PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
HO3M 13/12, 13/22 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/37434

9 October 1997 (09.10.97)

(21) International Application Number: PCT/US97/04290

(22) International Filing Date: 18 March 1997 (18.03.97)

(30) Priority Data:

08/623,965 29 March 1996 (29.03.96) us

(71) Applicant (for all designated States except US): AMATI COM-
MUNICATIONS CORPORATION [US/US]; 2043 Samari-
tan Drive, San Jose, CA 95124 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): TONG, Po [US/US]; 34188
O’Neil Terrace, Fremont, CA 94555 (US).

(74) Agents: WEAVER, lJeffrey, K. et al.; Hickman Beyer &
Weaver, P.O. Box 61059, Palo Alto, CA 94306 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, F], GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, T™, TR, TT,
UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS,
MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ,
MD, RU, T}, TM), European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published
With international search report.

(54) Title: CONVOLUTIONAL INTERLEAVING WITH REDUCED MEMORY REQUIREMENTS AND ADDRESS GENERATOR

THEREFOR

(57) Abstract

A convolutional interleaving process which utilizes an addressing scheme that
enables the amount of memory to be used in the convolutional interleaving process
to be reduced is disclosed. A stream of data is convolutionally interleaved at a
designated interleaving depth and a designated interleaving block length such that
a first symbol in a designated block has an associated predetermined delay and
each subsequent symbol in the designated block has a delay equal to more than
its predecessor symbol. A plurality of delay related arrays, as well as an initial
value array, a lower limit array, and an upper limit array, are calculated in order to
define interleaving orbits. The convolutional interleaving process is accomplished
by a convolutional interleaver which is arranged to take an incoming stream of
data and output an interleaved stream of bits which is conceptually partitioned into
blocks. A convolutional deinterleaving process, which is similar to the convolutional
interleaving process is also disclosed.

i} = 0;
initial_index w 0;
address = 0;
lower_imit = 0;

Fill arrays A, L
(FIG. 5) [MNz0
Fill array U
{FIG. 8) 30
intial_index =
inklal_index + 1 [\, -

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d'lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
T
™
TR
T
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 97/37434 PCT/US97/04290

CONVOLUTIONAL INTERLEAVING WITH REDUCED MEMORY REQUIREMENTS AND ADDRESS
GENERATOR THEREFOR

BACKGROUND OF THE INVENTION
1. Field of Invention

The present invention relates generally to the use of convolutional interleaving in digital
communication systems to improve transmission reliability. More particularly, a method of
efficiently generating addresses for convolutional interleaving that utilizes a minimal amount of
memory is disclosed.

2. Description of Prior Art

Digital Communication Systems that are subject to Bursty Channel Noise have frequently
used the technique of “interleaving” in connection with error correction to improve the reliability of
the system. By way of example, as illustrated in Fig. 1, a typical interleaving system includes an
encoder 50 that encodes an incoming data stream, an interleaver 52 which interleaves the encoded
signal and a modulator 53 which modulates the interleaved signal in a manner suitable for
transmission over a channel 54. The encoding, interleaving, and modulating of data occur as a
part of the data transmission process of the transmitter 57. The encoded interleaved signal is then
received by a receiver 60 which includes a demodulator 55, a deinterleaver 62 that unscrambles the
interleaving, and a decoder 64 which decodes the encoded signal. The decoded signal may then
be used in any suitable manner. In effect, the interleaver permits the ordering of the sequence of
symbols in a deterministic manner while the deinterleaver applies an inverse permutation to restore
the sequence to its original ordering.

When describing the type of permutation implemented by an interleaver, it is convenient to
divide the inputted symbol stream into blocks of data having a designated length N. An
interleaving depth factor d is also defined. The most common and straight-forward interleaving
scheme is known as “block” interleaving. In a block interleaver, data is written into a memory that
is conceptually divided into a number of rows equal to the designated number of symbols per
block N and a number of columns equal to the desired interleaving depth factor d. The data is read
into the interleaver in a column-by-column fashion and is read out of the memory in a row-by-row
fashion. Thus, an amount of memory equivalent to N*d is used for a single block of data.
Typically, two such blocks are used to permit data to be read from one memory while the other is
being written into. In the deinterleaver, the inverse permutation is accomplished by writing into
the deinterleaver in a row-by-row manner and reading out of the deinterleaver in a column-by-
column manner. Thus, as will be appreciated by those skilled in the art, the total amount of

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290
memory necessary to implement such a system is typically 4*N*d and the total latency through the
interleaver and deinterleaver is 2*N*d.

The concept of convolutional interleaving was first introduced by J. L. Ramsey and G. D.
Forney in around 1970. When convolutional interleaving is used, the total memory requirements
can theoretically be reduced to approximately N*d. The reduction in memory results in a memory
requirement which is one-fourth the requirement of block interleaving. At the same time, the
overall latency is reduced by up to approximately the same level (i.e., N*d) . This is
approximately half of the total latency of a block interleaver.

The implementations of convolutional interleaving introduced by Ramsey and Forney as
well as others are capable of achieving the reduction of required memory by up to a factor of 4
through the use of 2*N separate delay lines. Each of the delay lines can be implemented by a
RAM with its own address. However, when the number of symbols in a block of data N is
relatively large, a correspondingly large number of separate RAMs are required in order to
implement the interleaver. In order to improve the efficiency of the system, it would be desirable
to consolidate these memories into a relatively small number of RAMs.

Conventional convolutional interleaving also includes interleaving systems that require
only one RAM for the interleaver and one additional RAM for the deinterleaver. However, in one
conventional convolutional interleaving system, which is referred to as "helical” interleaving, the
interleaving depth d is restricted to a value that is one greater or one less than the number of
symbols in a block of data N. Thatis, D=N=*1. Although the "helical" interleaver disclosed by
Berlekamp, et al. works well in some applications, it is limited in that it cannot be used in
applications which require different relationships between the interleaving depth and the number of
symbols in a block of data.

More recently, J. T. Aslanis described a convolutional interleaving system that permits an
arbitrary interleaving depth d wherein the only restriction on the interleaving depth d is that it must
be coprimed with the number of symbols in a block of data N. Such a convolutional interleaving
system uses a single RAM implementation with a total memory requirement equivalent to 2*N*d.
Tt should be appreciated that although this system requires just half of the memory required by the
block interleaver, it still requires an amount of memory which is approximately twice as high as
the theoretical minimum.

In view of the foregoing, an improved convolutional interleaving scheme which further
reduces the amount of memory required in a single RAM interleaver/single RAM deinterleaver
application would be desirable. It would further be desirable to provide an
interleaving/deinterieaving system which does not have unnecessarily stringent constraints on the

permissible interieaving depths for a given number of symbols in an interleaved block of data.

2-

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290

SUMMARY OF THE INVENTION

To achieve the foregoing and other objects and in accordance with the purpose of the
present invention, a convolutional interleaving process utilizes an addressing scheme which
enables the amount of memory used to be reduced. In order to reduce the amount of memory used
in an interleaving process, a stream of data is convolutionally interleaved at a designated
interleaving depth and a designated interleaving block length such that a first symbol in a
designated block has an associated predetermined delay and each subsequent symbol in the
designated block has a delay equal to more than its predecessor symbol. A plurality of delay
related arrays, which cooperate with the designated block length to define the delay associated with
each symbol in a given block, as well as an initial value array, a lower limit array, and an upper
limit array, are calculated in order to define interleaving orbits. In some embodiments, the
plurality of delay related arrays includes two delay related arrays which are set by iterating through
the two delay related arrays to sequentially set values for the elements in the two delay related
arrays. The initial value, lower limit, and upper limit arrays are then used to generate a
convolutional interleaving addressing scheme.

Specifically, generating a convolutional interleaving addressing scheme involves
determining orbits, which require initially determining the elements in the upper limit, lower limit
and initial value arrays corresponding to a first element in the designated block. The difference
between the values in the upper limit and lower limit arrays which correspond to the first element
in the designated block define a first orbit. If the first orbit is shared by additional elements in the
designated block, the upper limit and lower limit arrays corresponding to each additional element
in the designated block that is determined to share the first orbit are set such that identical values
are stored in a corresponding position in the upper limit array and identical values are stored in a
corresponding position in the lower limit array. Any subsequent, or additional, orbits are defined
in a similar manner as the first orbit.

