
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
2 April 2009 (02.04.2009) PCT WO 2009/042919 A2

(51) International Patent Classification: Palo Alto, CA 94306 (US). AMIDON, Keith, Eric
H04W 16/04 (2009.01) [US/US]; 88 Higgins Avenue, Los Altos, CA 94022 (US).

BALLAND, Peter, J. Ill [US/US]; 3411 Waverly Street,
(21) International Application Number:

Palo Alto, CA 94306 (US). GUDE, Natasha [US/US];
PCT/US2008/077950

4250 Terman Drive, No. 204, Palo Alto, CA 94306 (US).
(22) International Filing Date: PETTIT, Justin [US/US]; 1486 Husted Avenue, San

26 September 2008 (26.09.2008) Jose, CA 95125 (US). PFAFF,Benjamin, Levy [US/US];
202 Encina Avenue, Redwood City, CA 94061 (US).

(25) Filing Language: English WENDLANDT, Daniel, J. [US/US]; 4250 El Camino
(26) Publication Language: English Real, Apt. A306, Palo Alto, CA 94306 (US).

(30) Priority Data: (74) Agents: DANIELSON, Mark, J. et al.; Pillsbury

60/995,435 26 September 2007 (26.09.2007) US Winthrop Shaw Pittman LIp, P.O.B. Box 10500, Mclean,

61/010,985 14 January 2008 (14.01.2008) US VA 22102 (US).

(81) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): NICIRA

kind of national protection available): AE, AG, AL, AM,
NETWORKS [US/US]; 385 Sherman Avenue, Suite 14,

AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
Palo Alto, CA 94306 (US).

CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
(72) Inventors; and EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
(75) Inventors/Applicants (for US only): CASADO, Martin IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

[US/US]; 521 University Drive, Menlo Park, CA 94025 LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
(US). SHENKER, Scott [US/US]; 860 San Jude Avenue, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,

[Continued on next page]

(54) Title: NETWORK OPERATING SYSTEM FOR MANAGING AND SECURING NETWORKS

(57) Abstract: Systems and methods for managing a network
are described. A view of current state of the network is
maintained where the current state of the network characterizes
network topology and network constituents, including network
entities and network elements residing in or on the network.
Events are announced that correspond to changes in the state
of the network and one or more network elements can be
configured accordingly. Methods for managing network
traffic are described that ensure forwarding and other actions
taken by network elements implement globally declared
network policy and refer to high-level names, independently
of network topology and the location of network constituents.
Methods for discovering network constituents are described,
whereby are automatically configured. Routing may be
performed using ACL and packets can be intercepted to permit
host to continue in sleep mode. The methods are applicable
to virtual environments.



RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL,
ZW. NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH, Published:
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — without international search report and to be republished
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), upon receipt of that report



NETWORK OPERATING SYSTEM FOR MANAGING AND SECURING NETWORKS

Cross-Reference to Related Applications

[0001] The present Application claims priority from U.S. Provisional Patent Application

No. 60/995,435, filed September 26, 2007, titled "Flow Based Network Operating System"

and to U.S. Provisional Patent Application No. 61/010,985, filed January 14, 2008, titled

"Network Operating System for Managing and Securing Enterprise Networks," which

applications are hereby incorporated herein in their entirety for all purposes.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates generally to computer network management and

security and more particularly to scalable and autoconfigurable systems and methods for

controlling networks.

Description of Related Art

[0003] Many current enterprises have large and sophisticated networks comprising links,

switches, hubs, routers, servers, workstations and other networked devices, which support a

variety of connections, applications and systems. Co-pending application No. 11/970,976,

filed January 8, 2008, the contents of which are incorporated herein by reference, advanced

the state of the art of network management. However, despite these and other significant

commercial and academic efforts to ease the burden of network administrators, these

networks remain difficult to manage and secure.

[0004] Certain of the problems encountered by these network administrators can be best

illustrated with reference to differences in the development of host and network operating

systems. In the early days of computing, programs were written in machine languages that

had no common abstractions for the underlying physical resources. This made programs hard

to write, port, reason about, and debug. Modern operating systems were developed to

facilitate program development by providing controlled access to high-level abstractions for

resources such as memory, storage, communication and information in files, directories, etc.

These abstractions enable programs to carry out complicated tasks on a wide variety of

computing hardware.



[0005] In contrast, networks are typically managed through low-level configuration of

individual components. Network configurations often depend on the underlying network: for

example, blocking a user's access with an access control list ("ACL") entry requires knowing

the user's current IP address. More complicated tasks require more extensive network

knowledge: forcing guest users' port 80 traffic to traverse an HTTP proxy requires knowing

the current network topology and the location of each guest. Conventional networks

resemble a computer without an operating system, with network-dependent component

configuration playing the role of hardware-dependent machine-language programming.

BRIEF SUMMARY OF THE INVENTION

[0006] Certain embodiments of the invention provide systems and methods for

controlling global routing and other forwarding behaviors (including network address

translation, encryption, encapsulation, stateful tunneling, and various forms of quality-of-

service). These decisions can be made individually for each flow, in real-time as the flow

begins, and can be based on general policies that are expressed in terms of high-level names

(for hosts, users, services, etc.). The implementation of these policies can be independent of

the network topology, and the implementation remains valid as users and hosts move, and the

network changes. Certain embodiments of the invention can be implemented using the ACL

functionality provided for in most commercial switching chips.

[0007] Certain embodiments of the invention provide systems and methods for

maintaining a comprehensive network view. In some of these embodiments, the network

view comprises a topology of network elements. In some of these embodiments, the network

view identifies location of entities, the entities including users, services and hosts. In some of

these embodiments, a history of the network view, along with a history of network flows, is

maintained.

[0008] Certain embodiments of the invention provide a centralized programmatic

interface that gives high-level languages access to a network view, notification of network

events including flow initiations and changes in the network view and control mechanisms

for controlling network elements. The system may provide real-time per-flow control of

global routes. In some of these embodiments, the system controls the path of the flow

through the network, and the handling of the flow by network elements. In some of these

embodiments, the system is scalable through strict separation of consistency requirements,

with only the network view requiring global consistency. In some of these embodiments,

decisions regarding a flow are based on the global network view and the flow state. In some



of these embodiments, this allows separating a consistent but slowly changing network view

from local but rapidly changing parameters. In some of these embodiments, flow state is

processed independently by each of a plurality of controllers.

[0009] Certain embodiments of the invention provide methods for autoconfϊguring a

network. In some of these embodiments, autoconfϊguring includes automatically detecting

new devices and services connected to the network. In some of these embodiments,

autoconf ϊguring includes automatically updating flow entries and other configuration

information. In some of these embodiments, this automatic updating of flow entries and other

configuration information allows the implementation of global directives ("policies") to be

maintained in the face of various network changes.

[0010] Certain embodiments of the invention provide support for intelligent interception

of packets, enabling hosts to remain in a reduced power mode.

[0011] Certain embodiments of the invention provide support for virtual environments

including support for migrating VMs. In some of these embodiments, wherein multiple VMs

are associated with certain devices, the system allows for control of communications between

these co-resident VMs. In some of these embodiments, in-band control is used to manage

devices. In some of these embodiments, switches are controlled using ACL functionality to

provide global functionality.

[0012] Certain embodiments of the invention provide support for managing and securing

multiple networks through a single system.

[0013] Certain embodiments of the invention provide support for having multiple

management systems share control of a single network infrastructure, enabling different

administrative authorities to split control.

[0014] Certain embodiments of the invention provide systems and methods for managing

a network. Some of these embodiments comprise maintaining a network view of current

state of the network, the current state of the network characterizing network constituents and

a network topology, the network constituents including network entities and network

elements currently addressable on the network, announcing events corresponding to changes

in the state of the network and configuring one of the network elements based on the network

view and one of the events. In some of these embodiments, the network entities include

network users. In some of these embodiments, the network view is accessed by one or more

network management applications. In some of these embodiments, the current state of the

network includes location of the network constituents. In some of these embodiments, the

current state of the network further characterizes data flows in the network.



BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Figs. Ia and Ib are block schematic representations of a network manager and

network elements according to certain aspects of the invention.

[0016] Fig. 2 is a block schematic showing components of a network manager according

to certain aspects of the invention.

[0017] Fig. 3 depicts certain NOX core components according to certain aspects of the

invention.

[0018] Fig. 4 depicts a directory manager and its integration with a system according to

certain aspects of the invention.

[0019] Fig. 5 depicts an example of policy control integrated with NOX according to

certain aspects of the invention.

[0020] Fig. 6 depicts an example of host authentication within NOX according to certain

aspects of the invention.

[0021] Fig. 7 shows an example of flow entries according to certain aspects of the

invention.

DETAILED DESCRIPTION OF THE INVENTION

[0022] Embodiments of the present invention will now be described in detail with

reference to the drawings, which are provided as illustrative examples so as to enable those

skilled in the art to practice the invention. Notably, the figures and examples below are not

meant to limit the scope of the present invention to a single embodiment, but other

embodiments are possible by way of interchange of some or all of the described or illustrated

elements. Wherever convenient, the same reference numbers will be used throughout the

drawings to refer to same or like parts. Where certain elements of these embodiments can be

partially or fully implemented using known components, only those portions of such known

components that are necessary for an understanding of the present invention will be described,

and detailed descriptions of other portions of such known components will be omitted so as

not to obscure the invention. In the present specification, an embodiment showing a singular

component should not be considered limiting; rather, the invention is intended to encompass

other embodiments including a plurality of the same component, and vice-versa, unless

explicitly stated otherwise herein. Moreover, applicants do not intend for any term in the

specification or claims to be ascribed an uncommon or special meaning unless explicitly set



forth as such. Further, the present invention encompasses present and future known

equivalents to the components referred to herein by way of illustration.

[0023] Certain embodiments of the invention provide systems and methods for managing

and securing data communication networks. These systems and methods typically support

scalable and autoconfigurable programmatic control over network elements, providing a

comprehensive view of the network and per-flow control over network traffic. Aspects of the

present invention permit the integration and control of conventional commercial switches as

well as providing new features and functionality for network systems configured and adapted

for use in embodiments of the invention.

[0024] Data communication networks can include interconnected switches, virtual

switches, hubs, routers and other devices configured to handle data as it passes through the

network. These devices will be referred to herein as "network elements." Data is

communicated through the data communications network by passing data packets, cells,

frames, segments, etc. between the network elements using one or more communication links.

Communication links can be multi-segmented and can employ wired, wireless, optical and so

on. In one example, a packet may be handled by multiple network elements and cross

multiple segments of plural communication links as it travels over the network between a

source and destination.

[0025] Sources and destinations may be considered endpoints on the network, even where

a source receives data from a different source or where destination also forwards received

data to another destination on the network. Various endpoint systems can reside on the

network, including client machines, virtual machines ("VMs"), servers and systems that

provide a variety of network services, typically using a server such as a web server, an Email

server, a file server, etc. Users may be logged into one or more of these endpoint systems

including servers, workstations, personal computers and mobile communications devices.

Endpoint systems, along with the users and services that reside on them, will be referred to

herein as "network entities."

[0026] For the purposes of this discussion, network entities and network elements can be

referred to collectively as "network constituents" and the singular use of the term (viz.

"network constituent") can mean either a network element or network entity. It will be

appreciated that special cases exist in which certain network elements may act as network

entities and vice versa. For example, a network switch may provide terminal service to

accommodate system administration and a user workstation may serve as a bridge or gateway

to a wireless device, forwarding network data. In these special cases, the different



functionalities of the devices will be treated separately and independently, except where

described otherwise.

[0027] Certain embodiments of the present invention comprise an operating system for

networks. The operating system provides a uniform and centralized programmatic interface

to the entire network. The network operating system enables observation and control of the

network although the network operating system need not manage the network itself. The

network operating system typically provides a programmatic interface upon which

applications can be built and/or implemented in order to perform the network management

tasks. In this description, the term "application" will refer to programs running on the

network operating system unless stated otherwise.

[0028] Network operating systems according to certain aspects of the invention embody

conceptual departures from conventional network management systems. For example, the

network operating system presents programs with a centralized programming model,

including a logically centralized view of network state, and applications can be written as if

the entire network were present on a single machine. Consequently, the application can

compute shortest paths using Dijkstra rather than Bellman-Ford methods. In another example,

applications can be written in terms of high-level abstractions including, e.g., user names and

host names, rather than low-level configuration parameters such as IP addresses and MAC

addresses. This abstraction permits management and security policies to be enforced

independent of the underlying network topology. The network operating system maintains

current and accurate mappings or bindings between abstractions and corresponding low-level

configurations.

[0029] In certain embodiments, the network operating system allows management

applications to be written as centralized programs over high-level names as opposed to the

distributed algorithms over low-level addresses. More specifically, certain embodiments of

the present invention comprise systems and methods for managing and securing networks in

a manner that allows operators to use centralized declarative statements (herein referred to as

"directives") to control the network and to enforce desired policies. Instead of configuring

each individual network component, a network operator can merely create one or more

network-wide directives that the system will enforce by ensuring that network components

under control of the network operating system implement the desired behavior.

[0030] Certain embodiments of the invention provide a general programmatic interface.

This allows network operators to specify directives using a high-level language such as C++

and Python. In certain embodiments systems and methods are provided that address issues



associated with security, management, network control, scaling and backwards compatibility,

autoconfiguration, virtual environments, in-band control, history and forensics, routing,

packet interception, and denial-of-service protection.

[0031] Certain embodiments of the invention define and comprise an operating system

for networks referred to hereinafter as "NOX." NOX enables network operators to observe

and control data communications networks, including certain network elements and network

entities. NOX typically maintains a current view of the entire network, including current

topology, current services offered, and current location of hosts, services and authenticated

users. Offered services may include standards-defined services such as HTTP and NFS and

may also include proprietary services known to NOX or which NOX can characterize. NOX

may facilitate control of a network by providing an execution environment in which

management applications can access the network view maintained by NOX. Management

applications include components that monitor and control at least a portion of the data

communications network, where the portion may be defined by one or more domains, one or

more types of network elements, one or more components under a particular administrative

control and/or a physical area. Management applications may be registered with NOX in

order to receive notification of network events and to facilitate management of network

components.

[0032] For the purposes of the following examples, a "network" can be taken to mean a

set of switches, routers, firewalls, proxies and other network elements interconnected by a

layer 2 network such as Ethernet, ATM, a layer 3 network employing, for example Internet

protocol ("IP") and/or other suitable networking technology. Links between network

elements may be local-area or wide-area in nature and/or any combination thereof. Users and

entities, such as hosts, servers, and other devices may be connected to the network and may

be said to reside on the network. Regardless of the specific network architecture,

homogeneity, heterogeneity, component parts and configuration of network entities, a NOX-

based system can be deployed to monitor and control the network.

[0033] For the purposes of the following examples, a "flow" is understood to be a series

of packets or other network transmission units that share a common characteristic. Typically,

this common characteristic can be detected by network elements and used to apply similar

behavior to each packet. For example, a flow may comprise a series of packets having the

same packet header or sharing certain specified portions of the packet header.

[0034] Reference is now made to Figs. Ia and Ib. Fig. Ia depicts the presence of

controllable network elements ("CNEs") and a network manager. Fig. Ib depicts an example



of a network having links shown by lines and showing various "CNEs," three instances of

devices hosting network controllers 16a-c, two instances of devices containing the network

history 18a and 18b, and one device that maintains the network view 17. In certain

embodiments, a system comprises a network manager 10 and one or more controllable

network elements 12a-12h and 12i-12p including switches and/or other network elements.

