发明名称
含有偏振膜的光学膜叠层体的制造方法

摘要
本发明提供连续带状的在非晶性酯类热塑性树酯基体材料上成膜有由二色性物质发生了取向的偏振膜的光学膜叠层体的制造方法，所述偏振膜由PVA类树酯形成，且由单体透射率T和偏振度P表征的光学特性值处于一定水平。该方法包括：通过该基体材料上成膜的PVA类树脂层的叠层体进行气体氛围中的高温拉伸，制作包含拉伸中间产物的拉伸叠层体的工序，通过二色性物对拉伸叠层体的吸附，制作包含着色中间产物的着色叠层体的工序，通过着色叠层体进行硼酸水溶液中拉伸，制作包含由二色性物质发生取向的PVA类树脂形成的偏振膜的光学膜叠层体的工序。
1. 光学膜叠层体的制造方法: 所述光学膜叠层体是连续带状的在非晶性酯类热塑性树脂基体材料上成膜有二色性物质发生了取向的偏振膜的叠层体, 该偏振膜由聚乙烯醇类树脂制成。

其中, 该制造方法包括下述工序:

制作拉伸叠层体的工序, 通过对包含所述非晶性酯类热塑性树脂基体材料和在所述非晶性酯类热塑性树脂基体材料上成膜的聚乙烯醇类树脂层的叠层体进行高分子溶液中的高温拉伸, 制作包含拉伸中间产物的拉伸叠层体, 所述拉伸中间产物由发生了取向的聚乙烯醇类树脂层形成;

制作着色叠层体的工序, 通过二色性物质对所述拉伸叠层体的吸附, 制作包含着色中间产物的着色叠层体, 所述着色中间产物由二色性物质发生了取向的聚乙烯醇类树脂层形成; 以及

制作光学膜叠层体的工序, 通过对所述着色叠层体进行高分子溶液中拉伸, 制作包含二色性物质发生了取向的偏振膜的光学膜叠层体, 所述偏振膜由聚乙烯醇类树脂层形成。2. 根据权利要求 1 所述的光学膜叠层体的制造方法, 其中,

由单体透射率 T 和偏振度 P 表征的所述偏振膜的光学特性值满足下式表示的范围: P ≥ (10^{0.03T-42.5}) × 100, 其中 T ≤ 42.3,

P ≥ 99.9, 其中, T ≥ 42.3。

3. 根据权利要求 1 或 2 所述的光学膜叠层体的制造方法, 其中, 所述偏振膜的厚度为 10 μm 以下。

4. 根据权利要求 1～3 中任一项所述的光学膜叠层体的制造方法, 其中, 所述非晶性酯类热塑性树脂基体材料的厚度为成膜的聚乙烯醇类树脂层的厚度的 6 倍以上。

5. 根据权利要求 1～4 中任一项所述的光学膜叠层体的制造方法, 其中, 所述非晶性酯类热塑性树脂基体材料为非晶性聚对苯二甲酸乙二醇酯, 所述非晶性聚对苯二甲酸乙二醇酯包括: 共聚有间苯二甲酸的共聚物对苯二甲酸乙二醇酯, 共聚有环己烷二甲醇的共聚物对苯二甲酸乙二醇酯, 共聚合对苯二甲酸乙二醇酯, 或其它共聚物对苯二甲酸乙二醇酯。

6. 根据权利要求 1～5 中任一项所述的光学膜叠层体的制造方法, 其中, 所述酯类热塑性树脂基体材料由透明树脂构成。

7. 根据权利要求 1～6 中任一项所述的光学膜叠层体的制造方法, 其中还包括下述工序: 通过在所述非晶性酯类热塑性树脂基体材料上涂布聚乙烯醇类树脂并进行干燥, 在所述非晶性酯类热塑性树脂基体材料上成膜聚乙烯醇类树脂层。

8. 根据权利要求 1～7 中任一项所述的光学膜叠层体的制造方法, 其中, 所述气体氛围中的高温拉伸的拉伸倍率为 3.5 倍以下。

9. 根据权利要求 1～8 中任一项所述的光学膜叠层体的制造方法, 其中, 所述气体氛围中的高温拉伸的拉伸温度为聚乙烯醇类树脂的玻璃化转变温度以上。

10. 根据权利要求 1～9 中任一项所述的光学膜叠层体的制造方法, 其中, 所述气体氛围中的高温拉伸的拉伸温度为 95℃～150℃。

11. 根据权利要求 1～10 中任一项所述的光学膜叠层体的制造方法, 其中, 通过将所述拉伸叠层体浸渍于二色性物质的染色液中来制作所述着色叠层体。

12. 根据权利要求 1～11 中任一项所述的光学膜叠层体的制造方法, 其中还包括下述
第11不溶化工序：在将所述拉伸叠层体浸渍于二色性物质的染色液中之前，对所述拉伸叠层体包含的所述拉伸中间产物实施不溶化。

13. 根据权利要求12所述的光学膜叠层体的制造方法，其中，所述第1不溶化工序是在液温低于或等于40℃的硼酸水溶液中浸渍所述拉伸叠层体的工序。

14. 根据权利要求1～13中任一项所述的光学膜叠层体的制造方法，其中，通过在硼酸水溶液中对所述着色叠层体进行拉伸而制成厚度为10μm以下的所述偏振膜。

15. 根据权利要求1～14中任一项所述的光学膜叠层体的制造方法，其中还包括下述第2不溶化工序：在所述硼酸水溶液中对所述着色叠层体进行拉伸之前，对所述着色叠层体实施不溶化处理。

16. 根据权利要求15所述的光学膜叠层体的制造方法，其中，所述第2不溶化工序是在液温低于或等于40℃的硼酸水溶液中浸渍所述着色叠层体的工序。

17. 根据权利要求1～16中任一项所述的光学膜叠层体的制造方法，其中，使通过所述气体氛围中的高温拉伸和所述硼酸水溶液中拉伸得到的所述拉伸叠层体和所述着色叠层体的总拉伸倍率达到5.0倍以上。

18. 根据权利要求1～17中任一项所述的光学膜叠层体的制造方法，其中，用于所述硼酸水溶液中拉伸的硼酸水溶液的液温为60℃以上。

19. 根据权利要求1～18中任一项所述的光学膜叠层体的制造方法，其中，在以自由端单向拉伸进行所述气体氛围中的高温拉伸时，所述拉伸叠层体和所述着色叠层体的总拉伸倍率为5以上且7.5倍以下。

20. 根据权利要求1～18中任一项所述的光学膜叠层体的制造方法，其中，在以固定端单向拉伸进行所述气体氛围中的高温拉伸时，所述拉伸叠层体和所述着色叠层体的总拉伸倍率为5以上且8.5倍以下。

21. 根据权利要求1～20中任一项所述的光学膜叠层体的制造方法，其中还包括下述工序：利用含有碘化物盐的水溶液对包含二色性物质发生了取向的偏振膜的所述光学膜叠层体进行洗涤，所述含有碘化物盐的水溶液的温度低于所述光学膜叠层体包含的所述非晶性酯类热塑性树脂基体材料的玻璃化转变温度，所述偏振膜由聚乙烯醇类树脂形成。

22. 根据权利要求1～21中任一项所述的光学膜叠层体的制造方法，其中还包括下述工序：于50℃以上且100℃以下的温度对所述光学膜叠层体进行干燥。

23. 根据权利要求1～22中任一项所述的光学膜叠层体的制造方法，其中还包括下述工序：在所述光学膜叠层体包含的成膜在所述非晶性酯类热塑性树脂基体材料上的所述偏振膜的另一面，通过粘合剂叠层分离膜。

24. 根据权利要求1～22中任一项所述的光学膜叠层体的制造方法，其中还包括下述工序：在所述光学膜叠层体包含的成膜在所述非晶性酯类热塑性树脂基体材料上的所述偏振膜的另一面，通过粘接剂叠层光学功能膜。

25. 根据权利要求24所述的光学膜叠层体的制造方法，其中还包括下述工序：在所述光学功能膜的另一面，通过粘合剂叠层分离膜。

26. 根据权利要求1～25中任一项所述的光学膜叠层体的制造方法，其中还包括下述工序：在所述光学膜叠层体包含的所述偏振膜的未膜在所述非晶性酯类热塑性树脂基体材料上的面上，通过粘接剂叠层光学功能膜，并将所述非晶性酯类热塑性树脂基体材料从
所述偏振膜上剥离，由此将所述偏振膜转印于所述光学功能膜上，制作在所述光学功能膜上转印有所述偏振膜的光学功能膜叠层体。

27. 根据权利要求26所述的光学膜叠层体的制造方法，其中还包括下述工序：在转印于所述光学功能膜叠层体的所述偏振膜的另一面，通过粘合剂叠层分离膜。

28. 根据权利要求26所述的光学膜叠层体的制造方法，其中还包括下述工序：在转印于所述光学功能膜叠层体的所述偏振膜的另一面，通过粘接剂叠层第2光学功能膜，并在该第2光学功能膜上，通过粘合剂叠层分离膜。
含有偏振膜的光学膜叠层体的制造方法

技术领域

【0001】本发明涉及含有偏振膜的光学膜叠层体的制造方法。根据本发明制造的偏振膜是
成膜在非晶性酯类热塑性树脂基体材料上的、二色性物质发生了取向的由聚乙烯醇类树脂
形成的偏振膜。

背景技术

【0002】已知有通过对聚乙烯醇类树脂（以下简称“PVA 类树脂”）层实施染色处理及拉伸处
理，来制造吸附有二色性物质、并使二色性物质发生了取向的偏振膜，即所谓起偏器（以
下称为“偏振膜”）的方法。其中，使用热塑性树脂基体材料制造的偏振膜及其制造方法也
已公知（例如，参见专利文献 2～5）。

【0003】作为具体例，示出参考例 1 或 3。就参考例 1 的情况而言，通过在热塑性树脂基体
材料上涂布 PVA 类树脂的水溶液，并干燥水分，来制作在热塑性树脂基体材料上形成有薄
的 PVA 类树脂层的叠层体。使用例如配置于烘箱中的拉伸装置，以 110℃的拉伸温度对所制
作的叠层体进行气氛氛围中的拉伸。接着，通过对经拉伸而取向了的 PVA 类树脂层进行染
色，使二色性物质吸附于该 PVA 类树脂层。或者，就参考例 3 的情况而言，通过对所制作的
叠层体进行染色，使二色性物质吸附于该叠层体。然后，以 90℃的拉伸温度对吸附有二色性
物质的叠层体进行气氛氛围中的拉伸。由此制造的二色性物质发生了取向的由 PVA 类树脂
形成的偏振膜已被公知（例如，参见专利文献 2～5）。

【0004】与由 PVA 类树脂的单层体构成的偏振膜的制造方法相比，使用热塑性树脂基体材
料的偏振膜的制造方法由于能够更为均匀地制造偏振膜，已受到瞩目。对于贴合在液晶单
元的正面和反面的用于液晶显示装置的偏振膜而言，利用由单层体构成的偏振膜的制造方
法制造时，可如下地进行：如日本特开 2005-266325 号公报（专利文献 1）所公开的那样，使
50～80 μm 厚的 PVA 类树脂单层体经过例如具有不同圆周速度的多组辊的传输装置，通过
浸没于染色液中使二色性物质吸附于 PVA 类树脂单层体，并在 60℃左右的水溶液中进行拉
伸。所制造的偏振膜由单层体构成，其厚度为 15～35 μm。目前，利用该方法制造的偏振
膜作为具有单体的透射率 42% 以上，偏振度 99.95% 以上的光学特性的偏振膜，已被应用于
大型电视用途。

【0005】但由于 PVA 类树脂为亲水性，因此，偏振膜对于温度、湿度的变化敏感，其容易因
周围环境变化而发生伸缩，因而容易产生裂缝。因此，为了抑制伸缩、减缓温度及湿度的
影响，就使用偏振膜而言，通常使用在偏振膜的两面贴合有作为保护膜的 40～80 μm 的
TAC（三乙酸纤维素类）膜的叠层体。但即便如此，在使用由单层体构成的偏振膜的情况下，
由于偏振膜的薄膜化有限，因此难以完全抑制伸缩。包含这类偏振膜的光学膜叠层体在隔
者粘接层或粘合层被贴合于其它光学膜或液晶单元等结构上时，会导致在各构件产生由偏
振膜的伸缩引起的应力。该应力会成为液晶显示装置发生显示不均的原因。由于该显示不
均基于由偏振膜的收缩应力引起的上述构件的光弹性产生的或构件的变形，因此，为了减
少该显示不均的发生，所使用的构件限于例如低光弹性、低双折射材料。另外，由于偏振膜
的收缩应力会引起光学膜叠层体从液晶单元上剥离等，因此，要求使用高粘接力的粘合剂。但是，使用这类高粘接力的粘合剂时，在重新加工性等方面存在明显。这是由单层体构成的偏振膜的技术问题。

[0006] 因此，要求能够代替难以进行薄膜化的由单层体构成的偏振膜的制造的偏振膜的制造方法。但是，使例如厚度为 50 μm 以下的 PVA 类树脂层经过具有不同圆周速度的多组辊的传输装置，在 60℃左下水溶液中进行拉伸来制造具有 10 μm 以下的均匀厚度的偏振膜时，由亲水性高分子组合物形成的 PVA 类树脂层会伴随拉伸而发生薄膜化，随之会引发溶解或无法承受拉伸张力而发生断裂。即，难以由单层体构成的 PVA 类树脂层稳定地制造偏振膜。于是，作为新的偏振膜的制造方法，已提出了专利文献 2～5 中所公开的技术。在该技术中，通过在具有厚度的热塑性树脂基体材料上成膜 PVA 类树脂层，并将成膜的 PVA 类树脂层与热塑性树脂基体材料一体化地拉伸，来制作偏振膜。

[0007] 这些技术中，使用例如配置于烘箱中的拉伸装置，在通常 60℃～110℃的温度下对由热塑性树脂基体材料和 PVA 类树脂层构成的叠层体进行气体氛围中的拉伸。然后，通过对拉伸层取向的 PVA 类树脂层染色，使二色性物质吸附于该 PVA 类树脂层。或者，通过对热塑性塑料基体材料和 PVA 类树脂层构成的叠层体中所含的 PVA 类树脂层染色，使二色性物质吸附于该 PVA 类树脂层。接着，在通常 60℃～110℃的温度下对包含吸附有二色性物质的 PVA 类树脂层的叠层体进行气体氛围中的拉伸。以上为专利文献 2～5 中公开的二色性物质发生了取向的偏振膜的制造方法。

[0008] 更具体而言，首先，通过在热塑性树脂基体材料上涂布含有 PVA 类树脂的水溶液，并干燥水分，来形成数十 μm 厚的 PVA 类树脂层。然后，使用配置于烘箱中的拉伸装置，对由热塑性树脂基体材料和 PVA 类树脂层构成的叠层体，边加热边进行气体氛围中的拉伸。接着，通过将经过拉伸的叠层体浸渍于染色液中，使 PVA 类树脂层吸附二色性物质，从而造成数 μm 厚的二色性物质发生了取向的偏振膜。这是使用了热塑性树脂基体材料的偏振膜的传统制造方法。

[0009] 就利用这样的制造方法制成的偏振膜而言，从显示元件的薄膜化、显示不均的消除、减少反射等观点考虑，是大有应用前景的。但迄今为止，利用这样的制造方法制成的偏振膜所存在的下述技术问题仍未得到解决：如图 25（示出了参考例 1～3 的偏振膜的光学特性）所示，由偏光性能表征的光学特性仍始终处于较低水平，无法实现光学特性高的高性能偏振膜。

[0010] 现有技术文献

[0011] 专利文献

[0012] 专利文献 1：日本特开 2005-266325 号公报

[0013] 专利文献 2：日本专利 4279944 号公报

[0014] 专利文献 3：日本特开 2001-343521 号公报

[0015] 专利文献 4：日本特公平 8-12296 号公报

[0016] 专利文献 5：美国专利 4,659,523 号说明书

发明内容
发明要解决的问题
专利文献2～5中已公开了使用热塑性树脂基体材料稳定地制造偏振膜的技术。但是，满足液晶电视用显示器所要求的对比度1000：1以上、最大亮度500cd/m²以上这样的光学特性的偏振膜，迄今为止尚未实现。

对于该技术问题而言，欲仅通过如下所示的简单方法来解决是存在较大障碍的。迄今为止的制造方法均是在气体氛围中的高温环境中对包含热塑性树脂基体材料和在该基体材料上形成PVA类树脂层的叠层体进行拉伸的方法。从根本上讲，在高温环境下进行气体氛围中的拉伸的理由在于，热塑性树脂基体材料及PVA类树脂在低于各自的玻璃化转变温度Tg的温度下是不能进行拉伸的。PVA类树脂的Tg为75～80℃。酯类热塑性树脂的聚对苯二甲酸乙二醇酯(PET)的Tg为80℃。更需说明的是，使间苯二甲酸与PET共聚而得到的非晶性PET的Tg为75℃。因此，包含热塑性树脂基体材料和PVA类树脂层的叠层体要在高于它们的玻璃化转变温度的高温下进行拉伸。当然，通过拉伸，会提高PVA类树脂的取向性。由PVA类树脂形成的偏振膜的偏光性能取决于吸附有碘那样的二色性物质的PVA类树脂的取向性。PVA类树脂的取向性越高，由PVA类树脂形成的偏振膜的偏光性能越高。