The initial value array defines the address at which each symbol in a block of data is
written into memory by first determining whether an address for a corresponding element in a
preceeding block is equal to the corresponding value in the lower limit array. Next, the address of
the element in a subsequent block of data is set to the corresponding value in the upper limit array
when it is determined that the address for the corresponding element in the previous block is equal
to the corresponding value of the lower limit array. When it is determined that the address of the
corresponding element in the previous block is not equal to the corresponding value in the lower
limit array, the address of the element in the subsequent block of data is then set to a value that is

indexed from the address of the corresponding element in the previous block by a designated index
amount.

10

15

20

25

30

WO 97/37434 PCT/US97/04290

The convolutional interleaving process is accomplished by a convolutional interleaver
which is arranged to take an incoming stream of data and output an interleaved stream of bits
which is conceptually partitioned into blocks. The convolutional interleaver includes memory
arranged to temporarily store received data bits during an interleaving process, an address
generator arranged to generate a sequence of addresses used to write the incoming stream of data
into the memory and to read the interleaved stream of bits from the memory using an upper limit
array, a lower limit array and an initial value array. The addresses are generated using the steps of
setting the addresses for a first received block of data equal to addresses identified in the initial
value array, and for each element in each subsequent block of data, determining whether an
address for a corresponding element in an immediately preceeding block is equal to a
corresponding value in the lower limit array, setting the address of the element in the subsequent
block of data to the corresponding value in the upper limit array when it is determined that the
address for the corresponding element in the previous block is equal to the corresponding value of
the lower limit array, and setting the address of the element in the subsequent block of data to a
value that is indexed from the address of the corresponding element in the previous block by a
designated index amount when it is determined that the address of the corresponding element in the
previous block is not equal to the corresponding value in the lower limit array.

A convolutional deinterleaving process, which is similar to the convolutional interleaving
process, involves convolutionally deinterleaving a stream of data at a designated interleaving depth
and a designated interleaving block length such that a first symbol in a designated block has an
associated predetermined delay and each subsequent symbol in the designated block has a delay
equal to more than its predecessor symbol. Inverse delay related arrays, which cooperate with the
designated block length, are generated to define a plurality of delay related arrays which determine
the delay associated with each symbol in a given block. In some embodiments, the plurality of
delay related arrays includes two delay related arrays. An initial value array, a lower limit array,
and an upper limit array, are calculated in order to define interleaving orbits. The initial value,
lower limit, and upper limit arrays are then used to generate a convolutional deinterleaving
addressing scheme.

These and other features of the present invention will be presented in more detail in the
following detailed description of the invention and in the associated figures.

10

15

20

25

30

WO 97/37434 PCT/US97/04290
BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further objects and advantages thereof, may best be
understood by reference to the following description taken in conjunction with the accompanying

drawings in which:

FIG. 1 is a block diagram illustrating a digital communication system that utilizes
interleaving.

FIG. 2 is a flow diagram illustrating a method of generating data suitable for implementing
a convolutional interleaving addressing scheme in accordance with one preferred embodiment of
the present invention.

FIG. 3 is a flow diagram illustrating a method of filling a pair of delay related arrays (Step
220 of FIG. 2) in accordance with one preferred embodiment of the present invention. The delay
related arrays are helpful in generating appropriate initial address, lower limit and upper limit
arrays.

FIG. 4 is a flow diagram illustrating a method of filling an initial value array, an upper
limit array and a lower limit array (Step 230 of FIG. 2) in accordance with one preferred
embodiment of the present invention.

FIG. 5 is a flow chart illustrating a method of accomplishing step 420 of FIG. 4 (i.e.
filling the initial value and lower limit arrays) in accordance with one preferred embodiment of the
present invention.

FIG. 6 is a flow chart illustrating a method of accomplishing step 430 of FIG. 4 (i.e.
filling the upper limit array) in accordance with one preferred embodiment of the present invention.

FIG. 7 is a flow diagram illustrating a method of generating data suitable for implementing
a convolutional deinterleaving addressing scheme in accordance with one preferred embodiment of
the present invention.

FIG. 8 is a flow diagram illustrating a method of filling a pair of delay related arrays (Step
260 of FIG. 7) in accordance with one preferred embodiment of the present invention. The delay

related arrays are helpful in generating appropriate initial address, lower limit and upper limit
arrays.

FIG. 9 is a single RAM implementation model for both the interleaver and the deinterleaver

in accordance with one preferred embodiment of the present invention.

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290
FIG. 10 is a flow diagram illustrating a method of transmitting data and generating an
address sequence for the RAM in accordance with one preferred embodiment of the present
invention.

FIG. 11 is a chart representing the address generated by interleaving a data set with N =13
and d = 5 in accordance with one preferred embodiment of the present invention.

FIG. 12 is a chart representing the address generated by deinterleaving a data set with N =
13 and d = 5 in accordance with one preferred embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will now be described in detail with reference to a preferred
embodiment thereof as illustrated in the accompanying drawings. As described above with
reference to FIG. 1, a typical interleaving system includes an encoder 50 that encodes an incoming
data stream, an interleaver 52 which interleaves the encoded signal and a modulator 53 which
modulates the interleaved signal in a manner suitable for transmission over a channel 54. Thus,
the encoding, the interleaving, and the modulating occur before the signal is transmitted by the
transmitter 57. The encoded interleaved signal is then received by a receiver 60 which includes a
demodulator 55, a deinterleaver 62 that unscrambles the interleaving and passes the deinterleaved
signal to a decoder 64 which decodes the encoded signal. The decoded signal may then be used in
any suitable manner. In effect, the interleaver permits the ordering of the sequence of symbols in
a deterministic manner while the deinterleaver applies an inverse permutation to restore the
sequence to its original ordering. Specific transmitters and receivers may include a number of

other components and may not require a specific encoder/decoder or modulator/demodulator
combination.

A representative single RAM interleaver or deinterleaver architecture that is suitable for use
in conjunction with the present invention is schematically illustrated in FIG. 9. As seen therein,
the RAM 67 is arranged to receive data in and write data out in accordance with a designated
addressing sequence that is dictated by the address controller 69. The same addressing sequence
is used for both writing into and reading from the RAM 67. For each address, data is read from
the location specified by the address before additional incoming data is written into that location.
A symbol written into a location with a specific address will be delayed until the next occurrence of
the specific address is determined. In other words, given the delay and the specific write address
of an input symbol, it is possible to determine the next occurrence of the specific address. By way
of example, if an input symbol I is to be delayed by Dg symbols and has a specific write address
Ay, the next occurrence of address A,, will be exactly Dy symbols later. This principle may be

used to generate the periodic address sequence of incoming data.

-6-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
A mechanism suitable for determining a suitable addressing sequence that has general
applicability to interleavers and deinterleavers having a wide variety of desirable word lengths N
and interleaving depths d is described below with reference to FIGS. 2-8. Once the addressing

sequence has been defined, any suitable processor, as for example a microprocessor, may be used
to generate the addressing sequence.

The input symbols to the interleaver are separated, or partitioned, into words, or blocks, of
length N. The symbols within a word are given indices 0, 1, 2, ... , N-1 where symbol 0 is the
first symbol within a word, and symbol N - 1 is the last. ~ Each symbol is subjected to a
different delay D throughout the interleaver, with symbol i being delayed by:

Dli]=i*d-1)+1

As previously mentioned, d is the interleaver depth. The deinterleaver performs the inverse

operation, as a symbol i which is delayed throughout the interleaver i * (d - 1) + 1 is delayed
throughout the deinterleaver by:

Dlij=(N-1-i)*(d-1)+1.
The overall delay D4 may therefore be expressed as follows:
Doverat=(N-1)*(d-1)+2

In order to realize the overall delay D, ¢rq)), it follows that the minimal number of memory

elements M¢jements required may be expressed by the following relationship:
Melements =(N- 1D *(d-1)+2

It is possible to realize the overall delay using only a minimal amount of memory. For a minimal
amount of memory, the number of memory elements Mejements required by the interleaver and the

deinterleaver may be separately expressed by the following relationship:
Meiements = (N - 1) *(d - 1)/2 + 1

In order to achieve a significant savings in memory, that is, in order to use only a minimal
amount of memory in the interleaving and deinterleaving process, a rather involved addressing
scheme is required. The addressing scheme involves generating several arrays which characterize

the delays relating to each symbol, as well as the addresses for both the interleaver and the
deinterleaver.