With particular reference to Fig. Ia, the network manager 10 includes plural logical

components including network controllers, a network-view database and a network-history

database. These logical components may be hosted on network-attached servers or other

devices connected to the network. Thus, network manager 10, depicted as a distributed entity

can reside on a dedicated processing device, or be distributed across multiple processing

devices such as Linux servers, UNIX servers, Windows servers, etc. Furthermore, the

network manager 10 may aggregate information gathered and/or processed by network

elements 12a-12h. One or more network controllers, whether resident on a common server or

different servers can each execute an instance of NOX and the set of management

applications. NOX typically provides a programmatic interface, while the management

applications provide advanced network management capabilities.

[0035] In Fig. Ia, network manager 10 is depicted in a cloud indicating its potentially

distributed nature, and the connections between the other network elements (not shown in the

figure) can be arbitrary. Fig. Ib shows a more specific example of interconnections between

network elements, along with the placement of the various components of the network

manager, including controllers 16a- 16c, network view 17 and histories 18a-18b. As shown in

Figure Ib, various components of the network manager may be connected to the network in

different places, and can communicate directly with certain of network elements 12i-12p and

can communicate with certain other of network elements 12i-12p only indirectly, based on

network configuration and the placement of components of the network manager. For

example, network manager may be provided in a single server, or in several servers located

throughout the network. These servers may also support other services, applications and

users may be logged in to them. These servers may also function as network elements (by

acting as a switch, for example). In examples where a controller function is housed on the

same server as other network elements, the network manager may communicate with network

elements without a network, using, for example, a common bus, common memory,

interprocess channels and other schemes for communication. Thus the connections depicted

in Fig. Ib should be read as encompassing any form of communication and control.



[0036] Referring also to Fig. 2, in certain embodiments, network manager 10 maintains a

network view 22 describing the current state of the network. The network state comprises

information describing current network topology, current location of hosts, users and network

services identified as residing on the network. The current state may be recorded in terms of

bindings between high-level names, including names for users, hosts, services, etc., and low-

level addresses including addresses for hosts, network elements, etc. Typically, a single

logical version of the network view is available, although copies of the view or portions of

the view may be maintained and stored on one or more network-attached servers or other

network devices.

[0037] In certain embodiments, a network history 24 maintains a comprehensive

recording of past network state, including topology, location of entities, etc. The network

history 24 enables an operator to recreate previous states of the network at certain specified

instances in time. This network history 24 can be queried using a predefined query language.

Typically, a single logical version of this history 24 is maintained, although the history 24

may be embodied in one or more network-attached servers or other network devices.

Analysis of the network view and of this history may be used to generate network alerts.

These alerts may complement or substitute for event detection capabilities of network

elements. For example, an examination of successive network states can identify the loss of

connection, enabling a policy-driven alert to be generated by the network manager 10 and/or

by applications using the network operating system 201.

[0038] In certain embodiments controllable switches and other network elements can be

controlled by network manager 10. In one example, these switches implement and support

the OpenFlow interface, whereby switches are represented by flow-tables with entries taking

the form: (header : counters, actions). However, the invention is not limited to this

OpenFlow example, and those skilled in the art will recognize other alternatives after being

taught by the present examples. The specified header fields might be completely defined, and

only packets matching the complete header are chosen. Alternatively, the flow entry's header

specification might contain wildcard values or "ANYs" providing a TCAM-like match to

flows In this case, a packet may be assigned to a flow based on a match with a subset of the

header. In certain embodiments, the header need not correspond to the traditional notion of a

header, but can be defined as an arbitrary set of bits in the incoming packet. Only packets

that share the specified set of bits are considered to match the specified header. For each

packet handled that matches an identified header, the corresponding counter can be updated

and one or more of the specified actions can be initiated. Packets can match multiple flow



headers and may be assigned to a flow according to preconfigured rules. In one example, a

configuration may dictate that a packet matching multiple flow header entries be assigned to

the highest priority flow entry.

[0039] Regarding OpenFlow, currently supported actions can include forward as default,

forward out specified interface, deny, forward to network controller and modify various

packet header fields, wherein the packet header fields to be modified can include VLAN tags,

source and destination IP address and port number. In one example, the "forward as default"

action causes the switch to effectively ignore NOX because the packet is forwarded as if the

switch is forwarding the packet using its traditional software. Other actions and functions

consistent with the OpenFlow specification may be supported. (See the OpenFlow

documentation and source code available at http://www.openflowswitch.org/.)

[0040] Certain embodiments may implement other abstractions for switch behavior, and

these may support a different set of actions. These other actions might include network

address translation, encryption, encapsulation, stateful tunneling, and various forms of

quality-of-service ("QoS"). In addition, the counters and actions may be predefined and/or

can be configured by users and network management applications. Abstractions such as the

OpenFlow switch abstraction may permit management applications to insert flow-table

entries, delete flow-table entries, manage priorities of flow-table entries, and read flow-table

counters. These entries can be set up on application startup or in response to a network event.

OpenFlow and similar abstractions for network elements may also provide a set of messages

that allow for broader communication between a controller and the element. Examples of

such messages are: switch join, switch leave, packet received, and switch statistics.

[0041] Certain operations of a NOX-controlled data communications network will now

be discussed. Fig. 6 discussed in more detail below, describes one example of the processing

that can occur for incoming packets. In certain embodiments, packets or other data units

encountered by a NOX-controlled network element may be analyzed and categorized.

Packets can be generated by any network-attached device and when a packet reaches a NOX-

controlled network element, the packet header or another attribute of the packet is examined

to determine a flow to which the packet should be assigned. For example, if the header of the

incoming packet matches the specified fields in one of the flow entries of a switch, the switch

can assign the packet to the flow and may update appropriate counters and apply

corresponding actions. However, if the packet does not match a flow entry, it is typically

forwarded to a network controller which may inspect the packet and make a decision about

how to handle the packet and/or flow corresponding to the packet. The decision is taken



based on information in the network view, predefined rules and policy directives. For

example, the flow handling decision may cause one or more actions including actions that

cause the switch and/or controller to drop the packet, set up a path by inserting a flow entry in

each switch along a path to the packet destination and forward the packet to the destination

without setting up a flow entry.

[0042] In some instances, packets that are unmatched to an existing flow entry are the

first packet of a flow (a "flow-initiation packet") and subsequent packets can be anticipated

that match a flow entry created in response to the flow-initiation packet. In certain

embodiments, the controller may not insert any flow entries in response to a flow initiation

and, consequently, the controller will continue to receive all packets in that flow. In one

example, this might be done so the controller can see all DNS traffic. In certain embodiments,

the system may be configured to determine flow information from the packet and insert flow

entries after receiving a portion of the first packet, or after receiving more than the first

packet. In certain embodiments, management applications decide on the method of handling

individual flows. Control decisions can be communicated through the NOX programmatic

interface.

[0043] With continuing reference to Fig. 2, certain embodiments comprise a

programmatic interface that provides various services to applications 202. The programmatic

interface may provide an application with access to the network view 22 and historical views

24. Typically, an application 202 can query the network view 22, using information in the

response to determine actions to be taken and/or the extent of action to be taken. The

programmatic interface may provide an application with alerts associated with network

events. In one example, an application can be registered with a notification service in order

to be notified about certain network events. The programmatic interface may enable an

application 202 to control network elements. For example, applications may use a control

interface such as OpenFlow to modify the behavior of network elements.

[0044] Certain embodiments monitor and report different categories of network events.

The categories may include events reflecting changes in the network view such as insertion of

a new host, authentication of a new user and changes in network topology, events reflecting

flow initiations and other packets arriving at a controller, events generated directly by

OpenFlow messages such as switch join, switch leave, packet received and receipt of switch

statistics and events generated by NOX applications as a result of processing other low-level

events and/or other application-generated events. For example, a management application

designed to detect "scanning hosts" could generate an event when such a host was detected.



This scanning application may, in turn, rely on lower-level events (such as flow initiations) to

detect scanners.

