

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is located at the bottom of the page, spanning most of the width. It is used for document tracking and identification.

**(43) International Publication Date
27 April 2006 (27.04.2006)**

PCT

(10) International Publication Number
WO 2006/044629 A2

(51) International Patent Classification:

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/US2005/036977

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 14 October 2005 (14.10.2005)

(25) Filing Language: English

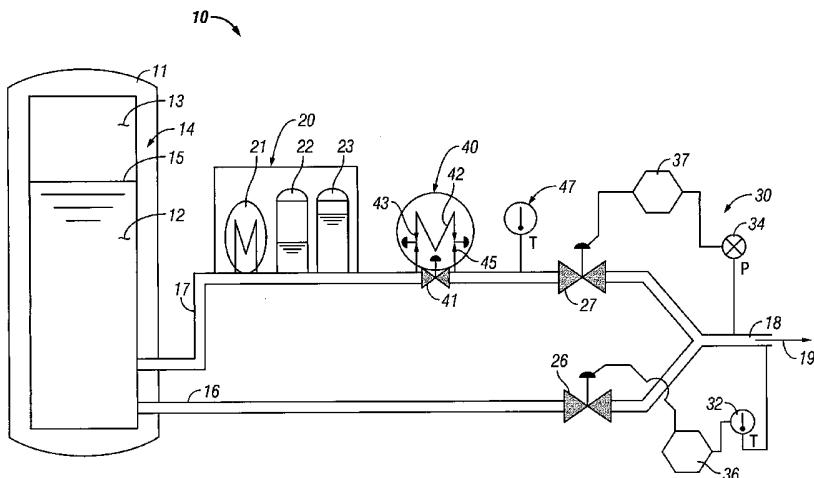
(26) Publication Language: English

(30) Priority Data: 60/619,436 15 October 2004 (15.10.2004) US

(71) **Applicant (for all designated States except US): CLIMAX MOLYBDENUM COMPANY [US/US]; One North Central Avenue, Phoenix, AZ 85004-2306 (US).**

(72) Inventor; and

(75) **Inventor/Applicant (for US only):** TAUBE, Joel, A. [US/US]; 1961 143rd Avenue, Donnellson, IA 52625 (US).


(74) **Agents:** DAHL, Bruce, E. et al.; Dahl & Osterloth, L.L.P., 555 17th Street, Suite 3405, Denver, CO 80202 (US).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: GASEOUS FLUID PRODUCTION APPARATUS AND METHOD

WO 2006/044629 A2

(57) Abstract: Gaseous fluid production apparatus (10) according to one embodiment of the invention includes a fluid container (11) containing fluid (14) in substantially the liquid state (12). A first fluid line (16) is connected to the fluid container (11) so that it receives from the fluid container (11) a first fluid stream substantially in the liquid state. A gas generator (20) is also connected to the fluid container (11) so that it receives from the fluid container (11) a second fluid stream substantially in the liquid state. A product discharge manifold (18) is connected to the gas generator (20) and to the first fluid line (16). A control means is operatively associated with the first fluid line (16) and the product discharge manifold (18) for controlling at least one parameter of the first fluid stream. A second control means is operatively associated with the gas generator (20) and the product discharge manifold (18) for controlling at least one parameter of the second fluid stream.

**GASEOUS FLUID
PRODUCTION APPARATUS AND METHOD**

Technical Field

5 This invention relates to apparatus for producing gaseous fluid and more specifically to methods and apparatus for controlling at least one parameter of the gaseous fluid.

Background Art

10 Temperature and other parametric controls of gaseous fluids for manufacturing or other processes have been found to be desirable. An example is the use of cryogenic fluids as quench fluids for cooling vaporized precursor materials to make nanoparticles. Controlling the temperatures of quench fluids can greatly assist in nano-particle production. Temperature control of quench fluids can affect the number and size of nanoparticles produced, can minimize fluctuations in flow and pressure, and may help to 15 conserve energy.

Temperature control of a quench fluid, particularly a gas, may be achieved in part by mixing the gas with a cooler, liquefied stream of the same gas. Such a liquid/gas mixture of this sort can then be maintained within a range of desired end temperatures to provide for increased flow-rates or to avoid flow-rate fluctuations, for example. 20 However, devices for providing a liquid/gas mixture are not without their problems, as it can be difficult to combine liquid and gas streams depending on the temperatures and pressures involved.

Disclosure of Invention

25 A method of the present invention comprises supplying a first fluid stream substantially in a liquid state and a second fluid stream substantially in liquid state from a single fluid source. At least a portion of the second fluid stream is vaporized to form a gaseous fluid. The flow rate of at least one of the first and second fluid streams is varied. The method provides for the combining of the first and second fluid streams to produce a gaseous fluid product, at least one parameter of which is affected by the varying of the 30 flow rate of at least one of the first and second fluid streams.