Referring next to FIGS. 2-8, a method of generating an initial value array, a lower limit
array and an upper limit array for both the interleaver and the deinterleaver which require a minimal

7

10

15

20

25

30

WO 97/37434 PCT/US97/04290
amount of memory will be described in detail. Referring initially to FIG. 2, the array generating
process 210 for the interleaver begins with the initialization of delay related arrays in step 220. In
this embodiment, there are two delay related arrays. In some embodiments, however, there may
be more than two delay related arrays. The delay related arrays are respectively referred to herein
as the B and C arrays. The actual steps that are taken to generate the delay related arrays will be
described in more detail below with reference to FIG. 3. However, as an overview, the values in
the B and C arrays are chosen such that:

DIi] = B[i] * N + C[i}

where N is the designated number of symbols per interleaved block and the array D, as previously
described, is the array which holds the delays through the inteleaver.

After the delay related arrays have been generated, the logic moves to step 230 where the
contents of the initial value array [Al, the lower limit array [L], and the upper limit array [U] are
generated. The actual steps that are taken to generate these arrays will be described in more detail
below with reference to FIGS. 4-6. Once the initial value, lower limit and upper limit arrays have
been generated, all of the numbers necessary to fully define a convolutional interleaving based
addressing scheme that permits the use of nearly the theoretical minimal amount of memory are
available.

Referring next to FIG. 3, step 220 from FIG. 2, the step of initializing delay related
arrays, will be described in more detail. As pointed out above, the delay related arrays are referred
to as the B and C arrays. Initially, in step 310 a number of variables are initialized. The first
element in the B array (element B[0]) is set equal to zero, while the first element in the C array
(element C[0]) is set to one. A counter i is also initialized to zero. It should be appreciated that the
element in position O in both the B and the C arrays corresponds to the first symbol in the block of
data to be interleaved, Sg. The proper delay D[0] for element So always has a value of one. Thus:

D[0]=B[0]*N+C[0]=0*N+1=1

After the initialization step, the logic proceeds to a loop (steps 315-340) that fills the
remainder of the B and C arrays. Initially, in step 315, the counter i is re-initialized to zero. Then
the logic proceeds to step 320 where it is determined whether the sum of the value of the previous
entry in the C array plus the interleaving depth minus one is greater than or equal to N (i.e. is: C[i]
+d-12N). If so, the logic proceeds to step 330 where the values for C[i + 1] and B[i + 1] are
set. If not, the logic proceeds to step 340 where the values for Cli + 1] and B[i + 1] are set using
a different formula than the formula used in step 330. Specifically, in step 330 (which occurs
when the determination in step 320 was affirmative) the values C[i + 1] and B[i + 1] are set such
that:

10

15

20

25

30

WO 97/37434 PCT/US97/04290
Cli+1]1=C[i]+d-1-N;and

Bli + 1] =BJ[i]+ 1

On the other hand, when the determination in step 320 is negative, the values C[i + 1] and Bfi + 1]
are set such that:

Cli+1]=C[i])+d- 1;and
B[i + 1] = B[i]

After the values for C[i + 1] and B[i + 1] are set, the logic returns to step 315 where the counter i
is incremented and the process is repeated until all of the symbols in the block of data are
processed and have corresponding entries in the B and C arrays. In the embodiment shown, this
is accomplished by comparing the value of counter i to N-1. As long as the value of i is less than
N-1, the delay based arrays have not been filled. When counter i is equal to N-1, the arrays have
been completely filled and the logic proceeds to step 230 of FIG. 2 where the initial value, lower
limit, and upper limit arrays are filled.

Referring next to FIG. 4-6, a process suitable for filling the initial value, lower limit and
upper limit arrays as described with respect to step 230 of FIG. 2 will be described in more detail.
Referring initially to FIG. 4, a number of variables are initialized in step 410. Specifically, all of
the elements of an array I, as well as variables initial_index, address, and lower_liimit are all set
equal to zero.

Thereafter, in step 412 a determination is made as to whether the value of initial_index is
less than the number of symbols per block N. If so, the logic proceeds to step 415 where the
value of variable index is set equal to the value in variable initial_index. This marks the beginning
of processing for an orbit, or a pattern. Next, in step 420 the initial value array A and the lower
limit array L are filled as will be described in more detail below with reference to FIG. 5. After the
initial value and lower limit arrays have been filled in step 420, the logic proceeds to step 430
where the upper limit array U is filled as will be described in more detail below with reference to
FIG. 6. After all three arrays have been filled in steps 420 and 430, the value of the initial_index
variable is incremented by one in step 435. Thereafter, in step 450, a determination is made as to
whether the value stored in array I at the position corresponding to initial_index, i.e.
I[initial_index], is equal to one. If so, the logic returns to step 435 where the initial_index variable
is incremented by one and step 450 is repeated. It should be appreciated that this step checks to
determine if the elements in the initial value array A, the lower limit array L, and the upper limit
array U corresponding to the position specified by the initial_index variable have been filled. 1If
Ifinitial index] is equal to one, then the elements in the initial value array A, the lower limit array L,
and the upper limit array U have been filled; similarly, if I[initial_index] is equal to zero, then the

9.

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290
elements in the arrays have not been filled. After the initial_index variable has been incremented in
step 435, and it is determined in step 450 that the value of Ifinitial_index] is not equal to one, the
logic proceeds to step 460 where the lower_limit variable is set equal to the upper_limit variable
plus one. The logic then returns to step 412 where it is determined whether the value stored in the
initial_index variable is less than N. If so, the initial value, lower limit, and upper limit arrays for
the next symbol are determined by repeating the aforementioned steps 415-450, and the processing
of another orbit begins. When the initial value, upper limit and lower limit arrays have all been
completely filled, the determination in step 412 will be that the variable initial_index is equal to the
number of symbols N. At this point, the initial value, lower limit, and upper limit array filling step
is completed.

Referring next to FIG. 5, the step of filling the initial value and lower limit arrays as
depicted in step 420 of FIG. 4 will be described in more detail. Initially, the value in array I
corresponding to the location specified by variable index, denoted as Ifindex], is set equal to one
in step 505. The value of I[index] equal to one serves as an indication that the elements in the
initial value array A and the lower limit array L corresponding to variable index are filled. The
value in the initial value array A which corresponds to variable index, i.e. A[index], is set equal to
the corresponding value of variable address, and the value in the lower limit array L in the position
specified by variable index, denoted as L{index], is set equal to the value of variable lower_limit in
step 505. Thereafter, in step 515, a determination is made as to whether the sum of variable index
and C[index] is greater than or equal to N. That is, is the following relationship satisfied:

index + Clindex] 2N

If the result of step 515 is affirmative, the logic proceeds to step 520 where the variable address is
set equal to Afindex] plus B[index], and the variable index is set equal to index + C[index] - N.
Alternatively, if the result of step 515 is negative, the logic proceeds to step 530 where the variable
address is set equal to A[index] + Bfindex] and the variable index is set equal to the sum of index
+ C[index]. It should be appreciated that steps 520 and 530 both set the values of the variables
address and index. The value to which the variable index is set depends upon the determination of
whether or not the value of index + C[index] is greater than or equal to N in step 515. After the
values of variables address and index have been properly set in either step 520 or 530, the logic
proceeds to step 540 where it is determined whether or not the variable index is equal to the
variable initial_index. If the two variables are equal, the initial value array A and the lower limit
array L have been successfully filled for one orbit, and the logic moves to step 430 as illustrated in
FIG. 4. Alternatively, if the variable index is not equal to the variable initial_index, the logic
returns to step 505 where the value of the variables are reset as described above and steps 505-540
are repeated. When it is eventually determined in step 540 that the current value of variable index
is equal to the current value of initial_index, an orbit is considered to be complete. The logic then
proceeds to the upper limit array filling step 430.

-10-

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290

Referring next to FIG. 6, the upper limit array filling step 430 of FIG. 4 will be described
in more detail. Initially, the variable upper_limit is set equal to the variable address minus 1 in step
610. Thereafter, the value of the upper limit array U which corresponds to variable index, i.e.
Ulindex], is set equal to the value of variable upper_limit in step 615. In step 620, a determination
is made as to whether the value of the sum of variable index added to C[index] is greater than or
equal to the number of symbols in a block of data N. If so, the logic proceeds to step 630 where
the variable index is set equal to index + C[index] - N. Alternatively, if the determination in block
620 is negative, the variable index is set equal to the value of index + C[index] in step 640. Thus,
it should be appreciated that steps 630 and 640 are merely alternative mechanisms by which the
value of the variable index is set.