但是，不论是烯烃类还是酯类，一般而言，结晶性树脂均会因加热温度的高低或拉伸取向而使高分子排列、促进结晶化。通过结晶化，树脂的物性发生各种变化。典型情况是，通过结晶化，其实际上变得无法拉伸。对于结晶性PET的情况而言，即使为无定形PET，在120℃附近结晶化速度会急剧上升，在130℃下变得无法拉伸。热塑性树脂的一般的材料特性的描述如后述，通过阻碍由加热处理、拉伸取向引起的高分子的排列来抑制结晶化的方法是众所周知的。不用说，由此形成的非晶性烯类树脂、非晶性酯类树脂也是众所周知的。例如，通过使阻聚对苯二甲酸乙二醇酯(PET)的结晶化的单元共聚，可以制作例如结晶化得到了抑制的非晶性聚对苯二甲酸乙二醇酯(PET)。对于非晶性PET的情况而言，在120℃附近，结晶化速度不会急速上升。结晶化缓慢进行，直到达到170℃之前都可以稳定地进行拉伸。而达到170℃以上的高温时，则因PET的软化而变得无法拉伸。

本发明的目的在于提供包含偏振膜的光学膜叠层体的制造方法，且所述偏振膜与现有偏振膜相比是经过了薄膜化的光学特性高的偏振膜。

解决问题的方法
本发明人等为了改良偏振膜的厚度化和经薄膜化的偏振膜的光学特性而进行了深入研究。结果发明了由改善的双折射性物质发生了取向的由聚乙烯醇类树脂形成的偏振膜及其制造方法。偏振膜的薄膜化通过将非晶性酯类热塑性树脂基体材料和在该基体材料上形成的PVA类树脂层一体地进行拉伸来实现。

根据本发明人等的研究及分析，并未发现有使用非晶性PET作为热塑性树脂基体材料，对包含在非晶性PET基体材料上形成的PVA类树脂层的叠层体在120℃以上的拉伸温度下进行自由单向拉伸至拉伸倍率达到5倍以上的事例。本发明人等对此进行尝试，直至实现本发明。

图18～图22的示意图均是基于实验得到的。首先，参见图18的示意图。图18是基于实验示出结晶性PET、非晶性PET及PVA类树脂的各自的拉伸温度和可拉伸倍率的相对关系的示意图。
图 18 中，粗线代表非晶性 PET 的可拉伸倍率随拉伸温度的变化。非晶性 PET 的 Tg 为 75°C，在该温度以下无法进行拉伸。通过进行气体氛围中的高温自由单向拉伸，可以在超过 110°C 的温度下实现 7.0 倍以上的拉伸。另一方面，图 18 的细线代表结晶性 PET 的可拉伸倍率随拉伸温度的变化。结晶性 PET 的 Tg 为 80°C，在该温度以下无法进行拉伸。

参见图 19 的示意图。该图代表伴随在聚对苯二甲酸乙二醇酯 (PET) 的 Tg 和熔点 Tm 之间发生的温度变化，结晶性 PET 和非晶性 PET 各自的结晶化速度的变化。由图 19 可知，对于在 80°C ～ 110°C 左右处于无定形状态的结晶性 PET 而言，其在 120°C 左右急剧地发生结晶化。

另外，由图 18 可知，对于结晶性 PET 而言，通过进行气体氛围中的高温自由单向拉伸而达到的可拉伸倍率的上限为 4.5 ～ 5.5 倍。并且，其能够适用的拉伸温度是极为有限的，为 90°C ～ 约 110°C 的温度范围。

参考例 1 ～ 3 为气体氛围中的高温自由单向拉伸的事例。这些例子均是通过在厚 200 μm 的结晶性 PET 基体材料上成膜有厚 7 μm 的 PVA 层的叠层体进行气体氛围中的高温拉伸而制作的厚 3.3 μm 的偏振膜。这些例子的拉伸温度各不相同，参考例 1 的拉伸温度为 110°C，参考例 2 的拉伸温度为 80°C，参考例 3 的拉伸温度为 90°C。值得注意的是可拉伸倍率。参考例 1 的拉伸倍率的极限为 4.0 倍，参考例 2 及 3 的拉伸倍率的极限为 4.5 倍。由于最终会导致叠层体本身发生断裂，因此不能进行超过上述拉伸倍率极限的拉伸处理。但就该结果而言，不能否定在结晶性 PET 基体材料上成膜的 PVA 类树脂层本身可拉伸倍率所带来的影响。

其中，参见图 18 的虚线。该虚线代表属于 PVA 类树脂的 PVA 的可拉伸倍率。PVA 类树脂的 Tg 为 75 ～ 80°C，在该温度以下无法对由 PVA 类树脂形成的单层体进行拉伸。由图 18 可知，进行气体氛围中的高温自由单向拉伸时，由 PVA 类树脂形成的单层体的可拉伸倍率以 5.0 倍为限。基于此，本发明人等发现了下述结论：由结晶性 PET 及 PVA 类树脂各自的拉伸温度及可拉伸倍率的关系可知，包含在结晶性 PET 基体材料上成膜的 PVA 类树脂层的叠层体，在 90 ～ 110°C 的拉伸温度范围内进行气体氛围中的高温自由单向拉伸时的可拉伸倍率以 4.0 ～ 5.0 倍为限。

另外，比较例 1 及 2 表示了对使用非晶性 PET 基体材料且包含 PVA 类树脂层的叠层体进行气体氛围中的高温自由单向拉伸的事例。非晶性 PET 基体材料不受拉伸温度的限制。比较例 1 通过对包含在 200 μm 厚的非晶性 PET 基体材料上成膜的 7 μm 厚的 PVA 类树脂层的叠层体进行拉伸温度设定于 130°C 的气体氛围中的高温自由单向拉伸而制作了偏振膜。此时的拉伸倍率为 4.0 倍。

参见比较表。比较例 2 与比较例 1 相同，通过对成膜在 200 μm 厚的非晶性 PET 基体材料上的 7 μm 厚的 PVA 类树脂层进行拉伸，并使拉伸倍率分别达到 4.5 倍、5.0 倍、6.0 倍，制作了偏振膜。在任一比较例中，均如比较表所示地，在 PET 基体材料的膜的面内产生了拉伸不均或出现了断裂，另一方面，当拉伸倍率为 4.5 倍时，PVA 类树脂层发生断裂。由此可以确认，进行拉伸温度 130°C 的气体氛围中的高温拉伸时，PVA 类树脂层的拉伸倍率的极限为 4.0 倍。

[表 1]

[比较表]
| 拉伸温度 130℃ | 拉伸倍率 | 拉伸膜 | PVA 类树脂层和非晶性 PET 基体材料的叠层体
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例 1</td>
<td>4.0 倍</td>
<td>不发生断裂，能够均匀地拉伸</td>
<td>不发生断裂，能够均匀地拉伸</td>
</tr>
<tr>
<td>比较例 2</td>
<td>4.5 倍</td>
<td>虽然未断裂，但产生拉伸不均匀</td>
<td>PVA 类树脂层和非晶性 PET 基体材料一体地断裂</td>
</tr>
<tr>
<td></td>
<td>5.0 倍</td>
<td>虽然未断裂，但产生拉伸不均匀</td>
<td>未确认</td>
</tr>
<tr>
<td></td>
<td>6.0 倍</td>
<td>断裂</td>
<td>未确认</td>
</tr>
</tbody>
</table>

参考例 1 ～ 3 中，均通过 4.0 ～ 4.5 倍的拉伸处理而制成了 PVA 分子发生了取向，且经过了薄膜化的 PVA 类树脂层中吸附有碘的着色叠层体。具体如下：将拉伸叠层体在液温 30℃的含碘及碘化钾的染色液中浸渍任意时间，使最终制成的构成偏振膜的 PVA 类树脂层的单体透射率达到 40 ～ 44%，由此，使碘吸附于拉伸叠层体中含有的 PVA 类树脂层。另外，通过对经过薄膜化后的 PVA 类树脂层的碘吸附量进行调整，制成了单体透射率和偏振度不同的各种偏振膜。

参考图 25 的图表。图 25 是示出参考例 1 ～ 3 的光学特性的图。可以推测：在结晶性 PET 基体材料上成膜的 PVA 类树脂层经过气体氛围中的高温拉伸，会发生一定程度的 PVA 分子取向。而另一方面，气体氛围中的高温拉伸会促进 PVA 分子的结晶化，进而阻碍非晶部分的取向。

于是在本发明之前，本发明人等开发了比较例 3 所示的偏振膜及其制造方法。该发明是基于下述令人吃惊的发现而完成的：所述发现着眼于在 Tg 以下的拉伸温度下也能够对包含在 PET 基体材料上成膜的 PVA 类树脂层的叠层体进行拉伸这样的水的增塑剂功能。已经确认，通过该方法，能够使包含在 PET 基体材料上成膜的 PVA 类树脂层的叠层体的拉伸倍率达到 5.0 倍。该方法相当于在本申请人向 PCT/JP2010/001460 中公开的实施例 1。

本发明人等经过进一步研究而确认到，拉伸倍率的极限为 5.0 倍的原因在于：PET 基体材料是由结晶性 PET 形成的。由于包含在 PET 基体材料上成膜的 PVA 类树脂层的叠层体可以在 Tg 以下的碘酸水溶液中拉伸，由此可以认识到，PET 基体材料是结晶性还是非晶性对于拉伸作用并不造成显著影响，但在使用非晶性 PET 的情况下，已确认可以将上述叠层体拉伸至 5.5 倍的拉伸倍率。这样，采用比较例 3 所示的偏振膜的制造方法时，拉伸倍率的极限为 5.5 倍的原因可推测为：受非结晶性的 PET 基体材料限制。

比较例 1 中制作了单体透射率 T 和偏振度 P 不同的各种偏振膜，图 25 中示出了参考例 1 ～ 3 和比较例 1 的偏振膜的光学特性。

参见图 20 的图表。图 20 是本发明人等基于上述研究结果而得到的清楚示出本发明的气体氛围中的高温拉伸倍率和综合拉伸倍率（以下称为“总拉伸倍率”）之间关系的图
表。横轴是利用自由端向拉伸进行拉伸温度 130℃的气体氛围中的拉伸时的拉伸倍率。
纵向的总拉伸倍率表示最气氛氛围中的高温拉伸前的长度即原长作为 1 倍，经过下述包含自
由端单向气体氛围中的高温拉伸的两阶段拉伸处理后，最终拉伸为原长的多少倍。例如，当
利用拉伸温度 130℃的气体氛围中的高温拉伸达到的拉伸倍率为 2 倍、随后的拉伸倍率为 3 倍
时，总拉伸倍率为 6 倍（2×3 = 6）。气体氛围中的高温拉伸之后的第 2 阶段的拉伸方法，是在
拉伸温度 65℃的硼酸水溶液中进行的自由端单向拉伸（以下，将在浸渍于硼酸水溶液中的同
时进行的拉伸处理称为“硼酸水溶液中拉伸”）。通过将这两个拉伸方法组合，可获得图 20 所示的
下述结果。

[0043] 图 20 的实线代表非晶性 PET 的可拉伸倍率。在直接进行硼酸水溶液中拉伸而不
进行气体氛围中的高温拉伸的情况下，即，当气体氛围中的高温拉伸的倍率为 1 倍时，非晶
性 PET 的总拉伸倍率以 5.5 倍为限。进行 5.5 倍以上的拉伸时，会导致非晶性 PET 发生断
裂。但是，此时显示为非晶性 PET 的最小拉伸倍率。气体氛围中的高温拉伸时的拉伸倍率
越大，则非晶性 PET 的总拉伸倍率越大，其可拉伸倍率超过 10 倍。

[0044] 与此相对，图 20 的虚线表示 PVA 的可拉伸倍率。在直接进行硼酸水溶液中拉伸而
不进行气体氛围中的高温拉伸的情况下，PVA 的总拉伸倍率为代表最大倍率的 7 倍。但气体
氛围中的高温拉伸时的拉伸倍率越大，则 PVA 的总拉伸倍率越小，气体氛围中的高温拉伸
时的拉伸倍率为 3 倍时，PVA 的综合拉伸倍率低于 6 倍。欲使 PVA 的综合拉伸倍率为 6 倍
时，PVA 发生断裂。由图 20 可知，无法对包含在非晶性 PET 基体材料上成膜的 PVA 类树脂
层的多层体进行拉伸的原因在于，随着气体氛围中的高温拉伸倍率增大，由来自非晶性 PET
基体材料的原因转变为来自 PVA 类树脂层的原因。另需说明的是，PVA 的气体氛围中的拉
伸倍率到 4 倍为止，无法进行 4 倍以上的拉伸。可以将该倍率推移到相当于 PVA 的总拉伸
倍率的倍率。

[0045] 题目中，参见图 21 的示意图。图 21 是基于实验示出结晶性 PET、非晶性 PET 及 PVA
类树脂的气体氛围中的高温拉伸的拉伸温度、与气体氛围中的高温拉伸和硼酸水溶液中拉
伸的总拉伸倍率之间的关系的示意图。图 18 的示意图中，横轴表示结晶性 PET、非晶性 PET
及 PVA 类树脂的气体氛围中的高温拉伸的拉伸温度，纵横轴表示气体氛围中的高温拉伸的可
拉伸倍率。图 21 与图 18 的示意图的区别在于：图 21 以进行 2 倍的气体氛围中的高温拉伸
时的拉伸温度为横轴、以气体氛围中的高温拉伸和硼酸水溶液中拉伸的总的可拉伸倍率为
纵轴。如后所述，本发明可以通过气体氛围中的高温拉伸及硼酸水溶液中拉伸这两种拉伸
方法的组合来创造。两种拉伸方法的组合并不是简单的组合。本发明人等经过长期而深入
的研究，发现了下述的令人惊讶的结果：通过该组合，能够使下述的 2 个技术问题同时得到
解决，进而完成了本发明。存在被认为是至今无法解决的 2 个技术问题。

[0046] 第 1 个技术问题是：对于 PVA 类树脂取向性的提高具有影响的拉伸倍率及拉伸温
度，很大程度上受到用于其上形成 PVA 类树脂的热塑性树脂基体材料的限制。

[0047] 第 2 个技术问题是：即使能够克服拉伸倍率及拉伸温度受限的问题，对于 PVA.PET
等结晶性树脂而言，由于结晶化和可拉伸性是对立的物性，因此 PVA 的拉伸仍会受到 PVA 的
结晶化的限制。

[0048] 第 1 个问题如下所述。如图 18 所示，使用热塑性树脂基体材料制造偏振膜时的限
制，是由拉伸温度在 PVA 类树脂的 Tg (75～80℃) 以上，拉伸倍率为 4.5～5.0 倍这样的
PVA的特性引起的。使用结晶性PET作为热塑性树脂基体材料时，拉伸温度进一步被限定为90～110℃。通过叠层体的气体氛围中的高温拉伸，使该叠层体中所含的形成于热塑性树脂基体材料上的PVA类树脂层发生薄膜化后，所得偏振膜仍然不可避免地受到这样的限制。因此，本发明人等基于水的增塑剂功能的发现，提出一种可取代气体氛围中的高温拉伸的硼酸水溶液中拉伸方法。但即使通过拉伸温度为60～85℃的硼酸水溶液中拉伸，也无法避免由热塑性树脂基体材料引起的限制，即，使用结晶性PET时，拉伸倍率以5.0倍为限，使用非晶性PET时，拉伸倍率的上限为5.5倍。这样，会导致PVA分子取向性的提高受限，经过薄膜化的偏振膜的光学特性也受到限制的结果。这是第1个技术问题。

[0049]可结合图22所示的示意图对第1个技术问题的解决方法进行说明。图22由2个关联图构成。一个表示出用作热塑性树脂基体材料的PET的取向性的图，另一个是示出PET的结晶度的图。这两个图的横轴均代表气体氛围中的高温拉伸与硼酸水溶液中拉伸的总拉伸倍率。图22的虚线表示仅进行硼酸水溶液中拉伸时的总拉伸倍率。无论是结晶性还是非晶性的PET，其结晶度均在拉伸倍率为4～5倍时急剧升高。因此，即使是采用硼酸水溶液中拉伸的情况下，拉伸倍率也以5倍或5.5倍为限。此时，取向性达到上限，拉伸张力急剧升高。即无法进行拉伸。与此相对，图22的实线代表经过上述拉伸后的结果：在拉伸温度110℃下进行气体氛围中的高温自由单向拉伸，并使拉伸倍率达到2倍，然后，进行拉伸温度65℃的硼酸水溶液中拉伸。无论是结晶性还是非晶性的PET，其结晶度均未发生急剧升高，这与仅进行硼酸水溶液中拉伸的情况不同。其结果，总的可拉伸倍率可提高至7倍。此时，取向性达到上限，拉伸张力急剧升高。由图21可知，这是采用气体氛围中的高温自由单向拉伸作为第1阶段的拉伸方法的结果。相对而言，如果采用后述的利用固定单向拉伸进行的气体氛围中的高温拉伸，则总的可拉伸倍率可达8.5倍。

[0050]通过解决第1个技术问题，可以消除由PET基体材料引起的对于拉伸倍率的限制，使总拉伸达到高倍率化，由此可以提高PVA的取向性。由此，可使偏振膜的光学特性得到明显改善。但光学特性的改善并不仅限于此，这是通过解决第2个技术问题而达成的。

[0051]第2个技术问题如下所述。PVA、PET等结晶性树脂的特征之一是：通常具有可通过加热、拉伸取向使高分子排列而促进结晶化的性质。PVA的拉伸受到作为结晶性树脂的PVA的结晶化的限制。结晶化和可拉伸性是对立的物性，PVA的结晶化的提高会妨碍PVA的取向性，这是—般的认识，这就是第2个技术问题。

[0052]可结合图23对解决该技术问题的方法进行说明。图23中用实线和虚线示出了基于2个实验结果算出的PVA的结晶度与PVA的取向函数之间的关系。

[0053]图23中的实线示出了下述试验的PVA的结晶度与PVA的取向函数之间的关系。首先，作为试验，在相同条件下制作了6个包含在非晶性PET基体材料上成膜的PVA类树脂层的叠层体。对于准备的6个包含PVA类树脂层的叠层体，分别通过气体氛围中的高温拉伸在不同的拉伸温度80℃、95℃、110℃、130℃、150℃及170℃下进行了拉伸，并使它们达到相同的拉伸倍率1.8倍，由此制作了包含PVA类树脂层的拉伸叠层体。对制作的各个拉伸叠层体中所含的PVA类树脂层的结晶度和PVA的取向函数进行了测定及解析。