[0045] In certain embodiments, NOX applications use a set of registered handlers that are

configured to be executed when certain identified events or categories of events occur. Event

handlers are typically executed in order of priorities specified during handler registration. A

handler may return a value to NOX that indicates whether execution of handlers associated

with the event should be halted, or handling of the event should be passed to the next

registered handler. In certain embodiments, an application handling an event may take one or

more actions, including updating the network view 22, inserting flow entries into one or more

network elements and generating additional network events.

[0046] The NOX core preferably includes the base software infrastructure upon which

other components are built. In one example, the NOX core may provide an asynchronous

communication harness, an event harness, a cooperative threading library, a component

architecture and a set of built-in system libraries that provide functions common to network

applications. Fig. 3 provides a high level view of certain NOX core components in one

embodiment. I/O harness 310 provides an asynchronous interface to system input and output

("I/O") functions 300, 302 and 304 including functions that manage connections to network

switches, functions that handle communication with file systems and functions that provide a

socket interface supporting general network services such as a management web server.

[0047] Event harness 322 includes components that manage the creation and distribution

of system events. A system event can include network level events, such as insertion of a

switch into the network or the arrival of a new flow and events created by an application 202

such as a "scan detected" event created by an application 202 that detects a scanning host.

[0048] The cooperative threading library 320 provides a convenient interface for

managing concurrent threads of execution. Each I/O event is typically executed within a

separate thread context. This allows applications to provide linear program flow across

communication boundaries while avoiding the performance penalties associated with

blocking I/O. In the example, NOX core 100 supports a fully asynchronous communication

model in which applications 202 specify interest in a particular event by registering a

callback corresponding to the event. Applications 202 can use both cooperative threading

and callbacks.

[0049] The cooperative threading 320, event harness 322 and I/O infrastructure

components 300, 302 and 304 preferably provide the basis for a core application

programming interface ("API") 330 that can be exposed to applications 202. These



components provide methods for declaring and resolving dependencies between applications,

support for dynamic loading of applications 202, and an interface to the core API.

[0050] In certain embodiments, the NOX core 100 may also comprise a small set of

applications that provide functionalities common to network applications 202. These

functionalities may include packet classification 350, language bindings 356, location 352,

routing 354 and topology discovery 360. Packet classification 350 provides a generic

interface in which applications 202 can specify which type of packets they are interested in; a

classifier then ensures that the application 202 only receives these packets. Programming

language bindings 356 allow applications to be written in different programming languages.

In the example depicted, a Python programming language binding permits application

development in the Python language when the core NOX 100 is implemented in a different

language such as C++. Programming language bindings 356 permit fast prototyping of

functionality and high-level implementation of non-performance critical functionality. Other

examples of programming language bindings 356 include bindings for Java and Ruby.

[0051] A locator application 352 comprises logic and data used to determine when new

hosts have joined or left the network. In certain embodiments, locator application 352

provides data to the network view 22. Locator application 352 typically tracks the network

state associated with a host, including the location of the host on the network, which is often

determined by the physical port to which it is attached, and the addresses allocated to the host.

This information can be used to generate host join/leave events and may also be used by a

routing application to determine the physical locations of the source and destination of a flow

to be set up in the network and to modify the forwarding behavior of network elements

traversed by the flow.

[0052] The network view 22 may be constructed through the individual contributions of a

plurality of network controllers. Locator applications 352, topology discovery applications

360 and other components of a controller can typically modify the network view 22. In one

example, a composite view is constructed by the controllers inserting the pieces of the

network view 22 that they know or "see" and the resulting current composite network view

22 may then be shared with all controllers. In certain embodiments, the composite network

view 22 is kept cached on each controller and is updated when there is an update of the

composite network view 22. The caches on the controllers may be maintained by a routing

application, for example. The composite view 22 need not be stored on a single server and it

could easily be stored in a distributed hash table ("DHT") spread across a plurality of servers,

which may also serve as host to one or more controllers.



[0053] Routing application 354 preferably calculates available and/or active paths on the

network. Paths may be calculated using a "dynamic all-pairs shortest path" algorithm that is

incrementally updated upon link changes. Other path calculation may be used as appropriate

or desired. When a controller receives a flow which requires routing, the controller may

determine or select the route based on, for example, the physical ports to which the source

and destination media access control ("MAC") address are connected as identified by the

packet and/or flow. Routing application 354 can also accept a number of constraints on the

path including, for example, identification of one or more intermediate nodes through which

the flow must pass. In one example, the path can be calculated on demand using a multi-hop

Djikstra algorithm. The routing application 354 can also compute multipath and multicast

paths using standard techniques. The calculation of the multiple paths can include, as a

constraint, varying degrees of disjointness such that the degree of overlap between the paths

can be controlled. Having calculated paths for a data flow, routing application may cause the

modification of forwarding behavior of one or more network element in order to implement

the calculated path.

[0054] The topology discovery application 360 can use LLDP packets to detect node and

link level network topology. Detection can be accomplished by sending a unique LLDP

packet from each switch port and determining a connected port upon receipt of such a packet.

This information is typically stored internal to the controller and may used by a plurality of

NOX components, including routing components. Topology discovery can be performed at a

controller or implemented at the switches.

[0055] Certain embodiments support directory integration. With reference to Fig. 4,

NOX may provide an abstracted interface to one or more local or remote directory services

430, 432, 434 and 436 through a directory manager component 420. Directory services such

as LDAP 432 or AD 430 comprise information regarding network resources including user,

host, groups and service names. In addition, directory services 430, 432, 434 and 436

generally operate as "authentication stores," maintaining the credentials required to

authenticate a user, host or switch to the network.

[0056] In certain embodiments, directories may be used to authenticate users, switches

and hosts and, further, to provide associated metadata concerning the characteristics of the

users, switches and hosts. For example, the directory may maintain information regarding the

groups to which a user and/or host belongs. According to certain aspects of the invention,

applications 400, 402, 404 may be written to interface with the directory manager 420 and a

new directory may be added by building a directory-specific back-end which plugs into the



directory manager infrastructure. Typically the addition of a new directory does not require

any change to the applications. Directories can be stored and operated on the same device on

which NOX is running and can also be stored and operated on other network devices.

[0057] In certain embodiments, the NOX directory manager 420 can expose interfaces to

a plurality of directories. These interfaces may include interfaces that: access

user/host/switch credentials received at authentication time, determine a switch name from

switch authentication information, determine a port name based on a switch and port number,

determine hosts, switches and/or locations associated with a user, determine known MAC and

IP addresses associated with a host, determine the function of a host, e.g. whether the host

acts as a gateway or a router, determine associations between users and hosts and

add/remove/modify entries in the directory or directories.

[0058] In certain embodiments, NOX comprises a policy engine that handles both

admission control policy and access control policy. Admission control policies determine the

authentication required for a user, host or switch to join the network. Access control policies

determine which flows are allowed to use the network, and the constraints of such use. Fig. 5

depicts an example of policy control integrated with core components of NOX. Typically,

policy control relies on other NOX applications to perform topology discovery, routing,

authentication, and flow setup. Policy can be declared in one or more files that may be

compiled into a low-level lookup tree. The policies can be expressed in special purpose

policies languages, such as flow-based security language ("FSL"). The compilation process

typically checks all available authentication stores to verify the existence of principal names

used in the policy file.

[0059] In certain embodiments, packets 500 received by NOX, including packets

forwarded to a controller by a switch for which there is no existing switch entry are first

tagged with associated names and groups at 502. Binding information between names and

addresses can be obtained at principal authentication and the binding information may be

stored in the locator component. If binding information does not exist for the packet, the host

and user are assumed to be unauthenticated. The policy engine may allow rules to be

declared that cover unauthenticated hosts and users.

[0060] A policy lookup tree may determine how the network should handle a tagged

packet. In certain embodiments, the policy lookup provides a constraint that can be applied

to the flow and the constraint may be passed to the routing component to find a policy-

compliant path. If no path exists given the policy constraints, the packet is typically dropped.