After the value of variable index has been set in either step 630 or 640, the logic proceeds
to step 650 where the determination is made as to whether the value of variable index is equal to
the value of variable initial_index. If it is determined that the value of variable index does not
equal the value of variable initial_index, the logic returns to step 615 where Ulindex] is set equal
to the value of variable upper_limit. Thereafter, steps 620-650 are repeated until it is determined in
step 650 that the value of variable index does equal the value of variable initial_index, at which
point all entries for the upper limit array U for a given orbit have been assigned. When such a
determination is made, the upper limit array filling step 430 for one orbit is completed and the logic
proceeds to step 435 as illustrated in FIG. 4.

The description set forth with reference to FIGS. 2-6 has described a method of generating
the appropriate initial value, lower limit, and upper limit arrays for the interleaver. In order to
deinterleave the interleaved system, a mirror image of the interleaving must be accomplished by the
deinterleaver. This process will be described with reference to FIGS. 7 and 8. Much like the
method described above with respect to the interleaver, values for the initial value, lower limit, and
upper limit arrays, A, L, and U, respectively, must be determined. However, in the case of the
deinterleaver, determining the appropriate values for the initial value, lower limit and upper limit
arrays must be preceded by the determination of the values for inverse delay related arrays BI and
CI. In terms of the deinterleaver, the inverse delay related arrays BI and CI represent the delay of
the interleaver. The values for the inverse delay related arrays BI and CI are used to determine the
values of the delay related arrays B and C. In this embodiment, there are two inverse delay related
arrays and two delay related arrays. In other embodiments, there may be any number of inverse
delay related arrays and delay related arrays. Here, in the context of the deinterleaver, delay
related arrays B and C represent the delay of the deinterieaver. The values in the B and C arrays
are set such that:

D[i] = B[i]*N + C[i]

-11-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
As previously discussed, D[i] is the value of the delay associated with element i, and N is the
designated number of symbols per interleaved block. The actual steps that are taken to generate
the inverse delay related arrays BI and CI as well as arrays B and C will be described in more
detail below with reference to FIG. 8.

After the inverse delay related arrays have been generated, the logic moves to step 270 of
FIG. 7 where the initial value, lower limit and upper limit arrays are filled in the manner
previously described with respect to FIGS. 4-6. Once the initial value, lower limit and upper limit
arrays have been generated, all of the numbers necessary to fully define a convolutional
deinterleaver addressing scheme suitable for use with the above described interleaving addressing
scheme are available. Like the interleaving based addressing scheme, the described deinterleaving
addressing scheme permits the use of nearly the minimal amount of memory.

Referring next to FIG. 8, the initialization of the delay related arrays for the deinterleaver
(step 260 from FIG. 7) will be described in more detail. The inverse delay related arrays for the
deinterleaver are referred to herein as the BI and CI arrays. Arrays BI and CI are eventually
related to the previously described delay related arrays B and C for the deinterleaver. Initially, in
step 260, the first elements of the BI and CI arrays, that is, BI[0] and CI[0], are initialized, as is a

counter i. BI[0] and the counter i are initialized to zero, whereas CI[0] is set to one.

After the initialization step, the logic proceeds to a loop (steps 706-712) which fills in the
BI and CI arrays. The loop is repeated until every element of the BI and CI arrays is filled.
Initially, in step 706, the counter i is reinitialized to zero. Then, the logic proceeds to step 708
where the determination is made as to whether the sum of the value of the CI array corresponding
to position i plus the interleaving depth d minus one is greater than or equal to the word length N.
That is, is does the following relationship hold:

CI[iJ+d-12=N

If the relationship holds, the logic proceeds to step 710 where the values for CI[i + 1] and BI[i +
1] are set. If the relationship does not hold, the logic proceeds to step 712 where the values for
CI[i + 1] and BI[i + 1] are set using formulas which differ from those used in step 710.
Specifically, in step 710, the values of CI[i + 1] and BI[i + 1] are set such that:

Clli+1}=CI[i]+d -1-N;and,
BI[i + 1] =BI[i] + 1
In step 712, however, the values of CI[i + 1] and BI[i + 1] are set such that:

Clli+1]=CI[i} +d - 1; and,

-12-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
BI[i + 1] = BIfi]

After the values of CI[i + 1] and BI[i + 1] are set, the logic returns to step 708 where the
counter i is incremented and steps 708-712 are repeated until the BI and CI arrays are full. In the
embodiment shown, this is accomplished by comparing the counter i to the word length N minus
one. As long as the counter i is less than the word length N minus one, arrays BI and CI have not
been completely filled. When counter i is exactly equal to N minus 1, the arrays have been filled,

and the logic proceeds to a loop which fills delay related arrays B and C (steps 714-740).

The loop in steps 714-740 is repeated until each element of the B and C arrays is filled.
Initially, in step 714, the counter i is reinitialized to zero. Then, the logic proceeds to step 715
where it is determined whether the following relationship holds:

N-1+i+CI[N-1-i]=2N

If the result of step 715 is affirmative, the logic proceeds to step 725 where a variable index j is
set. If the result of step 715 is negative, the logic proceeds to step 735 where 2 variable index j is
set using a different formula than the one used in step 725. Specifically, in step 725, the value of
the variable index j is set such that:

j=N-1-i+CI[N-1-i]-N
On the other hand, in step 735, the value of the variable index j is set such that:
j=N-1-i+CI[N-1-i]

After the variable index j is set either in step 725 or step 735, the logic proceeds to step 740, where
the elements corresponding to position j of arrays B and C are set. In step 740, B[j] is set to equal
BI[i], and C[j] is set to equal CI[j]. The logic then returns to step 714, where the counter i1s
incremented and steps 714-740 are repeated until all of the elements in arrays B and C are filled.
Until the counter i is greater than the word length N, arrays B and C have not been completely
filled. As soon as counter i is greater than word length N, thereby signaling that arrays B and C
have been filled, the logic proceeds to step 270 of FIG. 7, which, as previously described, sets the

-values of the initial value array A, the lower limit array L, and the upper limit array U. The

specific steps required to set the values for arrays A, L, and U for the deinterleaver are the same as
those required by the interleaver, and were described earlier with reference to FIGS. 4-6.

Referring next to FIG. 10, the process of transmitting data will be described in detail.
Transmission begins at step 902. The RAM address array ADR is initialized to equal the initial
value array A in step 904. A counter i is then set to zero as shown in step 906. The first symbol
S, is read in from the first block and variable S is set equal to S, in step 908. The value of the

current symbol is set to equal S; in step 910. Thereafter, in step 912, a determination is made as

-13-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
to whether the value held in position i of the RAM address array ADR is equal to the

corresponding value held in the lower limit array L. That is, is the following relationship true:
ADR[i] = L[i]

If the result of step 912 is affirmative, the logic proceeds to step 914 where the value held in
position i of the RAM address array ADR is set equal to the value held in position i of the upper
limit array U. Alternatively, if the result of step 912 is negative, the logic proceeds to step 916
where the value held in position i of the RAM address array is reset to equal the value held in
position i of the RAM address array minus one. That is:

ADR[i} = ADR[i] - 1

It should be appreciated that steps 914 and 916 both set values for the RAM address array
ADR. The value to which position i of the RAM address array ADR is set is dependent upon the
determination of whether address ADR{[i] is equal to L{i]. This determination is made in step 912.
After the value of address ADR[i] has been properly set in either step 914 or 916, the logic
proceeds to step 918 where the content of the RAM corresponding to the location specified by the
address ADR[i] is output. Then, the value held in variable S is written into position i of the RAM
address array ADR in step 920. Thereafter, in step 922, a determination is made as to whether the
counter i is equal to the designated number of symbols per interleaved block N minus one. That
is, is the following statement satisfied:

i=N-1

If the result of step 922 is affirmative, the logic proceeds to step 924 where the counter i is set
equal to zero. Alternatively, if the result of step 922 is negative, the logic proceeds to step 926
where the counter i is incremented by one. It should be appreciated that steps 924 and 926 both
set values for the counter i. The value to which counter i is set is dependent upon the
determination of whether counter i is equal to N - 1 in step 922. After the value of counter i has
been properly set in either step 924 or 926, the logic proceeds to step 928 where the next symbol
is received, and variable S is set equal to the next symbol. The logic then returns to step 912, and
steps 912-928 are repeated.

ILLUSTRATIVE EXAMPLE

The method for interleaving and deinterleaving data as described above will be applied to
an illustrative example. In the example, the interleaver input symbols are separated into words of
length N, where N is equal to thirteen. The interleaving depth d is five.