An outlet stream production apparatus of the present invention comprises a fluid container containing fluid in substantially a liquid state. A gas generator is connected to said fluid container. A first fluid line is also connected to said fluid container. The first fluid line is connected to a product discharge manifold via a first valve. The gas

generator is also connected to the product discharge manifold via a second valve. The first valve and the second valve are operable to control at least one parameter of an outlet stream produced at the product discharge manifold.

Brief Description of Drawing

5 The accompanying drawing illustrates a schematic representation of one embodiment of a gaseous fluid production apparatus according to the present invention.

Modes for Carrying Out the Invention

In general, methods of the present invention may be used to produce a gaseous fluid product, or an outlet stream, with a controlled temperature or other parameter. A 10 method of producing an outlet stream with a controlled parameter according to the present invention comprises supplying a first fluid stream in substantially a liquid phase from a single fluid source; supplying a second fluid stream in substantially a liquid phase from the single fluid source; vaporizing at least a portion of the second fluid stream to produce a gaseous fluid and combining the first fluid stream with the second fluid stream 15 to produce a temperature-controlled outlet stream. In other embodiments, a method for producing the temperature-controlled outlet stream may also comprise supplying a desired pressure to the first fluid stream; producing a desired pressure for the outlet stream; minimizing the pressure of the first fluid stream in the liquid phase; and/or controlling the pressure of the first fluid stream to reduce flow fluctuations. Another 20 embodiment may comprise supplying a desired pressure to the second fluid stream; producing a desired pressure for the outlet stream; minimizing the pressure of the second fluid stream in the liquid phase; and/or controlling the pressure of the second fluid stream to reduce flow fluctuations. Still another embodiment comprises supplying a desired pressure to both the first fluid stream; and the second fluid stream.

25 Another embodiment of a method for controlling an outlet stream parameter (e.g., temperature, pressure, flow rate) according to the present invention comprises removing two discrete streams of liquid-phase material from the single source; passing a first one of said two discrete streams through a first line having a first valve; passing the second of the streams through a second line having a gas generator and a second valve; mixing the 30 first and second fluid streams in a controlled relationship to produce an outlet stream with a controlled parameter. In an embodiment where the controlled parameter is temperature, the method may further comprise controlling the temperature to maintain the temperature

at a selected value in the range between about the boiling point of the outlet stream and about the ambient temperature.

Moreover, in a further embodiment, the mixing of the first and the second fluid streams (respectively conducted by the first and the second fluid lines) may provide not 5 only for producing a single fluid outlet stream, but also for controlling a parameter of the single fluid outlet stream. Thus, as is explained in more detail below, apparatus of the present invention may provide for a parametrically-controlled outlet stream wherein the controlled parameter is one or more of the temperature, pressure or volumetric flow rate of at least one of the first and second fluid streams, and the outlet stream.

10 A gaseous fluid production apparatus 10 according to one embodiment of the present invention is illustrated in the drawing figure and may comprise a fluid container 11 containing fluid 14 in at least a liquid phase 12. The fluid 14 is dispensed through respective first and second fluid lines 16, 17 to a product discharge manifold 18. A gas generator 20 is disposed in or otherwise connected to the second fluid line 17, as shown. 15 However, in another embodiment, the gas generator 20 may also be disposed in or otherwise connected to the first fluid line 16. As will be described in greater detail below, the gas generator 20 receives the fluid 14 substantially in the liquid phase 12 and vaporizes at least some of the fluid 14 to produce a gaseous fluid.

20 The apparatus 10 may be particularly useful with cryogenic fluids, although the present invention is not limited in any respect to cryogenic fluids. "Cryogenic fluid" as used herein refers to liquids that boil at temperatures of less than about 110 K (-163.15 degree C) at atmospheric pressure. Cryogenic fluids include, but are not limited to, hydrogen, helium, nitrogen, oxygen, argon, air, and methane. Cryogenic fluids may not be suitable when exposed to ambient temperature. That is, when cryogenic fluids in 25 liquid form are exposed to such ambient temperatures, they may quickly reach boiling temperature(s) and thus change state to gaseous form. Often, the actual temperature of cryogenic fluid at its initial boiling temperature has been of little importance, since it is still very cold relative to most ambient temperatures. However, systems desiring particular cryogenic temperatures are emerging and thus controlled parameter 30 (temperature and/or pressure) output fluid streams for those systems may be preferred.

Referring now more specifically to the drawing, with respect to another embodiment, the apparatus 10 of the present invention comprises a fluid container 11, which may, but need not be, in a tank form. The fluid container 11 is fluidly connected to

first and second fluid lines 16, 17 which are ultimately also connected to each other to define, or form, the product discharge manifold 18. The connections of both the first and second fluid lines 16, 17 to the fluid container 11 are generally made in such a way so as to permit the fluid 14 to be conducted from the fluid container 11 in the liquid phase 12.

