PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/16744
1R 31128 1700 Al

GO » GOOF 1 (43) International Publication Date: 9 May 1997 (09.05.97)

(21) International Application Number: PCT/US96/17603 | (81) Designated States: European patent (AT, BE, CH, DE, DK,

(22) International Filing Date: 4 November 1996 (04.11.96)

(30) Priority Data:

08/552,316 us

2 November 1995 (02.11.95)

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 2550
Garcia Avenue, Mountain View, CA 94043 (US).

(72) Inventor: MATENA, Vladimir; 1322 Kentfield Avenue, Red-
wood City, CA 94061 (US).

(74) Agents: HYMAN, Eric, S. et al.; Blakely, Sokoloff, Taylor &
Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025-1026 (US).

ES, FI, FR, GB, GR, [E, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: METHOD AND APPARATUS FOR RELIABLE DISK FENCING IN A MULTICOMPUTER SYSTEM

10 Node 1 < Node2
[Processor | |{Memory | [Processor | [Memory |
T [
T Disks
{ o

IDiak Controllerl
1

4
50 I

\eo

> Node 3

e

{_Processor | |Memory |

40

(57) Abstract

An apparatus for fast/reliable fencing of resources such as share disks (50) on a networked system (10). For each new configuration
of nodes/resources, a membership program module generates a list and based upon that, a new epoch number uniquely identifying the
membership correlated with the time that it exists. A control key based upon the epoch number is generated and stored at each resource
controller and node (20, 30, 40). If a node is identified as failed, it is removed from the membership list and a new epoch number/control
key are generated. When a node sends an access request to a resource (50), the controller compares its locally stored key with the key stored
at the node. The access request is executed only if the keys match. The membership list is revisited based upon a node’s determination of
the failure of a resource and is carried out independently of the failed resource.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.
AM Armenia

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

Cl Cdte d'Ivoire
CM Cameroon

CN China

CS Czechoslovakia
cz Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

F1 Finland

FR France

GA Gabon

GB
GE
GN
GR

IE
IT

KE
KG

KR

LI

LK
LR
LT
LU

MC
MD

ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG
S1
SK
SN

TG
T

UA
UG
us
uz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 97/16744 PCT/US96/17603

cor Religble Disk Fenci
{0 8 Muli S

The present invention relates to a system for reliable disk fencing of shared disks in a mul-
ticomputer system, ¢.8. & cluster, wherein multiple computers (nodes) have concurrent access to
the shared disks. In particular, the system is directed to & high availability system with shared

access disks.

Background of the Invention

In clustered computer systems, a given node may “fail”, i.e. be unavailable according to
some predefined criteria which are followed by the other nodes. Typically, for instance, the given
node may have failed to respond to a request in less than some predetermined amount of time.
Thus, a node that is executing unusually slowly may be considered to have failed, and the other
nodes will respond accordingly.

When a node (or more than one node) fails, the remaining nodes must perform a system
reconfiguration to remove the failed node(s) from the system, and the remaining nodes preferably
then provide the services that the failed node(s) had been providing.

It is important to isolate the failed node from any shared disks as quickly as possible. Oth-
erwise, if the failed (or slowly executing) node is not isolated by the time system reconfiguration
is complete, then it could, e.g., contim.;c to make read and write requests to the shared disks,
thereby corrupting data on the shared disks.

Disk fencing protocols have been developed to address this type of problem. For instance,
in the VAXcluster system, a “deadman brake” mechanism” is used. See Davis, R.J., YAXc]uster
Principles (Digital Press 1993), incorporated herein by reference. In the VAXcluster system, a
failed node is isolated from the new configuration, and the nodes in the new configuration are
required to wait a certain predetermined timeout period before they are allowed to access the
disks. The deadman brake mechanism on the isolated node guarantees that the isolated node
becomes “idle” by the end of the timeout period.

The deadman brake mechanism on the isolated node in the VAXcluster system involves

both hardware and software. The software on the isolated node is required to periodically tell the

-1-

10

15

20

25

30

WO 97/16744 PCT/US96/17603

cluster interconnect adaptor (CI), which is coupled between the shared disks and the cluster inter-
connect, that the node is “sane”. The software can detect in a bounded time that the node is not a
part of the new configuration. If this condition is detected, the software will block any disk I/O,
thus setting up a software “fence” preventing any access of the shared disks by the failed node. A
disadvantage presented by the software fence is that the software must be reliable; failure of (or a
bug in) the “fence” software results in failure to block access of the shared disks by the ostensibly
isolated node.

If the software executes too slowly and thus does not set up the software fence in a timely
fashion, the CI hardware shuts off the node from the interconnect, thereby setting up a hardware
fence, i.e. a hardware obstacle disallowing the failed node from accessing the shared disks. This
hardware fence is implemented through a sanity timer on the CI host adaptor. The software must
periodically tell the CI hardware that the software is “sane”. A failure to do so within a certain
time-out period will trigger the sanity timer in CI. This is the “deadman brake” mechanism.

Other disadvantages of this node isolation system are that:

*it requires an interconnect adaptor utilizing an internal timer to implement the hard-

ware fence.

+the solution does not work if the interconnect between the nodes and disks includes
switches or any other buffering devices. A disk request from an isolated node
could otherwise be delayed by such a switch or buffer, and sent to the disk after
the new configuration is already accessing the disks. Such a delayed request

would corrupt files or databases.

depending on the various time-out values, the time that the members of the new con-
figuration have to wait before they can access the disk may be too long, resulting
in decreased performance of the entire system and contrary to high-availability
principles.

From an architectural level perspective, a serious disadvantage of the foregoing node iso-
lation methodology is that it does not have end-to-end properties; the fence is set up on the node
rather than on the disk controlier.