[0054]具体的测定方法及解析方法如后所述。

[0055]图23中的虚线与实线的情况相同，示出了下述试验中的PVA的结晶度与PVA的取向函数之间的关系。首先，通过在相同条件下制作了6个包含在非晶性PET基体材料上成
膜的 PVA 类树脂层的叠层体准备了样品。对于准备的 6 个包含 PVA 类树脂层的叠层体，分别通过气体氛围中的高温拉伸、在相同的拉伸温度 130℃下进行了拉伸，并使它们分别达到不同的拉伸倍率 1.2 倍、1.5 倍、1.8 倍、2.2 倍、2.5 倍及 3.0 倍，由此制作了包含 PVA 类树脂层的拉伸叠层体。通过后述方法对制作的各个拉伸叠层体中所含的 PVA 类树脂层的结晶度和 PVA 的取向函数进行了测定及解析。

[0056] 通过图 23 中的实线可以确认，越是将气体氛围中的高温拉伸的拉伸温度设定为高温的拉伸叠层体中所含的 PVA 类树脂层，其 PVA 的取向性越高。另外，图 23 中的虚线还可以确认，越是将气体氛围中的高温拉伸的拉伸倍率设定为高倍率的拉伸叠层体中所含的 PVA 类树脂层，其 PVA 的取向性越高。通过在进行第 2 阶段的硼酸水溶液中拉伸之前预先使 PVA 的取向性提高，即预先提高 PVA 的结晶度，结果也可以提高硼酸水溶液中拉伸后的 PVA 的取向性。此外，通过后述的实施例的 T-P 图，还可确认到下述结果：通过提高 PVA 的取向性，也可以提高多碘离子的取向性。

[0057] 通过预先将第 1 阶段的气体氛围中的高温拉伸的拉伸温度设定为高温，或预先将拉伸倍率设定为更高倍率，可获得下述的意想不到的结果：能够进一步提高经第 2 阶段的硼酸水溶液中拉伸而制作的 PVA 类树脂层的 PVA 分子的取向性。

[0058] 第 1 个技术问题的解决方法为：预先通过第 1 阶段的气体氛围中的高温拉伸对包含在非晶性 PET 基体材料上成膜的 PVA 类树脂层的叠层体进行预备或辅助的拉伸，并通过第 2 阶段的硼酸水溶液中拉伸，从而使 PVA 类树脂层拉伸至高倍率而不受非晶性 PET 基体材料的拉伸倍率的限制，由此来充分提高 PVA 的取向性。

[0059] 另外，第 2 个技术问题的解决方法为：预先将第 1 阶段的气体氛围中的高温拉伸的拉伸温度预备或辅助性地设定于更高温度，或将拉伸倍率预备或辅助性地设定于更高倍率，由此带来下述意想不到的结果：进一步提高经第 2 阶段的硼酸水溶液中拉伸而制作的 PVA 类树脂层的 PVA 分子的取向性。在任一情况下，均可将第 1 阶段的气体氛围中的高温拉伸作为第 2 阶段的硼酸水溶液中拉伸的预备或辅助的气体氛围中的拉伸方法。以下，将“第 1 阶段的气体氛围中的高温拉伸”称为“气体氛围中的辅助拉伸”，以区别于第 2 阶段的硼酸水溶液中拉伸。

[0060] 在本发明中，所述“气体氛围中的拉伸”是指，在浸渍在水中或水溶液中，而在气体氛围中进行的拉伸，所述“辅助拉伸”是指，在进行第 2 阶段的拉伸之前进行的“前阶段的拉伸”。

[0061] 作为通过进行“气体氛围中的辅助拉伸”来解决特别是第 2 个技术问题的机理，可推测如下。正如由图 23 可以确认的那样，气体氛围中的辅助拉伸越在高温下、或越以高倍率进行，则气体氛围中的辅助拉伸后的 PVA 类树脂层的取向性越高。其主要原因可推测为：越是高温或高倍率，就越能够在 PVA 的结晶化得到促进的同时实现拉伸，这样，可以在局部产生交联点的同时进行拉伸。由此，可提高 PVA 的取向性。通过在进行硼酸水溶液中拉伸之前预先进行气体氛围中的辅助拉伸来提高 PVA 的取向性，在浸渍于硼酸水溶液中时，可使硼酸与 PVA 易于交联，从而在硼酸产生结点的同时实施拉伸。这样，在硼酸水溶液中拉伸后，PVA 的取向性也得到提高。

[0062] 本发明的实施方式如下所述。

[0063] 本发明提供一种光学膜叠层体的制造方法，所述光学膜叠层体是连续带状的在非
晶性酯类热塑性树脂基体材料上成膜有二色性物质发生了取向的偏振膜的叠层体。该偏振膜由 PVA 类树脂形成，其中，该制造方法包括下述工序：制作拉伸叠层体的工序，通过对包含所述非晶性酯类热塑性树脂基体材料和在所述非晶性酯类热塑性树脂基体材料上成膜的 PVA 类树脂层的叠层体进行气体氛围中的高温拉伸，制作包含拉伸中间产物的拉伸叠层体，所述拉伸中间产物由发生了取向的 PVA 类树脂层形成；制作着色叠层体的工序，通过二色性物质对所述拉伸叠层体的吸附，制作包含着色中间产物的着色叠层体，所述着色中间产物由二色性物质发生了取向的 PVA 类树脂层形成；以及制作光学膜叠层体的工序，通过对所述着色叠层体进行硼酸水溶液中拉伸，制作包含二色性物质发生了取向的偏振膜的光学膜叠层体，所述偏振膜由 PVA 类树脂形成。

【0064】其中，气体氛围中的辅助拉伸并无限定，例如为使用烘箱等加热装置的第 1 阶段的“在气体氛围中于高温进行拉伸的处理”。另外，硼酸水溶液中拉伸并无限定，例如为第 2 阶段的“在硼酸水溶液中浸渍的同时进行拉伸的处理”。

【0065】本发明的实施方式中，可包含下述光学膜叠层体的制造方法，该光学膜叠层体包含偏振膜，该偏振膜是在持续带状的非晶性酯类热塑性树脂基体材料上成膜的、二色性物质发生了取向的，由 PVA 类树脂形成的偏振膜，其中，该偏振膜的由单体透射率 T 和偏振度 P 表征的光学特性值满足下述不等式表示的范围：

\[P \geq \frac{T}{100} \times (10^{0.5391 \times 2.75 - 1}) \times 100, \text{ 其中，} T \leq 42.3, \]

\[P \geq 99.9, \text{ 其中，} T \geq 42.3. \]

【0066】另需说明的是，偏振膜的由单体透射率 T 和偏振度 P 表征的光学特性值 在该不等式表示的范围内时，其满足使用大型显示元件的液晶电视用显示装置所要求的性能。具体是指，对比度为 1000：1 以上，且最大亮度为 500cd/m² 以上。以下将其称作“要求性能”。

【0067】需要说明的是，液晶单元的背光侧和观看侧中任一侧的偏振膜的偏光性能须至少在该范围内。另外，在使用偏振度 P 为 99.9% 以下的偏振膜作为背光侧和观看侧中任一侧的偏振膜的情况下，作为另一侧的偏振膜，无论使用偏光性能多优异的偏振膜，也无法达到要求性能。

【0068】本发明的实施方式中，可包括在非晶性酯类热塑性树脂基体材料上成膜 PVA 类树脂层的工序。对于该工序没有限定，可使之为非晶性酯类热塑性树脂基体材料上涂布 PVA 类树脂并进行干燥的工序。

【0069】本发明的实施方式中，非晶性酯类热塑性树脂基体材料的厚度优选为成膜的 PVA 类树脂层的厚度的 6 倍以上，更优选为 7 倍以上。非晶性酯类热塑性树脂基体材料的厚度为 PVA 类树脂层的 6 倍以上时，不会产生下述的不良情况：在制造工序中进行搬运时的膜强度变弱，发生断裂这样的搬运性问题，在用作液晶显示器的背光侧和观看侧中任一侧的偏振膜的偏振膜的卷边性及转印性等问题。

【0070】参见图 1。图 1 是确认在非晶性酯类热塑性树脂基体材料的厚度和 PVA 类树脂层的涂布厚度（偏振膜厚度）之间是否产生不良情况的图。如图 1 所示，在 5 倍左右的厚度下，可导致搬运性产生问题。

【0071】本实施方式中，偏振膜的厚度优选为 10μm 以下。对于厚度为 3～10μm 以下的偏振膜而言，由代表偏振膜的偏光性能的图 2 的 T-P 图可以确认，厚度为 3μm、8μm、10μm 的各偏振膜的偏光性能不存在显著差异，具有满足上述不等式的光学特性。图 2 至少表明：
厚度不超过 10 μm 的偏振膜不存在断裂耐久性产生问题的隐患，可获得满足要求性能的光学特性。

[0073] 本发明的实施方式中，非晶性酯类热塑性树脂基体材料可包含非晶性聚对苯二甲酸乙二醇酯，还包括聚对苯二甲酸乙二醇酯、共聚有环己烷二甲醇的共聚聚对苯二甲酸乙二醇酯，或其它共聚聚对苯二甲酸乙二醇酯。为了能够作为用于保护偏振膜的一面的光学功能膜，非晶性酯类热塑性树脂基体材料还优选为透明树脂。另外，二色性物质可以是碘或碘与有机染料的混合物中的任一种。

[0074] 本发明的实施方式中，优选气体氛围中的辅助拉伸的拉伸倍率为 3.5 倍以上，拉伸温度为 PVA 类树脂的玻璃化转变温度以上。另外，气体氛围中的辅助拉伸的拉伸温度更优选在 95℃～150℃的范围。

[0075] 本发明的实施方式中，通过气体氛围中的辅助拉伸制备的包含发生了取向的 PVA 类树脂层的拉伸叠层体不限于此，可通过浸渍于二色性物质碘的染色液中来制作包含碘发生了取向的 PVA 类树脂层的着色叠层体。

[0076] 本发明的实施方式中，优选在浸渍于染色液中之前，预先对拉伸叠层体进行不溶化。具体而言，该工序没有限定，但该工序是通过将拉伸中间产物在液温 30℃的硼酸水溶液中浸渍 30 分钟，对拉伸叠层体包含的 PVA 分子发生了取向的 PVA 类树脂层实施不溶化的工序。本工序的硼酸水溶液中，相对水 100 重量份，含有硼酸 3 重量份。该不溶化工序所要求的技术课题是，至少在染色工序中，不使拉伸叠层体包含的 PVA 类树脂层发生溶解。如果将该工序作为第 1 不溶化，则还可以赋予下述工序作为第 2 不溶化：在包含二色性物质发生了取向的 PVA 类树脂层的着色叠层体进行硼酸水溶液中拉伸之前，通过将该着色叠层体在 40℃的硼酸水溶液中浸渍 60 分钟来实施交联处理，从而进行不溶化。在本发明的实施方式中，第 1 及第 2 不溶化均对最终制造的光学膜叠层体包含的偏振膜的光学特性产生影响。

[0077] 本发明的实施方式中，在以自由端向拉伸进行气体氛围中的辅助拉伸时，在非晶性酯类热塑性树脂基体材料上成膜的 PVA 类树脂层的最终的总拉伸倍率优选为 5 倍以上 7.5 倍以下。另外，在以固定端向拉伸进行气体氛围中的辅助拉伸时，在非晶性酯类热塑性树脂基体材料上成膜的 PVA 类树脂层的最终的总拉伸倍率优选为 5 倍以上 8.5 倍以下。

[0078] 本发明的实施方式中，还可以包括下述工序：利用含有碘化物的水溶液对包含二色性物质发生了取向的偏振膜的所述光学膜叠层体进行洗涤，所述含有碘化物的水溶液的温度低于光学膜叠层体所包含的非晶性酯类热塑性树脂基体材料的玻璃化转变温度，所述偏振膜由 PVA 类树脂形成。另外，还可以包括下述工序：于 50℃以上且 100℃以下的温度对经过洗涤的光学膜叠层体进行干燥。

[0079] 本发明的实施方式中，还可以包括下述工序：在经过干燥的光学膜叠层体所包含的成膜在非晶性酯类热塑性树脂基体材料上的偏振膜的一面，通过粘合剂层分离膜。或者，还可以包括下述工序：在经过干燥的光学膜叠层体所包含的偏振膜的成膜在非晶性酯类热塑性树脂基体材料上的面上，通过粘接剂层光学功能膜，同时将非晶性酯类热塑性树脂基体材料从偏振膜上剥离，由此将偏振膜转移于光学功能膜上，制造在光学功能膜上转印有偏振膜的光学功能膜叠层体。
附图说明

[0080] 图 1 是示出相对于 PVA 层的厚度（或偏振膜厚）的树脂基体材料的适当厚度的图。

[0081] 图 2 为厚 3 μm、8 μm、10 μm 的偏振膜的偏光性能的比较图。

[0082] 图 3 是单体透射率和偏振度的 T-P 曲线的示意图。该 T-P 曲线是表示偏振膜的性能的曲线图，将偏振膜的单体透射率和偏振度作成曲线图时，可以用该曲线来表示偏振膜的性能，该曲线是位于图中右上角的位置，表示性能越高。

[0083] 图 4 是示出偏振膜的要求性能的范围的图。

[0084] 图 5 是基于二色性比来表示偏振膜 1～7 的偏光性能的理论值的图。

[0085] 图 6 是由染色溶液的染浓度不同引起的 PVA 类树脂层的溶解情况比较表。

[0086] 图 7 是由染色溶液的染浓度不同引起的由 PVA 类树脂层制成的偏振膜的偏光性能的比较图。

[0087] 图 8 是实施例 1～4 的偏振膜的偏光性能的比较图。

[0088] 图 9 是光学膜层结构的不包括不溶化处理的制造工序的简图。

[0089] 图 10 是光学膜层结构的包括不溶化处理的制造工序的简图。

[0090] 图 11 是经偏振膜的贴合转印工序而得到的光学膜层结构的式样图。

[0091] 图 12 是经偏振膜的贴合转印工序而得到的光学膜层结构的式样图。

[0092] 图 13 是实施例 4～6 的偏振膜的偏光性能（PVA 层厚度、非晶性 PET 基体材料）的比较图。

[0093] 图 14 是实施例 4、7～9 的偏振膜的偏光性能（气体氛围中的辅助拉伸的拉伸倍率）的比较图。

[0094] 图 15 是实施例 4、10～12 的偏振膜的偏光性能（气体氛围中的辅助拉伸倍率）的比较图。

[0095] 图 16 是实施例 4、13～15 的偏振膜的偏光性能（总拉伸倍率）的比较图。

[0096] 图 17 是实施例 16～18 的偏振膜的偏光性能（固定单向拉伸）的比较图。

[0097] 图 18 是示出结晶性 PET、非晶性 PET 及 PVA 类树脂的各自的拉伸温度与可拉伸倍率之间的相对关系的示意图。

[0098] 图 19 是示出结晶性 PET 及非晶性 PET 伴随温度在 Tg 和熔点 Tm 之间变化而产生的结晶化速度的变化的示意图。

[0099] 图 20 是示出非晶性 PET 及 PVA 的气体氛围中的高温拉伸倍率与总拉伸倍率之间关系的示意图。

[0100] 图 21 是示出结晶性 PET、非晶性 PET 及 PVA 类树脂的气体氛围中的高温拉伸温度与总的可拉伸倍率之间的相对关系的示意图。

[0101] 图 22 是示出作为热塑性树脂基体材料使用的 PET 的取向性和结晶度相对于总拉伸倍率的关系的示意图。

[0102] 图 23 是示出 PVA 的结晶度和 PVA 的取向函数的相对关系的图。

[0103] 图 24 是使用热塑性树脂基体材料制造的偏振膜的制造工序的简图。

[0104] 图 25 是示出比较例 1 和参考例 1～3 的偏振膜的偏光性能的图。

[0105] 图 26 是实施例 1～10 中制造的偏振膜，或包含偏振膜的光学膜层结构的制造条
件的一览表。

图 27 是实施例 11 ～18 中制造的偏振膜、或包含偏振膜的光学膜叠层体的制造条件的一览表。

符号说明

1 非晶性 PET 基体材料
2 PVA 类树脂层
3 偏振膜
4 光学功能膜
5 第 2 光学功能膜
6 包含 PVA 类树脂层的叠层体
8 拉伸叠层体
8’ 拉伸叠层体的卷
8” 经过不溶化的拉伸叠层体
9 着色叠层体
9’ 经过交联的着色叠层体
10 光学膜叠层体
11 光学功能膜叠层体
12 光学膜叠层体（式样 1）
13 光学膜叠层体（式样 2）
14 光学功能膜叠层体（式样 3）
15 光学功能膜叠层体（式样 4）
16 粘合剂
17 分离膜
18 粘接剂
20 叠层体制作装置
21 涂敷机构
22 干燥机构
23 表面改性处理装置
30 气体氛围中的辅助拉伸处理装置
31 拉伸机构
32 卷绕装置
33 烘箱
40 染色装置
41 染色液
42 染色浴
43 连续抽出装置
50 硼酸水溶液中处理装置
51 硼酸水溶液
52 硼酸液

16
具体实施方式
作为偏振膜的背景技术，针对由本发明中使用的热塑性树脂基体材料的材料特性和偏振膜的偏光性能表征的光学特性进行技术说明。

在此，对本发明中使用的热塑性树脂的一般的材料特性进行概述。

热塑性树脂可大致分为高分子处于有序排列的结晶状态的树脂，和高分子不具有有序排列，或仅有极少一部分具有有序排列的无定形或非晶态的树脂。将前者称为结晶状态，后者称为无定形或非晶态。相应地，将具有可形成结晶态的性质的热塑性树脂称为结晶性树脂，将不具有这样的性质的热塑性树脂称为非结晶性树脂。另一方面，无论是结晶性树脂还是非结晶性树脂，均不处于结晶状态的树脂或未达到结晶状态的树脂称为无定形或非晶性树脂。而将无定形或非晶性的树脂与具有可形成结晶状态的性质的非结晶性树脂区别使用。

