(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(51) Internationale Patentklassifikation:
C07C 303/34, 307/06

(21) Internationales Aktenzeichen:
PCT/EP2003/012013

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
102 50 614.0 30. Oktober 2002 (30.10.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US):
BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(71) Anmelder und
(72) Erfinder:
HAMPRECHT, Gerhard [DE/DE]; Rote-Turn-Str., 26, 69469 Weinheim (DE); PULH, Michael [DE/DE]; Bürstädtler-Str., 95, 68623 Lampertheim (DE); REINHARD, Robert [DE/DE]; Wielandstr., 30, 67065 Ludwigshafen (DE); SEITZ, Werner [DE/DE]; Bismarckstr. 22b, 67823 plankstadt (DE).

(72) Erfinder;
(75) Erfinder/Anmelder (nur für US): WOLF, Bernd [DE/DE]; Halberstgr. 4, 67136 Fussgönheim (DE).

(10) Internationale Veröffentlichungsnummer
WO 2004/039768 A1

GÖTZ, Norbert [DE/DE]; Schöffnerstr. 25, 67547 Worms (DE); KEIL, Michael [DE/DE]; Fontanestr. 4, 62751 Freinsheim (DE); SAGASSER, Ingo [DE/DE]; Schlesienstr. 13, 67125 Dammstadt-Schauenheim (DE).

Anwalt: POHL, Michael; Reitsstädtinter, Kinzebach & Partner, Ludwigspalt 4, 67059 Ludwigshafen (DE).

(81) Bestimmungsstaaten (national):

(84) Bestimmungsstaaten (regional):

Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreten

[Fortsetzung auf der nächsten Seite]

(54) Titel: BIFUNCTIONAL PHENYLISO(THIO)CYANATES; METHOD AND INTERMEDIATE PRODUCTS FOR THE PRODUCTION THEREOF

(54) Bezeichnung: BIFUNKTIONELLE PHENYLISO(THIO)CYANATE; VERFAHREN UND ZWISCHENPRODUKTE ZU IHRE HERSTELLUNG

(57) Abstract: The invention relates to a method for producing phenyliso(thio)cyanates of general formula (I) according to which a compound of general formula (II) or the HCl adduct thereof is reacted with a phoshagenating agent, wherein W represents oxygen or sulfur and Ar and A have the meanings as cited in Claim 1. The invention also relates to the use of phenyliso(thio)cyanates for producing plant protection products.

(57) Zusammenfassung: Beschreiben wird ein Verfahren zur Herstellung von Phenyliso(thio)cyanaten der allgemeinen Formel I, bei dem man eine Verbindung der allgemeinen Formel II oder deren HCl-Addukt mit einem Phosgenierungsmitittel umsetzt, worin W für Sauerstoff oder Schwefel steht und Ar und A die in Anspruch 1 genannten Bedeutungen aufweisen. Die Erfindung betrifft außerdem die Verwendung der Phenyliso(thio)cyanate zur Herstellung von Pflanzenschutzmitteiln.
Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Bifunktionelle Phenyliiso(thio)cyanate, Verfahren und Zwischenprodukte zu ihrer Herstellung

Die Erfindung betrifft ein Verfahren zur Herstellung bifunktionaler Phenyliiso(thio)cyanate der allgemeinen Formel I mit einer Acylsulfonamid-Gruppe,

\[
\begin{array}{c}
\text{C} \\
\text{N} \\
\text{Ar} \\
\text{N} \\
\text{H} \\
\text{SO}_2 \quad \text{A}
\end{array}
\]
(I)

worin die Variablen folgende Bedeutung haben:

W Sauerstoff oder Schwefel,

Ar Phenyl, das durch folgende Gruppen ein- oder mehrfach substituiert sein kann: Wasserstoff, Halogen, C1-C4-Halogenalkyl, oder Cyano;

A ein von einem primären oder sekundären Amin abgeleiteter Rest oder NH₂,

durch Umsetzung von Anilinen oder deren Hydrochloriden mit Phosphorgenderivaten. Die Erfindung betrifft auch bifunktionelle Phenyliiso(thio)cyanate.

Iso(thio)cyanatobenzoylsulfamidsäureamide sind potentielle Vorstufen für die Herstellung von Pflanzenschutzmitteln mit Triazol-3,5-dion-4-ylgruppe, Pyrimidin-2,6-dion-1-ylgruppe oder 1,3,5-Triazin-2,4,6-trion-1-ylgruppe oder deren S-Analoga wie sie z. B. in der WO 01/83459 beschrieben sind. Aufgrund ihrer Reaktionsfähigkeit sollte sich die Iso(thio)cyanato-Struktureinheit leicht in andere Gruppen wie (Thio)Harnstoff- oder Urethangruppen überführen lassen. Ihre Herstellung wurde jedoch aus im nachfolgenden genannten Gründen für nicht möglich erachtet.