It would be advantageous to have a system that presented high availability while rapidly
setting up isolation of failed disks at the disk controller.

10

15

20

25

30

WO 97/16744 PCT/US96/17603

Other UNIX-based clustered systems use SCSI (small computer systems interface) “disk
reservation” to prevent undesired subsets of clustered nodes from accessing shared disks. See,
e.g., the ANSI SCSI-2 Proposed Standard for information systems (March 9, 1990, distributed by
Global Engineering Documents), which is incorporated herein by reference. Disk reservation has
a number of disadvantages; for instance, the disk reservation protocol is applicable only to sys-
tems having two nodes, since only one node can reserve a disk at a time (i.e. no other nodes can
access that disk at the same time). Another is that in a SCSI system, the SCSI bus reset operation
removes any disk reservations, and it is possible for the software disk drivers to issue a SCSI bus
reset at any time. Therefore, SCSI disk reservation is not & reliable disk fencing technique.

Another node isolation methodology involves a “poison pill”; when a node is removed
from the system during reconfiguration, one of the remaining nodes sends a “poison pill”, i.e. a
request to shut down, to the failed node. If the failed node is in an active state (e.g. executing
slowly), it takes the pill and becomes idle within some predetermined time.

The poison pill is processed cither by the host adaptor card of the failed node, or by an
interrupt handler on the failed node. If it is processed by the host adaptor card, the disadvantage is
presented that the system requires a specially designed host adaptor card to implement the meth-
odology. If it is processed by an interrupt handler on the failed node, there is the disadvantage that
the node isolation is not reliable; for instance, as with the VAXcluster discussed above, the soft-
ware at the node may itself by unreliable, time-out delays are presented, and again the isolation is
at the node rather than at the shared disks.

A system is therefore needed that prevents shared disk access at the disk sites, using a
mechanism that both rapidly and reliably blocks an isolated node from accessing the shared disks,

and does not rely upon the isolated node itself to support the disk access prevention.

Summary of the Invention

The present invention utilizes a method and apparatus for quickly and reliably isolating
failed resources, including I/O devices such as shared disks, and is applicable to a virtually any
shared resource on a computer system or network. The system of the invention maintains & mem-
bership list of all the active shared resources, and with each new configuration, such as when a
resource is added or fails (and thus should be functionally removed), the systemn generates a new

epoch number or other value that uniquely identifies that configuration at that time. Thus, identi-

.3

10

15

20

25

30

WO 97/16744 PCT/US96/17603

cal memberships occurring at different times will have different epoch numbers, particularly if a
different membership set has occurred in between.

Each time a new epoch number is generated, a control key value is derived from it and is
sent to the nodes in the system, each of which stares the control key locally as its own node key.
The controllers for the resources (such as disk controllers) also store the control key locally.
Thereafter, whenever a shared resource access request is sent to a resource controller, the node
key is sent with it. The controller then checks whether the node key matches the controller’s
stored version of the control key, and allows the resource access request only if the two keys
match.

When a resource fails, ¢.g. does not respond to a request within some predetermined
period of time (indicating a possible hardware or software defect), the membership of the system
is determined a new, eliminating the failed resource. A new epoch number is generated, and
therefrom a new control key is generated and is transmitted to the all the resource controllers and
nodes on the system. If an access request arrives at a resource controller after the new control key
is generated, the access request will bear a node key that is different from the current control key,
and thus the request will not be executed. This, coupled with preventing nodes from issuing
access requests to resources that are not in the current membership set, ensures that failed
resources are quickly eliminated from access, by requiring that all node requests, in order to be
processed, have current control key (and hence membership) information.

The nodes each store program modules to carry out the functions of the invention -- cg.a
disk (or resource) manager module, a distributed lock manager module, and a membership mod-
ule. The distribution of these modules allows any node to identify a resource as failed and to
communicate that to the other nodes, and to generate new membership lists, epoch numbers and
control keys.

The foregoing system therefore does not rely upon the functioning of a failed resource’s

hardware or software, and provides fast end-to-end (i.e. at the resource) resource fencing.

Brief Description of the Draw

Figure 1 is a top-level block diagram showing several nodes provided with access to a set
of shared discs.

Figure 2 is a more detailed block diagram of a system similar to that of Figure 1, but show-

10

15

20

25

30

WO 97/16744 PCT/US96/17603

ing elements of the system of the invention that interact to achieve disk fencing.

Figure 3 is a diagram illustrating elements of the structure of each node of Figure 2 or Fig-
ure 3 before and after reconfiguration upon the unavailability of node D.

Figure 4 is a block diagram of a system of the invention wherein the nodes access more
than one set of shared disks.

Figure 5 is a flow chart illustrating the method of the invention.

Descrintion of the Preferred Embodi

The system of the invention is applicable generally to clustered systems, such as system
10 shown in Figure 1, including multiple nodes 20-40 (Nodes 1-3 in this example) and one or
more sets of shared disks 50. Each of nodes 20-40 may be a conventional processor-based system
having one or more processors and including memory, mass storage, and user I/O devices (such as
monitors, keyboards, mouse, etc.), and other conventional computer system elements (not all
shown in Figure 1), and configured for operation in a clustered environment.

Disks 50 will be accessed and controlled via a disk controller 60, which may include con-
ventional disk controller hardware and software, and includes a processor and memory (not sepa-
rately shown) for carrying out disk control functions, in addition to the features described below.

The system of the invention may in general be implemented by software modules stored in
the memories of the nodes 20-40 and of the disk controller. The software modules may be con-
structed by conventional software engineering, given the following teaching of suitable elements
for implementing the disk fencing system of the invention. Thus, in general in the course of the
following description, each described function may be implemented by a separate program mod-
ule stored at a node and/or at a resource (e.g. disk) controller as appropriate, or several such func-
tions may be implemented effectively by a single multipurpose module.