作为结晶性树脂，包括例如聚乙烯 (PE)、聚丙烯 (PP) 在内的烯烃类树脂，及包括聚对苯二甲酸乙二醇酯 (PET)、聚对苯二甲酸丁二醇酯 (PBT) 在内的酯类树脂。结晶性树脂的特征之一是具有下述性质：通常，高分子会因加热、拉伸取向而发生排列，从而促进结晶化。结晶性树脂的物性因结晶化程度不同而发生变化。另一方面，即使对于例如聚丙烯 (PP)、聚对苯二甲酸乙二醇酯 (PET) 这样的结晶性树脂，也可以通过加热处理，拉伸取向而发生结晶化。将结晶化受到抑制的这些聚丙烯 (PP)、聚对苯二甲酸乙二醇酯 (PET) 称为非结晶性聚丙烯、非结晶性聚对苯二甲酸乙二醇酯，并将它们分别统称为非结晶性烯烃类树脂、非结晶性酯类树脂。

例如，对于聚丙烯 (PP) 的情况而言，通过使其成为不具有有规律性的无规立体结构，可制成结晶化受到抑制的非结晶性聚丙烯 (PP)。此外，对于例如聚对苯二甲酸乙二醇酯 (PET) 的情况，通过使用间苯二甲酸 1,4-环己烷二甲酸这样的改性基团作为聚合单体进行共聚，即通过使用阻碍聚对苯二甲酸乙二醇酯 (PET) 的结晶化分子进行共聚，可制成结晶化受到抑制的非结晶性聚对苯二甲酸乙二醇酯 (PET)。

以下，针对可应用于大型液晶显示器元件的偏振膜的光学性能进行概述。

所述偏振膜的光学特性，事实上是指偏振度 P 和单体透射率 T 表征的偏光性能。偏振膜的偏振度 P 与单体透射率 T 之间通常处于折衷 (trade off) 关系。这两个光学特性值可利用 T-P 图表示。在 T-P 图中，作图而得到的线越位于单体透射率高的右方及偏振度高的上方，则偏振膜的偏光性能越优异。

参见图 3 的示意图。理想光学特性为 T = 50%, P = 100% 的情况。T 值越低则 P 值易提高，T 值越低则 P 值易高。另外，对于位于由图 4 绘制的线所划定的范围内的单体透射率 T 低偏振度 P 而言，其“要求性能”具体为显示器的对比度为 1000 : 1 以上，且最大亮度为 5000cd/m² 以上。该要求性能无论在目前还是将来都被认为是作大型液晶显示器元件等的偏振膜性能所要求的光学特性。单体透射率 T 的理想值为 T = 50%，但在光透偏振膜时对偏振膜与空气的界面处会发生部分光反射的现象。考虑到反射现象的情况下，由于单体透射率 T 仅减少与反射相当的量，因此实际上能达到的 T 值的最大值为 45 ~ 46% 左右。

另外，偏振度 P 可转换为偏振膜的对比度 (CR)。例如 99.95% 的偏振度 P 相当于偏振膜的对比度为 2000 : 1。将该偏振膜用于液晶电视用单元的两侧时，显示器的对比度为 1050 : 1。这里，显示器的对比度低于偏振膜的对比度的原因在于，在元件内部会发生消
偏振。偏振是由下述原因引起的：透过背光侧的偏振膜而照射进来的光在透过元件内部时，会因滤色器中的颜料、液晶分子层、TFT（薄膜晶体管）的存在而发生光的散射和／或反射，导致部分光的偏振状态发生变化。偏振膜及显示器的对比度中任一者越大时，液晶电视的反差越优异，越容易观看。

[0189] 另外，偏振膜的对比度定义为平行透射率 Tp 除以垂直透射率 Tc 而得到的值。与此相对，可以将显示器的对比度定义为最大亮度除以最小亮度而得到的值。所述最小亮度，是呈全黑显示时的亮度。对于假定为通常的视听环境的液晶电视的情况，以 0.5cd/m² 以下的最小亮度为要求标准。超过该值，则色彩再现性降低。另外，所述最大亮度，是呈全白显示时的亮度。对于假定为通常的视听环境的液晶电视的情况，使用最大亮度在 450 ～ 550cd/m² 范围内的显示器。低于该值，则由于显示变暗，液晶电视的视觉辨性下降。

[0190] 使用大型显示元件的液晶电视用显示器所要求的性能如下；对比度为 1000 ： 1 以上，且最大亮度为 500cd/m² 以上。将其称为“要求性能”。图 4 的线 1（T < 42.3%）及线 2（T ≥ 42.3%）表示偏振膜偏振性能的临界值，其是为达到该要求性能所必须的值。该线是基于图 5 所示的背光侧与观看侧的偏振膜”的组合，通过下述模拟而求出的。

[0191] 液晶电视用显示器的对比度和最大亮度可基于光源（背光单元）的光量、配置于背光侧和观看侧的 2 个偏振膜的透射率、元件的透射率、背光侧和观看侧的 2 个偏振膜的偏振度、元件的消偏振率而计算出。通过使用常规液晶电视的光量（10,000cd/m²）、元件的透射率（13%）、及消偏振率（0.085%）的基础数值，将各种偏振性能的偏振膜组合，并针对每个组合算出液晶电视用显示器的对比度和最大亮度，可导出满足要求性能的图 4 的线 1 及线 2。即，使用未达到线 1 及线 2 的偏振膜时，显示器表现为 1000 ： 1 以下的对比度，500cd/m² 以下的最大亮度。计算中使用的算式如下所示。

[0192] 式 (1) 是用来求算显示器的对比度的式子，式 (2) 是用来求算显示器的最大亮度的式子。式 (3) 是用来求算偏振膜的二色性比的式子。

[0193] 式 (1)：CRD = Lmax/Lmin
[0194] 式 (2)：Lmax = (LB × Tp−(LB/2 × k1B × DP/100))/2 × (k1F−k2F) × Tc11/100
[0195] 式 (3)：
[0196] DR = A/k1 / A/k1 = log(k2)/log(k1) = log(Ts/100 × (1−P/100)/T_PV)/log(Ts/100 × (1+P/100)/T_PV)

[0197] 其中，
[0198] Lmin = (LB × Tc+(LB/2 × k1B × DP/100))/2 × (k1F−k2F) × Tc11/100
[0199] Tp = (k1B × k1F+k2B × k2F)/2 × T_PV
[0200] Tc = (k1B × k2F+k2B × k1F)/2 × T_PV
[0201] k1 = Ts/100 × (1+P/100)/T_PV
[0202] k2 = Ts/100 × (1−P/100)/T_PV
[0203] CRD：显示器的对比度
[0204] Lmax：显示器的最大亮度
[0205] Lmin：显示器的最小亮度
[0206] DR：偏振膜的二色性比
[0207] Ts：偏振膜的单体透射率
[0208] P:偏振膜的偏振度
[0209] k_1:第1主透射率
[0210] k_2:第2主透射率
[0211] k_{1F}:观看侧偏振膜的 k_1
[0212] k_{2F}:观看侧偏振膜的 k_2
[0213] k_{1B}:背光侧偏振膜的 k_1
[0214] k_{2B}:背光侧偏振膜的 k_2
[0215] A_{k1}:偏振膜的透过轴方向的吸光度
[0216] A_{k2}:偏振膜的吸收轴方向的吸光度
[0217] L_B:光源的光量 (10000cd/m²)
[0218] T_c:偏振膜的垂直透射率（观看侧偏振片与背光侧偏振片的组合）
[0219] T_p:偏振膜的平行透射率（观看侧偏振片与背光侧偏振片的组合）
[0220] T_{cell}:元件的透射率 (13%)
[0221] D_P:元件的消偏振率 (0.085%)
[0222] T_{PA}:未吸附酸的 PVA 膜的透射率 (0.92)。
[0223] 图 4 的线 1 ($T < 42.3\%$) 可由图 5 的偏振膜 3 的偏光性能导出。在图 5 的偏振膜 3 中，偏光性能以坐标 $(T, P) = (42.1\%, 99.95\%)$ 表示的点 D（空心圆）的偏振膜 D 在用于液晶电视用显示器的背光侧和观看侧这两侧时，能够达到要求性能。
[0224] 然而，即使同为偏振膜 3，将单体透射率低（更暗）的偏光性能不同的 3 个偏振膜 $A(T = 40.6\%, P = 99.998\%), B(T = 41.1\%, P = 99.994\%), C(T = 41.6\%, P = 99.98\%)$ 用于背光侧和观看侧这两侧时，也并非均能达到要求性能。使用偏振膜 A，B 或 C 作为背光侧和观看侧中任一侧的偏振膜的情况下，为了达到要求性能，例如，作为另一侧的偏振膜，使用使用偏振膜 4 的偏振膜 E，属于偏振膜 5 的偏振膜 F，或属于偏振膜 7 的偏振膜 G 这样的与偏振膜 3 相比单体透射率高，且偏幅度至少在 99.9%以上的偏光性能优异的偏振膜。
[0225] 偏振膜 1～7 的偏光性能可基于式 (3) 算出。通过使用式 (3)，可由作为偏振膜的偏光性能的指标的二色性比 (DR) 求出单体透射率 T 和偏振度 P。所述二色性比，是指偏振膜的吸收轴方向的吸光度除以透过轴方向的吸光度而得到的值。该数值越高，则代表偏光性能越好。例如，经计算，偏振膜 3 是具有二色性比约为 94 的偏光性能的偏振膜。低于该值的偏振膜无法达到要求性能。
[0226] 此外，作为背光侧和观看侧中任一侧的偏振膜，使用偏光性能比偏振膜 3 差的例子如偏振膜 1 的偏振膜 H (41.0%, 99.95%) 或偏振膜 2 的偏振膜 J (42.0%, 99.9%) 的情况下，由式 (1)，(2) 可知，为了达到要求性能，例如，作为另一侧的偏光膜，必须使用属于偏振膜 6 的偏振膜 I (43.2%, 99.95%) 或偏振膜 7 的偏振膜 K (42.0%, 99.998%) 这样的与偏振膜 3 相比偏光性能更为优异的偏振膜。
[0227] 为了达到液晶电视用显示器的要求性能，背光侧和观看侧中任一侧的偏振膜的偏光性能至少比偏振膜 3 优异。图 4 的线 1 ($T < 42.3\%$) 显示其下限值。
[0228] 另一方面，图 4 的线 2 ($T \geq 42.3\%$) 显示偏振度 P 的下限值。使用偏振度 P 为 99.9% 以上的偏振膜作为背光侧和观看侧中任一侧的偏振膜的情况下，作为另一侧的偏光
膜，无论使用偏光性能多优异的偏振膜，也无法达到要求性能。

[0229] 作为结论，要达到使用大型显示元件的液晶电视用显示器所要求的偏光性能的情况下，其最低条件为：背光侧和观看侧中间的一侧的偏振膜是偏光性能至少在超过线1（T < 42.3%）及线2（T ≥ 42.3%）所示范围的偏振膜，具体而言，是具有优于偏振膜3的偏光性能，偏振度为99.9%以上的偏振膜。

[0230] 此外，在使用热塑性树脂基体材料制造由PVA类树脂形成的偏振膜的方法中，本发明的实施方式中的第1及第2不溶化方法作为重要的技术问题之一，如下所述。

[0231] 在不使拉伸中间产物（或拉伸叠层体）中所含的PVA类树脂层溶解于染色液的情况下使偏振膜附于PVA类树脂层中，这并不是简单的技术。在偏振膜的制造中，使偏振膜附于经过薄膜化的PVA类树脂层是重要的技术课题。通常，通过使用用于染色工序的染色液的偏振度在0.12 ～ 0.25重量%范围内的偏振度不同的染色液，并使浸渍时间恒定，来对PVA类树脂层中的染液吸附量进行调整。就该染色染液处理而言，在制造偏振膜的情况下，由于会发生PVA类树脂层的溶解，因此无法进行染色。这里，所述浓度，是指相对于溶液总量的配合比例。另外，所述染液浓度，是指相对于溶液总量的配合比例，不包括以例如碘化钾溶物化物的形式添加的碘的量。本说明书的后续内容中，浓度及偏振度这样的技术用语也采用同样的含义。

[0232] 由图6所示的实验结果可知，该技术问题可通过使用2色性树脂染料为0.3重量%或其以上来解决。具体如下：使用偏振度不同的染色液对包含由PVA类树脂层形成的拉伸中间产物的拉伸叠层体进行染色，并调节其浸渍时间，由此来制作包含着色中间产物的着色叠层体，并通过进行硫酸水溶液中拉伸来制作具有各种偏光性能的偏振膜。

[0233] 参见图7的图表。由图7可以确认，偏振度分别调整为0.2重量%、0.5重量%、1.0重量%而制作的偏振膜的偏光性能并不存在显著差别。另需说明的是，在包含着色中间产物的着色叠层体的制作中，为了实现稳定、均一性优异的着色，相比于加大偏振度、以短暂的浸渍时间进行染色，更优选以较稀薄的浓度确保稳定的浸渍时间。

[0234] 参见图8的图表。可见，本发明的实施方式中的第1不溶化及第2不溶化（以下称为“第1不溶化及第2不溶化”）均会对最终制造的偏振膜的光学特性造成影响。图8可以为是第1不溶化及第2不溶化对于经过薄膜化的PVA类树脂层的效果的分析结果。图8示出了基于适合使用大型显示元件的液晶电视用显示器所要求的要求性能的4个实施例1 ～ 4而制造的各偏振膜的光学特性。

[0235] 实施例1为未经第1不溶化及第2不溶化工序而制造的偏振膜的光学特性。与此相对，实施例2示出了未经第1不溶化工序、仅进行了第2不溶化处理的偏振膜的光学特性；实施例3示出了未经第2不溶化工序、仅进行了第1不溶化处理的偏振膜的光学特性；实施例4示出了进行了第1不溶化及第2不溶化处理的偏振膜的光学特性。

[0236] 本发明的实施方式中，可不经第1不溶化及第2不溶化工序而制造出满足要求性能的偏振膜。但是，如图8所示，实施例1的未经不溶化处理的偏振膜的光学特性低于实施例2 ～ 4中任一偏振膜的光学特性。分别将它们的光学特性值进行比较后发现，光学特性以实施例1＜实施例3＜实施例2＜实施例4的顺序依次增高。实施例1及实施例2中，均使用了碘浓度设定为0.3重量%、碘化钾浓度设定为2.1重量%的染色液。与此相对，实施例3及实施例4中使用的是碘浓度设定为0.12 ～ 0.25重量%、碘化钾浓度在0.84 ～ 1.75
重量%范围内变化的多个染色液。实施例 1 与实施例 3 的组和实施例 2 与实施例 4 的组之间的显著差异在于，前者的着色中间产物未经不溶化处理，而后者的着色中间产物经过了不溶化处理。实施例 4 中，不仅是硼酸处理前的着色中间产物，对于染色处理前的拉伸中间产物也实施了不溶化处理。通过第 1 不溶化及第 2 不溶化处理，可使偏振膜的光学特性得到进一步提高。

[0237] 由图 7 可知，使偏振膜的光学特性提高的机理并非在于染色液的碘浓度，而是由第 1 不溶化及第 2 不溶化处理达到的效果。可以将这一认识作为本发明的制造方法中的第 3 个技术问题及其解决方法。

[0238] 本发明的实施方式中，第 1 不溶化是用于使拉伸中间产物（或拉伸叠层体）中所含的经过薄膜化的 PVA 类树脂层不发生溶解的处理。与此相对，包括在交联工序中的第 2 不溶化包括上述着色稳定化处理和上述不溶化处理，所述着色稳定化处理使其在后续工序的液温 75℃的硼酸水溶液中拉伸的过程中，对着色中间产物（或着色叠层体）中所含的 PVA 类树脂层进行着色的碘不发生溶出；所述不溶化处理使得经过薄膜化的 PVA 类树脂层不发生溶出。

[0239] 但如果省略第 2 不溶化工序，则在液温 75℃的硼酸水溶液中拉伸的过程中，吸附于 PVA 类树脂层的碘的溶出加速，由此还会加速 PVA 类树脂层的溶解。可通过降低硼酸水溶液的液温来避免碘的溶出及 PVA 类树脂层的溶解。例如，在将着色中间产物（或着色叠层体）浸渍于液温低于 65℃的硼酸水溶液中的同时进行拉伸。但这样一来，会导致水的增塑剂功能得不到充分发挥，进而无法充分实现着色中间产物（或着色叠层体）中所含的 PVA 类树脂层的软化。即，由于拉伸性能降低，在硼酸水溶液中拉伸的过程中，着色中间产物（或着色叠层体）会发生断裂。当然，也无法使 PVA 类树脂层获得指定的总拉伸倍率。

[0240] [制造工序的概要]

[0241] 参见图 9。图 9 是不具有不溶化处理工序的包含偏振膜 3 的光学膜叠层体 10 的制造工序的简图。这里，针对包含基于实施例 1 得到的偏振膜 3 的光学膜叠层体 10 的制造方法进行概述。

[0242] 作为非晶性聚酯热塑性树脂基体材料，制作了共聚有 6mol%间苯二甲酸的间苯二甲酸共聚聚对苯二甲酸乙二醇酯（以下称其为“非晶性 PET”）的连续带状基体材料。按照下述方法制作了包含玻璃化转变温度为 75℃的连续带状非晶性 PET 基体材料 1，和玻璃化转变温度为 80℃的 PVA 层 2 的叠层体 7。

[0243] [叠层体制作工序 (A)]