-14-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
With reference to FIG. 2, the first step in the interleaving process is to generate the delay
related arrays B and C, as described in step 220. The actual generation of delay related arrays B
and C is shown in FIG. 3. For N= 13 and d = 5, the values generated for delay related array B
are:

B=[000 111122233 3]

The values generated for delay related array C are:
C=[1 59 048123711 2 6 10]

The delay array D, which holds the overall delays for the symbols, may be calculated as follows:
DI[i} = B[i}*N + C[i]

DIi] represents the delay of symbol i, while B[i] and C[i] are the values held in position i of arrays
B and C, respectively. B[i] may be understood to represent the number of rows to pass over
before another occurrence of the value of the address corresponding to symbol i recurs. C[i] may
be understood to represent the number of columns to pass over before another occurrence of the
value of the address corresponding to symbol i occurs. Given the values in the delay related
arrays B and C as generated using the steps shown in FIG. 3, the delay array D is as follows:

D=[1 59 13 17 21 25 29 33 37 41 45 49]

D[i] represents the total number of address locations to pass over before another occurrence of the
value of the address corresponding to symbol i occurs.

FIG. 11 is a chart which represents the address generated by interleaving a data set with N
=13 and d = 5. The first row 940 of the chart represents the place holders for the symbols which
make a word length N which is thirteen symbols long. The second row 942 of the chart
represents the delay array D as generated from the delay related arrays B and C. The remaining
rows represent the address sequence 944 in the form of a two-dimensional address array. The
columns of the two-dimensional address array represent a sub-sequence, decimated by N, of the
address sequence 944. Using this terminology, the initial value array A described above is the
first address in the address sub-sequence, the lower limit array L represents the lower limits for the

sub-sequences, and the upper limit array U represents the upper limits for the sub-sequences.

The A, L, and U arrays are filled using the process previously described with respect to
FIG. 4. Step 410 initializes all variables necessary for the process of filling the A, L, and U
arrays. In this embodiment, the first address value is zero. Accordingly, the first element 946a in
the address array 944 is zero. The variable initial_index is initialized to zero. Step 412 is the
determination of whether variable initial_index is less than word length N. In this case, variable

-15-

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290
initial_index is zero, and word length N is thirteen, so the result of step 412 is affirmative.
Accordingly, the logic proceeds to step 415 in which variable index is set to the value of variable
initial_index, which is zero. Next, the logic proceeds to step 420, the step of filling in arrays A
and L, which was previously described in detail with respect to FIG. 5.

Referring to FIG. 5, several array elements are initialized in step 505. Most notably, the
element in position index of array A is initialized to the value of variable address, which was set to
zero in step 410 of FIG. 4. The logic proceeds to step 515, which is the determination of whether
the value of variable index + C[index] is greater than or equal to the value of N. In this case, the
value of index is zero and the element in position index of delay related array C has a value of one
as shown above. Therefore, the result of step 515 is negative, so the logic proceeds to step 530,
where the values of variables address and index are updated. Variable address is set to equal
Alindex] + B[index]. With variable index equal to zero, and A[0] and B[0] both equal to zero as
described above, the new value of variable address is zero. Variable index is set equal to index +
C[index]. With variable index equal to zero, and the value of C[0] equal to one, the updated value
of variable index is equal to one. The logic then proceeds to step 540, which is the determination
of whether the value of variable index is equal to the value of variable initial_index. In this case,
the values of variables index and initial_index are not equal, so the logic returns to step 505. With
variable index equal to one, the value of A[1] is set to the value of variable address, which has a
value of zero. L[1] is set to the value of variable lower_limit which has a value of zero. The logic
then proceeds through the loop of steps 505 through 540 until the value of variable index is equal
to the value of variable initial_index, at which point the logic proceeds to step 430 of FIG. 4, the
step in which the upper limit array U is filled.

Referring to FIG. 6, the process of filling the upper limit array U begins at step 610 where
the variable upper_limit is initialized to a value of one less than the value of variable address.
Currently, with the value of variable address equal to zero, the value of upper_limit is negative
one. The element of upper limit array U corresponding to position index is set equal to the value
of upper_limit in step 615. Step 620 us the determination of whether one subtracted from the sum
of C[index] plus interleaving depth d is greater than or equal to the word length N. In this case,
the result is negative, and the value of variable index is set equal to the sum of the value of variable
index added to C[index]. With the existing value of variable index equal to one and the value of
C[1] equal to five, the updated value of variable index is equal to six. The logic proceeds to step
650 where variable index is compared to variable initial_index. As the two are not equal, the logic
returns to step 615, and steps 615 through 650 are repeated until variable index is equal to variable
initial_index, in which case the logic proceeds to step 435 of FIG. 4, where variable initial_index
is incremented by one.

The logic proceeds from step 435 of FIG. 4 to step 450, in which the determination is
made as to whether the element located in the position identified by variable initial_index of array I

-16-

10

15

20

25

30

35

WO 97/37434 PCT/US97/04290

is equal to one. Recall that array I is set in the process of filling arrays A and L as shown in FIG.
5. The value of variable initial_index is continually incremented until the determination in step 450
is false, in which case the value of variable lower_limit is set to equal the value of variable
upper_limit incremented by one. The logic then proceeds back to step 412, and steps 412 through
460 are repeated until the determination in step 412, as previously discussed, is negative. If the

determination is negative, the interleaving is completed.

In this embodiment, as previously discussed, the first element 943a in the address array is
zero. The delay associated with the first element is the delay associated with column one, or
symbol zero, is D[0], which has a value of one. Accordingly, the next occurrence of address
value zero is one column away from the first occurrence. Hence, the first element in column two
is the second occurrence 943b of address value zero. The delay associated with column two, i.e.
D[1], is equal to five. This indicates that the next, in this case third, occurrence 943c of address
value zero is five columns from the current, in this case second, occurrence of address value zero.
The delay associated with column seven, i.e. D[6], is twenty-five, indicating that the next
occurrence of the address value of zero will be associated with symbol five. Recall that the B
array indicates the number of rows to skip and array C indicates the number of columns to skip
before placing an address value associated with a given delay. In other words, D[6] is twenty-
five, indicating that the number of rows to pass over B[6] is one, and the number of columns to
pass over C[6] is twelve. Hence, the fourth occurrence 943d of address value zero is found in the
third row of column six. The delay associated with column six, D[5], is twenty-one, and the
associated values for B[5] and C[5] are one and eight, respectively. Therefore, the fifth

occurrence 943e of address value zero is found in the fifth row of the first column of address array
944,

Since there are two occurrences of the address value of zero in column one, namely
occurrences 943a and 943e, it is said that an orbit, in this case a first orbit, has been completed.
The pattern of the address value of zero is repeated at infinitum. The spaces in the columns which
contain the address value of zero, i.e. columns 1, 2, 5, and 6, are filled with the next available
address values. In this case, there are three spaces between occurences of the address value of
zero, so the next three available numbers are one, two, and three. The numbers one, two, and
three are respectively referred to as 945a, 945b, and 945c, and are filled into the spaces in the
columns. In this embodiment, numbers 945a, 945b, and 945c are the next three sequential
numbers up from the number zero, and are filled into the spaces in the columns in descending
order. However, numbers 945a, 945b, and 945¢ may be any numbers which are as yet unused in
address array 944.

The next available address value is four, and the next available space in the first row 960 of
address array 944 is in column three. Hence, a first occurrence of address value four (947a) is

placed accordingly. The delay associated with this location is D[2], which has a value of nine.

-17-

10

15

20

25

30

WO 97/37434 PCT/US97/04290

Thus, the next, or second, occurrence of address value four (947b) is placed nine columns over
from column three. In turn, the next, or third, occurrence of address value four (947c) is placed
forty-five columns over from column twelve. Given that there are now two occurrences, 947a and
947¢, of address value four in a single column, the orbit associated with the address value of four
is complete. Spaces in the orbit, in this case the second orbit, are filled with the next available
address values. The remainder of address array 944 may be filled using the same method as
discussed with reference to the first and second orbits.

Address array 944 for the interleaver is filled, through following the method discussed
above, as shown in FIG. 11. The "dots" 962 indicate that the pattern of numbers in a column, or
sub-sequence, is repeated. The first row 960 of the address array 944 is the initial value array A.
The lowest values 948 in each sub-sequence correspond to the values stored in the lower limit
array L, and the highest values 949 in each column correspond to the values stored in the upper
limit array U. As such, the lower limit array L is as follows:

L=[0 0412 400 13 4 13 13 4 13]
The upper limit array U is:
U=[3 3 11 12 11 3 3 24 11 24 24 11 24]

Four distinct orbits may be identified from the address array 944. A first orbit may be
identified as consisting of symbols 0, 1, 5, and 6, with delays of 1, 5, 21, and 25. A second orbit
consists of symbols 2, 4 , 8, and 11, with delays of 9, 17, 33, and 45. A third orbit consists of
symbol 3 with a delay of 13. A fourth orbit consists of symbols 7, 9, 10, and 12 with delays of
29, 37, 41, and 49.