Figure 2 illustrates in greater detail a clustered system 70 implementing the invention.
The system 70 includes four nodes 80-110 (Nodes A-D) and at least one shared disk system 120.
The nodes 80-110 may be any conventional cluster nodes (such as workstations, personal comput-
ers or other processor-based systems like nodes 20-40 or any other appropriate cluster nodes), and
the disk system may be any appropriate shared disk assembly, including a disk system 50 as dis-
cussed in connection with Figure 1.

Each node 80-110 includes at least the following software modules: disk manager (DM),

-5

10

15

20

25

30

WO 97/16744 PCT/US96/17603

an optional distributed lock manager (DLM), and membership monitor (MM). These modules
may be for the most part conventional as in the art of clustered computing, with modifications as
desired to implement the features of the present invention. The four MM modules MMA-MMD
are connected in communication with one another as illustrated in Figure 2, and each of the disk
manager modules DMA-DMD is coupled to the disk controller (not separately shown) of the disk
system 120.

Nodes in a conventional clustered system participate in a “membership protocol”, such as
that described in the YAXcluster Pnnciples cited above. The membership protocol is used to
establish an agreement on the set of nodes that form a new configuration when a given node is
dropped due to a perceived failure. Use of the membership protocol results in an output including
(a) a subset of nodes that are considered to be the current members of the system, and (b) an
“epoch number” (EN) reflecting the current status of the system. Alternatives to the EN include
any time or status value uniquely reflecting the status of the system for a given time. Such a mem-
bership protocol may be used in the present system.

According to membership protocol, whenever the membership set changes a new unique
epoch number is generated and is associated with the new membership set. For example, if a sys-
tem begins with a membership of four nodes A-D (as in Figure 2), and an epoch number 100 has
been assigned to the current configuration, this may be represented as <A, B, C, D; #100> or
<MEM-=A, B, C, D; EN=100>, where MEM stands for “membership”. This is the configuration
represented in Figure 3(a), where all four nodes are active, participating nodes in the cluster.

If node D crashes or is detected as malfunctioning, the new membership becomes
<MEM=A, B, C; EN=101>; that is, node D is eliminated from the membership list and the epoch
number is incremented to 101, indicating that the epoch wherein D was most recently a member is
over. While all the nodes that participate in the new membership store the new membership list
and new epoch number, failed node D (and another other failed node) maintains the old member-
ship list and the old epoch number. This is as illustrated in Figure 3(b), wherein the memories of
nodes A-C all store <XMEM=A, B, C; EN=101>, while failed and isolated node D stores
<MEM=A, B, C, D; EN=100>.

The present invention takes utilizes this fact -- i.c. that the current information is stored by
active nodes while outdated information is stored by the isolated node(s) -- to achieve disk fenc-
ing. This is done by utilizing the value of a “control key” (CK) variable stored by the nodes and

10

15

20

25

30

WO 97/16744 PCT/US96/17603

the shared disk system’s controller (e.g. in volatile memory of the disk controller).

Figure 4 is a block diagram of a four-node clustered system 400 including nodes 410-440
and two shared disk systems 450-460 including disks 452-456 (system 450) and 462-466 (system
460). Disk systems 450 and 460 are controlled, respectively, by disk controllers 470 and 480 cou-
pled between the respective disk controllers and a cluster interconnect 490.

The nodes 410-440 may be processor-based systems as described above, and the disk con-
trollers are also as described above, and thus the nodes, shared disk systems (with controllers) and
cluster interconnect may be conventional in the art, with the addition of the features described
herein.

Each node stores both a “node key” (NK) variable and the membership information. The
NK value is calculated from the current membership by one of several alternative functions,
described below as Methods 1-3. Figure 4 shows the generalized situation, taking into account
the possibility that any of the nodes may have a different CK number than the rest, if that node has
failed and been excluded from the membership set.

As a rule, however, when all nodes are active, their respective stored values of NK and the
value of CK stored at the disk controllers will all be equal.

de/Disk Controller Operations Usi n ntrol alu

Each read and write request by a node for accessing a disk controller includes the NK
value; that is, whenever a node requests read or write access to a shared disk, the NK value is
passed as part of the request. This inclusion of the NK value in read and write requests thus con-
stitutes part of the protocol between the nodes and the controller(s).

The protocol between the nodes and disk controller also includes two operations to manip-
ulate the CK value on the controller: GetKey to read the current CK value, and SetKey to set the
value of CK to a new value. GetKey does not need to provide an NK value, a CK value, or an EN
value, while the SetKey protocol uses the NK value as an input and additionally provides a new
CK value “new.CK” to be adopted by the controllier.

The four foregoing requests and their input/output arguments may be represented and
summarized as follows:

Read(NK, ...)
Write(NK, ...)

-7

10

15

20

25

30

WO 97/16744 PCT/US96/17603

GetKey(...)
SetKey(NK, new.CK)

The GetKey(...) operation returns the current value of CK. This operation is never rejected
by the controller.

The SetKey(NK, new.CK) operation first checks if the NK field in the request matches the
current CK value in the controller. In the case of a match, the CK value in the controller is set
equal to the value in the “new.CK” field (in the SetKey request). If NK from the requesting node
doesn’t match the current CK value stored at the controller, the operation is rejected and the
requesting node is sent an error indication.

The Read(NK, ...) and Write(NK, ...) operations are allowed to access the disk only if the
NK field in the packet matches the current value of CK. Otherwise, the operation is rejected by
the controller and the requesting node is sent an error indication.