5 As shown in the drawing, for example, such a connection between the fluid container 11 and the first and second fluid lines 16, 17 may be made below the liquid-gas interface 15. The drawing also shows schematically that the fluid container 11 contains the liquid phase 12 of the fluid 14 and may also (but need not) contain a gas phase 13 of the fluid 14, as shown here above the gas-liquid interface 15.

10 The gas generator 20 may be connected to the second fluid line 17. In the embodiment shown in the drawing, the gas generator 20 comprises a heat exchanger 21 and two holding containers 22, 23. An exemplary gas generator 20 is a Trifecta® device from Chart Industries, Inc., based in Cleveland, Ohio, USA. The gas generator 20 may be of a type which may provide for, separately or in combination, flow control, pressure control or temperature control for the gaseous fluid from the gas generator 20.

15

The apparatus 10 may be generally operated as follows. The fluid 14 may be drawn from the fluid container 11 in first and second fluid streams flowing into and through the first and second fluid lines 16, 17. As shown and described here, the liquid phase 12 of the fluid 14 is conducted into and, at least initially, flows into the first and second fluid lines 16, 17. The liquid first fluid stream in the first fluid line 16 proceeds to the product discharge manifold 18 while the liquid second fluid stream in the second fluid line 17 proceeds first to the gas generator 20 where it is processed (if necessary). The gas generator 20 changes the second fluid stream from a liquid to a gas, which is then conducted via the second fluid line 17 to the product discharge manifold 18. At the product discharge manifold 18, the second fluid stream is mixed with the first fluid stream to produce an outlet stream 19. The first fluid stream may often still generally be in the liquid phase although some boiling or complete boiling may have occurred in transit. As such, the first fluid stream is generally going to be at a lower temperature than the gaseous phase of the second fluid stream. In such cases, independent parameter(s) (e.g., temperature, pressure and flow rate) of the first and second fluid streams (before mixing) ultimately contribute to and together create the parameter(s) of the outlet stream 19. Therefore, outlet stream 19 may comprise a mixed product and may have different temperature or other parameters (e.g., pressure and flow rate) as compared to either of the

20

25

30

first or second fluid streams. Thus, the outlet stream 19 exiting the product discharge manifold 18 may in some instances be considered as occurring in either one gas phase, or in two mixed phases, i.e., gas and liquid.

The first and second fluid streams may be brought together and mixed to produce
5 the outlet stream 19 having a resultant or manufactured parameter (e.g., temperature, pressure, flow rate) at a set level or within a controlled range. As the relative parameters of the first and second fluid streams may be known, selected and/or controlled, then so too may the outlet stream 19 parameters be manipulated, selected and/or controlled. In many cases, the physical, mechanical and/or plumbing constraints (e.g., sizes, shapes, 10 lengths, etc.) of one or more parts of the apparatus 10 (e.g., the first and second fluid lines 16, 17) may contribute to and/or result in the parameters of the first and second fluid streams, thereby affecting the parameters of the outlet stream 19. For that reason, as well as others familiar to those of skill in the art, one or more valves may be inserted in the fluid lines 16, 17 to control the mixing of the first and second fluid streams, and therefore 15 control the parameters of the outlet stream 19. For example, as shown, a first valve 26 may be inserted into the first fluid line 16 and/or a second valve 27 may be inserted into the second fluid line 17.

As shown, the first valve 26 is disposed on the first fluid line 16 and may be used to vary the flow of the first fluid stream in the first fluid line 16 into the product discharge 20 manifold 18 (and the outlet stream 19), thereby regulating the temperature in the outlet stream 19. In operation, the first valve 26 may be completely open, partially open, or completely closed, permitting the outlet stream 19 in the product discharge manifold 18 to receive full input, some input or no input from the first fluid stream. Thus, the first valve 26 may be manipulated to restrict the flow of the first stream to any degree desired.

25 Similarly, the second valve 27 may be used on the second fluid line 17 to provide parametric control of the second fluid stream as it enters the product discharge manifold 18, thus affecting the parameter(s) of the outlet stream 19. In the embodiment shown, the second valve 27 is used to control the pressure parameter. For example, the second valve 27 may be used to reduce the pressure of the second fluid stream to a desired level to 30 assure mixing with the first fluid stream. As in the case of the operation of the first valve 26, the second valve 27 may be completely open, partially open or completely closed, permitting the outlet stream 19 in the production discharge manifold 18 to receive full input, some input or no input from the second fluid stream. The degree of input from the

second fluid stream may affect the parameter(s) of the output stream 19. Given that either the first valve 26 or the second valve 27 may be completely closed, the output stream 19 may ultimately contain only one of either the first fluid stream or the second fluid stream. Although in the embodiment shown the first valve 26 is used to control 5 temperature and the second valve 27 is used to control pressure, in other embodiments one or more similar valves may be used to control any parameter of the first and second fluid streams and the output stream 19 either separately or in combination.