[0244] 首先，准备了 200 μm 厚的非晶性 PET 基体材料 1 和将聚合度 1000 以上、皂化度 99%以上的 PVA 粉末溶解于水中而得到的 4～5 重量%浓度的 PVA 水溶液。接着，在具备涂敷机械 21，干燥机构 22 及表面改性处理装置 23 的叠层体制作装置 20 中，将 PVA 水溶液涂布在 200 μm 厚的非晶性 PET 基体材料 1 上，并在 50～60℃的温度下进行干燥，从而在非晶性 PET 基体材料 1 上成膜了 7 μm 厚的 PVA 层 2。以下，将由此得到的叠层体称为“在非晶性 PET 基体材料上成膜有 PVA 层的叠层体 7”、“包含 PVA 层的叠层体 7”，或简称为“叠层体 7”。

[0245] 包含 PVA 层的叠层体 7 经过包括气体氛围中的辅助拉伸及硼酸水溶液中拉伸的两阶段拉伸工序的下述工序，最终制造了 3 μm 厚的偏振膜 3。
[0246] [气体氛围中的辅助拉伸工序 (B)]

[0247] 通过第 1 阶段的气体氛围中的辅助拉伸工序 (B)，将包含 7 μm 厚的 PVA 层 2 的叠层体 7 与非晶性 PET 基体材料 1 一体地拉伸，制成了包含 5 μm 厚的 PVA 层 2 的“拉伸叠层体 8”。具体而言，在烘箱 33 内配备有拉伸机构 31 的气体氛围中的辅助拉伸处理装置 30 中，使包含 7 μm 厚的 PVA 层 2 的叠层体 7 经过拉伸温度环境设定于 130°C 的烘箱 33 的拉伸机构 31，进行自由端单向拉伸，并使拉伸倍率达到 1.8 倍，从而制作了拉伸叠层体 8。该步骤中，利用共同设置于烘箱 30 中的卷绕装置 32 进行卷绕，可制造出拉伸叠层体 8 的卷 8'。

[0248] 这里，针对自由端拉伸和固定端拉伸进行概述。对于长形膜，如果沿输送方向拉伸，则膜会沿着与拉伸方向垂直的方向，即宽度方向发生收缩。自由端拉伸是指进行拉伸而不抑制该收缩的方法。另外，所述纵向单向拉伸，是仅沿纵向进行拉伸的拉伸方法。自由端单向拉伸通常与一边抑制在与拉伸方向垂直的方向上发生的收缩一边进行拉伸的固定端单向拉伸形成对比。通过该自由端向的拉伸处理，叠层体 7 所含的 7 μm 厚的 PVA 层 2 转变为 PVA 分子发生了取向的 5 μm 厚的 PVA 层 2。

[0249] [染色工序 (C)]

[0250] 接着，通过染色工序 (C)，制作了在 PVA 分子发生了取向的 5 μm 厚的 PVA 层 2 中吸附有二色性物质膜的着色叠层体 9。具体而言，如下所述地制作了着色叠层体 9：在具备染色液 41 的染色槽 42 的染色装置 40 中，通过将由共同设置于染色装置 40 中的染有卷 8' 的连续抽出装置 43 连续抽出的拉伸叠层体 8 在液温 30°C 的含硫及碘化钾的染色液 41 中浸渍任意时间，使得最终制成的构成偏振膜 3 的 PVA 层 2 的单体透射率达到 40 ～ 44%，从而制作了在拉伸叠层体 8 的发生取向的 PVA 层 2 中吸附有碘的着色叠层体 9。

[0251] 在本工序中，为了使拉伸叠层体 8 中所含的 PVA 层 2 溶解，将染色液 41 制成了以水为溶剂且硫浓度为 0.30 重量%的水溶液。另外，对于染色液 41，使得用于将碘溶解于水中的碘化钾浓度达到 2.1 重量%。碘和碘化钾的浓度比为 1：7。更具体而言，通过将拉伸叠层体 8 在碘浓度 0.30 重量%、碘化钾浓度 2.1 重量%的染色液 41 中浸渍 60 秒钟，制作了在 PVA 分子发生了取向的 5 μm 厚的 PVA 层 2 中吸附了碘的着色叠层体 9。实施例 1 中，通过改变拉伸叠层体 8 在碘浓度 0.30%、碘化钾浓度 2.1 重量%的染色液 41 中的浸渍时间，来调整碘吸附量，使得最终制成的偏振膜 3 的单体透射率达到 40 ～ 44%，从而制作了单体透射率和偏振度不同的各种着色叠层体 9。

[0252] [硼酸水溶液中拉伸工序 (D)]

[0253] 通过第 2 阶段的硼酸水溶液中拉伸工序，进一步对包含碘发生了取向的 PVA 层 2 的着色叠层体 9 进行拉伸，从而制作了包含构成偏振膜 3 的、碘发生了取向的 3 μm 厚的 PVA 层的光学膜叠层体 10。具体而言，在具备硼酸水溶液 51 的硼酸浴 52 和拉伸机构 53 的硼酸水溶液中拉伸处理装置 50 中，将由染色装置 40 连续抽出的着色叠层体 9 漂浮于包含硼酸和碘化钾且设定于液温 65°C 的拉伸温度环境中的硼酸水溶液 51 中，然后使其在配备于硼酸水溶液中处理装置 50 中的拉伸机构 53 中经过，进行自由端单向拉伸，并使拉伸倍率达到 3.3 倍，从而制作了光学膜叠层体 10。

[0254] 更具体而言，对硼酸水溶液 51 进行调整，使得相对于水 100 重量份，包含硼酸 4 重量份、碘化钾 5 重量份。本工序中，首先将碘吸附量经过调整后的着色叠层体 9 在硼酸水溶液 51 中浸渍 5 ～ 10 秒钟。然后，直接使该着色叠层体 9 在硼酸水溶液中处理装置 50 中的
拉伸机构 53，即通过不同的多组滚轮通过，对其进行 30 ～ 90 秒钟的自由端单向拉伸，并使拉伸倍率达到 3.3 倍。通过该拉伸处理，着色叠层体 9 中所含的 PVA 层转变为吸附的磺酸钠离子络合物形式发生了单向高级次取向的 3 μm 厚的 PVA 层。该 PVA 层构成光学膜叠层体 10 的偏振膜 3。

[0255] 如上所述，在实施例 1 中，对在非晶性 PET 基体材料 1 上成膜有 7 μm 厚的 PVA 层 2 的叠层体 7 在拉伸温度 130℃下进行气相氛围中的辅助拉伸，制成拉伸叠层体 8，接着，对拉伸叠层体 8 进行染色，制成着色叠层体 9，然后，在拉伸温度 65 度下对着色叠层体 9 进行硼酸水溶液中拉伸，从而制得了包含 3 μm 厚的 PVA 层的光学膜叠层体 10，其中，所含的 PVA 层与非晶性 PET 基体材料一体地经过拉伸，并使拉伸倍率为 5.94 倍。经过上述的两阶段拉伸，成膜于非晶性 PET 基体材料 1 上的 PVA 层 2 中的 PVA 分子发生高级次取向，从而可制作高分子偏振膜 3 的 3 μm 厚的 PVA 层的光学膜叠层体 10，且在所含的 PVA 层中。经染色而吸附的磺酸钠离子络合物形式发生了单向高级次取向。优选通过随后的洗涤、干燥、转印工序，来完成光学膜叠层体 10 的制作。对于洗工序 (G) 、干燥工序 (H) 以及转印工序 (I) 的详细情况，基于组合了不溶化处理工序的实施例 4，与制造工序一起进行说明。

[0256] [其它制造工序的概要]

[0257] 参见图 10。图 10 为具有不溶化处理工序的包含偏振膜 3 的光学膜叠层体 10 的制造工序的简图。在此，基于实施例 4 对包含偏振膜 3 的光学膜叠层体 10 的制造方法进行概述。如图 10 所示，可以将基于实施例 4 的制造方法设想为：在基于实施例 1 的制造工序中组合了染色工序前的第 1 不溶化工序和硼酸水溶液中拉伸工序前的包含第 2 不溶化的交联工序的制造工序。除了用于硼酸水溶液中拉伸工序的硼酸水溶液的液温不同以外，本工序中所组合的叠层体的制作工序 (A) 、气体氛围中的辅助拉伸工序 (B) 、染色工序 (C) 、以及硼酸水溶液中拉伸工序 (D) 与基于实施例 1 的制造工序相同。因而省略对该部分的说明，仅针对染色工序前的第 1 不溶化工序和硼酸水溶液中拉伸工序前的包含第 2 不溶化的交联工序进行说明。

[0258] [第 1 不溶化工序 (E)]

[0259] 第 1 不溶化工序是染色工序 (C) 之前的不溶化工序 (E)。与实施例 1 的制造工序相同，在叠层体的制作工序 (A) 中，制作在非晶性 PET 基体材料 1 上成膜有 7 μm 厚的 PVA 层 2 的叠层体 7，接着，在气体氛围中的辅助拉伸工序 (B) 中，对包含 7 μm 厚的 PVA 层 2 的叠层体 7 进行气体氛围中的辅助拉伸，从而制成了包含 5 μm 厚的 PVA 层 2 的拉伸叠层体 8。然后，在第 1 不溶化工序 (E) 中，对从装有卷轴 8’的连续抽出装置 43 所连续抽出的拉伸叠层体 8 实施不溶化处理，制成了经过不溶化的拉伸叠层体 8”。当然，经过不溶化的拉伸叠层体 8”包含经过不溶化的 PVA 层 2。以下，将其称为“经过不溶化的拉伸叠层体 8”。”

[0260] 具体而言，在具备硼酸不溶化水溶液 61 的不溶化处理装置 60 中，将拉伸叠层体 8 在液温 30℃的硼酸不溶化水溶液 61 中浸渍 30 秒钟。该工序的硼酸不溶化水溶液 61 中，相对于水 100 重量份，含有硼酸 3 重量份（以下，称为“硼酸不溶化水溶液”）。本工序的在于，实施用于至少在其后即将进行的染色工序 (C) 中使拉伸叠层体 8 中所含的 5 μm 厚的 PVA 层不发生溶解的不溶化处理。

[0261] 通过对拉伸叠层体 8 进行不溶化处理，并在染色工序 (C) 中，准备使碘浓度在与实施例 1 的情况不同的 0.12 ～ 0.25 重量%范围内改变的各种染液液，使用这些染液液，将经
过不溶化的拉伸叠层体8"中染色液中浸渍恒定时间，来调整碘吸附量，并使最终生成的偏振膜的单体透射率达到40～44%，从而制成了单体透射率和偏振度不同的各种着色叠层体9。即使浸渍于碘浓度0.12～0.25重量%的染色液中，经过不溶化的拉伸叠层体8"中所含的PVA层也未发生溶解。

[0262] [包含第2不溶化的交联工序(G)]

[0263] 基于上述目的，可以认为，包含第2不溶化的交联工序(F)是包括第2不溶化工序的工序。交联工序的目的在于第1，不溶化，使着色叠层体9中所含的PVA层在后续工序的硼酸水溶液中拉伸工序(D)中不发生溶解；第2，着色稳定化，使对PVA层着色的碘不发生溶出，第3，结点的生成，通过使PVA层的分子之间发生交联来生成结点。其中，第2不溶化用以实现所述第1和第2个目的。

[0264] 交联工序(F)是硼酸水溶液中拉伸工序(D)之后的工序。通过对在染色工序(C)中制作的着色叠层体9进行交联，来制作经过交联的着色叠层体9'。经过交联的着色叠层体9'包含经过交联的PVA层2。具体而言，通过在具备包含硼酸和碘化钾的水溶液(以下称为“硼酸交联水溶液”)的交联处理装置70中，将着色叠层体9在40℃的硼酸交联水溶液71中浸渍60秒钟，并使吸附有碘的PVA层的PVA分子之间发生交联，来制作经过交联的着色叠层体9'。该工序的硼酸交联水溶液中，相对于水100重量份，包含硼酸3重量份、碘化钾3重量份。

[0265] 通过在硼酸水溶液中拉伸工序(D)中，将经过交联的着色叠层体9'浸渍于75℃的硼酸水溶液中进行自由端单向拉伸，并使拉伸倍率达到3.3倍，来制作光学膜叠层体10。通过该拉伸处理，着色叠层体9'中所含的吸附有碘的PVA层2转变为吸附的碘以多碘离子络合物形式发生了单向高级次取向的3。

[0266] μm厚的PVA层2。该PVA层构成光学膜叠层体10的偏振膜3。

[0267] 在实施例4中，首先，制作在非晶性PET基体材料1上成膜有7μm厚的PVA层2的叠层体7，然后，通过拉伸温度130℃的气体氛围中的辅助拉伸，对叠层体7进行自由端单向拉伸，并使拉伸倍率达到1.8倍，从而制作了拉伸叠层体8。通过将制作的拉伸叠层体8在液温30℃的硼酸不溶性水溶液61中浸渍30秒钟，使拉伸叠层体中所含的PVA层不溶化。由此得到经过不溶化的拉伸叠层体8"。通过将经过不溶化的拉伸叠层体8"浸渍于液温30℃的含碘及碘化钾的染色液中，制成了在经过不溶化的PVA层中吸附有碘的着色叠层体9。将包含吸附有碘的PVA层的着色叠层体9在40℃的硼酸交联水溶液71中浸渍60秒钟，使吸附有碘的PVA层的PVA分子之间发生了交联。由此得到经过交联的着色叠层体9'。将经过交联的着色叠层体9'在包含硼酸和碘化钾的液温75℃的硼酸水溶液中拉伸浴51中浸渍5～10秒钟，然后，通过硼酸水溶液中拉伸，进行自由端单向拉伸，并使拉伸倍率达到3.3倍，从而制作了光学膜叠层体10。

[0268] 如上所述，实施例4通过由高温气体氛围中的拉伸及硼酸水溶液中拉伸构成的两阶段拉伸，和由浸渍于染色浴之前的不溶化及进行硼酸水溶液中拉伸之前进行的交联构成的前处理，使成膜于非晶性PET基体材料1上的PVA层2中的PVA分子发生高级次取向，并通过染色使碘切实地吸附于PVA分子，从而可稳定地制作包含吸附的碘以多碘离子络合物形式发生了单向高级次取向的构成偏振膜的3μm厚的PVA层的光学膜叠层体10。

[0269] [洗涤工序(G)]
[0270] 在硼酸水溶液中拉伸工序 (D) 中，对实施例 1 或 4 的着色叠层体 9 或经过交联的着色叠层体 9* 进行拉伸处理，并将其从硼酸水溶液 51 中取出。优选直接将取出的包含偏振膜 3 的光学膜叠层体 10 保持其状态至洗涤工序 (G)。洗涤工序 (G) 的目的在于洗去附着于偏振膜 3 的表面的不需要的残留物。也可省去洗涤工序 (G)，直接将取出的包含偏振膜 3 的光学膜叠层体 10 送入干燥工序 (H)。但如果该洗涤处理不充分，则在将光学膜叠层体 10 干燥后，硼酸可能从偏振膜 3 中析出。具体而言，将光学膜叠层体 10 送入洗涤装置 80，在不使偏振膜 3 的 PVA 发生溶解的情况下将其在液温 30℃的包含碘化钾的洗涤液 81 中浸渍 1 ~ 10 秒钟。洗涤液 81 中的碘化钾浓度在 0.5 ~ 10 重量%左右。

[0271] [干燥工序 (H)]

[0272] 将经过洗涤的光学膜叠层体 10 送入干燥工序 (H)，并在其进行干燥。接着，利用共同设置于干燥装置 90 中的卷绕装置 91 将经过干燥的光学膜叠层体 10 卷绕在连续带状的光学膜叠层体 10，来制作包含偏振膜 3 的光学膜叠层体 10 的卷。作为干燥工序 (H)，可采用任意的适宜方法，例如，可采用自然干燥、送风干燥、加热干燥。实施例 1 及实施例 4 中，均在烘箱的干燥装置 90 中，于 60℃的暖风中干燥了 240 秒钟。

[0273] [贴合 / 转印工序 (I)]

[0274] 对于包含在非晶性 PET 基体材料上成膜的 3 μm 厚的偏振膜 3 的光学膜叠层体 10，可以粘加工成光学膜叠层体 10 的卷，并在贴合 / 转印工序 (I) 中，对该卷同时进行如下所述的贴合处理和转印处理。制造的偏振膜 3 在经过由拉伸实现的薄膜化之后，其厚度在 10μm 以下，通常为 2 ~ 5μm 左右。很难以单层体的形式对偏振膜 3 进行处理。因此，以下述形式对偏振膜 3 进行处理：通过使偏振膜 3 成膜于非晶性 PET 基体材料上，以光学膜叠层体 10 的形式加以处理，或者，通过利用粘接剂粘合 / 转印于其它光学功能膜 4 上，以光学功能膜叠层体 11 的形式加以处理。

[0275] 在图 9 及图 10 所示的贴合 / 转印工序 (I) 中，一边利用粘接剂将连续带状的光学膜叠层体 10 中所含的偏振膜 3 和光学功能膜 4 加以贴合，一边进行卷绕，在该卷绕工序中，一边将偏振膜 3 转印于光学功能膜 4 上，一边剥离非晶性 PET 基体材料，由此来制作光学功能膜叠层体 11。具体而言，利用贴合 / 转印装置 100 中所含的连续抽出 / 贴合装置 101，连续抽出光学膜叠层体 10，并利用卷绕 / 转印装置 102 将连续抽出的光学膜叠层体 10 的偏振膜 3 转印于光学功能膜 4 上，同时，将偏振膜 3 从基体材料 1 剥离，从而制作光学功能膜叠层体 11。

[0276] 在干燥工序 (H) 中，利用卷绕装置 91 制作的光学膜叠层体 10，或利用贴合 / 转印工序 (I) 制作的光学功能膜叠层体 11 包括各种变形。