When a controller is started, the CK value is preferably initialized to 0.

ure ilu

When the membership changes because one or more failed nodes are being removed from
the system, the remaining nodes calculate a new value of CK from the new membership informa-
tion (in a manner to be described below). One of the nodes communicates the new CK value to
the disk controller using the SetKey(NK, new.CK) operation. After the new CK value is set, all
member (active) nodes of the new configuration set their NK value to this new CK value.

If a node is not a part of the new configuration (e.g. a failed node), it is not allowed to
change its NK. If such a node attempts to read or write to a disk, the controller finds a mismatch
between the new CK value and the old NK value.

When a node is started, its NK is initialized to a O value.

rocedures for Calculating Valu h
The control key CK may be set in a number of different ways. The selected calculation
will be reflected in a software or firmware module stored and/or mounted at least at the controller.
In general, the calculation of the CK value should take into account the membership information:
CK = func(MEM, EN)

where: MEM includes information about the active membership list;

10

15

20

25

30

WO 9:7/ 16744 PCT/US96/17603

and EN is the epoch number.

Method 1. 1deally, the CK value would explicitly include both a list of the new member-
ship set (an encoded set of nodes) and the epoch number. This may not be desired if the number
of nodes is high, however, because the value of CK would have to include at least a bit of informa-
tion for each node. That is, in a four-node configuration at least a four-bit sequence BBBB (where
B =0 or 1) would need to be used, each bit B indicating whether a given associated node is active
or inactive (failed). In addition, several bits are necessary for the epoch number EN, so the total
length of the variable CK may be quite long.

Method 2 and 3 below are designed to compress the membership information when calcu-
lating the CK value.

Method 2 uses only the epoch number EN and ignores the membership list MEM. For
example, the CK value is set to equal the epoch number EN.

Method 2 is most practical if the membership protocol prevents network partitioning (e.g.
by majority quorum voting). If membership partitioning is allowed, e.g. in the case of a hardware
failure, the use of the CK value without reflecting the actual membership of the cluster could lead
to conflicts between the nodes on either side of the partition.

Method 3 solves the challenge of Method 2 with respect to partitions. In this method, the
CK value is encoded with an identification of the highest node in the new configuration. For
example, the CK value may be a concatenation of a node identifier (a number assigned to the
highest node) and the epoch number. This method provides safe disk fencing even if the member-
ship monitor itself does not prevent network partitioning, since the number of the highest node in
a given partition will be different from that of another partition; hence, there cannot be a conflict
between requests from nodes in different partitions, even if the EN's for the different subclusters
happen to be the same.

Of the foregoing, with a small number of nodes Method 1 is preferred, since it contains the
most explicit information on the state of the clustered system. However, with numerous nodes
Method 3 becomes preferable. If the system prevents network partitioning, then Method 2 is suit-
able.

10

15

20

25

30

WO 97/16744 PCT/US96/17603

The Method of the Invention

Given the foregoing structures and functions, and appropriate modules to implement them,
the disk fencing system of the invention is achieved by following the method 510 illustrated in the
flow chart of Figure 5. At box (step) 520, the membership of the clustered system is determined
in a conventional manner, and the value of the membership set (or list) is stored as the value of
MEM. An epoch number EN (or other unique state identifier) is generated at box 530. These two
functions are carried out by the membership monitor (MM) module, which is implemented
among the member nodes to determine which nodes are present in the system and then to assign a
value of EN to that configuration. An example of a system that uses an MM module in this way is
applicant Sun Microsystems, Inc.’s SparcCluster PDB (parallel database).

In current systems, the epoch numbers are used so that a node can determine whether a
given message or data packet is stale; if the epoch number is out of date then the message is
known to be have been created during an older, different configuration of the cluster. (See, for
instance, T. Mann et al., “An Algorithm for Data Replication”, DEC SRC Research Report, June
1989, incorporated herein by reference, wherein epoch numbers are described as being used in
stamping file replicas in a distributed system.)

The present system uses the epoch number in an entirely new way, which is unrelated to
prior systems’ usage of the epoch number. For an example of a preferred manner of using a clus-
ter membership monitor in Sun Microsystems, Inc.’s systems, see Appendix A attached hereto, in
which the reconfiguration sequence numbers are analogous to epoch numbers. Thus, the distinct
advantage is presented that the current invention solves a long-standing problem, that of quickly
and reliably eliminating failed nodes from a cluster membership and preventing them from con-
tinuing to access shared disks, without requiring new procedures to generate new outputs to con-
trol the process; rather, the types of information that is already generated may be used in
conjunction with modules according to the invention to accomplish the desired functions, result-
ing in a reliable high-availability system.

Proceeding to box 540, the node key NK (for active nodes) and control key CK are gener-
ated by one of the Methods 1-3 described above or by another suitable method.

At box 550, it is determined whether & node has become unavailable. This step is carried
out virtually continuously (or at least with relatively high frequency, e.g. higher than the fre-

quency of I/O requests); for instance, at almost any time a given node may determine that another

10

15

20

25

30

WO 97/16744 PCT/US96/17603

node has exceeded the allowable time to respond to a request, and decide that the latter node has
failed and should be removed from the cluster’s membership set. Thus, the step in box 550 may
take place almost anywhere during the execution of the method.

Box 560 represents an event where one of the nodes connected to the cluster generates an
I/O request (such as a disk access request). If so, then at box 570 the current value of NK from the
requesting node is sent with the I/O access request, and at box 580 it is determined whether this
matches the value of CK stored by the controller. If not, the method proceeds to step 600, where
the request is rejected (which may mean merely dropped by the controller with no action), and
proceeds then back to box 520.