An example of a constraint is the denial of the entire flow, which would result in one or more

dropped packets.

[0061] The lookup tree also allows the use of custom programmed functions or applets as

actions to apply to an incoming packet. Such functions may be created by a programmer or

code generator in any desired programming language including, for example, C++ and

Python. While these custom programmed functions can be used for a variety of purposes:

e.g., certain functions can be developed to augment authentication policy. In one example, a

rule may state that all unauthenticated hosts from a given access point are required to

authenticate via 802. Ix before being allowed on the network. Certain embodiments of the

invention support a plurality of different authentication schemes, including MAC based host

authentication, 802. Ix host authentication, and user authentication via redirection to a captive

web portal.

[0062] The use of policy control as implemented in certain embodiments may best be

appreciated through the use of an example. In the example, a unidirectional flow ("uniflow")

is characterized by an eight-tuple:

<usrc, hsrc, asrc, utgt, htgt, atgt, prot, request>, in which

usrc, utgt are source and target users, respectively,

hsrc, htgt are the source and target hosts, respectively,

asrc, atgt are the source and target access points, respectively,

prot is the protocol, and

request indicates whether a flow is a response to a previous flow.

[0063] Uniflows constitute the input to an access control decision maker. A security

policy for NOX associates every possible uniflow with a set of constraints and, for the

purposes of this example, a uniflow can be allowed, denied, be required to take a route

through the network that includes stipulated hosts (the uniflow is "waypointed"), forbidden to

pass through certain stipulated hosts ("waypoints") and rate-limited.

[0064] A policy evaluation engine can be built around a decision tree intended to

minimize the number of rules that must be checked per flow. The tree may partition the rules

based on the eight uniflow fields and the set of groups, resulting in a compact representation

of the rule set in a ten-dimensional space, for example. Negative literals can be ignored by

the indexer and evaluated at runtime. Each node in the decision tree typically has one child

for each possible value for the dimension represented by the node. For example, a node

representing usrc can have one child for each value to which usrc is constrained in the

subtree's policy rules. In addition, each node can include an "ANY" child for populating



rules where the subtree's rules do not constrain the dimension represented by a node. Each

node in the decision tree can be implemented using a hash table with chaining to ensure that

each of its children can be found in near constant time. The decision as to which of the ten

attributes to branch on at any point in the tree may be based on finding the dimension that

most widely segments a subtree's rule set. For example, a dimension may be selected to

minimize the average number of rules at each child node plus the number of ANY rules in the

subtree.

[0065] In certain embodiments, group membership can be computed during

authentication. G(s) can be used to denote all groups to which the source of a uniflow

belongs and G(t) can be used to denote the groups to which the target of a uniflow belongs.

To find all rules that pertain to any given uniflow, a normal decision-tree algorithm may be

modified such that multiple branches may be followed at any given node. In one example,

the ANY branch is always followed and all children that belong to the uniflow's G(s) and

G(t), respectively, are followed for branches splitting on source groups and target groups.

[0066] Fig. 6 depicts an example of control flow for host authentication within NOX and

illustrates how these architectural components work together when authenticating a host. At

step 600, a packet is received by NOX from a switch and a packet-in message indicates the

switch and switch port on which the packet was received. At step 602, the locator component

uses the incoming port, MAC address, and IP address to determine if the host has

authenticated. At step 603, if the host has been authenticated, the locator looks up and adds

the high-level names and group names for that host. However, if the host has not been

authenticated, the locator uses the hostname "unauthenticated" at step 604.

[0067] At step 606, the locator component passes the flow and associated names to the

policy lookup component. At step 608, the policy lookup that maintains the compiled

network policy, specifies how the packet should be handled based on the network addresses

and high-level names. Policy specifies which authentication mechanism 609 should be used

and packets from the unauthenticated hosts are passed to the indicated subsystem. For

example, the packets may be passed for 802. Ix authentication or to check for a registered

MAC. In certain embodiments, an authentication subsystem is responsible for performing the

protocol specific authentication exchange. Once the host has successfully authenticated, the

authentication subsystem marks the addresses associated with the host as authenticated. All

subsequent packets from this host will be labeled with the name and groups associated with

that host. At step 610, the policy specifies the constraints applied to packets from

authenticated hosts. If the flow is allowed, the packet is passed to the routing component step



611, which will determine a policy compliant route and set up that route in the network.

Otherwise the packet can be dropped at step 612.

[0068] When writing and enforcing policy rules, a user typically writes policy as a

collection of rules and compiles the policy. The compiler may check syntax and verify that

the principal names exist in one of the configured directories. The compiler compiles policy

rules into a low-level internal format. Compilation can include canonicalization and rule

expansion whereby an "OR" is expanded into multiple rules, for example. The compiler may

save compiled policy in persistent storage and builds the entire policy into a lookup tree.

[0069] Certain embodiments provide systems and methods for in-band control and

controller discovery. In-band control systems transmit control traffic between switches and

controllers by sharing the same transmission medium as data traffic. The use of in-band

control can simplify physical network setup and configuration by removing the need for a

separate control network. Switches and controllers may be configured and/or modified to

support certain functions used by in-band control. Typically, switches are provided the

ability to find and establish a connection to the controller without help from the controller.

Switches must be able to distinguish between control traffic and data traffic in order to avoid

communication loops. Additionally, the policy system must be configured to permit in-band

communication operations and communications.

[0070] In certain embodiments, switches are able to automatically discover a controller

without having apriori knowledge of controller-specific state. For example, a switch may

automatically detect the controller and establish a secure channel to the controller upon

connection to the network. In security-conscious applications, the switch can be connected

over a trusted path in order to secure the initial SSL connection.

[0071] By default, switches forward discovery packets only when they have established a

connection to the controller. On startup, a switch may issue a DHCP request from all ports in

order to search for the controller. The switch assumes the controller to be on the port from

which it receives a DHCP reply. The DHCP reply will include an IP address for the switch,

and the IP address and port numbers on which the controller is listening. The switch can then

establish a control connection to the controller out of the port on which the DHCP was

received. Typically, switches will not forward control traffic from other switches to the

controller. Control traffic is detected by determining that it is being sent to or from a known

controller.

[0072] In certain embodiments, NOX can control network elements such as switches

using standards-based protocols such as OpenFlow. In the OpenFlow abstraction, a switch is



represented by a flow-table where each entry contains headers and actions to be performed on

matching packets. OpenFlow and other such protocols may be supported and enhanced in

systems constructed according to certain aspects of the invention.

[0073] Conventional network switches often employ a low-powered CPU for

management tasks and special-purpose hardware such as a switch-on-a-chip ("SoC") that

performs line-rate switching. Many SoCs have built-in support for ACLs in order to

implement firewalls. These ACLs typically support matching at layers 2 through 4 and may

also support wildcarding fields. The SoCs are designed to support line-rate processing, since

the management CPU is not capable of receiving every packet transiting the switch but the

management CPU is generally able to configure the ACLs on remote SoCs. The ACLs on

the SoCs typically support a <header:action> interface that is very similar to OpenFlow's

interface. For each ACL entry the required match fields and the desired set of actions must

be specified. ACL implementations also typically permit definition of a strict ordering in

which packets match and the actions associated with the first matching entry are executed

against the packet.

[0074] Most SoCs support a plurality of actions including dropping packets, sending to

the management CPU and forwarding through one or more physical ports. On some

platforms, ACLs actions support incrementing counters associated with the entry and

modifying packet headers. Often a switch is configured with a lowest priority rule that

matches any packet that failed to match a higher priority one. For typical firewalls, the action

either causes the packet to be dropped (default deny) or to be passed through (default allow).

[0075] The management CPU may consult local software tables configured by NOX. If

no matching entry is found, then the packet may be forwarded to a controller. NOX can send

commands to add or remove flow entries using a protocol such as OpenFlow. The switch

management CPU can be programmed to exploit the capabilities of the ACLs supported by

the SoC and can configure the SoC ACL tables based on the flexibility and capabilities of the

SoC ACLs. The management CPU may configure the ACL tables as necessary to handle

NOX requests, provided sufficient space exists in the flow-table.