Another embodiment may also include an optional control system 30 comprising at least one parametric sensing device. The embodiment shown contains an outlet stream 10 temperature sensor 32 and an outlet stream pressure sensor 34 included in the product discharge manifold 18 to assist in controlling the parameters of the outlet stream 19. For example, the outlet stream temperature sensor 32 may measure a temperature of the outlet stream 19 in, through, at, or upon exit from the product discharge manifold 18. Information from the outlet stream temperature sensor 32 may then be used in 15 determining whether a mechanical change to the apparatus 10 is required to change the temperature of the outlet stream 19 in the product discharge manifold 18. Either of the valves 26, 27 may then be manipulated to effectuate the desired change. In some cases, the temperature indication may call for a change in the contribution from the first fluid stream in the first line 16, and thus call for a manipulation of the first valve 26. In other 20 cases, a manipulation of the second valve 27 may be required to change the contribution from the second fluid stream to the output stream 19.

The embodiment shown also comprises outlet stream pressure sensor 34 for measuring pressure of the outlet stream 19 in, through, at, or upon exit from the product discharge manifold 18. As such, the outlet stream pressure sensor 34 may indicate a 25 needed change in fluid flow in the second fluid line 17. For example, it may be desirable to reduce the pressure of the second fluid stream in the second fluid line 17 to enhance compatibility with the pressure of the first fluid stream in the first fluid line 16, and thus enhance, or merely make possible, the mixing of the first and second fluid streams at the product discharge manifold 18. Furthermore, the use of the first valve 26 with the outlet 30 stream temperature sensor 32 and the use of the second valve 27 with the outlet stream pressure sensor 34, either separately or in combination, may be used to provide pressure control of the fluid streams in each of the first and second lines 16, 17. Such pressure

control can be used to reduce or minimize flow fluctuations, or flow variances of the outlet stream 19 exiting the product discharge manifold 18.

5 Although the outlet stream temperature sensor 32 and the outlet stream pressure sensor 34 are optional, such sensors 32, 34 may be preferred in many embodiments in order to provide dynamic or variable parametric control. For example, variable parametric control may permit one or more particular output demands (with respect to temperature, pressure or flow rate, e.g.) to be met. Variable parametric control may also permit a controlled, substantially constant output even if one or more input parameters (temperature, pressure and/or flow rate) are varied.

10 In one embodiment, the first valve 26 and the second valve 27 may be operated manually. In addition, the information obtained from the outlet stream temperature sensor 32 and the outlet stream pressure sensor 34 may be read manually and interpreted by a person. The valves 26, 27 may also be manipulated manually based on the human interpretation of data produced by the sensors 32, 34. However, in the embodiment shown in the drawing, these activities may be automated by using a temperature controller 36 and a pressure controller 37. As shown schematically, the temperature controller 36 may be disposed between the outlet stream temperature sensor 32 and the first valve 26 to receive input (e.g., a temperature measurement) from the outlet stream temperature sensor 32, and use that input to control (i.e., open, close, or merely restrict, more or less) the flow of the first fluid stream through the first valve 26. The temperature controller 36 may thereby vary the impact that first fluid stream has on the outlet stream 19. Alternatively or additionally, the pressure controller 37 may similarly be used in connection with the outlet stream pressure sensor 34 and the second valve 27. The pressure controller 37 may be disposed between the outlet stream pressure sensor 34 and the second valve 27 to receive input (e.g., a pressure measurement), and use that input to control (i.e., open, close, or merely restrict, more or less) the flow of the second fluid stream through the second valve 27.

15 20 25

30 The temperature controller 36 and the pressure controller 37 may be programmable as by a human or may be interoperative with one or more other parts of a larger system which may control either one or both of the controllers 36, 37. Although the embodiment shown depicts the temperature controller 36 as disposed between the outlet stream temperature sensor 32 and the first valve 26, and the pressure controller 37 disposed between the outlet stream pressure sensor 34 and the second valve 27, the

controllers 36, 37 may be placed in any location as would be familiar to one of skill in the art. Thus, either one or both controllers 36, 37 may be inherent in or disposed on one or the other or both of the respective valves 26, 27. Similarly, either or both controllers 36, 37 may be inherent in or disposed on either one or both of the outlet stream temperature sensor 32 and the outlet stream pressure sensor 34.