If the node’s NK value matches the controller’s CK value, then the request is carried out at
box 590.

If a node has failed, then the method proceeds from box 550 back to box 520, where the
failed node is eliminated in a conventional fashion from the membership set, and thus the value of
MEM changes to reflect this. At this time, a new epoch number EN is generated (at box 530) and
stored, to reflect the newly revised membership list. In addition, at box 540 a new control key
value CK is generated, the active nodes’ NK values take on the value of the new CK value, and the
method proceeds again to boxes 550-560 for further disk accesses.

It will be seen from the foregoing that the failure of a given node in a clustered system
results both in the removal of that node from the cluster membership and, importantly, the reliable
prevention of any further disk accesses to shared disks by the failed node. The invalidating of the
failed node from shared disk accesses does not rely upon either hardware or software of the failed
node to operate properly, but rather is entirely independent of the failed node.

Since the CK values are stored at the disk controllers and are used by an access control
module to prevent failed nodes from gaining shared disk access, the disk fencing system of the
invention is as reliable as the disk management software itself. Thus, the clustered system can
rapidly and reliably eliminate the failed node with minimal risk of compromising the integrity of
data stored on its shared disks.

The described invention has the important advantage over prior systems that its end-to-end
properties make it independent of disk interconnect network or bus configuration; thus, the node
configuration alone is taken into account in determining the epoch number or other unique status

value, i.c. independent of any low-level mechanisms (such as transport mechanisms).

10

15

20

25

30

WO 97/16744 PCT/US96/17603

Note that the system of the invention may be applied to other peripheral devices accessed
by multiple nodes in a multiprocessor system. For instance, other [/O or memory devices may be
substituted in place of the shared disks discussed above; a controller corresponding to the disk
controliers 470 and 480 would be used, and equipped with software modules to carry out the fenc-
ing operation.

In addition, the nodes, i.c. processor-based systems, that are members of the cluster can be
any of a variety of processor-based devices, and in particular need not specifically be personal
computers or workstations, but may be other processor-driven devices capable of issuing access

requests to peripheral devices such as shared disks.

.12-

WO 97/16744 PCT/US96/17603

Sun0OS 5.4 Headers, Tables, and Macros canm(3)

NAME cmm - cluster membership monitor
AVAILABILITY SUNWcmm

INTERFACE | Sun Private
CLASSIFICATION
DESCRIPTION | This manual page describes the cluster membership monitor (CMM). From the per-
spective of CMM, a duster is a collection of nodes participating in the cluster member-
ship protocol. The membership protocol is used to establish an agreement on cluster

membership (i.e. which nodes are currently in the cluster).

[f cluster membership changes (when nodes leave or join the cluster), CMM coordi-
nates automatic reconfiguration of various cluster services running on the nodes.
Automatic reconfiguration of cluster services is the key mechanism for achieving high
availability on dustered systems.

CMM is responsible for maintaining cluster integrity and must assure that nodes never
reach inconsistent agreement on membership, even in the presence of various system
failures. CMM tolerates nodes joining or leaving the cluster during cluster
reconfiguration.

Configuring a | A cluster is described by a single configuration file (see anm.conf(4)) replicated on all

Cluster | cluster nodes. Generation of the configuration file is not considered a part of CMM
and is typically done through an editor or a cluster specific GUI program. Once the
configuration file is created, a node can join the cluster by starting up the clustd dae-
mon.

Each node in a cluster is assigned a unique node identifier (nodeid). Nodeids are
integers between 0 and 31.

Heart-beat Messages | CMM assumes that in the absence of failures, any node can communicate with any
other node by sending messages. Each node sends periodic heart-beat messages to ail
other nodes. CMM assumes that the underlying protocol supports unreliable datagram
delivery and CMM itself handles duplicate, out of order, lost, or delayed messages.

For applications in high availability clustered systems, CMM can be configured to send
each heart-beat message concurrently over multiple physical networks. The message is
received if it arrives at least on one network.

Agreement on | Each node maintains its view of current cluster membership. dustd includes this

Membership | information in the heart-beat messages sent to other nodes. Since each node receives
messages from all other nodes, a distributed agreement on membership can be reached
eventually. The algorithm for distributed agreement is designed to work in the pres-
ence of various failures, such as communication failures, slowly executing nodes, errors
in cluster reconfiguration programs, or nodes joining and leaving the cluster during
reconfiguration. If CMM is configured to vote by majority quorum, CMM guarantees
that the cluster nodes never reach an inconsistent agreement on membership.

modified 17 April 1994 5-1

APPENDIX A

13-

WO 97/16744

Sun0S 5.4

Quorum Voting

States and
Transitions

Reconfiguration
Programs

modified 17 April 1994

PCT/US96/17603

Headers, Tables, and Macros amm¥5)

CMM uses a quorum voting mechanism to prevent cluster partitioning (split brain).
Each node is assigned a number of votes in the configuration file. clustd dynamically
computes the current cluster quorum as the total number of votes of the nodes that the
node can communicate with. The value of the current cluster quorum is compared
with the minimum cluster quorum spedfied in the configuration file. CMM begins
duster reconfiguration only if the current cluster quorum equals or exceeds the
minimum cluster quorum.

By setting the minimum duster quorum to a value greater than half the sum of all
votes (i.e. requiring majority quorum), CMM automatically prevents cluster partition-
ing. Nodes with insufficient quorum wait in the s-begin state until more nodes join the
cluster.

CMM coordinates cluster reconfiguration (reconfiguration of distributed ciuster ser-
vices). The cluster reconfiguration protocol is defined by an 1/0 automaton running
on each node. The "input” to the automaton are messages received from other nodes,
timeouts, exit status from local reconfiguration programs, and user requests. The auto-
maton “output” controls execution of local reconfiguration programs. A complete
spedfication of the /O automaton behavior is beyond the scope of this manual page
and the following description is intended mainly for developers of cluster services
interfacing with CMM.