Allen beschriebenen Verfahren ist gemeinsam, dass die eingesetzten Phenyliso(thio)cyanate keine Acylsulfonamidgruppe tragen. Es ist nämlich bekannt, dass eine Iso(thio)cyanatogruppe mit einer Sulfonamid-Gruppe unter Bildung von Sulfonylharnstoffen reagiert. So beschreiben beispielsweise J. Cervello und T. Sastre in Synthesis 1990, 221-222, die Umsetzung eines Sulfonamides mit Isocyanaten gemäß der folgenden Reaktionsfolge:

\[
\begin{align*}
\text{SO}_2^+ - &\text{NR}_1^+ + \text{R}_2^- &\text{N} = \text{C} = \text{O} &\rightarrow \\
\text{H}_2\text{C} &\text{R}_1 &\text{N} = \text{C} &\text{N} \text{R}_2 \\
\text{R}_1 &= \text{H, CH}_3 \\
\text{R}_2 &= \text{Aryl, Alkyl}
\end{align*}
\]

Aus der DE 3433391 ist die Umsetzung von Saccharin mit Acylisocyanaten zu N-acylierten Saccharin-Derivaten bekannt.

Vor diesem Hintergrund wurde daher sowohl die Herstellung von Phenyliso(thio)cyanaten, die im gleichen Molekül noch eine reaktive Acylsulfonamidfunktion tragen, als auch deren Isolierung - ohne intermolekulare Folgereaktionen - für nicht möglich gehalten. Ein Fachmann musste annehmen, dass Sulfonamide aufgrund ihres aciden Protons mit Phenyliso(thio)cyanaten zu Sulfonylharnstoff-Derivaten reagieren. Bislang wurde daher kein Verfahren zur Herstellung von Phenyliso(thio)cyanaten, die als weitere funktionelle Gruppe eine Acylsulfonamidgruppe tragen, beschrieben.

Der Erfindung liegt die Aufgabe zugrunde, Iso(thio)cyanatobenzozylsulfamidsäureamide der Formel I bereit zu stellen.
Es wurde überraschenderweise gefunden, dass diese Aufgabe durch ein Verfahren gelöst wird, bei dem man ein Aminobenzoylsulfamid-säureamid der allgemeinen Formel II,

![Chemical Structure](II)

worin die Variablen Ar und A die zuvor genannten Bedeutungen aufweisen, mit Phosgen, Diphosgen bzw. Thiophosgen umsetzt.

Demgemäß betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von Phenyliso(thio)cyanaten der allgemeinen Formel I, das dadurch gekennzeichnet ist, dass man eine Verbindung der allgemeinen Formel II oder deren HCl-Addukt mit Phosgen, Thiophosgen oder Diphosgen umsetzt (siehe Schema 1). In Schema 1 haben die Variablen Ar, A und W die zuvor genannten Bedeutungen.

Schema 1:

![Chemical Structure](I)

Die bei der Definition der Substituenten genannten organischen Molekületeile stellen - wie die Bedeutung Halogen - Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder
dar, wobei der Ausdruck Cₙ-Cₘ die mögliche Anzahl der Kohlenstoffatome im Moleküleist Teil angibt. Sämtliche Kohlenstoffketten, also alle Alkyl-, Alkenyl- und Alkinyleite können geradkettig oder verzweigt sein. Soweit nicht anders angegeben, tragen halogenierte Substituenten vorzugsweise ein bis sechs gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.

Ferner stehen beispielsweise:

- C₁-C₄-Alkyl für: z. B. Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1,1-Dimethylethyl;

- C₁-C₁₀-Alkyl: ein gesättigter aliphatischer Kohlenwasserstoffrest mit 1 bis 10 C-Atomen, z. B. C₁-C₄-Alkyl, wie voranstehend genannt, sowie z. B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-3-methylpropyl, n-Heptyl, n-Nonyl, n-Decyl,

4-Methylpent-4-en-1-yl, 1,1-Dimethylbut-2-en-1-yl, 1,1-Dimethylbut-3-en-1-yl, 1,2-Dimethylbut-2-en-1-yl, 1,2-Dimethylbut-3-en-1-yl, 1,3-Dimethylbut-2-en-1-yl, 1,3-Dimethylbut-3-en-1-yl, 2,2-Dimethylbut-3-en-1-yl, 2,3-Dimethylbut-2-en-1-yl, 2,3-Dimethylbut-3-en-1-yl, 3,3-Dimethylbut-2-en-1-yl, 1-Ethylbut-2-en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethylbut-2-en-1-yl, 2-Ethylbut-3-en-1-yl, 1,1,2-Trimethylprop-2-en-1-yl, 1-Ethyl-1-methylprop-2-en-1-yl, 1-Ethyl-2-methylprop-2-en-1-yl, Hept-2-en-1-yl, Oct-2-en-1-yl, Non-2-en-1-yl, Dec-2-en-1-yl;

C$_1$-C$_4$-Halogenalkyl für: einen C$_1$-C$_4$-Alkylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z. B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlor-difluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentfluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethylyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;

C$_1$-C$_{10}$-Halogenalkyl: C$_1$-C$_{10}$-Alkyl wie vorstehend genannt, woorin 1 bis 6 Wasserstoffatome durch Halogenatome, vorzugsweise durch Fluor und/oder Chlor substituiert sind, z. B.: C$_1$-C$_4$-Ha-
logenalkyl, wie vorstehend genannt, sowie 5–Fluorpentyl, 5–Chlorpentyl, 5–Brompentyl, 5–Iodpentyl, Undecafluorpentyl, 6–Fluorhexyl, 6–Chlorhexyl, 6–Bromhexyl, oder 6–Iodhexyl;

C₂–C₁₀–Halogenalkeny: C₂–C₁₀–Alkenyl wie vorstehend genannt, worin 1 bis 6 Wasserstoffatome durch Halogenatome, vorzugsweise durch Fluor und/oder Chlor substituiert sind: z. B. 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3,3-Trichlorallyl, 2,3-Dichlorbut-2-en-1-yl, 2-Bromallyl, 3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl, 2,3,3-Tribromallyl oder 2,3-Dibrombut-2-en-1-yl;