Another embodiment, as shown in the drawing, may comprise a supplemental heat exchanger 40 for the primary purpose of ensuring a gas flow in the second fluid line 17, particularly downstream of the gas generator 20. The heat exchanger 40 may, as shown here, include a bypass valve 41, bypass piping 42 and associated bypass inlet valve 43 and bypass outlet valve 45 to control flow in the heat exchanger 40 as would be generally understood by those of skill in the art. A gas generator temperature sensor 47 may also be included to measure the temperature downstream of both the gas generator 20 and the heat exchanger 40 (as shown here) to determine whether the second fluid stream in the second fluid line 17 has been adequately converted to the gas phase. If such conversion is not as desired, the data from the gas generator temperature sensor 47 may be used to adjust the flow through the heat exchanger 40 to add sufficient heat to change the second fluid stream to a gas. The flow through the heat exchanger 40 may be controlled primarily by the bypass valve 41 which may be used to shunt the desired quantity of the second fluid stream in the second fluid line 17 into the heat exchanger 40.

Although it is not shown, the gas generator temperature sensor 47 may be connected to at least one controller (not shown) which, in turn, is connected to either the gas generator 20 or heat exchanger 40 (at bypass valve 41), or both, to ensure the desired phase change of the second fluid stream to a gas. Said at least one controller (not shown) may be inherent in or on the gas generator 20, or the heat exchanger 40, bypass valve 41 or even on the gas generator temperature sensor 47.

Alternative embodiments may include those in which one or more of the heat exchanger 40, gas generator temperature sensor 47, valves 26, 27, sensors 32, 34, or controllers 36, 37 are not included. An example of an alternative embodiment without valves 26, 27 may involve first and second fluid lines 16, 17 of controlled sizes (lengths, 30 diameters and the like). The thinner the line, the more restricted the flow and the smaller the fluid stream. Thus, in the case where the first fluid line 16 is much thinner than the second fluid line 17, the parametric impact of the first fluid stream on the second fluid stream will be minimized. If the first fluid line 16 were sufficiently thin, the outlet

stream 19 exiting the product discharge manifold 18 may appear like the second fluid stream, parametrically. More generally however, the relative size ratios of the first and second fluid streams will impact the parametric control of the outlet stream 19, as determined by the diameter of the first and second fluid lines 16, 17, respectively.

5 Similarly, the relative temperature or pressure change of the first fluid stream due to its length of travel in the first fluid line 16, for example, may contribute to the parameters of the outlet stream 19 at the product discharge manifold 18. For example, a longer travel length can expose a fluid stream to: (a) a greater temperature rise (if the ambient temperature is greater than the fluid boiling point); (b) increased cooling (if the fluid

10 boiling point is higher than the ambient temperature), or (c) greater pressure changes (due to any change of state, e.g., by boiling in the line). In such cases, however, understood and/or pre-selected line sizes, lengths, diameters, connections and the like can contribute to the ultimate parametric control of the outlet stream 19, including control of its temperature. In any case, careful selection of these relative parts can provide for a desired

15 outlet stream 19 parametric control, as for example, within a particular range of temperatures, pressures or volumetric flow rates.

Although a preferred and various optional embodiments have been discussed, the preferred embodiment may include all of the features already described. More particularly, with reference to the drawing, the apparatus 10 may include the fluid

20 container 11 containing fluid 14 at least in the liquid phase 12. Two fluid communication lines (the first fluid line 16 and the second fluid line 17) may be connected to the fluid container 11 in a manner to permit both the first fluid line 16 to receive the first fluid stream substantially in the liquid state and the second fluid line 17 to receive the second fluid stream substantially in the liquid state. In the preferred embodiment, the first fluid

25 line 16 conducts the first fluid stream and the second fluid line 17 conducts the second fluid stream to a connection that defines, or forms, the product discharge manifold 18. The first fluid stream is combined with the second fluid stream at the product discharge manifold 18 to produce the outlet stream 19. The gas generator 20 is disposed in the second fluid line 17 in between the fluid container 11 and the product discharge manifold

30 18. The gas generator 20 is connected to the heat exchanger 40 and the gas generator temperature sensor 47 via the second fluid line 17. The gas generator 20, the heat exchanger 40 and the gas generator temperature sensor 47 operate in the process of changing the phase of the second fluid stream from liquid to gas, as well as ensure that