The node automaton has the following states: s-start, s-begin, s-step(l), s-step(2), ..., s-
step(N), s-end, s-return, s-stop, s-abort, and s-down. We let s-step(N+1) be the same as
s-end. s-start is the initial state and s-down is the final state.

The following table defines the transitions between cluster states (a diagram with states
and transitions here would be worth a thousand words).
From State To State Transition Condition

s-start s-begin t-start executed once at startup
s-begin s-stepl - reached agreement on membership
s-step(i) s-step(i+1) t-step(i) all nodes reached s-step(i)
s-step(i) s-return - detected membership change
s-step(i) s-return - received an reconfigure request
s-step(i) s-abort - errors in t-step(i) programs
s-refurn s-begin t-return return to begin state

s-begin s-stop - received a stop request

s-stop s-down t-stop

any s-abort - detected local errors

any s-abort - received an abort request
s-abort s-down t-abort

(the "-" transitions are internal to the automaton and do not generate output actions)

Each state transition (with the exception of internal transition) generates an output
action resulting in execution of cluster reconfiguration programs. Cluster services
interested in notification of membership changes assodate reconfiguration programs

5-2

~14-

WO 97/16744

Sun0OS 54

modified 17 April 1994

PCT/US96/17603

Headers, Tables, and Macros anmT5)

with the CMM transitions. By running these programs, CMM orchestrates
reconfiguration of the cluster services.

If multiple programs are assodated with a transition, the programs are executed in
parallel and no assumptions should be made on the order in which they are started or
completed.

A node joins the cluster by starting the clustd daemon. clustd starts up in the s-start
state and executes the t-start transition to enter s-begin. After clustd has synchronized
with clustd’s on other nodes, it begins stepping through the t-step(i) transitions.

The transitions t-step(1) through t-step(N) are executed in lock-step on all cluster
nodes. Before executing t-step(i+1), each node waits until all other nodes have success-
fully completed t-step(i). Lock-step execution is important to reconfiguration of cluster
services that reconfigure in several steps, each separated by a cluster-wide synchroni-
zation barrier. CMM automatically provides this synchronization barrier to the cluster
services.

Cluster reconfiguration is complete when all nodes enter the s-end state. The nodes
will remain in s-end until cluster membership becomes unstable (i.e. a node has left or
wants to join the cluster), or a user request s received.

Should ciuster membership become unstable during a reconfiguration step, clustd
internally transitions to s-return and executes the t-return transition to enter s-begin.
After a new agreement on cluster membership has been negotiated, clustd re-runs the
reconfiguration steps starting from s-step(1). Reconfiguration of cluster services should
be designed to be idempotent with respect to s-begin. The t-return transition is pro-
vided to clean up after previously executed t-step(i) transitions.

The reconfiguration programs executed during cluster transitions communicate back to
clustd through their exit status. A zero exit status indicates that the program has suc-
cessfully completed. A non-zero status indicates that the program could not complete
its actions because of an error on the local system. Upon receiving a non-zero status,
clustd immediately transitions to s-abort and sends the SIGTERM signal to all remain-
ing programs of the failed transition. After all the programs terminate, clustd runs the
t-abort transition to remove the failed node from the cluster. Other nodes will return to
s-begin (via t-return) and rerun the reconfiguration steps.

To prevent the situation that a stuck reconfiguration program on one node blocks the
whole duster, a imeout is specified for each state transition. clustd starts a tmer
before forking the reconfiguration programs. lf the imer expires before all programs
have completed, clustd transitions to s-abort, sends SIGTERM to the remaining pro-
grams, and initiates the t-abort transition, as if the program returned a non-zero status
code.

If a reconfiguration program cannot complete its work because of non-local error con-
ditions (e.g. because of a imeout when communicating with other nodes), it should
issue the “reconfigure” request (see clustm(lm) or cm_reconfigure(3n)) and return a
zero status to clustd. After all other programs for the transiion complete, clustd will
return to s-begin (via t-return), resynchronize with other nodes, and retry the
reconfiguration steps. It is the responsibility of the programs to return before dustd’s

5-3

-15-

W0 97/16744

Sun0OS 5.4

User Requests

Reconfiguration
Sequence Numbers

Isolated Nodes

modified 17 April 1994

PCT/US96/17603

Headers, Tables, and Macros anm($)

timeout for the transition expires. A failure to do so would result in dustd’s removing
the local node from the cluster through the t-abort transition, as described above.

Cluster programs can communicate with clustd via a command level or C library level
interface (see clustm(lm) and anm(3n)). Any program can access clustd’s state infor-
mation and a program with super-user privileges can affect clustd’s otherwise
automatic behavior.

A privileged program can send the “reconfigure”, "stop™, and "abort” requests to
cdlustd. The “"stop” request forces clustd to transition to s-begin via the t-return transi-
tion and then execute the t-stop transition.

The "abort” request instructs clustd to immediately perform the t-abort transition. If
reconfiguration programs are in progress when the "abort” request is received, clustd
sends SIGTERM to these programs before performing t-abort.

If clustd receives the "reconfigure” request when in the s-step(i) or s-end state, it
returns back to s-begin via the s-return and t-return. The “reconfigure” command is
ignored if clustd is in other states. The “reconfigure” command is typically used in
two situations: when a t-step(i) reconfiguration program cannot complete its action
because of remote errors, or when reconfiguration of cluster services is controlled by
some external parameter. A (somewhat academic) example of the latter case is a tran-
saction processing (TP) system distributed across all the cluster nodes during peak pro-
cessing hours, but limited to a smaller subset of nodes during off-peak hours. By send-
ing the “reconfigure” request at the beginning of each peak/off-peak period, the TP
system requests clustd to coordinate its reconfiguration. The t-step(i) programs used
for reconfiguration of the TP system read perform different actions based on the value
of the current time.