Four memory locations are used to implement the delay values associated with the first
orbit. That is, the sum of delays 1, 5, 21, and 25, divided by the word length N is equal to four.
Similarly, eight memory locations are used to implement delay values associated with the second
orbit, while only one memory location is necessary to implement the delay value for the third orbit,
and twelve memory locations are used to implement the delay values associated with the fourth
orbit. The total amount of memory required for the interleaver is twenty-five memory locations.

With reference to FIG. 7, the first step in the deinterleaving process is to generate the
inverse delay related arrays BI and CI, as described in step 260. The generation of delay related
arrays B and C from inverse delay related arrays Bl and CI was previously described with
reference to FIG. 8. For N = 13 and d = 5, the values generated for delay related array B are:

B=[2312013120130¢0]

The values generated for delay related array C are:

-18-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
C=[3 104115126071 829]

The delay array D, which holds the overall delays for the symbols, may be calculated as follows:
D[i] = B[i]*N + C[i]

D[i] represents the delay of symbol i, while B[i] and C[i] are the values held in position i of arrays
B and C, respectively. Given the values in the delay related arrays B and C as generated using the
steps shown in FIG. 3, the delay array D is as follows:

D=[29 49 17 37 5 25 45 13 33 | 21 41 9]

FIG. 12 is a chart which represents the address generated by deinterleaving a data set with
N =13 and d = 5. The first row 970 of the chart represents the place holders for the symbols
which make a word length N which is thirteen symbols long. The second row 972 of the chart
represents the delay array D as generated from the delay related arrays B and C. The remaining
rows represent the address array, or sequence, 974 in the form of a two-dimensional address
array. The columns of the two-dimensional address array represent sub-sequences of the address
sequence 974. The number of sub-sequences is equal to the number of symbols N. Using this
terminology, the initial value array A described above is the first address in the address sequence,
the lower limit array L represents the lower limits for the sub-sequences, and the upper limit array
U represents the upper limits for the sub-sequences.

The address array 974 for the deinterleaver, when filled using the method discussed above
with respect to FIGS. 4 through 8 and FIG. 11, is shown in FIG. 12. The "dots" 992 indicate
that the pattern of numbers in a column, or sub-sequence, is repeated. The first row 990 of the
address array 974 is the initial value array A. The lowest values 978 in each sub-sequence
correspond to the values stored in the lower limit array L, and the highest values 979 in each
column correspond to the values stored in the upper limit array U.

For the deinterleaver with N = 13 and d = 5, the lower limit array L is as follows:
L=[0 0 12 0 20 20 12 24 12 20 20 O 12]
The upper limit array U is:
U=[11 11 19 11 23 23 19 24 19 23 23 11 19]

Four distinct orbits may be identified from the address array 974. A first orbit may be
identified as consisting of symbols 0, 1, 3, and 11, with delays of 29, 49, 37, and 41,
respectively. A second orbit consists of symbols 2, 6, 8, and 12, with delays of 17, 45, 33, and
9, respectively. A third orbit consists of symbols 4, 5, 9, and 10 with delays of 5, 25, 1, and 21,
respectively. A fourth orbit consists of symbol 7 with a delay of 13.

-19-

10

15

20

WO 97/37434 PCT/US97/04290

Twelve memory locations are necesary to implement the delay values associated with the
first orbit. That is, the sum of delays 29, 49, 37, and 41, divided by the word length N is equal to
twelve. Similarly, eight memory locations are used to implement delay values associated with the
second orbit, four memory locations are necessary to implement the delay values for the third
orbit, and one memory location is used to implement the delay value associated with the fourth
orbit. The total amount of memory required for the deinterleaver is, therefore, twenty-five
memory locations, the same amount as required by the interleaver for N = 13 and d = 5. Hence,
the total number of memory elements, or RAM, necessary to implement the interleaver and the

deinterleaver may be expressed as (N- 1) * (d-1)/2 + 1.

Although only one embodiment of the present invention has been described, it should be
understood that the present invention may be embodied in many other specific forms without
departing from the spirit or scope of the invention. The interleaving scheme is independent of the
encoding and/or modulation schemes used in any particular communications system. One
particular application is in conjuction with multi-carrier transmission schemes such as discrete
multi-tone (DMT) modulation. Such a modulation scheme has been adoped as a standard for the
transmission of digital data over Asymmetric Digital Subscriber Lines (ADSL). The ADSL
standard is intended primarily for transmitting video data over ordinary telephone lines, although it
may be used in a variety of other applications as well. The discrete multi-tone transmission
scheme is being considered for a wide variety of other applications as well. However, as
described above, the convolutional interleaving technique described herein is applicable in
conjunction with any encoding and/or modulation scheme. Therefore, the present examples are to
be considered as illustrative and not restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope of the appended claims.

-20-

10

15

20

25

30

‘WO 97/37434 PCT/US97/04290

WHAT IS CLAIMED IS:

1. A method of convolutionally interleaving a stream of data, the convolutional interleaving
being accomplished at a designated interleaving depth (d) and a designated interleaving block
length (N), wherein a first symbol in a designated block has a predetermined delay associated
therewith and each subsequent symbol in the designated block has a delay equal to (d-1) more than
its predecessor symbol, the method comprising the steps of:

calculating a plurality of delay related arrays each including a number of elements equal to
the designated block length, wherein the delay related arrays cooperate with the designated block
length to define the delay associated with each symbol in a given block;

calculating an initial value array, a lower limit array and an upper limit array based upon the
delay related arrays, wherein each symbol in a designated block has an associated interleaving
orbit defined by corresponding values in the initial value, lower limit and upper limit arrays; and

generating a convolutional interleaving addressing scheme utilizing the initial value, lower
limit and upper limit arrays.

2. A method as recited in claim 1 wherein an address at which each symbol in a first block of
data is written into memory is defined in the initial value array.

3. A method as recited in claim 2 wherein an address at which each symbol in a subsequent
block of data is written into memory is defined by:

(a) determining whether an address for a corresponding element in an immediately
preceeding block is equal to the corresponding value in the lower limit array;

(b) setting the address of the element in the subsequent block of data to the
corresponding value in the upper limit array when it is determined that the address for the

corresponding element in the previous block is equal to the corresponding value of the lower limit
array;

(c) setting the address of the element in the subsequent block of data to a value that is
indexed from the address of the corresponding element in the previous block by a designated index
amount when it is determined that the address of the corresponding element in the previous block
is not equal to the corresponding value in the lower limit array; and

21-

10

15

20

25

WO 97/37434 PCT/US97/04290
(d) repeating steps (a) - (c) for additional subsequent blocks of data.

4. A method as recited in claim 3 wherein the designated index amount is a decrement by one.
5. A method as recited in claim 3 wherein the designated index amount is an increment by
one.

6. A method as recited in any one of the preceding claims wherein the predetermined delay

associated with the first symbol in the designated block is one.

7. A method as recited in any one of the preceding claims wherein the plurality of delay
related arrays includes a first delay related array and a second delay related array.

8. A method as recited in claim 7 wherein the first delay related array (B) and the second
delay related array (C) are calculated using the substeps of:

setting a first element B[0] in the first delay related array equal to zero;
setting a first element C[0] in the second delay related array equal to one; and,

iterating through the first and second delay related arrays to sequentially set values for the
remainder of the elements in the first and second delay related arrays, wherein when it is
determined that a value equivalent to C[i] +d - 1 2 N, then the values of the next elements in the
first and second delay related arrays are effectively set according to the formulas:

Cli+1]1=C[li}+d-1-N
B[i+1]=B[i] + 1

and wherein when it is determined that the value equivalent to C[i] +d - | < N, then the values of
the next elements in the first and second delay related arrays are effectively set according to the
formulas:

222

10

15

20

25

30

WO 97/37434 PCT/US97/04290
Cli+l]=Cli]+d- 1

B[i+1] = B[i].