[0076] Management software is typically configured to be aware of a plurality of factors

and issues that may affect network operations. The management processor ensures that flow

entries with higher matching priorities are found and processed before flow entries with

lower priorities and may reconfigure the arrangement of entries in ACL tables accordingly.

If the number of entries requested by NOX exceeds the space available in the ACL table, then

the processor may store excess or additional entries in its own software tables. The use of



local, processor tables may require careful assignment of storage to ACLs and, in some

instances, adjustment of flow entry prioritization functions. Entries that match in the ACL

table will not be sent to the management CPU and thus will not find a match in the software

table. Therefore, the management software may be configured with rules for placing entries

in the processor software table in order to avoid negatively affecting the performance of such

flows. Further, where switch hardware comprises two or more SoCs, management software

may set ACLs in two locations in the switch to allow packets to travel between the incoming

and outgoing chips.

[0077] Although conventional ACLs do not typically have a concept of expiring, flow

entries inserted by NOX are typically provided with an expiration mechanism. To support

this discrepancy in ACLs, software running on the management CPU may be configured to

track whether ACL entries continue to match traffic. Such tracking may be accomplished by

configuring an action that increments a counter associated with the entry in addition to other

forward and drop actions configured by NOX. Software may then poll the ACL counters and

check whether any packets have matched the entry since the last poll interval. If no matching

packets are observed for a predefined period of idle time for the entry, then the entry may be

removed from the ACL table.

[0078] Systems constructed according to certain aspects of the invention exhibit certain

properties that can include comprehensive control, scaling, backwards compatibility,

autoconfiguration and virtual environments.

[0079] With regard to comprehensive control properties, Fig. 7 illustrates flow entries

that can dictate the path of a packet through the network and depicts in particular the path of a

packet with header H where the path is dictated by a set of flow entries. Certain

embodiments comprise systems that have complete control over the method of handling

flows in the network. These systems may exercise control through a variety of actions that

include denying service to a flow, dropping some or all of packets in a flow, selecting a path

through the network by inserting appropriate flow entries in network elements, enabling a

chosen quality of service ("QoS") using flow entries, causing network elements to perform

various per-packet operations, such as encryption, encapsulation, address translation, rate-

limiting and stateful tunneling and by inserting and by inserting services along the path by

picking a path that leads to a network element that delivers the desired service, such as an

element capable of deep packet inspection or data logging. This latter control option

demonstrates that the system is not constrained by the limitations of any abstraction used to



control or monitor network devices, because the ability to interpose services permits the

system to perform actions currently unsupported in the abstraction.

[0080] In certain embodiments, management decisions can be based on a variety of

factors, that include: source and/or destination user identity, role, location, group membership,

and other attributes; source and/or destination host identity, role, location, group membership,

and other attributes; local and/or global network conditions, including various network events

and/or notifications by other management applications; and date and time. Management

decisions can be modified in the middle of a flow. For example, if network conditions

change or some other network event is detected, flows can be rerouted and/or subjected to

additional scrutiny by a deep-packet-inspection service.

[0081] In certain embodiments, NOX can be scaled to extremely large system sizes. In

these embodiments, certain consistency requirements in the design may need to be tightly

controlled. Typically, only the network view need be used consistently across controllers

because applications often use only data from the network view, along with the specified

policy, to make control decisions. Consistency in control decisions related to a flow will be

reached regardless of which controller receives the flow because no information about the

state of individual packets or flows are typically used in making these control decisions.

[0082] In certain embodiments, the network view changes very slowly compared to the

rate at which new flows arrive. This allows the network view to provide a globally consistent

view of a large set of controllers, which allows the system to make use of many controllers in

parallel, each taking care of a subset of flows in the network, thereby allowing the system to

be scaled. The limiting factor to system scaling is the rate of change of the network view. In

terms of raw computational requirements, a single server could easily handle the rate of

change for most current enterprise networks.

[0083] More generally, NOX can use parallelism for events that occur on rapid

timescales, such events including packet arrivals and flow arrivals. Packet arrivals are

typically handled by individual switches without global per-packet coordination and flow-

initiations can be handled by a controller without global per-flow coordination. Flows can be

sent to any controller, so the capacity of the system can be increased by adding more servers

running controller processes. The network view global data structure typically changes

slowly enough that it can be maintained centrally for very large networks. For resilience,

however, the network view may be maintained on a small set of replicas.

[0084] Certain embodiments of the invention comprise components and elements that are

backwards compatible with conventional systems. Systems constructed according to aspects



of the invention do not require any special actions on the part of network-attached devices.

For example, Ethernet connected devices can function as if they were attached to a normal

Ethernet network and consequently do not require any modification. Systems constructed

according to aspects of the invention can coexist with network elements that do not support

OpenFlow or other standards-based interfaces with similar functionality as described herein.

These non-OpenFlow network elements will forward packets as normal and the system can

merely incorporate them into the overall network fabric. However the system may not be

able to exert control over how these unmodified network elements behave, but may

characterize such components according to the networking standards to which they conform

(e.g., standard Ethernet, etc.).

[0085] Certain embodiments support autoconfiguration of the network and its

constituents. Configuration may be facilitated using system directories that may capture

necessary information about network entities such as roles, attributes and group membership.

The management objectives may be captured through a set of policies articulated in one or

more management applications or system files. A new network entity entering the system

can be automatically detected and appropriate policies can be applied to communications

with the new entity. Similarly, a new network element entering the system can be

automatically detected and flow entries or other management commands can be sent to the

new element in accordance with system policies. Consequently, there is typically no need for

explicit configuration of individual network elements except when equipping the elements

with cryptographic keys necessary to communicate securely with controllers.

[0086] Certain embodiments support virtual environments having virtual machines

("VMs") and virtual switches. VMs are a form of a network entity, and virtual switches are a

form of network element. If each server or network element supports an abstraction such as

OpenFlow on its Virtual Switches, then the system correctly enforces policy. This remains

true as VMs move or are co-located on the same server and requires no special functionality

on the server besides the OpenFlow implementation.

[0087] Certain embodiments maintain histories of network state that may be used for

troubleshooting and forensics. The system keeps a historical record of the network view, in

addition to the complete list of flows and their statistics such as packets and bytes in addition

to timing of arrivals and departures. This allows an operator to see the state of the network

view at any point in time. For example, the operator may see the complete view of the

network two years or two hours prior to the current time. From the historical view, an

operator may determine which user and host sent a packet. The history of all



communications enables operators to perform flow level analysis of network traffic, which

can be used to determine network events that transpired over a defined period of time. Thus a

history may reveal Email transmissions, host reboots and events preceding and/or following a

target event. The historical view typically contains a history of the bindings between high-

level names and low-level addresses which permits more definitive attribution of past events

to individual users. Thus, it can be determined who transferred a file and who logged into a

selected host at a certain time. This information can be used for network troubleshooting and

to detect various forms of anomalous or suspicious behavior in the past network traffic. NOX

can provide additional information in support of such troubleshooting and forensic analyses.

[0088] Certain embodiments provide enhanced routing functionality and provide systems

that have complete control over routing of paths flows take through the network. A controller

can set up a set of flow entries that will cause packets from a flow to take an arbitrary path

through the network. In particular, paths need not be chosen from a single "spanning tree"

and different flows going between the same source and destination can take different paths.

Moreover, management applications can, at any time, reroute flows by merely inserting a

new set of flow entries. This allows management applications to choose routes that

accomplish load balancing, use short-cut paths and support fast failover, and so on.

Load balancing may be employed when one or more links in the network is overly

utilized. An application can choose a new path for flows traversing that overloaded link, or

can choose paths that avoid that link for newly arriving flows. In particular, routing can take

advantage of multiple paths to spread out the network load.