the proper degree of conversion has occurred. In addition, the gas generator temperature sensor 47 may be connected through a controller (not shown) to either the gas generator 20 or heat exchanger 40 (at bypass valve 41), or both, to ensure the change in phase to a gas. In the preferred embodiment, the second valve 27 may be connected to the second 5 fluid line 17, disposed between the gas generator temperature sensor 47 and the product discharge manifold 18, for controlling the flow of the second fluid stream into the product discharge manifold 18. The first valve 26 may be connected to the first fluid line 16, disposed between the fluid container 11 and the product discharge manifold 18, for controlling the flow of the first fluid stream into the product discharge manifold 18. By 10 controlling the flows of the first and second fluid streams, the first valve 26 and the second valve 27 may therefore be used to control the mixing of the first and second fluid streams in the product discharge manifold 18 to produce the outlet stream 19, thereby controlling at least one parameter of the outlet stream 19. The preferred embodiment also may include the outlet stream temperature sensor 32 in or adjacent the product 15 discharge manifold 18. The outlet stream temperature sensor 32 may be connected to the temperature controller 36 which in turn may be connected to the first valve 26. The outlet stream temperature sensor 32 may be used to measure the temperature of the outlet stream 19, such measurement being used by the temperature controller 36 to regulate the first valve 26, thereby controlling the flow of the first fluid stream into the product 20 discharge manifold 18. Similarly, the preferred embodiment also may include the outlet stream pressure sensor 34 in or adjacent the product discharge manifold 18. The outlet stream pressure sensor 34 may be connected to the pressure controller 37 which in turn may be connected to the second valve 27. The outlet stream pressure sensor 34 may be used to measure the pressure of the outlet stream 19, such measurement being used by the 25 pressure controller 37 to regulate the second valve 27, thereby controlling the flow of the second fluid stream into the product discharge manifold 18. Controlling the flow of the first and second fluid streams may be used to provide at least one desired parameter of the outlet stream 19 exiting the product discharge manifold 18.

It may be noted that connecting both of the first and second fluid lines 16, 17 to 30 the same fluid container 11 and drawing off fluid 14 at least in the liquid phase 12 for both the first and second fluid streams may be advantageous in several respects. For example, better temperature control over the outlet stream 19 may be achieved, because the outlet stream 19 may not be simply a gas phase at a temperature above the gas-liquid

phase change temperature point, which may fluctuate depending on pressure and flow rate. As described above, the outlet stream 19 in gaseous form may include separately or in combination a gas mixed with a liquid such that the liquid cools the gas, but also a gas/liquid mixture where the liquid is suspended in the gas, whether vaporized, 5 colloidal suspended or aerosolized in the gas. In any case, colder temperatures may be achieved by combining a gas stream with a liquid stream. (Although the liquid stream may be only a liquid initially, having at some point vaporized, it should still be generally colder than the primary gas phase stream). Further, the ability to control the temperature of the outlet stream 19 by mixing a gas phase with a liquid phase may provide for 10 desirable cooling affects in another system, which may be limited by using only a single phase -- either a gas only form or a liquid only form -- of an output fluid to cool. The gas only form may be too hot (relatively), and the liquid only form may be too cold. Moreover, the advantage of using a cooled gas to cool in an operative system allows better control over the cooling rate, and consequently overall better system control. 15 Temperature and flow control can also be improved together when using a cooled gas. When using liquids to control a system temperature, however, temperature variances could cause the flow of the liquid to vary in order to cover those variances, and thereby cause the overall system flow to vary. A controlled temperature gas cooling system can cover the temperature variances without requiring the same sort of flow variances.

20 The apparatus 10 and method of the present invention also may minimize energy usage, as well as minimizing liquid pressure used in mixing with the gas. For example, the present invention eliminates the need to use two separate containers (not shown), with one containing a fluid in gaseous form and another containing a fluid in liquid form, drawing from the two containers and subsequently mixing the liquid form with the gas 25 form to produce a gaseous product. A two-container system doubles the required inventory and creates operational size problems, as two containers may generally take up twice the space. On the other hand, a single tank containing both a liquid and a separate gas phase may require producing an unacceptably high liquid pressure in order to obtain the gas pressure necessary for mixing to occur. For example, if a fluid were drawn off a 30 single container in two separate liquid and gas phases, the pressure of the gas and liquid should be similar and allow for mixing; however, if a cryogenic fluid were used, the cryogenic fluid in the liquid phase would boil in the line and vaporize, creating an increased pressure in the line, preventing it from mixing with the gas phase drawn off in

the other line at the container pressure. Thus, the apparatus 10 of the present invention supplied with cryogenic fluid (or others) may have a desirable effect of minimizing liquid coolant pressure.

The foregoing description has been presented for purposes of illustration and 5 description of the present invention. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Having herein set forth various embodiments of the present invention, it is anticipated that modifications and variations will naturally occur to those of skill in the art after becoming familiar with the present invention. It is anticipated that such suitable modifications will nonetheless remain 10 within the scope of the invention. The invention shall therefore be construed in accordance with the following claims.

