine vision system, comprising:
robotics equipment to implement an automated industrial process having a plurality of
conditions in response to which a plurality of actions are required to be taken;
lighting equipment to provide controlled ambient lighting for the automated industrial
process;
a plurality of actuators coupled to the robotics equipment and/or the lighting equipment
to control the robotics equipment and/or the lighting equipment;
at least one sensor to monitor the automated industrial process and generate at least one
input signal representing a monitored condition of the plurality of conditions, the at least one
sensor comprising at least one image acquisition device to acquire at least one image of at least a
portion of the automated industrial process; and
a control system, coupled to the plurality of actuators and the at least one sensor, to
receive the at least one input signal generated by the at least one sensor and control the plurality
of actuators and/or the at least one image acquisition device, the control system comprising;:
a master processor; and
at least one co-processor communicatively coupled to the master processor,
wherein:
the master processor configures the at least one co-processor to evaluate only a
first subset of the plurality of conditions and to provide first control information
representing at least one first action of the plurality of actions if at least one condition of
the first subset is satisfied; and
the at least one co-processor:
receives the at least one input signal representing the monitored condition;
processes the at least one input signal so as to determine if the at least one

condition of the first subset is satisfied; and

111

WO 2013/052894 PCT/US2012/059097

provides the first control information as at least one control signal for at
least one of the plurality of actuators and/or the at least one image acquisition

device if the at least one condition of the first subset is satisfied.

112

PCT/US2012/059097

WO 2013/052894

1/10

} OId

89
N

(01d)

H3TTOHLINOD JI00T FTGVINNVYHOONHd

(S32I1A3A
TOYLINOD)
SHOLVNLOV

0c

/
0e

IN3ININDO3

— 99

SS300dd d3LVINOLNY

/

ol

A 4

(S32I1A3A
1NdNI)
SYOSN3S

AN
ov

PCT/US2012/059097

WO 2013/052894

2/10

¢ 9OId
o & |
! ~ !
m Aiddns jemod m
m 09 ﬁ 2 F \mmm
<+ o , Alml
<+ LEF"_ gy D
i ! J0SS8001d -Jaju | -
< ndino — way [T 7
Alml ‘ * ——
_ —> esepelul Alowew _
m <+ SUO(EIUNWILLOY) ejep 3 weibosd mdl aonep
_ — <—— | |Puwweiboid
I o s |
\
9
0S

PCT/US2012/059097
3/10

WO 2013/052894

89 Mw .G\H\

09 |
AN VYV
— o ey | \8
| []
| 11 I
! Jaidnoo aoepalul |! I T sednod _
_ -0idO J8auq _ _ -0do _
I 43 1! > I
_ HH [we :m [seung | E !
1 e LY — 1
............. T4t
snq walsAs O]
oy VS VS YZs s ars
/ / \ | /
| / / \ sqereg__ |] >
G-I 1 B T
Jun WvH
A V indino _MME E%_%I m ndo weiboud
s Anduy a S x 1880 | ga
_1%4’\& A = 4 b = W\/\v
sSNg |joNuo)
~ 2
\ | sNq SSeIppy v
0S

PCT/US2012/059097

WO 2013/052894

4/10

_|| -
! auibug uonoy _
_ _
m eleq/welbold H———1-€ Iwwt !
! Kiowom g=heri S ——— oo,
! pojeopeg | Tt Z—bovi m 961
m Z—-00¢! “ /
P e o e o
l/
A/m/ soBUSU| woﬁm_mmwc_ 7
nang | ——— - |
_ soepa|
! tAl A} ! uonesiunwiwon nn
| 10SS9201d4-09) _ <=1 Buissasoig
" . [
| : 7
“ ° _ 10SS800.d ¥61
| | zZ6L— seiseN
! | Dby i
| eleq/welbold 1=DZ1 ! \ [}
| Aoway _
m Soone] S— | 1—D0b1 “ 061
| 1-00' | N
_ _
89~ soeLs | N
| aoepelu| sreud
1/7 ndino | oo | ndul e " a ch._m
|
[5 108$9201d-00) ~— /—D. “
| 1—p09! g m.m.N | 99 ~——np01

PCT/US2012/059097

WO 2013/052894

5/10

u-9091 [,

le

u-qog u-qgg1 }

u-€l

) L
-zel v‘i U-G07} HALSIOTY |«

< _
Uarrl w021 HoSSI00Nd-00

qoll INION3 NOILOV

¢-q091

G Old

Z-q0€l z-assl _.__.
h

e
«——] z-qop) ¥3LSIORY |¢
2-azvl | SI939 |
2-arvl 2002} HOSSIO0U-0D

L-dosl

3 ‘

v.llA = le

AT@.NQ T ;oiwm_km_om_m [«
L-vEL

- _‘-me_‘_n_._
L-doel 5 B

L-avvl

1-90C1 H0SS300dd-00

Y0l sSNg 1LNd1NO

¢0l sng

061

v

89 STVYNOIS 1Nd1NO

1NdNI

Ndo

99 STVYNOIS 1NdNI

PCT/US2012/059097

WO 2013/052894

6/10

SN

= .
L 9 9Old
LINSNVYL
A 051
HALSIOTY
JYOHdYINTS
dooN|o| 1| -] 1] o .
¥0l SNg AOd l 0 - 0 0 T
1Nd1NO
_ 651 i _ i
SOE] 1 dOON| L | 0 Ll oo a
—L au_. HY3ANNVOS - i
dooN| 0| 0o|os| 0] I
89 STYNOIS L i xoal| -l ol -|o] o 1
1NdLNO .
51 OPLUISNI (O S ¥LD O @
L ~
_ [T 319VL INGAT 9Zb) SNOILINOD
5T 3017 INIONT NOILOV
— — Lﬁ ol SNg LNdNI
> %1 | | T | _
— p— 124
76l o (44 ElElale)
06} NdD (S)4OSNaS (S)IILNNOD IANFOTY
ONIJIINISNOH 50