[0089] Short-cut paths provide routes that need not follow a hierarchical pattern, where

all flows must travel through a major aggregation switch. Instead, paths can choose "short¬

cuts" which are paths that avoid the central hierarchy. Fast failover is used to reroute only

those paths that traversed a failed link upon detection of the failure. This permits most flows

to function during a failure. Where necessary, rerouting of flows can be accomplished as

soon as the controller is notified of the failed link.

[0090] Certain embodiments support improved packet interceptions and associated

features such as host sleep. Conventional computers may support an ability to sleep or

otherwise save power when not in active used. However, the arrival of packets at their

network interface card ("NIC") can interfere with power reduction features because these

packets need to be processed by the CPU. Often during low-duty times, almost all of the

traffic is network chatter that does not convey useful information to the destination host and

does not require nontrivial action to be taken by the host. In accordance with aspects of the



present invention, a controller can decide to not forward these packets, and may process the

packets on behalf of the intended host. For example, a network controller, or a network

element acting on its behalf, can respond to certain network requests that seek to discover

whether the destination host remains in contact with the network. This will allow the host to

remain in its reduced power mode. However, the controller can recognize and forward

important traffic, such as secure shell ("SSH") traffic, alerts, queries and other requests, in

order to allow the host to respond appropriately. By having the controller inspect packets

before forwarding them and possibly establishing flow entries, the network manager can

make intelligent decisions about which packets to forward.

[0091] Certain embodiments can protect controllers and the network view from denial of

service ("DoS") attacks. To prevent a flooding denial-of-service attack on the controllers and

the network view, the system can limit the rate at which individual network elements and

entities can send packets towards controllers and other elements of the system. This can

protect crucial network and system resources. This protection is possible because controllers

can detect resource overloads and modify appropriate flow entries to limit or prevent access

to the overloaded resource.

[0092] The foregoing descriptions of the invention are intended to be illustrative and not

limiting. For example, those skilled in the art will appreciate that the invention can be

practiced with various combinations of the functionalities and capabilities described above,

and can include fewer or additional components than described above. Certain additional

aspects and features of the invention are further set forth below, and can be obtained using

the functionalities and components described in more detail above, as will be appreciated by

those skilled in the art after being taught by the present disclosure.

[0093] Certain embodiments of the invention provide systems and methods for

controlling global routing and other forwarding behaviors (including network address

translation, encryption, encapsulation, stateful tunneling, and various forms of quality-of-

service.) These decisions can be made individually for each flow, in real-time as the flow

begins, and can be based on general policies that are expressed in terms of high-level names

(for hosts, users, services, etc.). The implementation of these policies can be independent of

the network topology, and the implementation remains valid as users and hosts move, and the

network changes. Certain embodiments of the invention can be implemented using the ACL

functionality provided for in most commercial switching chips.

[0094] Certain embodiments of the invention provide systems and methods for

maintaining a comprehensive network view. In some of these embodiments, the network



view comprises a topology of network elements. In some of these embodiments, the network

view identifies location of entities, the entities including users, services and hosts. In some of

these embodiments, a history of the network view, along with a history of network flows, is

maintained.

[0095] Certain embodiments of the invention provide a centralized programmatic

interface that gives high-level languages access to a network view, notification of network

events including flow initiations and changes in the network view and control mechanisms

for controlling network elements. In some of these embodiments, the system provides real¬

time per-flow control of global routes. In some of these embodiments, the system controls

the path of the flow through the network, and the handling of the flow by network elements.

In some of these embodiments, the system is scalable through strict separation of consistency

requirements, with only the network view requiring global consistency. In some of these

embodiments, decisions regarding a flow are based on the global network view and the flow

state. In some of these embodiments, this allows separating a consistent but slowly changing

network view from local but rapidly changing parameters. In some of these embodiments,

flow state is processed independently by each of a plurality of controllers.

[0096] Certain embodiments of the invention provide methods for autoconfiguring a

network. In some of these embodiments, autoconfiguring includes automatically detecting

new devices and services connected to the network. In some of these embodiments,

autoconfiguring includes automatically updating flow entries and other configuration

information. In some of these embodiments, this automatic updating of flow entries and other

configuration information allows the implementation of global directives ("policies") to be

maintained in the face of various network changes.

[0097] Certain embodiments of the invention provide support for intelligent interception

of packets, enabling hosts to remain in a reduced power mode.

[0098] Certain embodiments of the invention provide support for virtual environments

including support for migrating VMs. In some of these embodiments, wherein multiple VMs

are associated with certain devices, the system allows for control of communications between

these co-resident VMs. In some of these embodiments, in-band control is used to manage

devices. In some of these embodiments, switches are controlled using ACL functionality to

provide global functionality.

[0099] Certain embodiments of the invention provide support for managing and securing

multiple networks through a single system.



[00100] Certain embodiments of the invention provide support for having multiple

management systems share control of a single network infrastructure, enabling different

administrative authorities to split control.

[00101] Certain embodiments of the invention provide systems and methods for managing

a network. Some of these embodiments comprise maintaining a network view of current

state of the network, the current state of the network characterizing network constituents and

a network topology, the network constituents including network entities and network

elements currently addressable on the network, announcing events corresponding to changes

in the state of the network and configuring one of the network elements based on the network

view and one of the events. In some of these embodiments, the network entities include

network users. In some of these embodiments, the network view is accessed by one or more

network management applications. In some of these embodiments, the current state of the

network includes location of the network constituents. In some of these embodiments, the

current state of the network further characterizes data flows in the network.

[00102] In some of these embodiments, configuring one of the network elements includes

changing the network topology. In some of these embodiments, changing the network

topology includes providing routing information to a plurality of the network elements, the

routing information corresponding to one or more of the data flows. Some of these

embodiments further comprise storing a history of prior network views. In some of these

embodiments, each prior network view in the history records a network state at a specified

time and further records events detected prior to the specified time. In some of these

embodiments, the specified time is defined by a schedule and each occurrence of an event is

recorded in only one prior network view in the history. In some of these embodiments, the

specified time corresponds to the occurrence of an event. In some of these embodiments,

each of the data flows is associated with forwarding behaviors of one or more of the network

elements and further comprising controlling certain of the forwarding behaviors based on the

network view.

[00103] In some of these embodiments, controlling the certain of the forwarding behaviors

includes modifying at least one of the forwarding behaviors responsive to one of the events.

In some of these embodiments, controlling the certain of the forwarding behaviors includes

modifying at least one of the forwarding behaviors subsequent to changing the network

topology. In some of these embodiments, the step of modifying at least one of the forwarding

behaviors is performed by a network controller. In some of these embodiments, changing the

network topology includes autoconfiguring devices newly inserted into the network. In some



of these embodiments, autoconfiguring devices includes providing at least one ACL to each

autoconfigured device. In some of these embodiments, each of the data flows is associated

with forwarding behaviors of one or more network elements and wherein autoconfiguring

devices includes modifying at least one of the forwarding behaviors based on the network

view. In some of these embodiments, configuring one of the network elements is performed

by a network management system. In some of these embodiments, certain of the events are

generated by the network management system based on a comparison of the current state of

the network and a history of network state maintained by the network management system.

[00104] In some of these embodiments, the network management systems comprise a

network view describing current state of the network. In some of these embodiments, the

state of the network includes a current network topology, locations of a plurality of network

elements on the network, locations of network constituents, the network constituents

including at least one user of the network and a network manager. In some of these

embodiments, the network manager configures network elements based on the network state.

In some of these embodiments, the network view is generated from information provided by

network constituents and wherein portions of the network view are accessible by certain of

the network constituents.

[00105] In some of these embodiments, the network elements include switches. In some

of these embodiments, the network elements include routers. In some of these embodiments,

the network manager is dispersed across a plurality of network elements. In some of these

embodiments, the network entities include services provided through the network. In some

of these embodiments, the network entities include applications. Some of these embodiments

further comprise a network operating system providing the applications access to selected

functions of the network manager. In some of these embodiments, the selected functions

include the network view. In some of these embodiments, the selected functions include an

event notification function. In some of these embodiments, the event notification function

provides notification of changes to the network topology. In some of these embodiments, the

event notification function provides notification of user log events, including login and logout

events.