[0277] 参见图 11 及图 12。图 11 及图 12 是以典型的式样 1 ~ 4 示出了各种光学膜叠层体 10 或光学功能膜叠层体 11 的变形的图。

[0278] 示出式样 1 及式样 2 的图 11 是显示出与光学膜叠层体 10 不同的变形的光学膜叠层体 12 及光学膜叠层体 13 的简略剖视图。光学膜叠层体 12 是在光学膜叠层体 10 的偏振膜 3 上隔开粘合剂层 16 叠层有分离膜 17 的叠层体。将非晶性 PET 基体材料 1 作为保护膜时，图 11(1) 的具体例 1 所示，上述叠层体可以作为例如用于 IPS 型液晶电视用显示器面板 200 的背光侧和观察侧的光学膜叠层体使用。此时，在 IPS 液晶单元 202 的两侧，隔着粘合剂层 16 贴合有光学膜叠层体。在该构成中，通常在观察侧的非晶性 PET 基体材料 1 的表
面成膜有表面处理层 201。

[0279] 光学膜叠层体 13 是光学膜叠层体 10 的偏振膜 3 上隔着粘接剂层 18 叠层有光学功能膜 4, 并在光学功能膜 4 上隔着粘接剂层 16 叠层有分离膜 17 的叠层体。就光学膜叠层体 13 而言, 使光学功能膜 4 为三维折射率 \(nx > ny > nz \) 的双轴性相位差膜 301 时, 如图 11 的具体例示所示, 上述叠层体可以作为例如用于 VA 型液晶电视用显示器面板 300 的背光侧和观看侧的光学功能膜叠层体使用。此时, 在 VA 液晶单元 302 的两侧, 隔着粘接剂层 16 贴合有光学膜叠层体。在该构成中, 通常在观看侧的非晶性 PET 基体材料 1 的表面成膜有表面处理层 201。光学膜叠层体 12 及 13 均具有上述特征, 可以在将来非晶性 PET 基体材料 1 从偏振膜 3 剥离的情况下, 直接将其作为例如偏振膜 3 的保护膜使用并使其发挥作用。

[0280] 示出式样 3 及式样 4 的图 12 是显示出与光学功能膜叠层体 11 不同的变形的光学功能膜叠层体 14 及光学功能膜叠层体 15 的简略剖视图。光学功能膜叠层体 14 是在通过粘接剂 18 转印于光学功能膜 4 的偏振膜 3 的剥层了非晶性 PET 基体材料 1 的相反面上隔着粘接剂层 16 叠层有分离膜 17 的叠层体。就光学功能膜叠层体 14 而言, 将光学功能膜 4 作为 TAC 膜 401 的保护膜时, 如图 12 的具体例示所示, 上述叠层体可以作为例如用于 IPS 型液晶电视用显示器面板 400 的背光侧和观看侧的光学功能膜叠层体使用。此时, 在 IPS 液晶单元 402 的两侧, 隔着粘接剂层 16 贴合有光学膜叠层体。在该构成中, 通常在观看侧的 TAC 膜 401 的表面成膜有表面处理层 201。

[0281] 光学功能膜叠层体 15 是在通过第 1 粘接剂 18 转印于光学功能膜 4 的偏振膜 3 的剥层了非晶性 PET 基体材料 1 的相反面上通过第 2 粘接剂 18 叠层第 2 光学功能膜 5 而形成叠层体, 并在所形成的叠层体上通过粘合剂 16 叠层有分离膜 17 的叠层体。就光学功能膜叠层体 15 而言, 使光学功能膜 4 为 TAC 膜 401, 并使第 2 光学功能膜 5 为三维折射率成 \(nx > nz > ny \) 关系的双轴性相位差膜 501 时, 如图 12 的具体例示所示, 上述叠层体可以作为例如用于 IPS 型液晶电视用显示器面板 500 的背光侧的光学功能膜叠层体使用。此时, 在 IPS 液晶单元 502 的背光侧, 隔着粘接剂层 16 贴合有光学膜叠层体。

[0282] 进一步, 就上述光学功能膜叠层体 15 而言, 使第 2 光学功能膜为 \(\lambda / 4 \) 相位差膜 602 时, 还可以将该叠层体作为用以防止显示装置的表面反射以及在显示装置内的部件界面处发生的反射的反射防止用膜 (圆偏振光板) 使用。具体而言, 使光学功能膜 4 为丙烯酸类树脂膜 601, 使第 2 光学功能膜 5 为 \(\lambda / 4 \) 相位差膜 602, 并使偏振膜 3 的吸收轴与 \(\lambda / 4 \) 相位差膜 602 的慢轴的贴合角度为 45°, 如图 12 的具体例示 5 所示, 这样的叠层体可以作为例如用于有机 EL 显示器 600 的反射防止用膜使用。此时, 在有机 EL 面板 603 的观看侧, 隔着粘接剂层 16 贴合有光学功能膜叠层体。在该构成中, 通常在观看侧的丙烯酸类树脂膜 601 的表面成膜有表面处理层 201。

[0283] 光学功能膜叠层体 14 及 15 均具有上述特征, 使用的是将偏振膜 3 转印于光学功能膜 4, 同时将非晶性 PET 基体材料 1 剥离而形成的叠层体。

[0284] 构成这些光学功能膜叠层体 11、14、15 及光学膜叠层体 12、13 的各层的光学功能膜 4 并不限于上述膜。作为光学功能膜, 可以列举 TAC 膜或由丙烯酸类树脂构成的偏振膜保护膜、双轴性相位差膜（例如, 三维折射率为 \(nx > ny > nz \), \(nx > nz > ny \) 等）、\(\lambda / 4 \) 相位差膜、\(\lambda / 2 \) 相位差膜、正分散性相位差膜、平面分散性相位差膜、逆分散性相位差膜等。
相位差膜、亮度提高膜、漫射膜等。另外，也可以将它们粘合多片使用。此外，所使用的粘合剂 16 或粘接剂 18 可以使用任意的适当的粘合剂或粘接剂。代表性的粘合剂层为丙烯酸类粘合剂，代表性的粘接剂层为乙烯醇类粘接剂。

[0285] [各种制造条件下获得的偏振膜的光学特性]
[0286] （1）利用不溶化工序得到的偏振膜的光学特性的提高（实施例 1～4）
[0287] 已利用图 8 的图表进行了说明。根据结合图 8 的说明已确认，基于实施例 1～4 制造的各个偏振膜均可克服本发明的技术问题，它们的光学特性满足本发明的目的，即，满足使用显示元件的液晶电视用光学显示器所要求的要求性能。另外，由图 8 的图表可知，实施例 1 的未实施不溶化处理的偏振膜的光学特性低于实施了第 1 不溶化处理和 /或第 2 不溶化处理的实施例 2～4 中的任一偏振膜的光学特性。将各偏振膜的光学特性加以比较后发现，它们的光学特性如下述顺序依次提高：（实施例 1）<（仅实施了第 1 不溶化处理的实施例 3）<（仅实施了第 2 不溶化处理的实施例 2）<（实施了第 1 不溶化处理及第 2 不溶化处理的实施例 4）。通过在包含偏振膜 3 的光学膜叠层体 10 的制造工序中包括第 1 不溶化工序和 /或第 2 不溶化工序的制造方法制造的偏振膜，包含偏振膜的光学膜叠层体，它们的光学特性可得到进一步提高。

[0288] （2）PVA 类树脂层的厚度对于偏振膜的光学特性的影响（实施例 5）
[0289] 实施例 4 中，对厚 7 μm 的 PVA 层进行拉伸而最终形成的光学膜叠层体中所含的 PVA 层的厚度为 3 μm，与此相对，实施例 5 中，对厚 12 μm 的 PVA 层进行拉伸而最终形成的光学膜叠层体中所含的 PVA 层的厚度为 5 μm。除此之外，实施例 5 在与实施例 4 相同的条件下制造了偏振膜。

[0290] （3）非晶性 PET 基体材料不同对于偏振膜的光学特性的影响（实施例 6）
[0291] 在实施例 4 中，使用的是使 PET 与间苯二甲酸共聚而得到的非晶性 PET 基体材料，与此相对，在实施例 6 中，使用的是共聚有 1,4-环己烷二甲醇作为 PET 的 PET 而组成的 PET 基体材料。除此之外，实施例 6 在与实施例 4 相同的条件下制造了偏振膜。

[0292] 参见图 13 的图表。利用基于实施例 4～6 的制造方法制造的偏振膜的光学特性不存在显著差异。可以认为，该结果表明 PVA 类树脂层的厚度及非晶性酯类热塑性树脂的种类不会对所得偏振膜的光学特性带来影响。

[0293] （4）由气体氛围中的辅助拉伸的拉伸倍率引起的偏振膜的光学特性的提高（实施例 7～9）
[0294] 实施例 4 中，第 1 阶段的气体氛围中的辅助拉伸及第 2 阶段的硼酸水溶液中拉伸的拉伸倍率分别为 1.8 倍及 3.3 倍，与此相对，在实施例 7～9 中，它们的拉伸倍率分别为 1.2 倍及 4.9 倍、1.5 倍及 4.0、2.5 倍及 2.4 倍。除该点以外，这些实施例在包括例如拉伸温度 130℃、液温 75℃的硼酸水溶液在内的与实施例 4 相同的条件下制造了偏振膜。实施例 8,9 的总拉伸倍率分别为 5.94 倍及 6.0 倍，与在实施例 4 中气体氛围中的辅助拉伸的拉伸倍率为 1.8 倍时的总拉伸倍率相当。但与此相对，实施例 7 的总拉伸倍率以 5.88 倍为限。这是因硼酸水溶液中拉伸中，无法使拉伸倍率达到 4.9 倍以上的结果。可以推测，这是利用图 20 所说明的非晶性 PET 的可拉伸倍率对于第 1 阶段气体氛围中的辅助拉伸的拉伸倍率与总拉伸倍率之间的相关关系所产生的影响。

[0295] 参见图 14 的图表。实施例 7～9 的偏振膜与实施例 4 的情况相同，可克服本发
发明的技术问题，具有满足作为本发明的目的的要求性能的光学特性。将这些偏振膜的光学特性加以比较可知，它们的光学特性以下述顺序依次增高：实施例7<实施例8<实施例4<实施例9。这表明，将第1阶段的气氛环境中的辅助拉伸的拉伸倍率设定在1.2倍～2.5倍范围内的情况下，即使在通过第2阶段的硼酸水溶液中拉伸而得到的最终的总拉伸倍率设定为相同程度时，其光学特性也能够提高至第1阶段的气氛环境中的辅助拉伸设定为高拉伸倍率的偏振膜那样的程度。在包含偏振膜3的光学膜叠层体10的制造工序中，通过将第1阶段的气氛环境中的辅助拉伸设定为高拉伸倍率，可显著提高所制造的偏振膜，或者偏振膜的光学膜叠层体的光学特性。

【0296】(5) 由气氛环境中的辅助拉伸温度引起的偏振膜的光学特性的提高（实施例10～12）

【0297】在实施例4中，将气氛环境中的辅助拉伸温度设定为130℃，而与此相对，在实施例10～12中，将它们的气氛环境中的辅助拉伸温度分别设定为95℃、110℃、150℃。均为高于PVA的玻璃化转变温度Tg的温度。在这些实施例中，除了这一点之外，在亦如实施例4中辅助拉伸的拉伸倍率为1.8倍的方面，使硼酸水溶液中拉伸的拉伸倍率为3.3倍的方面在内的与实施例4相同的条件下制造了偏振膜。实施例4的气氛环境中的辅助拉伸温度为130℃。包括实施例4在内的这些实施例，除了拉伸温度为95℃、110℃、130℃及150℃的区别之外，其它制造条件完全相同。

【0298】参见图15的图表。实施例4、10～12的偏振膜均可克服本发明的技术问题，具有满足作为本发明的目的的要求性能的光学特性。将这些偏振膜的光学特性加以比较可知，它们的光学特性以下述顺序依次增高：实施例10<实施例11<实施例4<实施例12。这表明，在设定温度环境使得第1阶段气氛环境中的辅助拉伸温度高于玻璃化转变温度，且从95℃到150℃依次增高的情况下，即使在将通过第2阶段的硼酸水溶液中拉伸而得到的最终的总拉伸倍率设定为相同倍率时，其光学特性也能够提高至第1阶段的气氛环境中的辅助拉伸温度设定为更高温度的偏振膜那样的程度。在包含偏振膜3的光学膜叠层体10的制造工序中，通过将第1阶段的气氛环境中的辅助拉伸温度设定为更高温度，可显著提高所制造的偏振膜，或者偏振膜的光学膜叠层体的光学特性。

【0299】(6) 由总拉伸倍率引起的偏振膜的光学特性的提高（实施例13～15）

【0300】实施例4中，第1阶段的气氛环境中的辅助拉伸的拉伸倍率设定为1.8倍，且第2阶段的硼酸水溶液中拉伸的拉伸倍率设定为3.3倍，与此相对，在实施例13～15中，仅使它们的第2阶段的硼酸水溶液中拉伸的拉伸倍率分别为2.1倍、3.1倍、3.6倍。这意味着，实施例13～15的总拉伸倍率设定为5.04倍（约5倍）、5.58倍（约5.5倍）、6.48倍（约6.5倍）。而实施例4的总拉伸倍率为5.94倍（约6倍）。包括实施例4在内的这些实施例，除了总拉伸倍率为5倍、5.5倍、6.0倍、6.5倍的区外，其制造条件完全相同。

【0301】参见图16的图表。实施例4、13～15的偏振膜均可克服本发明的技术问题，具有满足作为本发明的目的的要求性能的光学特性。将这些偏振膜的光学特性加以比较可知，它们的光学特性以下述顺序依次增高：实施例13<实施例14<实施例4<实施例15。这表明，在将第1阶段的气氛环境中的辅助拉伸的拉伸倍率均设定为1.8倍，且设定第2阶段的硼酸水溶液中拉伸的拉伸倍率使得总拉伸倍率以5倍、5.5倍、6.0倍、6.5倍的顺序依次增高时，其光学特性可提高至最终的总拉伸倍率设定为更高的偏振膜那样的程度。
在包含偏振膜的光学膜叠层体的制造工序中，通过将第1阶段的气体氛围中的辅助拉伸和第2阶段的硼酸水溶液中拉伸的总拉伸倍率设定为更高倍率，可显著提高所制造的偏振膜、或含偏振膜的光学膜叠层体的光学特性。[0302]（7）由固定端单向拉伸的总拉伸倍率引起的偏振膜的光学特性的提高（实施例16～18）

[0303]除了上述区别点之外，实施例16～18在与实施例4相同的条件下制造了光学膜叠层体。区别点在于气体氛围中的辅助拉伸的拉伸方法。在实施例4中，采用的是自由端单向的拉伸方法，而与此相对，在实施例16～18中，均采用了固定端单向的拉伸方法。这些实施例中，均将第1阶段的气体氛围中的辅助拉伸的拉伸倍率设定为1.8倍，并且使各自的第2阶段的硼酸水溶液中拉伸的拉伸倍率分别为3.3倍、3.9倍、4.4倍。由此，实施例16的总拉伸倍率为5.94倍（约6倍），实施例17的总拉伸倍率为7.02倍（约7倍），此外，实施例18的总拉伸倍率为7.92倍（约8倍）。除了这一点以外，实施例16～18的制造条件完全相同。

[0304]参见图17的图表。实施例16～18中得到的偏振膜均可克服本发明的技术问题，具有满足作为本发明的性能的高要求性能的光学特性。将这些偏振膜的光学特性加以比较可知，它们的光学特性以下述顺序依次增高：实施例16＜实施例17＜实施例18。这表明，在将第1阶段的气体氛围中的辅助拉伸的拉伸倍率均设定为1.8倍，仅设定第2阶段的硼酸水溶液中拉伸的拉伸倍率使得总拉伸倍率以6倍、7倍、8倍的顺序依次增高的情况下，其光学特性可提高至最终的总拉伸倍率设定为更高的偏振膜那样的程度。在包含偏振膜的光学膜叠层体10的制造工序中，通过将利用固定端单向拉伸方法得到的第1阶段的气体氛围中的辅助拉伸与第2阶段的硼酸水溶液中拉伸的总拉伸倍率设定为更高，可显著提高所制造的偏振膜、或含偏振膜的光学膜叠层体的光学特性。此外还确认到：与将自由端单向拉伸方法用于第1阶段的气体氛围中的辅助拉伸的情况相比，将固定端单向拉伸方法用于第1阶段的气体氛围中的辅助拉伸的情况下，可进一步提高最终的总拉伸倍率。

[0305]实施例

[0306]将实施例1～18中制造的偏振膜、或含偏振膜的光学膜叠层体的制造条件的列表整理于图26及图27中。

[0307][实施例1]

[0308]作为非晶性酯类热塑性树脂基体材料，制作了共聚有6mol%间苯二甲酸的间苯二甲酸共聚物对苯二甲酸乙二醇酯（以下称为“非晶性PET”）的连续带状基体材料。非晶性PET的玻璃化转变温度为75℃。通过下述方法制作了连续带状的由非晶性PET基体材料和聚乙烯醇（以下称为“PVA”）层构成的叠层体。另需说明的是，PVA的玻璃化转变温度为80℃。

[0309]准备了厚200μm的非晶性PET基体材料，和将聚合度1000以上、皂化度99%以上的PVA粉末溶解于水中而得到的浓度4～5%的PVA水溶液。接着，在上述厚200μm的非晶性PET基体材料上涂布PVA水溶液，在50～60℃的温度下干燥，在非晶性PET基体材料上成膜了厚7μm的PVA层。以下，将其称为“在非晶性PET基体材料上成膜有7μm厚的PVA层的叠层体”或“包含7μm厚的PVA层的叠层体”，或简称为“叠层体”。