C₂–C₁₀–Halogenalkinyl: C₂–C₁₀–Alkinyl wie vorstehend genannt, worin 1 bis 6 Wasserstoffatome durch Halogenatome, vorzugsweise durch Fluor und/oder Chlor substituiert sind: z. B. 1,1-Difluorprop-2-in-1-yl, 1,1-Difluorbut-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl, 5-Fluorpent-3-in-1-yl oder 6-Fluorhex-4-in-1-yl;

C₁–C₁₀–Cyanoalkyl: durch eine CN-Gruppe substituiertes C₁–C₁₀–Alkyl, z. B. Cyanomethyl, 1-Cyanoethyl, 2-Cyanoethyl, 1-Cyanopropyl, 2-Cyanopropyl, 3-Cyanopropyl, 1-Cyanoprop-2-yl, 2-Cyanoprop-2-yl, 1-Cyanobutyl, 2-Cyanobutyl, 3-Cyanobutyl, 4-Cyanobutyl, 1-Cyanobut-2-yl, 2-Cyanobut-2-yl, 1-Cyanobut-3-yl, 2-Cyanobut-3-yl, 1-Cyano-2-methylprop-3-yl, 2-Cyano-2-methylprop-3-yl, 3-Cyano-2-methylprop-3-yl, 3-Cyano-2,2-dimethylpropyl, 6-Cyanohex-1-yl, 7-Cyanohex-1-yl, 8-Cyanoocct-1-yl, 9-Cyanoenon-1-yl, 10-Cyanoodec-1-yl;

C₃–C₁₀–Cycloalkyl: für einen cycloaliphatischen Rest mit 3 bis 10 C-Atomen: z B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl oder Cyclodecyl;

C₃–C₁₀–Cycloalkenyl: für einen cycloaliphatischen Rest mit 3 bis 10 C-Atomen und einer Doppelbindung: z. B. Cyclopropen-1-yl, Cyclobuten-1-yl, Cyclopenten-1-yl, Cyclohexen-1-yl, Cyclohepten-1-yl, Cycloocten-1-yl, Cyclononen-1-yl, Cyclodecen-1-yl, Cyclopent-2-en-1-yl, Cyclohex-2-en-1-yl, Cyclohept-2-en-1-yl, Cyclooct-2-en-1-yl, Cyclonon-2-en-1-yl, Cyclodec-2-en-1-yl, Cyclohex-3-en-1-yl, Cyclohept-3-en-1-yl, Cyclooct-3-en-1-yl, Cyclooct-4-en-1-yl, Cyclonon-3-en-1-yl, Cyclonon-4-en-1-yl, Cyclodec-4-en-1-yl oder Cyclodec-3-en-1-yl;
C₁–C₄-Alkylcarbonyl: für einen über eine Carbonylgruppe gebundenen Alkylrest mit 1 bis 4 C-Atomen, z. B. für Acetyl, Propionyl, Butyryl oder Isobutyryl;

(C₁–C₄-Alkylamino)carbonyl: z. B. Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, 1-Methylethylaminocarbonyl, Butylaminocarbonyl, 1-Methylpropylaminocarbonyl, 2-Methylpropylaminocarbonyl oder 1,1-Dimethylethylaminocarbonyl;

Di-(C₁–C₄-alkyl)-aminocarbonyl: z. B.
8

- C_1–C_4–Alkoxy: für einen über ein Sauerstoffatom gebundenen Alkylrest mit 1 bis 4 C-Atomen, z. B. Methoxy, Ethoxy, Proproxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;

5

- C_1–C_4–Alkoxy carbonyl: für einen über eine Carbonylgruppe gebundenen Alkoxyrest mit 1 bis 4 C-Atomen, z. B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl, Butoxycarbonyl,

10

- 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl oder 1,1-Dimethylethoxycarbonyl;

- C_1–C_4–Alkylthio (C_1–C_4–Alkylsulfanyl: C_1–C_4–Alkyl–S–): für einen über ein Schwefelatom gebundenen Alkylrest mit 1 bis 4 C-Atomen, z.B. Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;

15

- C_1–C_4–Alkylsulfinyl (C_1–C_4–Alkyl–S(=O)–): z.B. für Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl oder 1,1-Dimethylethylsulfinyl;

- C_1–C_4–Alkyl sulfonyl (C_1–C_4–Alkyl–S(=O)_{2}–): z. B. für Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl oder 1,1-Dimethylethylsulfonyl;

- 3- bis 8-gliedriges Heterocyclen: ein heterocyclischer Rest, der 3, 4, 5, 6, 7 oder 8 Ringglieder aufweist, wobei 1, 2 oder 3 der Ringglieder Heteroatome sind, die ausgewählt sind unter Sauerstoff, Schwefel, Stickstoff und einer Gruppe NR^6 (worin R^6 für Wasserstoff, C_1–C_4–Alkyl, C_3–C_6–Alkenyl oder C_3–C_6–Alkinyl steht). Außerdem kann der Heterocyclus gegebenenfalls ein oder zwei Carbonylgruppen oder Thiocarbonylgruppen als Ringglieder aufweisen. Der Heterocyclus kann aromatisch (Heteroaryl) oder teilweise oder vollständig gesättigt sein.