[00106] In some of these embodiments, the event notification function provides

notification of a flow initiation. In some of these embodiments, the network manager

reconfigures a switch based on changes in the network state. In some of these embodiments,

the switch is reconfigured to establish a new forwarding behavior associated with a data flow.

In some of these embodiments, the switch is reconfigured using an access control list. In



some of these embodiments, the switch is reconfigured using OpenFlow. In some of these

embodiments, the switch is reconfigured using OpenFlow. In some of these embodiments,

the network manager detects and automatically provides configuration information to newly

added network elements. In some of these embodiments, the configuration information

includes one or more network addresses. In some of these embodiments, the configuration

information includes one or more routing tables. In some of these embodiments, the

configuration information includes one or more access control lists. In some of these

embodiments, the configuration information includes a portion of the network view.

[00107] Some of these embodiments further comprise a history of prior network state, the

history recording changes in network state and events causing changes in the network state.

In some of these embodiments, the state of the network further includes one or more of

packet classifications, language bindings, location of network entities, routing information of

data flows and topology. In some of these embodiments, the state of the network further

includes information corresponding to state of the data flows. In some of these embodiments,

the network constituents comprise network elements and the information corresponding to

the state of each data flow is maintained by a network element associated with the each data

flow.

[00108] Certain embodiments of the invention provide a network operating system. Some

of these embodiments comprise a network view describing current state of the network,

wherein the state of the network includes a current network topology, locations of a plurality

of network elements on the network, locations of network constituents, the network

constituents including at least one user of the network, a programmatic interface providing

access to the network view to an application installed on a network constituent and a set of

network services accessible to the application and providing access to information related to

the current network state. In some of these embodiments, the information includes one or

more of packet classifications, language bindings, location of network entities, routing

information of data flows and topology.

[00109] Certain embodiments of the invention provide systems and methods for managing

network connections. Some of these embodiments comprise identifying a flow in a network,

the flow identifying a source and a destination of data, configuring one or more network

elements to direct the data from the source to the destination, wherein configuring the at least

one network elements includes modifying an access control list ("ACL") in one or more

network element. In some of these embodiments, configuring the at least one network

elements further includes generating an ACL for one of the at least one network elements. In



some of these embodiments, at least one network element includes a switch. In some of these

embodiments, the switch includes a switch-on-chip ("SoC"), and wherein the step of

modifying an ACL includes adding the generated ACL to an ACL table in the SoC. In some

of these embodiments, the ACL table resides in the SoC. In some of these embodiments, the

ACL table resides in the storage associated with a processor in the switch. In some of these

embodiments, configuring the at least one network elements further includes providing an

expiration period to the generated ACL. In some of these embodiments, configuring the at

least one network elements further includes providing an expiration period to the ACL.

[00110] In some of these embodiments, modifying an access control list includes

reconfiguring an arrangement of entries in an ACL table in the one or more network element.

In some of these embodiments, identifying a flow includes maintaining a network view of a

current state of the network, the current state of the network characterizing network

constituents and a network topology, the network constituents including network entities and

network elements currently addressable on the network.

[00111] Certain embodiments of the invention provide systems and methods for

intercepting network traffic. Some of these embodiments comprise determining a sleep state

of a host connected to a network, configuring a network element to inspect data

communications directed to the host, forward a portion of the data communications to the

host upon detection of information in the data communications requiring action by the host,

and selectively respond to requests on behalf of the host if the data communications does not

require action by the host. In some of these embodiments, the information requiring action

by the host includes one or more requests. In some of these embodiments, the information

requiring action by the host includes one or more queries. In some of these embodiments, the

information requiring action by the host includes one or more alerts. In some of these

embodiments, the information requiring action by the host includes SSH traffic.

[00112] Although the present invention has been described with reference to specific

exemplary embodiments, it will be evident to one of ordinary skill in the art that various

modifications and changes may be made to these embodiments without departing from the

broader spirit and scope of the invention. Accordingly, the specification and drawings are to

be regarded in an illustrative rather than a restrictive sense.



WHAT IS CLAIMED IS:

1. A method for managing a network, comprising:

maintaining a view of current state of the network, the current state of the network

characterizing the network topology and network constituents, the network constituents

including network entities and network elements residing in or on the network;

characterizing the location and identity of network entities;

announcing events corresponding to changes in the state of the network; and

configuring one or more of the network elements based on the network view and/or one

or more of the events.

2 . The method of claim 1, further comprising accessing configuration state on network

elements without using SNMP.

3 . The method of claim 1 and further comprising maintaining a history of prior network

views.

4. The method of claim 1 and further comprising maintaining a history of prior network

flows and events.

5. The method of claim 1, further comprising providing a programmatic interface, the

programmatic interface permitting management applications to access the network view,

communicate network events, and configure network elements.

6 . The method of claim 1, further comprising hosting virtual machines on a plurality of

servers, wherein the virtual machines implement a controllable switch abstraction having a

plurality of virtual switches, thereby creating a virtual environment.

7. The method of claim 3, further comprising maintaining a history of prior network flows

and events.

8. The method of claim 7, further comprising performing a forensic analysis of the history

of prior network views and the history of prior network flows and events.

9 . The method of claim 1, further comprising selectively intercepting traffic destined for

certain hosts, the certain hosts operating in a reduced power mode, wherein the hosts remain in

reduced power mode until critical traffic is intercepted.



10. A method for managing network traffic, comprising enforcing a globally declared

network policy, wherein enforcing the globally declared network policy includes ensuring that

actions taken by network elements implement the globally declared network policy, wherein the

actions including forwarding, and wherein the globally declared network policy refers to high-

level names, is independent of network topology and is independent of the location of network

constituents.

11. The method of claim 10, further comprising controlling network traffic wherein the

control of traffic is performed on a real-time, per-flow basis.

12. The method of claim 10, wherein the globally declared network policy is enforced by

commercial network switches and wherein the policy is implemented using ACL capabilities of

the commercial network switches.

13. The method of claim 10, wherein the step of enforcing is performed without out-of-band

communication and wherein all system traffic travels over network data paths used for

communication between hosts and servers.

14. The method of claim 10, further comprising selectively intercepting traffic destined for

certain hosts, the certain hosts operating in a reduced power mode, wherein the hosts remain in

reduced power mode until critical traffic is intercepted.

15. The method of claim 10, further comprising hosting virtual machines on a plurality of

servers, wherein the virtual machines implement a controllable switch abstraction having a

plurality of virtual switches, thereby creating a virtual environment.

16. The method of claim 10, further comprising configuring network elements responsive to

one or more network events.

17. A method for managing a network, in which new network constituents are discovered

automatically, comprising automatically configuring one or more elements to adapt to the

presence of the new network constituents.

18. The method of claim 17, wherein the attributes of the new network constituents are

entered manually upon discovery and wherein the configuring step is performed consistent with

these attributes.



19. The method of claim 17 wherein the configuring step includes enforcing a globally

declared policy.

20. The method of claim 17 wherein network constituents includes at least one of a VM and a

constituent hosted by a VM, and wherein servers and other network devices support virtual

switches controllable and configurable in the same manner as physical network elements.

21. A method comprising routing a majority of traffic using ACL capabilities of commercial

switches.

22. A method for intelligently intercepting packets destined for hosts, thereby enabling hosts

to remain in reduced power modes until critical traffic is sent to them.

23. A method for selectively intercepting traffic destined for certain hosts, the certain hosts

operating in a reduced power mode, wherein the hosts remain in reduced power mode until

critical traffic is intercepted.

24. The method of claim 23, further comprising determining whether to forward a packet to a

host, wherein the determining is performed by a controller that is not on a regular datapath.












	front-page
	description
	claims
	drawings