I claim:

1. An outlet stream production apparatus comprising:
 - a fluid container containing fluid in substantially a liquid state;
 - a gas generator having an inlet end and an outlet end, the inlet end of said gas generator being connected to said fluid container;
 - a first fluid line having an inlet end and an outlet end, the inlet end of said first fluid line being connected to said fluid container;
 - a first valve having an inlet end and an outlet end, the inlet end of said first valve being connected to the outlet end of said first fluid line;
- 10 a second valve having an inlet end and an outlet end, the inlet end of said second valve being connected to the outlet end of said gas generator; and
 - a product discharge manifold having a first inlet, a second inlet and an outlet, said first inlet being connected to the outlet end of said first valve, said second inlet being connect to the outlet end of said second valve, and said first and second valves being operable to control at least one parameter of an outlet stream produced at said product discharge manifold.
- 20 2. The apparatus of claim 1 wherein said fluid is cryogenic fluid.
3. The apparatus of claim 1 wherein said at least one parameter is temperature.
4. The apparatus of claim 1 wherein said at least one parameter is selected from the group consisting of temperature, pressure and flow rate.
- 25 5. The apparatus of claim 1 wherein said outlet stream is selected from the group consisting of a gas, a gas/liquid mixture, a vapor, a vaporized liquid and gas mixture, a colloidal suspension in gas, and an aerosolized suspension of liquid in gas.
- 30 6. The apparatus of claim 1 wherein said gas generator further comprises a heat exchanger interposed between the inlet and outlet ends of said gas generator.

7. The apparatus of claim 1 further comprising a heat exchanger interposed between the outlet end of said gas generator and the inlet end of said second valve.

8. The apparatus of claim 6 further comprising a supplemental heat exchanger disposed between the outlet end of said gas generator and the inlet end of said second valve.

9. The apparatus of claim 1 further comprising a gas generator temperature sensor interposed between the outlet end of said gas generator and the inlet end of said second valve, wherein said gas generator temperature sensor is operatively associated with said gas generator.

10. The apparatus of claim 1 further comprising an outlet stream temperature sensor measuring a temperature of said outlet stream at said product discharge manifold and operatively associated with said first valve.

11. The apparatus of claim 1 further comprising an outlet stream pressure sensor measuring a pressure of said outlet stream at said product discharge manifold and operatively associated with said second valve.

20

12. The apparatus of claim 10 further comprising an outlet stream pressure sensor measuring a pressure of said outlet stream at said product discharge manifold and operatively associated with said second valve.

25

13. The apparatus of claim 10 wherein said outlet stream temperature sensor is operatively associated with said first valve via a temperature controller interposed between said temperature sensor and said first valve.

30

14. The apparatus of claim 11 wherein said outlet stream pressure sensor is operatively associated with said second valve via a pressure controller interposed between said pressure sensor and said second valve.

15. The apparatus of claim 1 wherein said gas generator is a high-pressure gas supply system.

16. A gaseous fluid production apparatus comprising:

5 a fluid container containing fluid in substantially a liquid state;

a first fluid line having an inlet end and an outlet end, the inlet end of said first fluid line being connected to said fluid container so that said first fluid line receives fluid substantially in the liquid state, said fluid being a first fluid stream;

10 a gas generator having an inlet end and an outlet end, the inlet end of said gas generator being connected to said fluid container so that said gas generator receives fluid substantially in the liquid state, said fluid being a second fluid stream;

a product discharge manifold having a first inlet, a second inlet and an outlet, said first inlet being connected to the outlet end of said first fluid line and said second inlet being connected to the outlet end of said gas generator;

15 a first control means interposed between the outlet end of said first fluid line and the first inlet of said product discharge manifold, said first control means for controlling at least one parameter of said first fluid stream; and

20 a second control means interposed between the outlet end of said gas generator and the second inlet of said product discharge manifold, said second control means for controlling at least one parameter of said second fluid stream.

17. A method of producing a gaseous fluid product, comprising:

supplying a first fluid stream substantially in a liquid state from a single fluid source;

25 supplying a second fluid stream substantially in a liquid state from said single fluid source;

vaporizing at least a portion of said second fluid stream to form a gaseous fluid;

varying a flow rate of at least one of said first and second fluid streams; and

30 combining said first fluid stream and said second fluid stream to produce the gaseous fluid product, said varying affecting at least one parameter of said gaseous fluid product.

18. The method of claim 17 further comprising measuring at least one parameter of said gaseous fluid product.

19. The method of claim 17 wherein said at least one parameter is selected
5 from the group consisting of temperature, pressure and flow rate.

20. The method of claim 18 wherein said measuring occurs prior to said varying.

10 21. The method of claim 19 wherein said single fluid source comprises cryogenic fluid.