[0310]使包含7μm厚的PVA层的叠层体经过包括气体氛围中的辅助拉伸及硼酸水溶液
中拉伸的两阶段拉伸工序的下述工序，制造了 3 μm 厚的偏振膜。经过第 1 阶段的气体氛围中的辅助拉伸工序，将包含 7 μm 厚的 PVA 层的叠层体与非晶性 PET 基体材料一体化地进行拉伸，形成了包含 5 μm 厚 PVA 层的拉伸叠层体。以下称其为“拉伸叠层体”。具体而言，拉伸叠层体通过下述方法得到：使包含 7 μm 厚的 PVA 层的叠层体经过拉伸装置，该拉伸装置配合在设定于 130℃拉伸温度环境中的烘箱中，对该叠层体的自由端进行单向拉伸，使得拉伸倍率达到 1.8 倍。通过该拉伸处理，拉伸叠层体所含的 PVA 层转变为 PVA 分子发生了取向的 5 μm 厚的 PVA 层。

[0311] 接着，通过染色工序，形成了在 PVA 分子发生了取向的 5 μm 厚的 PVA 层吸附有碘的着色叠层体。以下称其为“着色叠层体”。具体而言，着色叠层体通过下述方法得到：将拉伸叠层体在液温 30℃的含碘及碘化钾的染色液中浸渍任意时间，使得最终生成的构成偏振膜的 PVA 层的单体透射率达到 40 ～ 44％，由此，使碘吸附于拉伸叠层体中所含的 PVA 层。在本工序中，染色液以水为溶剂，并使碘浓度在 0.12 ～ 0.30 重量％的范围内、碘化钾浓度在 0.7 ～ 2.1 重量％的范围内。碘和碘化钾的浓度比为 1 : 7。

[0312] 另需说明的是，为了将碘溶解于水中，须存在碘化钾。具体而言，通过将拉伸叠层体在碘浓度 0.30 重量％、碘化钾浓度 2.1 重量％的染色液中浸渍 60 秒钟，制成在 PVA 分子发生了取向的 5 μm 厚的 PVA 层吸附有碘的着色叠层体。在实施例 1 中，通过改变拉伸叠层体在碘浓度 0.30 重量％、碘化钾浓度 2.1 重量％的染色液中浸渍时间来调整碘吸附量，使得最终生成的偏振膜的单体透射率达到 40 ～ 44％，从而形成了单体透射率和偏振度不同的着色叠层体。

[0313] 接着，通过第 2 阶段的硼酸水溶液中拉伸工序，进一步对着色叠层体连同非晶性 PET 基体材料一起一体化地进行拉伸，制成包含 3 μm 厚的构成偏振膜的 PVA 层的光学膜叠层体。以下称其为“光学膜叠层体”。具体而言，光学膜叠层体通过下述方法得到：使着色叠层体经过拉伸装置，该拉伸装置配合在设定于包含硼酸和碘化钾的液温范围为 60 ～ 85℃的硼酸水溶液中的处理装置中，对该着色叠层体的自由端进行单向拉伸，使得拉伸倍率达到 3.3 倍。更具体而言，硼酸水溶液的液温为 65℃。此外，相对于水 100 重量份，使硼酸含量为 4 重量份、碘化钾含量为 5 重量份。

[0314] 在本工序中，首先将碘吸附量经过调整的着色叠层体在硼酸水溶液中浸渍 5 ～ 10 秒钟。然后，使该着色叠层体直接在设置于处理装置中的拉伸装置，即周速不同的多组辑间通过，对其自由端单拉伸 30 ～ 90 秒钟，使得拉伸倍率达到 3.3 倍。通过该拉伸处理，着色叠层体中含有的 PVA 层转变为吸附的碘以多碘离子络合物形式发生了单向高级次（高次）取向的 3 μm 厚的 PVA 层。该 PVA 层构成光学膜叠层体的偏振膜。

[0315] 如上所述，实施例 1 如上所述地制成光学膜叠层体：首先，通过对在非晶性 PET 基体材料上成膜有 7 μm 厚的 PVA 层的叠层体进行拉伸温度 130℃的气体氛围中的辅助拉伸，来形成拉伸叠层体，然后，通过对拉伸叠层体进行染色而制成着色叠层体，然后再通过对着色叠层体进行拉伸温度 65 度的硼酸水溶液中拉伸，并使总拉伸倍率达到 5.94 倍，从而制成与非晶性 PET 基体材料一体化地经过了拉伸的包含 3 μm 厚 PVA 层的光学膜叠层体。通过上述的两阶段拉伸，可使在非晶性 PET 基体材料上成膜的 PVA 层的 PVA 分子发生高级次取向，生成包含构成偏振膜的 3 μm 厚 PVA 层的光学膜叠层体，且所述 PVA 层中经染色而吸附的碘以多碘离子络合物形式发生了单向高级次取向。
[0316] 虽不是光学膜叠层体制造中的必要工序，但也进行了下述洗涤工序：将光学膜叠层体从硼酸水溶液中取出，利用碱化钾水溶液再在非晶性 PET 基体材料上成膜的 3 μ m 厚 PVA 层的表面所附着的硼酸进行洗涤。然后，通过利用 60℃暖风的干燥工序对经过洗涤后的光学膜叠层体进行了干燥。需要说明的是，洗涤工序是用以消除硼酸析出等外观不良的工序。

[0317] 接着，通过同样不是光学膜叠层体制造中的必要工序的贴合和 /或转印工序，一边将粘接剂涂布于非晶性 PET 基体材料上成膜的 3 μ m 厚 PVA 层的表面，一边贴合 80 μ m 厚的三乙酸纤维素 (TAC) 膜，然后再将非晶性 PET 基体材料剥离，从而将 3 μ m 厚的 PVA 层转印于 80 μ m 厚的三乙酸纤维素 (TAC) 膜上。

[0318] [实施例 2]

[0319] 实施例 2 与实施例 1 的情况相同，首先，制成非晶性 PET 基体材料上成膜有 7 μ m 厚的 PVA 层的叠层体，然后，通过对包含 7 μ m 厚的 PVA 层的叠层体进行气体氛围中的辅助拉伸来制成倍率达到 1.8 倍的拉伸叠层体，然后，通过将拉伸叠层体浸渍于液温 30℃的含碘及碘化钾的染色液，以制成包含吸附有碘的 PVA 层的着色叠层体。实施例 2 包含与实施例 1 不同的下述交联工序。该交联工序为：选择着色叠层体在 40℃的硼酸交联水溶液中浸渍 60 秒钟，对吸附有碘的 PVA 层的 PVA 分子之间实施交联处理。在本工序的硼酸交联水溶液中，相对于水 100 重量份，使硼酸含量为 3 重量份，碘化钾含量为 3 重量份。

[0320] 实施例 2 的交联工序谋求至少 3 个技术效果。第 1 效果是：使着色叠层体中所含的经过薄膜化的 PVA 层在后续工序的硼酸水溶液中拉伸中不发生溶解的不溶化效果。第 2 效果是：使对 PVA 层着色的碘不发生溶出的着色稳定化效果。第 3 效果是：通过使 PVA 层的分子之间发生交联来生成结点的结点生成效果。

[0321] 接着，实施例 2 中，通过将经过交联的着色叠层体浸渍于温度比实施例 1 的拉伸温度 65℃高的 75℃的硼酸水溶液中浸渍中，进行与实施例 1 的情况相同的拉伸，并使拉伸倍率达到 3.3 倍，从而制成了光学膜叠层体。另外，实施例 2 的洗涤工序、干燥工序、贴合和 /或转印工序均与实施例 1 的情况相同。

[0322] 需要说明的是，为了使硼酸水溶液中拉伸工序之前的交联工序所谋求的技术效果变得更为显著，而将实施例 1 的未交联的着色叠层体浸渍于拉伸温度 70～75℃的硼酸水溶液中浸渍时，着色叠层体中所含的 PVA 层在硼酸水溶液中发生了溶解，未能实施拉伸。

[0323] [实施例 3]

[0324] 实施例 3 与实施例 1 的情况相同，首先，制成非晶性 PET 基体材料上成膜有 7 μ m 厚的 PVA 层的叠层体，然后，通过对包含 7 μ m 厚的 PVA 层的叠层体进行气体氛围中的辅助拉伸来制成拉伸倍率达到 1.8 倍的拉伸叠层体。实施例 3 包含与实施例 1 不同的下述不溶化工序。该不溶化工序为：通过将拉伸叠层体在液温 30℃的硼酸不溶化水溶液中浸渍 30 秒钟，对拉伸叠层体中所含的 PVA 分子发生了取向的 PVA 层进行不溶化。在本工序的硼酸不溶化水溶液中，相对于水 100 重量份，使硼酸含量为 3 重量份。实施例 3 的不溶化工序所谋求的技术效果是：使拉伸叠层体中所含的 PVA 层至少在后续工序的染色工序中不发生溶解的不溶化效果。

[0325] 接着，实施例 3 与实施例 1 的情况同样地，通过将经过不溶化了的拉伸叠层体浸渍
于液温 30℃的含碘及碘化钾的染色液中，制成了包含吸附有碘的 PVA 层的着色叠层体。然后，通过将制成的着色叠层体浸渍于与实施例 1 的拉伸温度相同的 65℃的硼酸水溶液拉伸浴中，进行与实施例 1 的情况相同的拉伸，并使拉伸倍率达到 3.3 倍，从而制成了光学膜叠层体。另外，实施例 3 的洗涤工序、干燥工序、贴合和 / 或转印工序均与实施例 1 的情况相同。

[0326] 需要说明的是，为了使染色工序之前的不溶化工序所要求的技术效果变得更为显著，实施了下述方法：首先，通过对实施例 1 的未经不溶化的拉伸叠层体进行染色而制成着色叠层体，再将制成的着色叠层体浸渍于拉伸温度 70 ～ 75℃的硼酸水溶液拉伸浴中，此时，着色叠层体中所含的 PVA 层如实施例 2 所示地，在硼酸水溶液拉伸浴中发生了溶解，未能实施拉伸。

[0327] 接着，实施了下述方法：以水为溶剂，代替实施例 1 中碘浓度为 0.30 重量%的染色液，将实施例 1 的未经不溶化的拉伸叠层体浸渍于碘浓度为 0.12 ～ 0.25 重量%、其它条件保持不变的染色液中，此时，拉伸叠层体中所含的 PVA 层在染色液中发生了溶解，未能进行染色。但在使用实施例 3 的经过不溶化的拉伸叠层体的情况下，即使染色液的碘浓度为 0.12 ～ 0.25 重量%，PVA 层也不溶解，能够进行对 PVA 层的染色。

[0328] 在染色液的碘浓度为 0.12 ～ 0.25 重量%时也能够进行对 PVA 层的染色的实施例 3 中，通过使拉伸叠层体在染色液中的浸渍时间恒定，并在实施例 1 所示的一定范围内改变染色液的碘浓度及碘化钾浓度，来调整碘吸附量，使最终生成的偏振膜的单体透射率为 40 ～ 44%，从而制作了单体透射率和偏振度不同的各种着色叠层体。

[0329] [实施例 4]

[0330] 实施例 4 通过在实施例 1 的制造工序中加入了实施例 3 的不溶化工序和实施例 2 的交联工序的制造工序，来制作光学膜叠层体。首先，制成在非晶性 PET 基体材料上成膜有 7μm 厚的 PVA 层的叠层体，然后，通过气体氛围中的辅助拉伸，对包含 7μm 厚的 PVA 层的叠层体的自由端进行单向拉伸，并使拉伸倍率达到 1.8 倍，制成了拉伸叠层体。实施例 4 中，与实施例 3 的情况同样地，通过所制成的拉伸叠层体进行在液温 30℃的硼酸不溶化水溶液中浸渍 30 秒钟的不溶化工序，对拉伸叠层体中所含的 PVA 分子发生了取向的 PVA 层进行不溶化。与实施例 3 的情况同样地，实施例 4 中还通过进一步将包含经过不溶化的 PVA 层的拉伸叠层体浸渍于液温 30℃的含碘及碘化钾的染色液中，来制成包含吸附有碘的 PVA 层的着色叠层体。

[0331] 实施例 4 中，通过与实施例 2 的情况同样地进行将制成的着色叠层体在 40℃的硼酸交联水溶液中浸渍 60 秒钟的交联工序，来使吸附有碘的 PVA 层的 PVA 分子之间发生交联。接着，在实施例 4 中，通过将经过交联的着色叠层体在拉伸温度比实施例 1 的拉伸温度 65℃高的 75℃的硼酸水溶液拉伸浴中浸渍 5 ～ 10 秒钟，进行与实施例 2 的情况相同的自由端单向拉伸，并使拉伸倍率达到 3.3 倍，从而制成了光学膜叠层体。另外，实施例 4 的洗涤工序、干燥工序、贴合和 / 或转印工序均与实施例 1 ～ 3 的情况相同。

[0332] 另外，与实施例 3 的情况相同，实施例 4 的染色液的碘浓度即使为 0.12 ～ 0.25 重量%，PVA 层也不发生溶解。实施例 4 中，通过使拉伸叠层体在染色液中的浸渍时间恒定，并在实施例 1 所示的一定范围内改变染色液的碘浓度及碘化钾浓度，来调整碘吸附量，使得最终生成的偏振膜的单体透射率为 40 ～ 44%，从而制作了单体透射率和偏振度不同的
各种着色叠层体。

【0333】如上所述，实施例4如所述地制成光学膜叠层体，首先，制成非晶性PET基体材料上成膜有7μm厚的PVA层的叠层体，然后，通过气液氛围中的辅助拉伸，对包含7μm厚的PVA层的叠层体的自由端进行单向拉伸，使其拉伸倍率达到1.8倍，制成了拉伸叠层体。通过将制好的拉伸叠层体在湿30℃的硼酸不溶水溶液中浸渍30秒钟，对拉伸叠层体中所含的PVA层进行不溶化。通过将包含经过不溶化的PVA层的拉伸叠层体浸渍于湿30℃的含碳及碳化钾的染色液中，制成了在经过不溶化的PVA层吸附有碘的着色叠层体。通过将包含吸附有碘的PVA层的着色叠层体在40℃的硼酸交联水溶液中浸渍60秒钟，使吸附有碘的PVA层的PVA分子之间发生交联。将包含经过交联的PVA层的着色叠层体在含有硼酸和碳化钾的液温75℃的硼酸水溶液中浸渍5～10秒钟，然后，通过硼酸水溶液中拉伸对其自由端进行单向拉伸，并使拉伸倍率达到3.3倍，从而制作了光学膜叠层体。

【0334】由此，实施例4中，通过进行由气氛氛围中的高温拉伸及硼酸水溶液中拉伸构成的两个阶段拉伸，和在浸渍于染色液中之前进行的不溶化和在硼酸水溶液中拉伸之前进行的交联构成的前处理，可使在非晶性PET基体材料上成膜的PVA层的PVA分子发生高级次取向，稳定地制成包含构成偏振膜的3μm厚PVA层的光学膜叠层体，且所述PVA层中通过染色而切实地吸附于PVA分子的碘以多碘离子络合物形式发生了单向高级次取向。

【0335】[实施例5]

【0336】除了上述区别点之外，实施例5在与实施例4相同的条件下制造了光学膜叠层体。所述区别点在于在非晶性PET基体材料上成膜的PVA层的厚度。实施例4中，利用了7μm厚的PVA层，而在最终的光学膜叠层体中所含的PVA层为3μm厚。与此相对，实施例5中，利用了12μm厚的PVA层，而在最终的光学膜叠层体中所含的PVA层为5μm厚。

【0337】[实施例6]

【0338】除了上述区别点之外，实施例6在与实施例4相同的条件下制造了光学膜叠层体。所述区别点在于用于非晶性PET基体材料的聚合单体。实施例4中，使用的是使间苯二甲醛与PET共聚而得到的非晶性PET基体材料。与此相对，实施例6中，使用的是使作为改性基团的1,4-环己烷二甲醇与PET共聚而得到的非晶性PET基体材料。

【0339】[实施例7]

【0340】除了上述区别点之外，实施例7在与实施例4相同的条件下制造了光学膜叠层体。所述区别点在于，分别改变气氛氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率，使得总拉伸倍率达到6倍或接近6倍的值。实施例4中，使气氛氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率分别为1.8倍及3.3倍。与此相对，实施例7中，使气氛氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率分别为1.2倍及4.9倍。需要说明的是，实施例4中的总拉伸倍率为5.94倍。与此相对，实施例7中的总拉伸倍率为5.88倍。这是由于在硼酸水溶液中拉伸中，无法使拉伸倍率达到4.9倍以上。

【0341】[实施例8]

【0342】除了上述区别点之外，实施例8在与实施例4相同的条件下制造了光学膜叠层体。所述区别点在于，分别改变气氛氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率，使得总拉伸倍率达到6倍。实施例8中，使气氛氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率分别为1.8倍及3.3倍。与此相对，实施例8中，使气氛氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率分别为1.2倍及4.9倍。需要说明的是，实施例8中的总拉伸倍率为5.94倍。与此相对，实施例8中的总拉伸倍率为5.88倍。这是由于在硼酸水溶液中拉伸中，无法使拉伸倍率达到4.9倍以上。
伸倍率分别为 1.5 倍及 4.0 倍。

[0343] 实施例 9

[0344] 除了下述区别点之外，实施例 9 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，分别改变气体氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率，使得总拉伸倍率达到 6 倍。实施例 9 中，使气体氛围中的辅助拉伸及硼酸水溶液中拉伸的拉伸倍率分别为 2.5 倍及 2.4 倍。

[0345] 实施例 10

[0346] 除了下述区别点之外，实施例 10 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，实施例 4 中将气体氛围中的辅助拉伸的拉伸温度设定为 130℃，与此相对，实施例 10 中将气体氛围中的辅助拉伸的拉伸温度设定为 95℃。

[0347] 实施例 11

[0348] 除了下述区别点之外，实施例 11 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，实施例 4 中将气体氛围中的辅助拉伸的拉伸温度设定为 130℃，与此相对，实施例 11 中将气体氛围中的辅助拉伸的拉伸温度设定为 110℃。