G-o0v1

y-o0v1

€-00¥1

A (14

L-o0v1

PCT/US2012/059097

WO 2013/052894

7110

“I ¥l ool T
Ve | o0 N
| [opypeapigeL vend 21607 _
m [JeregenipageLiven oibor] POV LS Burousnbag _
v LPpyelpelqeLuang | UOHBINAIY yejs '
BJUM _
_ o|qe] JUSAT boyeeEnd) |
_ o) |
_ Jerndd = _
_ bayaNMAcE LIauUBdS _
_ [lereqaumo|ge iouuess _
_ [|ieqalupaioydewas
' | [Pieqpesyaioydewas
_ oLl B S | g SI00CE00S
jonasur
005t H 91607 _
T o uonoy ST
[Banoguer | o1bo _ TOTOVIUompI0D
; MR ed _ sl
Sindufelequale _w_w 01682 Joluopucy | Joyeledwod TRIURRaEs |
' [Jsindupiosuas |
_ P4y [IsovensBey _] [1] lsnjepsmiuncd _
| sioisiboy [~ |s1oysifoy — _
i [eegring | N9NO 7| el S|
ey e]
_ \ SpAnoEaNdd |
. [y} / SpnoRsng) | onue MY Sf0BL JUBAT
L sev” o _leeng) | %1 Pod T

Jouuedg

PCT/US2012/059097

WO 2013/052894

8/10

SH3LSIOIY
Q3NIVHO

o0l \H-oiu_‘

\

Yol

G-ocvl

V-orrL

\

¥-ocrl

€9yl

AQd

\

€-o¢vl

Ik

X oa

dOON

IS

\ CovvL

dOON

fAaA4%

=

NOILOV

~J

L-9ZvL

PCT/US2012/059097

WO 2013/052894

9/10

u-2091

6 9Id

1-0091

%|

u-08G1| J

u-00€1
H3ANNVYOS

319VL INJAT

u-o0Ll

<

POLL INION3I NOILOY

L
u-20¢} 40SS300dd-00

Z-98G| _.__
Z-90€1 L
-
g H3ANNVOS Zo0IT |,
319vVL INIAT
Z-00Z1 HOSSID0UA-00
290/ _.;
1-00€1 1]
-
g H3ANNVOS 10011 |,
319vVL INIAT

1-2021 HOSS300dd-00

0l SN9 LNd.1Nd

061

v

89 STVYNOIS 1Nd1NO

Ndo

¢0l sng

1NdNI

99 STVYNOIS 1NdNI

PCT/US2012/059097

WO 2013/052894

10/10

os

ol Ol

29— |

(s921A0(] |0JJU0D)
sioyenioy

~—99

ol 061
auibug J0SS9201d
uonoy Jo1seN
w)sAg [01juo)
00!
Jeindwion
Buissanoid abew|
oo¢
| | Bunybn seowe) ||
Y — ——c¥
juswdinb3 uoISIA aulyoe
QN.|\
ol
juswdinb3 sonoqoy
$59001d pajewoiny zz

(s991A8(Indu])
slosuag

or

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/59097

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 19/00 (2012.01)
USPC - 700/108

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ¢l
USPC: 700/108

lassification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 700/1, 2, 9, 11, 12, 19, 20, 28, 32, 95, 108, 109; 702/84 (keyword limited - see search terms below)

Electronic data base consulted during the international search (name of
PatBase (All); Google (Web, Scholar). Terms: automation, vision, plc,

equipment, light, illumination, image, etc.

data base and, where practicable, search terms used)
programmable, logic, sensor, machine, industrial, rule, policy,

parameter, condition, event, trigger, instance, alert, alarm, warn, state, time, period, wait, latency, monitor, manage, detect, robotics,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2011/0022192 A1 (Plache et al.) 27 January 2011 (27.01.2011), 1-3, 5-7, 9-45, 47-49, 51-
- entire document, especially abstract, Fig. 9, para [0003], [0009], [0010], {0032], {0034], [0037], 86
Y [0039], [0042], [0050], [0066], [0067], [0070], [0072]-[0074], [0082]-[0085], [0087], [0089],
{0091], [0092], [0099], [0102], [0105], [0134]. 4, 8, 46, 50, 87
Y US 2007/0194944 A1 (Galera et al.) 23 August 2007 (23.08.2007), 4, 8, 46, 50, 87
entire document, especially abstract, para [0003], [0004], [0006], [0008], [0027], [0043].
A US 2011/0230991 A1 (Case) 22 September 2011 (22.09.2011), 1-87
entire document, especially abstract, para [0017], [0026], [0029], [0040], [0041], [0043].
A US 2008/0082186 A1 (Hood et al.) 03 Aprit 2008 (03.04.2008), 1-87
. entire document, especially abstract, para [0002], [0007], [0018], {0020], [0051], [0052].
A US 6,665,650 B1 (O'Grady, Jr. et al.) 16 December 2003 (16.12.2003), 1-87
entire document

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

30 November 2012 (30.11.2012)

Date of mailing of the international search report

11DEC 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
. Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - claims
	Page 105 - claims
	Page 106 - claims
	Page 107 - claims
	Page 108 - claims
	Page 109 - claims
	Page 110 - claims
	Page 111 - claims
	Page 112 - claims
	Page 113 - claims
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - wo-search-report