30

Beispiele für gesättigte Heterocyclen sind:
Oxiran-1-yl, Aziridin-1-yl, Oxetan-2-yl, Oxetan-3-yl, Thietan-2-yl, Thietan-3-yl, Azetidin-1-yl, Azetidin-2-yl, Azetidin-3-yl, Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothiophen-2-yl, Tetrahydrothiophen-3-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-4-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathiolan-4-yl, 1,3-Oxathiolan-5-yl, 1,3-Oxazolidin-2-yl, 1,3-Oxazoli-
Beispiele für ungesättigte Heterocyclen sind:

Dihydrofuran-2-yl, 1,2-Oxazolin-3-yl, 1,2-Oxazolin-5-yl, 1,3-Oxazolin-2-yl;

Beispiele für aromatisches Heterocyclen sind die 5- und 6-gliedrigen aromatischen, heterocyclischen Reste, z.B. Furyl wie 2-Furyl und 3-Furyl, Thieryl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-Pyrrolyl, Isoxazolyl wie 3-Isoxazolyl, 4-Isoxazolyl und 5-Isoxazolyl, Isothiazolyl wie 3-Isothiazolyl, 4-Isothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie 2-Oxazolyl, 4-Oxazolyl und 5-Oxazolyl, Thiazolyl wie 2-Thiazolyl, 4-Thiazolyl und 5-Thiazolyl, Imidazolyl wie 2-Imidazolyl und 4-Imidazolyl, Oxadiazolyl wie 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl und 1,3,4-Oxadiazol-2-yl, Thiadiazolyl wie 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl und 1,3,4-Thiadiazol-2-yl, Triazolyl wie 1,2,4-Triazol-1-yl, 1,2,4-Triazol-3-yl und 1,2,4-Triazol-4-yl, Pyridinyl wie 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyrazinyl wie
3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl, 4-Pyrimidinyl und 5-Pyrimidinyl, des weiteren 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl, insbesondere Pyridyl, Furanyl und Thiényl.

Der von einem primären oder sekundären Amin abgeleitete Rest A steht in der Regel für eine Gruppe der Formel \(-\text{NR}^1\text{R}^2\),

worin die Variablen \(\text{R}^1\) und \(\text{R}^2\) die folgenden Bedeutungen aufweisen:

\(\text{R}^1\) und \(\text{R}^2\) stehen unabhängig voneinander für Wasserstoff, \(\text{C}_1\text{C}_{10}\)-Alkyl, \(\text{C}_2\text{C}_{10}\)-Alkenyl oder \(\text{C}_2\text{C}_{10}\)-Alkinyl, die unsubstituiert oder durch einen der folgenden Reste substituiert sein können: \(\text{C}_1\text{C}_{4}\)-Alkoxy, \(\text{C}_1\text{C}_{4}\)-Alkylthio, CN, NO\(_2\), Formyl, \(\text{C}_1\text{C}_{4}\)-Alkylcarbonyl, \(\text{C}_1\text{C}_{4}\)-Alkoxy carbonyl, \(\text{C}_1\text{C}_{4}\)-Alkylaminocarbonyl, \(\text{C}_1\text{C}_{4}\)-Dialkylaminocarbonyl, \(\text{C}_1\text{C}_{4}\)-Alkylsulfinyl, \(\text{C}_1\text{C}_{4}\)-Alkylsulfonyl, \(\text{C}_3\text{C}_{10}\)-Cycloalkyl, 3- bis 8-gliedriges Heterocycl yl mit ein, zwei oder drei unter O, S, N und einer Gruppe \(\text{NR}^6\) (worin \(\text{R}^6\) für Wasserstoff, \(\text{C}_1\text{C}_{6}\)-Alkyl, \(\text{C}_1\text{C}_{6}\)-Alkenyl oder \(\text{C}_3\text{C}_{6}\)-Alkinyl steht) ausgewählten Heteroatomen, Phenyl, das seinerseits 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, \(\text{C}_1\text{C}_{4}\)-Alkyl, \(\text{C}_1\text{C}_{4}\)-Alkoxy, \(\text{C}_1\text{C}_{4}\)-Fluoralkyl, \(\text{C}_1\text{C}_{4}\)-Alkyl oxycarbonyl, Trifluormethylsulfonyl, \(\text{C}_1\text{C}_{3}\)-Alkylamino, \(\text{C}_1\text{C}_{3}\)-Dialkylamino, Formyl, Nitro oder Cyano, aufweisen kann,

\(\text{C}_1\text{C}_{10}\)-Halogenalkyl, \(\text{C}_2\text{C}_{10}\)-Halogenalkenyl, \(\text{C}_2\text{C}_{10}\)-Halogenalkinyl, \(\text{C}_3\text{C}_{8}\)-Cycloalkyl, \(\text{C}_3\text{C}_{10}\)-Cycloalkenyl, 3- bis 8-gliedriges Heterocycl yl mit ein bis drei Heteroatomen, ausgewählt unter O, S, N und einer Gruppe \(\text{NR}^6\) (worin \(\text{R}^6\) für Wasserstoff, \(\text{C}_1\text{C}_{6}\)-Alkyl, \(\text{C}_3\text{C}_{6}\)-Alkenyl oder \(\text{C}_3\text{C}_{6}\)-Alkinyl steht), Phenyl oder Naphthyl, wobei \(\text{C}_3\text{C}_{8}\)-Cycloalkyl, \(\text{C}_3\text{C}_{10}\)-Cycloalkenyl, 3- bis 8-gliedriges Heterocycl yl, Phenyl oder Naphthyl, ihrerseits 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, \(\text{C}_1\text{C}_{4}\)-Alkyl, \(\text{C}_1\text{C}_{4}\)-Alkoxy, \(\text{C}_1\text{C}_{4}\)-Fluoralkyl, \(\text{C}_1\text{C}_{4}\)-Alkyl oxycarbonyl, Trifluormethylsulfonyl, Formyl, \(\text{C}_1\text{C}_{3}\)-Alkylamino,