9. A method as recited in any one of the preceding claims further comprising the steps of:

determining the elements in the upper limit, lower limit and initial value arrays
corresponding to a first one of elements in the block, wherein the difference between the values in
the upper limit and lower limit arrays corresponding to the first element in the block define a first

orbit;

determining whether any other elements in the block share the first orbit and setting the
upper limit, lower limit and initial value arrays corresponding to each additional element in the
block that is determined to share the first orbit, wherein each element in the block that is
determined to share the first orbit have identical values stored in a corresponding position in the

upper limit array and identical values stored in a corresponding position in the lower limit array.

10. A method as recited in claim 9 further comprising determining whether any additional
elements in the upper limit, lower limit and initial value arrays need to be filled in and when it is
determined that additional elements in the upper limit, lower limit and initial value arrays need to be
filled in, the method further comprises the steps of:

(a) determining the elements in the upper limit, lower limit and initial value arrays
corresponding to a selected unprocessed one of the elements in the block, wherein the difference
between the values in the upper limit and lower limit arrays corresponding to the selected
unprocessed element in the block defines an additional orbit;

(b) determining whether any other elements in the block share the additional orbit and
setting the upper limit, lower limit and initial value arrays corresponding to each additional element
in the block that is determined to share the additional orbit, wherein each element in the block that
1s determined to share the additional orbit has identical values stored in the corresponding position

in the upper limit array and identical values stored in the corresponding position in the lower limit
array; and,

repeating steps (a) and (b) until all of the elements in the block are processed.

223

10

15

20

25

30

WO 97/37434 PCT/US97/04290
11. A method of convolutionally deinterleaving a stream of data, the convolutional
deinterleaving being accomplished at a designated interleaving depth (d) and a designated
interleaving block length (N), wherein a first symbol in a designated block has a predetermined
delay associated therewith and each subsequent symbol in the designated block has a delay equal
to (d-1) more than its predecessor symbol, the method comprising the steps of:

calculating a plurality of delay related arrays each including a number of elements equal to
the designated block length, wherein the delay related arrays cooperate with the designated block
length to define the delay associated with each symbol in a given block;

calculating an initial value array, a lower limit array and an upper limit array based upon the
delay related arrays, wherein each symbol in a designated block has an associated interleaving
orbit defined by corresponding values in the initial value, lower limit and upper limit arrays; and

generating a convolutional deinterleaving addressing scheme utilizing the initial value,
lower limit and upper limit arrays.

12. A method as recited in claim 11 wherein an address at which each symbol in a first block
of data is written into memory is defined in the initial value array.

13. A method as recited in claim 12 wherein the address at which each symbol in a subsequent
block of data is written into memory is defined by:

(a) determining whether an address for a corresponding element in an immediately
preceeding block is equal to the corresponding value in the lower limit array;

(b) setting the address of the element in the subsequent block of data to the
corresponding value in the upper limit array when it is determined that the address for the
corresponding element in the previous block is equal to the corresponding value of the lower limit
array,

(c) setting the address of the element in the subsequent block of data to a value that is
indexed from the address of the corresponding element in the previous block by a designated index
amount when it is determined that the address of the corresponding element in the previous block
is not equal to the corresponding value in the lower limit array; and

(d) repeating steps (a) - (¢) for additional subsequent blocks of data.

_24-

10

15

20

25

WO 97/37434 PCT/US97/04290

14. A method as recited in claim 13 wherein the designated index amount is a decrement by

one.

15. A method as recited in claim 13 wherein the designated index amount is an increment by

one.

16. A method as recited in any one of claims 11-15 wherein the predetermined delay associated
with the first symbol in the designated block is one.

17. A method as recited in any one of claims 11-16 wherein the plurality of delay related arrays
includes a first delay related array and a second delay related array.

18. A method as recited in claim 17 wherein the first delay related array (B) and the second
delay related array (C) are calculated using the substeps of:

setting a first element BI[0] in a first inverse delay related array equal to zero;
setting a first element CI[0] in a second inverse delay related array equal to one;

iterating through the first and second inverse delay related arrays to sequentially set values
for remaining elements in the first and second inverse delay related arrays, wherein when it is
determined that a value equivalent to CI[i] + d - 1 > N, then the values of the next elements in the

first and second inverse delay related arrays are effectively set according to the formulas:
Clli +1]=CI[i]+d-1-N
BI[i+1] = BI[i] + 1

and wherein when it is determined that the value equivalent to CI[i] + d - 1 <N, then the values of
the next elements in the first and second inverse delay related arrays are effectively set according to
the formulas:

Clli +1}=CI[i] +d - 1

BI[i+1] = BI[i]; and,

225-

10

15

20

25

30

WO 97/37434 PCT/US97/04290
iterating through the first and second delay related arrays to sequentially set values for each
element in the first delay related array and each element in the second delay related array, wherein
when it is determined that a value equivalentto N - 1 + i+ CI[N - 1 - i] 2 N, then the values of the

elements in the first and second delay related arrays are effectively set according to the formulas:
CIN-1-i+CI[N-1-i] - N]=CI[i]
B[N-1-i+CI[N-1-1i]-N]=BI[i]

and wherein when it is determined that the value equivalenttoN- 1 + i + CI[N - 1 - i] < N, then

the values of the next elements in the first and second delay related arrays are effectively set
according to the formulas:

CIN-1-i+CI[N-1-i]]=CI[i]

B[N-1-1+4CI{N-1-i]] =BI[i].

19. A method as recited in any one of claims 11-18 further comprising the steps of:

determining the elements in the upper limit, lower limit and initial value arrays
corresponding to a first one of elements in the block, wherein the difference between the values in

the upper limit and Jower limit arrays corresponding to the first element in the block define a first
orbit;

determining whether any other elements in the block share the first orbit and setting the
upper limit, lower limit and initial value arrays corresponding to each additional element in the
block that is determined to share the first orbit, wherein each element in the block that is
determined to share the first orbit have identical values stored in a corresponding position in the

upper limit array and identical values stored in a corresponding position in the lower limit array.

20. A method as recited in claim 19 further comprising determining whether any additional
elements in the upper limit, lower limit and initial value arrays need to be filled in and when it is
determined that additional elements in the upper limit, lower limit and initial value arrays need to be
filled in, the method further comprises the steps of:

(a) determining the elements in the upper limit, lower limit and initial value arrays
corresponding to a selected unprocessed one of the elements in the block, wherein the difference
between the values in the upper limit and lower limit arrays corresponding to the selected
unprocessed element in the block define an additional orbit;

-26-

10

15

20

25

WO 97/37434 PCT/US97/04290
(b) determining whether any other elements in the block share the additional orbit and
setting the upper limit, lower limit and initial value arrays corresponding to each additional element
in the block that is determined to share the additional orbit, wherein each element in the block that
is determined to share the additional orbit has identical values stored in the corresponding position
in the upper limit array and identical values stored in the corresponding position in the lower limit

array; and,

repeating steps (a) and (b) until all of the elements in the block are processed.

21. A convolutional interleaver arranged to convolutionally interleave an incoming stream of
data and output an interleaved stream of bits, the stream of bits being conceptually partitioned into
blocks, the interleaver comprising:

memory arranged to temporarily store received data bits during an interleaving process;

an address generator arranged to generate a sequence of addresses used to write the
incoming stream of data into the memory and to read the interleaved stream of bits from the
memory using an upper limit array, a lower limit array and an initial value array, wherein the
addresses are generated using the steps of setting the addresses for a first received block of data

equal to addresses identified in the initial value array and for each element in each subsequent
block of data,

(a) determining whether an address for a corresponding element in an immediately
preceeding block is equal to a corresponding value in the lower limit array;

(b) setting the address of the element in the subsequent block of data to the
corresponding value in the upper limit array when it is determined that the address for the

corresponding element in the previous block is equal to the corresponding value of the lower limit
array;

© setting the address of the element in the subsequent block of data to a value that is
indexed from the address of the corresponding element in the previous block by a designated index
amount when it is determined that the address of the corresponding element in the previous block

is not equal to the corresponding value in the lower limit array; and

) repeating steps (a) - (c) for additional subsequent blocks of data.

-27-

PCT/US97/04290

WO 97/37434

<+«———— Y430003d

L
\% \Nm
|||||| Sl i A
_ ! _
_ | “
L —| HIAVITHIINIZA |—{ HOLYINAOWIA A—IE%MMM_ MMMDm «{ HoLvinaow «— H3AVITHALNI |e H3IAQOON3 j
l
_ WLva
/ / |
%\ 29 og” | %\ | %\ %\ %\ |
|

1/12

WO 97/37434

210-\\\'

PCT/US97/04290

215
START

220
INITIALIZE ARRAYS v
B AND C
(FIG. 3)
A 4
230
vl
FILL ARRAYS A, L, AND U
(FIG. 4)
: 240
DONE

FIG. 2

2/12

WO 97/37434 PCT/US97/04290

215 0F FIG. 2

Y

B[0] = O;

Cl0] =1,
i=0; 310

t=is -
1=+ .
i<N-17?