[0349] 实施例 12

[0350] 除了下述区别点之外，实施例 12 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，实施例 4 中将气体氛围中的辅助拉伸的拉伸温度设定为 130℃，与此相对，实施例 12 中将气体氛围中的辅助拉伸的拉伸温度设定为 150℃。

[0351] 实施例 13

[0352] 除了下述区别点之外，实施例 13 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，将气体氛围中的辅助拉伸的拉伸倍率变更为 1.8 倍，将硼酸水溶液中拉伸的拉伸倍率变更为 2.8 倍。由此，相对于实施例 4 中约 6 倍（准确而言为 5.94 倍）的总拉伸倍率，实施例 13 中的总拉伸倍率约为 5 倍（准确而言为 5.04 倍）。

[0353] 实施例 14

[0354] 除了下述区别点之外，实施例 14 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，将气体氛围中的辅助拉伸的拉伸倍率变更为 1.8 倍，将硼酸水溶液中拉伸的拉伸倍率变更为 3.1 倍。由此，相对于实施例 4 中约 6 倍（准确而言为 5.94 倍）的总拉伸倍率，实施例 14 中的总拉伸倍率约为 5.5 倍（准确而言为 5.58 倍）。

[0355] 实施例 15

[0356] 除了下述区别点之外，实施例 15 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于，将气体氛围中的辅助拉伸的拉伸倍率变更为 1.8 倍，将硼酸水溶液中拉伸的拉伸倍率变更为 3.6 倍。由此，相对于实施例 4 中约 6 倍（准确而言为 5.94 倍）的总拉伸倍率，实施例 15 中的总拉伸倍率约为 6.5 倍（准确而言为 6.48 倍）。

[0357] 实施例 16

[0358] 除了下述区别点之外，实施例 16 在与实施例 4 相同的条件下制造了光学膜叠层体。所述区别点在于气体氛围中的辅助拉伸的拉伸方法。实施例 4 中，通过气体氛围中的辅助拉伸，对其自由端进行单向拉伸使得拉伸倍率达到 1.8 倍。与此相对，实施例 16 中，通过进行固定两端向气体氛围中的辅助拉伸使得拉伸倍率达到 1.8 倍。

[0359] 实施例 17
除了上述区别点之外，实施例17在与实施例16相同的情况下制备了光学膜叠层体。所述区别点在于，将气相气氛中的辅助拉伸的拉伸倍率变更为1.8倍，而将硼酸水溶液中拉伸的拉伸倍率变更为3.9倍。由此，相对于实施例16中约6倍（准确而言为5.94倍）的总拉伸倍率，实施例17中的总拉伸倍率约为7倍（准确而言为7.02倍）。

[实施例18]

除了上述区别点之外，实施例18在与实施例16相同的情况下制备了光学膜叠层体。所述区别点在于，将气相气氛中的辅助拉伸的拉伸倍率变更为1.8倍，而将硼酸水溶液中拉伸的拉伸倍率变更为4.4倍。由此，相对于实施例16中约6倍（准确而言为5.94倍）的总拉伸倍率，实施例18中的总拉伸倍率约为8倍（准确而言为7.92倍）。

[比较例1]

比较例1在与实施例4相同的条件下，在200μm厚的非晶性PET基材材料上涂布PVA水溶液并使其干燥，制备了在非晶性PET基材材料成膜有7μm厚PVA层的叠层体。接着，通过进行拉伸温度设定了130℃的气相气氛中的高温拉伸，对包含7μm厚的PVA层的叠层体的自由端进行单向拉伸，并使拉伸倍率达到4.0倍，制成了叠层体。通过该拉伸处理，拉伸叠层体中所含的PVA层转变为PVA分子发生了取向的3.5μm厚的PVA层。

[比较例2]

接着，拉伸叠层体经过染色处理，制备了在PVA分子发生了取向的3.5μm厚的PVA层吸附有染的着色叠层体。具体而言，着色叠层体通过下述方法得到：将拉伸叠层体在液温30℃的含硫及硫化钾的染液中浸渍任意时间，使得最终制成的构成偏振膜的PVA层的单体透射率达到40～44%，由此，使吸附于拉伸叠层体中含有的PVA层中。由此，对PVA分子发生了取向的PVA层的吸附量进行了调整，制成了单体透射率和偏振度不同的各种着色叠层体。

[比较例3]

接着，对着色叠层体进行交联处理。具体而言，通过将着色叠层体在液温40℃的硼酸交联水溶液浸渍60秒钟，对着色叠层体实施交联处理，所述硼酸交联水溶液中，相对于水100重量份，含有硼酸3重量份，含有硫化钾3重量份。比较例1中的经过交联处理后的着色叠层体相当于实施例4的光学膜叠层体。因此，洗涤工序、干燥工序、粘合和/或转印工序均与实施例4的情况相同。

[比较例2]

比较例2中，在与比较例1相同的条件下对比较例1的拉伸叠层体进行拉伸，并使拉伸倍率达到4.5倍、5.0倍、6.0倍，从而制成了拉伸叠层体。比较表中示出了包括比较例1和比较例2的、在200μm厚的非晶性PET基材材料和在该非晶性PET基材材料上成膜的PVA层所发生的现象。由此确认，通过拉伸温度130℃的气相气氛中的高温拉伸而达到的拉伸倍率以4.0倍为限。

[比较例3]

比较例3中，在与比较例1的情况相同的条件下，将PVA水溶液涂布在200μm厚的PET基材材料上，并使之干燥，从而制成了在PET基材材料上成膜有7μm厚的PVA层的叠层体。接着，通过将叠层体浸渍在液温30℃的含硫及硫化钾的染液中，制作了包含吸附有硫的PVA层的着色叠层体。具体而言，着色叠层体通过下述方法得到：将叠层体在液温30℃的含有0.3重量%浓度的硫及2.1重量%浓度的硫化钾的染液中浸渍任意时间，使得最终生成的构成偏振膜的PVA层的单体透射率达到40～44%，由此，使硫吸附于拉伸叠层体中。
层体中含有的 PVA 层中。然后进行拉伸温度设定为 60℃的硼酸水溶液中拉伸，对包含吸附有碘的 PVA 层的着色叠层体进行自由端向向拉伸，使拉伸倍率达到 5.0 倍，由此制作了各种包含与 PET 树脂基体材料一体地经过拉伸的 3 μm 厚 PVA 层的光学膜叠层体。

[0371] [参考例 1]

[0372] 参考例 1 使用结晶性聚对苯二甲酸乙二醇酯（以下称为“结晶性 PET”）的连续带状基体材料作为树脂基体材料，将 PVA 水溶液涂布在 200 μm 厚的结晶性 PET 基体材料上，并使之干燥，从而制成了在结晶性 PET 基体材料上成膜有 7 μm 厚的 PVA 层的叠层体。结晶性 PET 的玻璃化转变温度为 80℃。接着，通过进行设定为 110℃的气体氛围中的高温拉伸，对制作的叠层体的干燥端进行单向拉伸，并使拉伸倍率达到 4.0 倍，从而制成了拉伸叠层体。通过该拉伸处理，拉伸叠层体中所含的 PVA 层转变为 PVA 分子发生了取向的 3.3 μm 厚的 PVA 层。参考例 1 的情况下，在拉伸温度 110℃的气体氛围中的高温拉伸中，无法将叠层体拉伸至 4.0 倍以上。

[0373] 通过下述的染色工序，将拉伸叠层体制成在 PVA 分子发生了取向的 3.3 μm 厚的 PVA 层中吸附有碘的着色叠层体。具体而言，着色叠层体通过下述方法得到，将拉伸叠层体在液温 30℃的含碘及碘化钾的染色液中浸泡任意时间，使得最终制成的构成偏振膜的 PVA 层的单体透射率达到 40 ～ 44%，由此，使碘吸附于拉伸叠层体所含有的 PVA 层中。这样，通过对 PVA 分子发生了取向的 PVA 层的碘吸附量进行调整，制成了单体透射率和偏振度不同的各种着色叠层体。接着，对制作的着色叠层体进行交联处理。具体而言，通过在液温 40℃的硼酸交联水溶液中浸泡 60 秒钟，对着色叠层体实施了交联处理，在所述硼酸交联水溶液中，相对于水 100 重量份，含有硼酸 3 重量份、碘化钾 3 重量份。参考例 1 中，经过交联处理的着色叠层体相当于实施例 4 的光学膜叠层体。因此，洗涤工序、干燥工序、贴合和 / 或转印工序均与实施例 4 的情况相同。

[0374] [参考例 2]

[0375] 与参考例 1 的情况相同，参考例 2 中使用结晶性 PET 基体材料作为树脂基体材料，制作了在 200 μm 厚的结晶性 PET 基体材料上成膜有 7 μm 厚的 PVA 层的叠层体。接着，通过进行设定为 100℃的气体氛围中的高温拉伸，对制作的叠层体的自由端进行单向拉伸，并使拉伸倍率达到 4.5 倍，从而制成了拉伸叠层体。通过该拉伸处理，拉伸叠层体中所含的 PVA 层转变为 PVA 分子发生了取向的 3.3 μm 厚的 PVA 层。参考例 2 的情况下，在拉伸温度 100℃的气体氛围中的高温拉伸中，无法将叠层体拉伸至 4.5 倍以上。

[0376] 接着，由拉伸叠层体制作了着色叠层体。着色叠层体通过下述方法得到，将拉伸叠层体在液温 30℃的含碘及碘化钾的染色液中浸泡任意时间，使得最终制成的构成偏振膜的 PVA 层的单体透射率达到 40 ～ 44%，由此，使碘吸附于拉伸叠层体所含的 PVA 层中。与参考例 1 的情况相同，参考例 2 中通过对 PVA 分子发生了取向的 PVA 层的碘吸附量进行调整，制成了单体透射率和偏振度不同的各种着色叠层体。

[0377] [参考例 3]

[0378] 与参考例 1 或 2 的情况相同，参考例 3 中使用结晶性 PET 基体材料作为树脂基体材料，制作了在 200 μm 厚的结晶性 PET 基体材料上成膜有 7 μm 厚的 PVA 层的叠层体。接着，将制作的叠层体在液温 30℃的含碘及碘化钾的染色液中浸泡任意时间，使得最终制成的构成偏振膜的 PVA 层的单体透射率达到 40 ～ 44%，由此，制成了各种叠层体中含有的 PVA 层
中吸附有磺的着色叠层体。然后，通过 90℃的气体氛围中的高温拉伸，对制作的着色叠层体进行自由单个拉伸，并使拉伸倍率达到 4.5 倍，从而由着色叠层体制作的半透明偏振膜。使用附有一个有磺的 PVA 层的拉伸叠层体。通过该拉伸处理，由着色叠层体制作的拉伸叠层体中所含的吸附有磺的 PVA 层转变为 PVA 分子发生了取向的 3.3 μ m 厚的 PVA 层。参考例 3 的情况下，在拉伸温度 90℃的气体氛围中的高温拉伸中，无法将叠层体拉伸至 4.5 倍以上。

[0379] [测定方法]
[0380] [厚度的测定]
[0381] 使用数字测微仪（Anritsu 公司制造的 KC-351C）测定了非晶性 PET 基体材料、结晶性 PET 基体材料及 PVA 层的厚度。
[0382] [透光率及偏振度的测定]
[0383] 使用紫外可见分光光度计（日本分光公司制造的 V7100）测定了偏振膜的单体透光率 T，平行透光率 Tp，垂直透光率 Tc。这些 T, Tp, Tc 是经过 JIS Z 8701 的二度视野（C 光源）测定并经角度补偿正而得到的 Y 值。
[0384] 利用上述透光率，通过下式求出了偏振度 P。
[0385] \(P (\%) = \left(\frac{(T_p - T_c)}{(T_p + T_c)} \right)^{1/2} \times 100 \)
[0386] （PET 的取向的评价方法）
[0387] 测定装置使用的是傅立叶变换红外分光光度计（FT-IR）（Perkin Elmer 公司制造，商品名："SPECTRUM2000"）。以偏振光为测定光，通过衰减全反射分光（ATR；attenuated total reflection）测定对乙烯醇树脂膜表面进行了评价。取向函数的计算按照下述程序进行。在使用偏振光与拉伸方向成 0° 和 90° 的状态下实施了测定。利用所得光谱在 2941 cm⁻¹ 的强度，按照下述试验的（式 4）进行了计算（参见专利文献 1）。另外，下述强度 I 采用的是，以 3330 cm⁻¹ 为参比峰时的 2941 cm⁻¹/3330 cm⁻¹ 值。需要说明的是，f = 1 时为完全取向，f = 0 时为无规。另外，2941 cm⁻¹ 处的峰可认为是 PVA 的主链（-CH2-）振动引起的吸收。
[0388] （式 4）\[f = (3 < \cos^2 \theta > -1)/2 \]
[0389] = \left[\frac{(R-1)}{(R+2)} \right]/\left[\frac{(R+2)}{(R-1)} \right]
[0390] = (1-D)/(c(2D+1))
[0391] = -2 \times (1-D)/(2D+1)
[0392] 其中，
[0393] c = (3\cos^2 \beta -1)/2
[0394] \beta = 90\text{deg}
[0395] \theta : 分子链相对于拉伸方向所成的角度
[0396] \beta : 距迁偶极矩相对于分子链轴所成的角度
[0397] R_0 = 2\cot^2 \beta
[0398] 1/R = D = (I \perp)/(I//)
[0399] （PET 的取向程度越高则 D 值越大。）
[0400] I \perp : 从垂直于拉伸方向的方向入射偏振光进行测定的吸收强度
[0401] I// : 从平行于拉伸方向的方向入射偏振光进行测定的吸收强度
[0402] （PVA的结晶度的评价方法）
[0403] 测定装置使用的是傅立叶变换红外分光光度计（FT-IR）（Perkin Elmer公司制造，商品名：“SPECTRUM2000”）。以偏振光为测定光，通过衰减全反射分光（ATR：attenuated total reflection）测定对乙烯醇树脂层表面进行了评价。结晶度的计算按照下述程序进行。在使测定偏振光与拉伸方向成0°和90°的状态下实施了测量。利用所得光谱在1141cm⁻¹及1440cm⁻¹的强度，按照下式进行了计算。事先确认1141cm⁻¹的强度大小与结晶部分的量存在相关性的事实，以1440cm⁻¹为参照峰，通过下式计算出结晶化指数。（式6）进一步，使用结晶度已知的PVA样品，事先制作结晶化指数与结晶度的校正曲线，利用校正曲线，由结晶化指数计算出结晶度。（式5）

[0404] （式5）结晶度 = 63.8×（结晶化指数）-44.8
[0405] （式6）结晶化指数 = ((I(1141cm⁻¹)0° +2×I(1141cm⁻¹)90°)/3)/((I(1140cm⁻¹)0° +2×I(1440cm⁻¹)90°)/3)
[0406] 其中，
[0407] I(1141cm⁻¹)0°：从平行于拉伸方向的方向入射偏振光并进行测定时1141cm⁻¹处的强度
[0408] I(1141cm⁻¹)90°：从垂直于拉伸方向的方向入射偏振光并进行测定时1141cm⁻¹处的强度
[0409] I(1440cm⁻¹)0°：从平行于拉伸方向的方向入射偏振光并进行测定时1440cm⁻¹处的强度
[0410] I(1440cm⁻¹)90°：从垂直于拉伸方向的方向入射偏振光并进行测定时1440cm⁻¹处的强度。
图 2
图 3
图 4
<table>
<thead>
<tr>
<th>条件</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
<th>0.30~</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA在蒸煮液中</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>发生溶解</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

实验结果

- PVA在蒸煮液中
- 发生溶解

实验内容

- 第1不溶化工艺
- 第2不溶化工艺
- 棕色

附图

图 6
图8
(d) 信源度

图 13
偏振膜的偏光性能

图 15
图18

非晶性PET的可拉伸倍率
结晶性PET的可拉伸倍率
PVA的可拉伸倍率
PET发生结晶化，无法拉伸

拉伸温度（℃）
70 80 90 100 110 120 130 140 150 160 170
图19
图20
图23

PVA的结晶度和取向性

- 拉伸温度不同
 - (80°C~170°C, 1.8倍)
- 拉伸倍率不同
 - (130°C, 1.2~3.0倍)

VA_d
<table>
<thead>
<tr>
<th>序号</th>
<th>材料</th>
<th>工序</th>
<th>预热温度 (℃)</th>
<th>厚度 (μm)</th>
<th>PVA 厚度 (%)</th>
<th>糊化 PVA 程度 (%)</th>
<th>浸泡或煮沸时间 (min)</th>
<th>凝胶前厚 (μm)</th>
<th>凝胶后厚 (μm)</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>不浸化</td>
<td>7 130 1.8</td>
<td>65 5</td>
<td>0.3</td>
<td>65</td>
<td>无</td>
<td>65 3.3</td>
<td>5.9 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>不浸化</td>
<td>7 130 1.8</td>
<td>65 5</td>
<td>0.3</td>
<td>65</td>
<td>有</td>
<td>75 3.3</td>
<td>5.9 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>不浸化</td>
<td>7 130 1.8</td>
<td>65 5</td>
<td>0.12~0.0</td>
<td>65</td>
<td>有</td>
<td>75 4.0</td>
<td>5.9 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>不浸化</td>
<td>7 130 2.5</td>
<td>65 5</td>
<td>0.12~0.0</td>
<td>65</td>
<td>有</td>
<td>75 4.0</td>
<td>5.9 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>不浸化</td>
<td>7 130 2.5</td>
<td>65 5</td>
<td>0.12~0.0</td>
<td>65</td>
<td>有</td>
<td>75 4.0</td>
<td>5.9 3</td>
<td></td>
</tr>
</tbody>
</table>

图 26
| 图27 | 66 |