\(\text{C}_1\text{C}_{3}\)-Dialkylamino, Phenoxy, Nitro oder Cyano, aufweisen können, oder

\(\text{R}^1\) und \(\text{R}^2\) bilden gemeinsam einen gesättigten oder teilweise unge-sättigten 5- bis 8-gliedrigen Stickstoffheterocyclus, der seinerseits durch \(\text{C}_1\text{C}_{4}\)-Alkyl, \(\text{C}_1\text{C}_{4}\)-Alkoxy und/oder \(\text{C}_1\text{C}_{4}\)-Halogenalkyl, substituiert sein kann, ein oder zwei Carboxylgruppen, Thio carbonylgruppen und/oder ein oder zwei weitere Heteroatome, ausgewählt unter O, S, N und einer Gruppe \(\text{NR}^6\) (worin \(\text{R}^6\) die zuvor genannten Bedeutungen aufweist), als Ringglieder aufweisen kann.
Bevorzugte Substituenten R^1 und R^2 sind unabhängig voneinander ausgewählt unter Wasserstoff, C_1-C_6-Alkyl, das gegebenenfalls durch einen Substituenten ausgewählt unter Halogen, Cyano, C_1-C_4-Alkoxy, C_1-C_4-Alkoxy carbonyl, C_1-C_4-Alkylthio, C_3-C_8-Cycloalkyl, Phenyl, das seinerseits gegebenenfalls durch Halogen oder C_1-C_4-Alkoxy substituiert ist, Furyl, Thienyl, 1,3-Dioxolanyl substituiert ist. Bevorzugt sind weiterhin C_2-C_6-Alkenyl, C_2-C_6-Alkinyl, C_3-C_8-Cycloalkyl oder Phenyl, das gegebenenfalls durch 1 oder 2 Substituenten, ausgewählt unter Halogen, C_1-C_4-Alkyl, C_1-C_4-Fluor alkyl, C_1-C_4-Alkoxy, C_1-C_4-Alkoxy carbonyl, Nitro oder C_1-C_3-Dialkylamino substituiert ist, Naphthyl oder Pyridyl. In einer weiteren bevorzugten Ausführungsform bilden R^1 und R^2 zusammen einen fünf-, sechs- oder siebengliedrigen gesättigten oder ungesättigten Stickstoffheterocyclus, der ein weiteres Heteroatom, ausgewählt unter N, einer Gruppe NR6 (worin R6 die zuvor genannten Bedeutungen aufweist) und O, als Ringglied enthalten kann, und/oder durch ein, zwei oder drei Substituenten, ausgewählt unter C_1-C_4-Alkyl und C_1-C_4-Halogenalkyl, substituiert sein kann.

In einer besonders bevorzugten Ausführungsform der Erfindung steht einer der Reste R^1 oder R^2 für Wasserstoff, C_1-C_6-Alkyl, C_2-C_6-Alkenyl oder C_2-C_6-Alkinyl und der andere Rest R^1 oder R^2 für C_1-C_6-Alkyl, C_3-C_8-Cycloalkyl oder Phenyl.

Die Gruppe Ar steht insbesondere für eine Gruppe der allgemeinen Formel Ar-1

![Formula](image)

worin

R^a, R^b, R^c und R^d unabhängig voneinander für Wasserstoff, Halogen, C_1-C_4-Halogenalkyl oder Cyano stehen;

* die Verknüpfung von Ar mit der C(O)-Gruppe kennzeichnet und

** die Verknüpfung von Ar mit dem Stickstoffatom der Amino-, Nitro- beziehungsweise Iso(thio)cyanato-Gruppe kennzeichnet.
In einer besonders bevorzugten Ausführungsform der Erfindung weisen die Variablen \(R^a \), \(R^b \), \(R^c \) und \(R^d \) die folgenden Bedeutungen, und zwar jeweils für sich allein oder in Kombination auf:

\(R^a \) Halogen oder Cyano, insbesondere Fluor, Chlor oder Cyano;
\(R^b \) Wasserstoff;
\(R^c \) Halogen oder Wasserstoff, insbesondere Fluor, Chlor oder Wasserstoff;
\(R^d \) Wasserstoff.

Demnach betrifft die vorliegende Erfindung besonders die Herstellung der Verbindungen IA,

Diagramm 1 (IA)

worin die Variablen \(R^a \), \(R^b \), \(R^c \), \(R^d \), A und W die zuvor genannten Bedeutungen aufweisen.

Insbesondere betrifft die vorliegende Erfindung die Herstellung der Verbindungen IA.1, worin A für \(NR^1R^2 \) steht. Diese Verbindungen werden im Folgenden als Verbindungen IA.1 bezeichnet.