22. A method for controlling a parameter of a gaseous fluid product comprising:

15 removing two discrete streams of liquid-phase material from a single source, said two discrete streams forming a first stream and a second stream;

passing said first stream through a first line having a first valve;

passing said second stream through a second line having a gas generator and a second valve;

20 using said gas generator to vaporize at least a portion of said second stream forming a gaseous product;

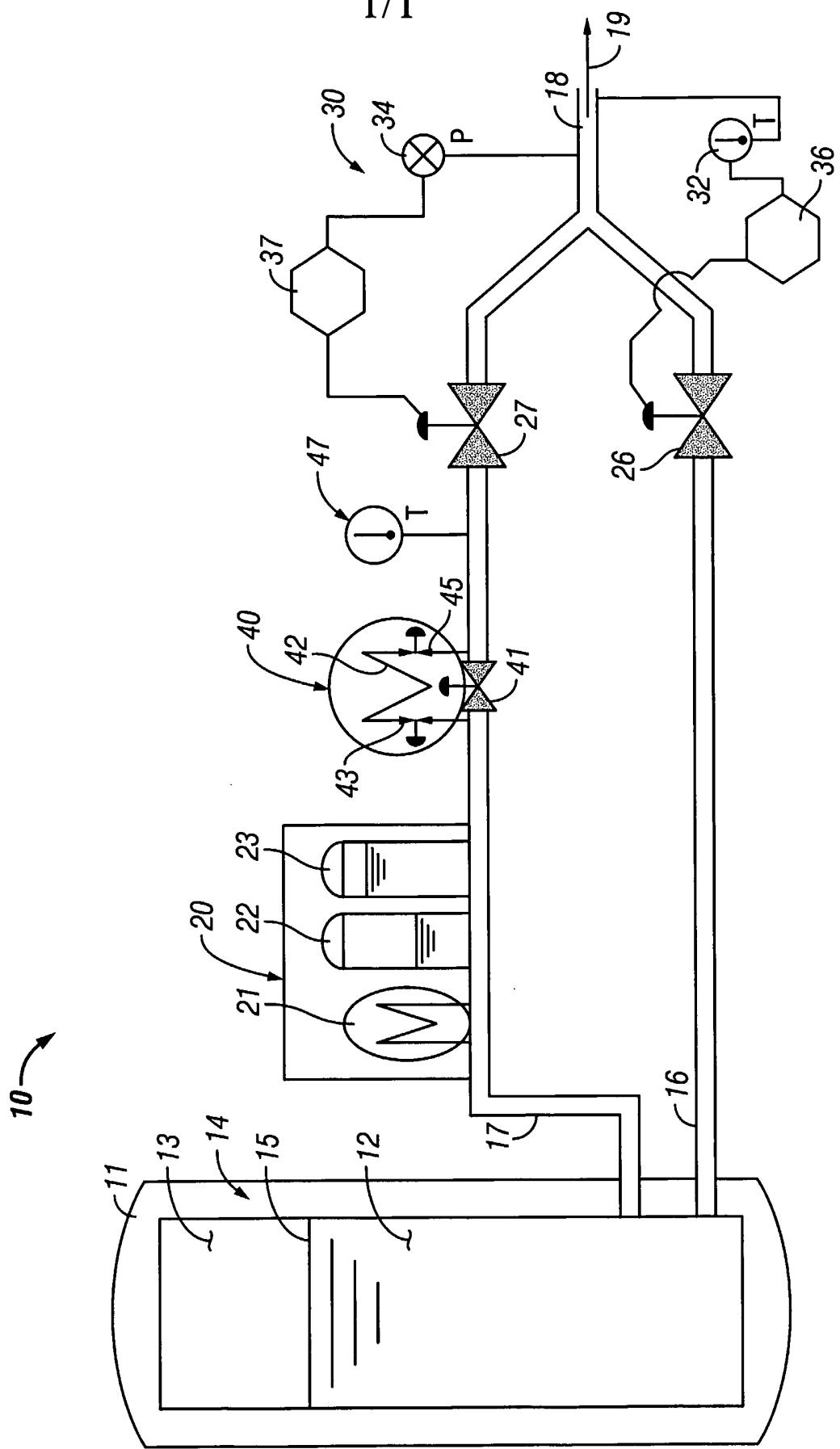
using said first valve to control at least one parameter of said first stream;

using said second valve to control at least one parameter of said second stream;

and

25 mixing said first stream and said second stream to produce the gaseous fluid product having at least one desired parameter.

23. The method of claim 22 wherein said at least one desired parameter is a temperature within a range of temperatures.


30

24. The method of claim 23 wherein said range of temperatures is in between about a boiling temperature of said gaseous fluid product and about an ambient temperature.

25. A fluid production apparatus comprising:

- a fluid container containing a fluid in at least a liquid phase;
- a gas generator having an inlet end and an outlet end, the inlet end of said gas generator being connected to said fluid container so that said gas generator receives fluid substantially in the liquid state and converts said fluid substantially into vapor;
- 5 a first fluid line having an inlet end and an outlet end, the inlet end of said first fluid line being connected to said fluid container so that said first fluid line receives fluid substantially in the liquid state, the outlet end of said first fluid line being fluidly connected to the outlet end of said gas generator defining a fluid product outlet.

1/1