CMM assigns a unique sequence number to each cluster reconfiguration. The assign-
ment is done during clustd’s internal transition from s-begin to sstepl. All current
cluster members have agreed on the value of the sequence number before transitioning
to s-stepl. The sequence numbers are essential to detecting stale isolated nodes (see
below).

Each node stores the most recently used sequence number in its local stable storage.
CMM guarantees that sequence numbers are monotonic and never reused by the same
cluster.

The discussion of isolated nodes assumes that the cluster is configured to vote with
majority quorum. A node becomes “isolated” when the current quorum of the node is
lower than the required majority quorum. The cluster monitor provides two important
guarantees regarding isolated nodes:

First, if one or more nodes become isolated from the nodes holding majority quorum,
the nodes with majority quorum will not begin cluster reconfiguration before the iso-
lated nodes are in a "safe” state. The safe states are s-begin and s-down. Cluster ser-
vices should be designed to assure that nodes are idle (with respect to shared

-16-

WO 97/16744

SunOS 5.4

Node Failfast

NOTES

modified 17 April 1994

PCT/US96/17603

Headers, Tables, and Macros cnm(5)

resources and communication with the outside world) in these states by assodating
appropnate programs with the t-return, t-stop, and t-abort transitions. CMM super-
vises timely transitions of isolated nodes to the idle states and delays the beginning of
dluster reconfiguration until the isolated nodes can be assumed in safe states.

Second, an isolated node automatically aborts if it learns that other nodes have per-
formed cluster reconfiguration while the node was in isolation. Reconfiguration
sequence numbers sent in the heart-beat messages are used to detect such a situation.
Aborting such a node is necessary because the state of the isolated node might have
become stale.

CMM provides strong guarantees concerning isolated nodes because isolated nodes
could compromise cluster integrity. Assuming that the clustd program is free of bugs,
CMM's guarantees are as dependable as the node failfast mechanism (described
below). Cluster systems that require stronger guarantees have to employ additional
mechanisms to fence off isolated nodes from shared resources and the outside environ-

ment.

One major difficulty in the design of distributed systems is the fact that it is impossible
to distinguish between a node executing very slowly from one that has crashed. If a
node doesn’t respond to messages within a timeout period, other nodes declare that
the node is down (in the s-down state) and reconfigure the cluster to remove the node.
If the removed node were executing slowly rather than being down, cluster integrity
would be violated.

CMM uses the failfast device driver (see f£(7)) to prevent this undesirable situation. If
the clustd process becomes untimely when executing sections in which timing is criti-
cal, the failfast driver aborts the node in a bounded time. Cluster nodes make a mutual
agreement on the timing via the cluster configuration file.

CMM interfaces are designed to support at least 4096 nodes. The current implementa-
tion limits the number of nodes to 32.

The content of the cmm.conf files on all cluster nodes must be identical. Operating a
cluster with inconsistent cmm.conf files could yield unpredictable results. It is recom-
mended that duster nodes compare the contents of the file during the t-step! transition
and abort if the files are not identical.

The current implementation of distributed agreement on cluster membership blocks
duster reconfiguration if the communication graph is not a clique (fully connected sub-
graph). This limitation does not reduce availability of clusters that use multiple physi-
cal links for the CMM messages.

XXX - Explain the relationship of getclustbyname(to cmm

The current implementation sends the heart-beat messages via the UDP/IP protocol.
The current implementation of the cluster membership protocol does not aliow the
configuration file to modified while the cluster is online. clustd reads the file only
once at startup and any changes to the file will take effect when clustd is restarted,

-17-

10

15

20

25

30

WO 97/16744 PCT/US96/17603

What is claimed is:

1. A method for preventing access to a shared peripheral device by a processor-based node in
a multinode system, including the steps of:

(1) storing at the peripheral device a first unique value representing a first configuration of
the multinode system,

(2) sending an access request from the node to the device, the request including a second
unique value representing a second configuration of the multi-node system;

(3) determining whether said first and second values are identical; and

(4) if the first and second values are identical, then executing the access request at the

peripheral device.

2, The method of claim I, wherein;

said first value is generated utilizing at least in part information relating to a first time
when the multinode system was in said first configuration; and

said second value is generated utilizing at least in part information relating to a second

time when the multinode system was in said second configuration.

3. The method of claim 2, wherein:

step 3 includes the step of determining whether said first and second times are identical.

4. The method of claim 1, wherein said first and second values are generated based at least in

part on epoch numbers generated by a membership protocol executing on said multnode system.

5. The method of claim 4, wherein each of seid first and second values is generated based at
least in part on respective membership sets of said multinode system generated by said member-

ship protocol.
6. The method of claim 1, wherein each of said first and second values is generated based at

least in part on respective membership sets of said multinode system generated by said member-

ship protocol.

- 18 -

10

15

20

25

30

WO 97/16744 PCT/US96/17603

7. An apparatus for preventing access to at least one shared peripheral resource by a proces-
sor-based node in a multinode system, the resource being coupled to the system by a resource
controller including a controller memory, each of a plurality of nodes on the system including a
processor coupled to a node memory storing program modules configured to executing functions
of the invention, the apparatus including:

a membership monitor module configured to determine a membership list of the nodes,
including said resource, on the system at predetermined times, including at least at & ime when
the membership of the system changes;

a resource manager module configured to determine when the resource is in a failed state
and for communicating the failure of the resource to said membership monitor to indicate to the
membership monitor to generate a new membership list;

a configuration value module configured to generate a unique velue based upon said new
membership list and to store said unique value locally at each node on the system; and

an access control module stored at said controller memory configured to block access
requests by at least one said requesting node to said resource when the locally stored unique value

at said requesting node does not equal the unique velue stored at said resource controller.