Diagramm 2 (IA.1)

Die Umsetzung von Verbindung II mit Phosgen, Thiophosgen oder Diphosgen, im Folgenden auch als Phosgenierungsmittel bezeichnet, erfolgt üblicherweise in einem inerten organischen Lösungsmittel. Als Lösungsmittel verwendet man für diese Umsetzungen – je nach Temperaturbereich – Kohlenwasserstoffe wie Pentan, Hexan, Cyclopentan, Cyclohexan, Toluol, Xylol, chlorige Kohlenwasserstoffe wie Methylenchlorid, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Tetrachlorethan, Chlorbenzol, 1,2-, 1,3- oder 1,4-Dichlorbenzol,
Ether wie 1,4-Dioxan, Anisol, Glykolether wie Dimethylglykol-
ether, Diethylglykolether, Diethylenglykoldimethylether, Ester
wie Ethylacetat, Propylacetat, Methylisobutyрат, Isobutylacetat,
Carbonsäureamide wie N,N-Dimethylformamid, N-Methylpyrrolidon,
Nitrokokohlenwasserstoffe wie Nitrobenzol, Tetraalkylharstoffe wie
Tetraethylharstoff, Tetrabutylharstoff, Dimethylethylharstoff,
Dimethylpropylenharstoff, Nitrile wie Acetonitril, Pro-
pionitril, Butyronitril oder Isobutyronitril oder auch Gemische
einzelner Lösungsmittel.

Bei Verwendung von Phosgen wird man vorzugsweise ein Lösungsmit-
tel einsetzen, das weitgehend von protischen Verunreinigungen wie
Wasser und Alkoholen befreit ist. Bei der Herstellung der Iso-
thiocyanate kann man jedoch auch in Anlehnung an Houben-Weyl, Me-
ethoden der organischen Chemie, 4. Auflage, Bd. IX, S. 875, die
Umsetzung von II mit Thiophosgen in einem Zweiphasensystem aus
Wasser und einem damit nicht mischbaren organischen Lösungsmittel
oder auch in Wasser durchführen.

In der Regel wird man die Verbindung II in einem Reaktionsgefäβ,
vorzugsweise als Lösung oder Suspension in einem der vorgenannten
Lösungsmittel vorlegen und dann das Phosgenierungsmittel zugeben.
Vorzugsweise erfolgt die Zugabe des Phosgenierungsmittels unter
Rühren. Die Zugabe erfolgt vorzugsweise über einen Zeitraum von
10 bis 60 Minuten. Das Phosgenierungsmittel kann als solches oder
als Lösung in einem der vorgenannten Lösungsmittel zugegeben wer-
den. Im Falle des Phosgens wird man dieses in der Regel in die
Lösung beziehungsweise in die Suspension einleiten.

Die Reaktionstemperatur wird in der Regel 180 °C, vorzugsweise 120
°C und insbesondere 100 °C nicht überschreiten und wird in der Re-
gel wenigstens 40 °C und vorzugsweise wenigstens 50 °C betragen.
Häufig wird man so vorgehen, dass man zumindest die Hauptmenge
des Phosgenierungsmittels bei einer niedrigen Temperatur, z. B.
im Bereich von 0 bis 40 °C, insbesondere 10 bis 40 °C und speziell
20 bis 30 °C zugibt und während oder nach beendetem Zugabe auf
eine Temperatur im Bereich von 40 bis 180 °C, insbesondere 50 bis
120 °C und speziell 70 bis 100 °C erwärmt bis der Umsatz vollstän-
dig ist.

In der Regel setzt man 0,9 bis 2, vorzugsweise 0,95 bis 1,5, be-
sonders bevorzugt 0,98 bis 1,09 Moläquivalente Phosgenierungsmitt-
el pro Mol der Verbindung II ein.

Gegebenenfalls führt man die Umsetzung von II in Gegenwart einer
Base durch. Als Basen kommen beispielsweise basische anorganische
Verbindungen in Betracht, z. B. Alkali- oder Erdalkalihydroxide,
-hydrogencarbonate oder -carbonate. Man kann die Reaktion jedoch auch in Gegenwart einer organischen Base, beispielsweise eines tertären Amins wie Triethylamin, Tri-n-propylamin, N-Ethylidiso-propylamin, Pyridin, α-, β-, γ-Picolin, 2,4-, 2,6-Lutidin, N-Methylpyrrolidin, Dimethylanilin, N,N-Dimethylcyclohexylamin, Chinolin oder Acridin durchführen. Die Base (berechnet als Basenäquivalent) kann substochiometrisch, überstochiometrisch oder äquimolar, bezogen auf die Verbindung II, eingesetzt werden. Pro Mol der Verbindung II setzt man im allgemeinen 0,01 bis 6 Mol, vorzugsweise 0,1 bis 3 Mol Base ein.

In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens führt man die Umsetzung in Gegenwart von Chlorwasserstoff durch. Die Menge an Chlorwasserstoff beträgt dann üblicherweise 0,9 bis 5,0 mol, vorzugsweise 1,0 bis 2,5 mol und insbesondere 1,0 bis 1,2 mol Chlorwasserstoff pro Mol der Verbindung II. Hierbei wird man in der Regel so vorgehen, dass man zunächst in eine Lösung oder Suspension die Verbindung II in einem der vorgenannten Lösungsmittel die vorgenannte Menge an gasförmigen Chlorwasserstoff einleitet oder eine Lösung von Chlorwasserstoff in einem Lösungsmittel zugibt, dann das Phosgenierungsmittel in der zuvor beschriebenen Weise zugibt und die Reaktion dann in der oben beschriebenen Weise fortführt. Das Einleiten von Chlorwasserstoff erfolgt üblicherweise bei Temperaturen zwischen 10 °C und 60 °C, vorzugsweise bei 20 bis 30 °C.