\315

Y N

\320

A \ 4

v

Cli+1]=C[]+d-1-N; Cli+1]=Clij+d-1;

B[i+ 1] =B[i} + 1; \330 B[i+ 1] = B \340

FIG. 3

3/12

WO 97/37434

i[il=0;
initial_index = 0O;
address = 0;
lower_limit = O;

index = initial_index
N ™15
A 4
Fill arrays A, L
(FIG. 5) 420
v
Fill array U
RN
(FIG. 6) 430
v
| initial_index =
|n|t|al_|rdex+1 N\ 435
Y s
l[initial_index}
=12
450
lower_limit =
fimit + 1
upper_limit + \\\460

4/12

PCT/US97/04290

FIG. 4

WO 97/37434 PCT/US97/04290

420 \
h
Alindex] = address;
{[index] = 1;
L[index] =
Iowetﬁnm;\\305
v A
address = Afindex] + address = Afindex] +
Blindex]; Blindex]);
index = index + Clindex] \520 index = index + Clindex]; \530
- N'
|

430 OF FIG. 4

FIG. 5

5/12

WO 97/37434 PCT/US97/04290

430

N

420 OF FIG. 4

v
upper_limit =
address - 1 \610

A

Ulindex] =
upper_limit
I 615

IS
Clindex] +d - 1
N?

v A

index = index + . . .
Clindex] - N \ index = index + Cfindex) \540

1

FIG. 6

6/12

WO 97/37434

.’2’50—\\\‘¥

START

INITIALIZE ARRAYS
Bl AND Cl. COMPUTE
ARRAYS B AND C.

(FIG. 8)

FILL ARRAYS A, L, AND U
(FIG. 4)

Y

280

FIG. 7

7/12

260

270

PCT/US97/04290

PCT/US97/04290

WO 97/37434
v
BI[0] = O;
GO =1 705
i=0;
v
- i=i+1 IS N
R i<N-1?
v 706
Y N
708
v A
Clli+1}=Clli]+d-1-N; Cli+1]=Clfij+d-1;
BIfi + 1] =BIfi] + 1; ™N\~10 BIfi + 1] = BIi}; ™~/
v
e Camorre)
v Ny
]= N4 4
N-1-i+C![N-1-i]-N\725 j=N-1-i+CIN-1-i] \735
B[j] = BI[i]; <
Clj] = Cifi}
740 FIG. 8

8/12

WO 97/37434

PCT/US97/04290

ADDRESS

9/12

Neo
DATA g DATA
IN
oAM ouT
N
FIG. 9

WO 97/37434

PCT/US97/04290

TRANSMISSION./ ™\
902

INITIALIZE ADR[] ARRAY
TO EQUAL A[] ARRAY

904

h 4

SETi=0

906

A 4
RECEIVE FIRST SYMBOL
IN A FIRST BLOCK So.
SET S=So

908

N

SET CURRENT
SYMBOL = So

910

FIG. 10

A

A

ADRIi] = U[i)

A 4

ADRIi] = ADRi] - 1

N

OUTPUT RAM CONTENT
FROM LOCATION ADR(j]

916

¥

918

WRITE S INTO ADRi]

920

922
~

924

RECEIVE NEXT SYMBOL.
SET S = NEXT SYMBOL

928

10/12

PCT/US97/04290

WO 97/37434

Pre_ _
_ - |
_ 1676 _ﬂ N
_ T u8re ueps “ »
| gl | . Nolee T ! o
i L H
_ ¢ | 16 L 0876 pge Y
61 9l €2 1 1656 Al
bre— | 0z LL i¥C: s Jev6 s6re| oLv6 L oppe
Br6—1__1z - 8L &k 9t R RCCH P66 P d
pr6—_| 28 ivi 6 wi | 6 |/
| €2 & 0z &I /9 8l
w o rdeeoes]
Ma/l.wm.. 9 12 9 [Lii el
0——gL L 22 L+ ipi 02
v, 8 €2 8 § 12
66—
vgpe, G+ BN¥Ci 6L 9 28
66— OF OTEL 02 L €2 g
||||||||||| SS3dHAav

TOAINAS

11/12

PCT/US97/04290

WO 97/37434

we - - T T T T
> peL6 oy e
_ . , | L
| . P66 3 _1_\
| 186 . 98,6 o
_ 8 . 1626 . . \mkm 1826 ¢ g o/_fl 88/6
6 Y6L6 bes6 £ 9 oo
| usze| v L ¢ |
' s | 8 €
Lt el 9 ek 6 ¥ || o8s6
8l vi L S
SL1 gt 8 q6.6
ot 6 9.6
966
Oc/ 2 0] 26,6
1z (82 —
SS3HAav
96,6
1
/_rxm.;luun--||||||||:|n||u..n..nuu:-»..:unn-uule.na_ AV13d
7R
N L 6 8 L 9 S v € é 3 0 | TJOANWAS

12/12

INTERNATIONAL SEARCH REPORT

Inter. mal Applicaton No

PCT/US 97/04290

A. CLASSIFICATION

OF SU
IPC 6 HO3M13/12

BIECT MATTER

HO3M13/22

According to Internatonal Patent Classification (IPC) or to both national clasuificaion and IPC

B. FIELDS SEARCHED

IPC 6 HO3M

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electromc data base consulted during the international search (name of data base and, where practcal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

January 1997
56; figures

November 1995

figures

figures

see column 5, line 14 - column 16, line

see page 4, line 8 - page 7, line 20;

P,X US 5 592 492 A (BEN-EFRAIM ET AL.) 7 1,11,21

P,X US 5 519 734 A (BEN-EFRAIM) 21 May 1996 11
see column 3, line 33 - column 7, line 32;
figures

A EP © 681 373 A (GEC OF DELAWARE) 8 1-21

A WO 95 18489 A (ZENITH) 6 July 1995 1-21
see page 4, line 4 - page 21, line 31;

.../_..

Further documents are listed in the continuation of box C.

Patent famnily members are listed in annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

"L°* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citaton or other special reason (as specified)

"0° document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the intemnational filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
inventon

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y" document of parucular rel 3 the claimed invent
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combinaton being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international scarch

11 July 1997

Date of mailing of the international search report

210797

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Geoghegan, C

Form PCT/ISA/210 {second sheet) (July 1992}

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter. .nal Application No

PCT/US 97/04290

C.(Conunuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

EP 0 696 108 A (TOSHIBA) 7 February 1996
see page 9, line 3 - page 13, line 20;
figures

US 5 263 051 A (EYUBOGLU) 16 November 1993
see column 3, line 22 - column 11, line
18; figures

US 5 159 608 A (FALCONER ET AL.) 27
October 1992

see column 15, line 36 - column 26, line
28; figures

US 4 677 626 A (BETTS ET AL.) 30 June 1987
see column 2, line 22 - colum 4, line 45;
figures

1,11,21

1,11,21

1,11,21

1,11,21

Form PCT/ISA/210 (continuation of second sheat) {July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Informaton on patent family members

Inte. onal Applicaton No

PCT/US 97/04290

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5592492 A 07-01-97 NONE
US 5519734 A 21-05-96 NONE
EP 681373 A 08-11-95 US 5537420 A 16-67-96

AU 1784995 A 09-11-95
CA 2148199 A 05-11-95
JP 8065177 A 08-03-96
NO 951715 A 06-11-95
WO 9518489 A 06-07-95 US 5572532 A 05-11-96
CN 1141101 A 22-01-97
EP 0737385 A 16-10-96
EP 696108 A 07-02-96 JP 8032632 A 02-02-96
JP 8265175 A 11-10-96
CA 2153956 A 16-01-96
US 5263051 A 16-11-93 NONE
US 5159608 A 27-10-92 CA 2074595 A,C 01-03-93
IL 102766 A 19-01-96
JP 5219015 A 27-08-93
JP 8031839 B 27-03-96
KR 9608988 B 16-67-96
US 5204874 A 20-04-93
US 4677626 A 30-06-87 NONE

Farm PCT/ISA/210 (patent family annex} (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