8. The apparatus of claim 7, wherein said configuration value monitor module is configured
to determine said unique value based at least in part upon a time stamp indicating the time at

which the corresponding membership list was generated.

9. The apparatus of claim 7, wherein said unique value is based at least in part upon an epoch

number generated by a membership protocol module.

10. The apparatus of claim 7, wherein said membership monitor module is configured to exe-

cute independently of any action by said shared resource when said shared resource is in a failed

state.

11 The apparatus of claim 7, wherein said resource manager module is configured to execute

independently of any action by said shared resource when said shared resource is in a failed state.

-19-

10

15

20

25

30

WO 97/16744 PCT/US96/17603

12, The apparatus of claim 7, wherein said configuration module is configured to execute

independently of any action by said shared resource when said shared resource is in a failed state.

13 The apparatus of claim 7, wherein said access control module is configured to execute

independently of any action by said shared resource when said shared resource is in a failed state.

-20-

WO 97/16744 PCT/US96/17603

1/3
Figurel 4
20 ~
10 Node 1 «—p| Node2
[ProccssorJ mcmoryj [Processor] [Mcmory]

A T T A
Disks
-

[Disk Controller|
1

50/ i \60

»| Node3 .
r [Proccssg |McmoD'J
40
Figure 2

80

110

WO 97/16744

PCT/US96/17603

2/3
3(a) Before Reconfiguration:
<MEM=A B.C.D; <MEM=A B.CD; <MEM=AB.CD:; <MEM=A B.CDD;
EN=100> EN=100> EN=100> EN=100>
A B C D
3(b) After Reconfiguration: <’ iled No/de
<MEM=AB.C: <MEM=AB.C; <MEM=AB.C; <M%K<B.CD:
EN=101> EN=101> EN=101> 00>
A B C / D \
Figure 3
454
452 [456 462 464 s 466
450

54

—~
Vm] 480
nterconnect

/

NK(A);
MEM

NK(®B).
MEM

A
410 j

B
420 J

Figure 4

WO 97/16744

510

\

520

530

3/3

I Start

PCT/US96/17603

F

Determine Membership

'

Generate Epoch Number EN

'

Generate new NK (for active nodes)
and CK (for controliers)

(NK = CK at this point)

550

T

Has any node become unavailable?

lNo

Is there an I/O request?

570

580

& Send I/O request to controller

lYEs

along with node's NK

'

match disk controller’s current CK value?

Does the requesting node's NX value

| e

lNo

Execute requested disk operation Reject I/O operation

Figure 5

Intemnational application No.
PCT/US96/17603

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO1R 31/28; GO6F 11/00
US CL :395/186
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. . 395/186, 187.01, 188.01

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practicable, search terms used)

APS, IEEE ProQuest

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US, A, 5,416,921 (FREY ET AL.) 16 May 1995, col. 1, lines| 1-3
9-14, col. 2, lines 2-12 and col. 5, lines 29-35

A US, A, 4,480,304 (CARR ET AL.) 30 October 1984, see| 1-13
entire document.

A US, A, 4,805,134 (CALO ET AL.) 14 February 1989, see| 1-13
entire document.

A US, A, 4,961,224 (YUNG) 02 October 1990, see entire| 1-13
document.

A US, A, 5,204,961 (BARLOW) 20 April 1993, see entire| 1-13
document.

A US, A, 5,321,841 (EAST ET AL.) 14 June 1994, see entire| 1-13
document.

@ Further documents are listed in the continuation of Box C. D Sce patent family annex.

¢ Special categories of cited d ™ later d blished afler the i filing date or priority
oaw " P . . i dlleanotneonﬂnctwulhltwlpphc-mbmcnedmuMemmdm
A fining the g state of the art which is not considered principle or theory underlying the invention

1o be of particular relevance
E earlier document lished : vonal fili °X* d of p k b ; the claimed ¢ ot be
E d pub on or aficr the intema filing date considered novel or cannot be oonndered to involve an inventive step
L document which may throw doubts oo pnomy claim(s) or which is when the document is taken alone

cited to blish the date of or other

special reason (as w.ﬁd) Y dm of pamcuhr Y : the cannot be

an step when the document is

‘0" document referming o an oral disch . use, exhibition or other combined mlhou or more other such d such bi

means being obvious 10 a person skilled in the art

tpe document published prior w the intemational filing date but later than *g*

document member of tent famil
the pnonty date claimed 7 of the same pa amily

Date of the actual completion of the international search

09 DECEMBER 1996

Date of mailing of the international search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

uthorized officer

n .
GLENN SNYDER \36/\:«

(703) 305-9688

31 JAN 1997
WU

lephone No.

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.

PCT/US96/17603
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Cilation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 5,339,443 (LOCKWOOD) 16 August 1994, see entire 1-13
document.
A US, A, 5,361,347 (GLIDER ET AL.) 01 November 1994, see 1-13

entire document.

US, A, 5,408,653 (JOSTEN ET AL.) 18 April 1995, see entire 1-13
document.

US, A, 5,463,733 (FORMAN ET AL.) 31 October 1995, see 1-13
entire document.

US, A, 5,469,556 (CLIFTON) 21 November 1995, see entire 1-13
document.

US, A, 5,568,491 (BEAL ET AL.) 22 October 1996, see entire 1-13
document.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