Sofern man das Verfahren in Gegenwart von Chlorwasserstoff durchführt, kann Aktivkohle als Katalysator verwendet werden. Zweckmäßigerverweise beträgt die Menge an Aktivkohle 1 bis 10 Gew.%%, vorzugsweise 1 bis 3 Gew.-%, bezogen auf das Gewicht der Verbindung II.

Die zur Durchführung des erfindungsgemäßen Verfahrens als Edukte benötigten Verbindungen der Formel II sind ebenfalls neu und als interessante Vorstufen für das erfindungsgemäße Verfahren von Bedeutung. In der Formel II stehen die Variablen Ar und A vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen I als bevorzugt für diese Substituenten genannt wurden.

Schema 2:

\[
\begin{align*}
\text{O}_2\text{N} - \text{Ar} & \quad \text{O} \\
\text{X} & \quad \text{H}_2\text{N}-\text{SO}_2-\text{A} \quad \rightarrow \quad \text{O}_2\text{N} - \text{Ar} & \quad \text{O} \\
\text{N} - \text{SO}_2-\text{A} & \quad \text{H}_2\text{N}-\text{Ar} & \quad \text{N} \\
& \quad \text{SO}_2-\text{A} \quad \text{SO}_2-\text{A} \\
& \quad \text{H} \quad \text{H} \\
\end{align*}
\]

In Schema 2 haben die Variablen A und Ar die vorgenannten Bedeutungen, insbesondere die als bevorzugt angegebenen Bedeutungen. X steht für Halogen, vorzugsweise Chlor, Hydroxy oder eine C1-C4-Alkoxygruppe. Die Kondensation von Aroylverbindungen der allgemeinen Formel III mit Sulfamidsäureamiden der allgemeinen Formel IV zu den entsprechenden Benzoylsulfamiden der allgemeinen Formel V erfolgt in Anlehnung an bekannte Verfahren, beispielsweise wie in der WO 01/83459, S. 31-35, in der unveröffentlichten deutschen
Patentanmeldung DE 102 21 910.0 beschrieben, auf deren Offenbarung hiermit Bezug genommen wird.

Im Folgenden wird der erste Reaktionsschritt näher erläutert:

Anschließend kann man die Carbonsäuren III (X = OH) in der oben beschriebenen Weise umsetzen oder mit einem Chlorierungsagens wie Thionylchlorid oder Phosgen zunächst in die Säurechloride (X = Cl) überführen und diese in der nachfolgend beschriebenen Weise mit IV umsetzen. Die Darstellung der Säurechloride erfolgt in Anlehnung an bekannte Verfahren, beispielsweise wie in der EP 1 176 133 und WO 01/087872 beschrieben.

Sofern X in Formel III für Halogen steht, wird man in der Regel so vorgehen, dass man die Aroylverbindung III, vorzugsweise verdünnt in einem inerten Lösungsmittel, zu dem Sulfamidsäureamid der Formel IV, vorzugsweise ebenfalls verdünnt in einem inerten Lösungsmittel, gibt. Selbstverständlich kann man auch die Aroylverbindung III vorlegen und hierzu das Sulfamidsäureamid IV geben.

Die molaren Verhältnisse, in denen die Ausgangsverbindungen III und IV miteinander umgesetzt werden, betragen im Allgemeinen 0,9 bis 1,2, vorzugsweise 0,95 bis 1,1, besonders bevorzugt 0,98 bis 1,04 für das Verhältnis von Aroylverbindung III zu Sulfamidsäureamid IV.

Üblicherweise führt man die Umsetzung bei Temperaturen im Bereich von -30 bis 100 °C, vorzugsweise -10 bis 80 °C, besonders bevorzugt 0 bis 60 °C durch.

Vorteilhaft arbeitet man im ersten Reaktionsschritt unter neutralen Bedingungen. Sofern bei der Reaktion ein saures Reaktionsprodukt, z. B. Halogenwasserstoff (wenn X in Formel III für Halogen steht) entsteht, so entfernt man diesen durch Zugabe einer basischen Verbindung. Zu den geeigneten basischen Verbindungen zählen anorganische und organische Basen. Geeignete anorganische basische Verbindungen sind z. B. Alkali- oder Erdalkalihydroxide bzw. -hydrogencarbonate oder -carbonate. Man kann die Reaktion jedoch auch in Gegenwart einer organischen Base, z. B. Triethylamin, Tri-n-propyamin, N-Ethylisopropylamin, Pyridin, α-,, β-γ-Picolin, 2,4-, 2,6-Lutidin, N-Methylpyrrolidin, Dimethylanilin, N,N-Dimethylcyclohexylamin, Chinolin oder Acridin durchführen. In der Regel setzt man die Base im Überschuss, bezogen auf die Verbindung III, ein. Die molare Menge an Base beträgt 1,0 bis 2 Mol, vorzugsweise 1,02 bis 1,3 Mol Base (berechnet als Basenäquivalent) pro Mol der Verbindung III. Gegebenenfalls enthält das Reaktionsgemisch Pyridin oder eine Pyridinverbindung, beispielsweise ein 4-Dialkylaminopyridin wie 4-Dimethylaminopyridin als Katalysator. Der Zusatz an Katalysator beträgt etwa 0,1 – 10 %, bezogen auf die Verbindung III.
Die Umsetzung der Aroylverbindungen III mit den Verbindungen der Formel IV wird vorteilhaft in Gegenwart eines Lösungsmittels durchgeführt. Als Lösungsmittel verwendet man für diese Umsetzungen – je nach Temperaturbereich – Kohlenwasserstoffe wie Pentan, Hexan, Cyclopentan, Cyclohexan, Toluol, Xylol, chlorierte Kohlenwasserstoffe wie Methylenechlorid, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Tetrachlorethan, Chlorbenzol, 1,2-, 1,3- oder 1,4-Dichlorbenzol, Ether wie 1,4-Dioxan, Anisol, Glykolether wie Dimethylglykolether, Diethylglykolether, Diethylenglykol-dimethyl ether, Ester wie Ethylacetat, Propylacetat, Methylisobutyroat, Isobutylacetat, Carbonsäureamide wie N,N-Dimethylformamid, N-Methylpyrrolidon, Nitrokohlenwasserstoffe wie Nitrobenzol, Tetraalkylharstoffe wie Tetraethylharstoff, Tetrabutylharstoff, Dimethylethylharstoff, Dimethylpropylharstoff, Sulfoxide wie Dimethylsulfoxid, Sulfone wie Dimethylsulfon, Diethylsulfon, Tetramethylsulfon, Nitrile wie Acetonitril, Propionitril, Butyronitril oder Isobutyrilonitril; Wasser oder auch Gemische einzelner Lösungsmittel.

Als Phasentransferkatalysatoren können quartäre Ammonium- oder Phosphoniumsalze verwendet werden. An geeigneten Verbindungen seien folgende genannt: Tetraalkyl-(C₁₋₁₈)-ammoniumchloride, -bromide oder -fluoride, N-Benzyltrialkyl-(C₁₋₁₈)-ammoniumchloride, -bromide oder -fluoride, Tetraalkyl-(C₁₋₁₈)-phosphoniumchloride oder -bromide, Tetraphenylphosphoniumchlorid oder -bromid, (Phenyl)ₙ(C₁₋₁₈-alkyl)ₚ-phosphoniumchloride oder -bromide, wobei n = 1 bis 3, p = 3 bis 1 und n + p = 4 ist. Besonders bevorzugt sind Tetraethylammoniumchlorid und N-Benzyltriethylammoniumchlorid. Die Menge an Phasentransferkatalysator beträgt im Allgemeinen bis zu 20 Gew.-%, bevorzugt zwischen 1 und 15 Gew.-% und besonders bevorzugt zwischen 2 bis 8 Gew.-%, bezogen auf die Ausgangsverbindung IV.

Vorteilhaft gibt man die Aroylverbindung III innerhalb eines Zeitraums von 0,25 bis 2 Stunden zu einer Mischung des Sulfamidsäureamids IV und gegebenenfalls der Base in einem der vorgenannten Lösungsmittel und rührt zur Vervollständigung der Reaktion noch 0,5 bis 16 Stunden, vorzugsweise 2 bis 8 Stunden nach. Die Reaktionstemperatur liegt in der Regel zwischen 0 °C und 60 °C.
Bei Verwendung eines wässrigen Zweiphasensystems kann man in beliebiger Reihenfolge die Ausgangsstoffe III und IV zu einer Mischung des Phasentransferkatalysators in den beiden Phasen unter Rühren zugeben und dann im genannten Temperaturbereich unter Zugabe von Base die Umsetzung zu Ende bringen.

Die Reaktion kann kontinuierlich oder diskontinuierlich, drucklos oder unter Druck durchgeführt werden.

Im Folgenden wird der 2. Reaktionsschritt, die Reduktion der Nitroverbindung V zu der Verbindung II, näher erläutert.

Carbonsäureester wie Essigsäureethylester usw. und Gemische davon anwenden.

In der Regel setzt man 0,5 bis 3, vorteilhaft 0,75 bis 2,5 mol Metallhydrid, Metallhalbhydrid, Borhydrid beziehungsweise Boranat pro mol Nitroverbindung V ein. Das Verfahren folgt der in Organi- kum, VEB Deutscher Verlag der Wissenschaften, Berlin 1976, 15.

Auflage, S. 612-616 beschriebenen Verfahrensweise.

22

Vorzugsweise stellt man die Sulfamidsäureamide IV nach dem in der unveröffentlichten deutschen Patentanmeldung DE 102 21 910.0 beschriebenen Verfahren her. Dieses Verfahren umfasst die folgenden Schritte: (i) Umsetzung eines primären oder sekundären Amins mit wenigstens einer äquimolaren Menge SO₃ oder einer SO₃-Quelle in
Gegenwart von wenigstens äquimolaren Mengen eines tertiären Amins, jeweils bezogen auf das primäre oder sekundäre Amin, wobei man ein Amidosulfonsäureammoniumsalz erhält; (ii) Umsetzung des Amidosulfonsäureammoniumsalzes mit wenigstens einer stöchiometrischen Menge eines Phosphorhalogenids, wobei man ein Sulfamidsäurehalogenid erhält und (iii) Umsetzung des in Schritt ii) erhaltenen Sulfamindsäurehalogenids mit Ammoniak, wobei man das Sulfamidsäureamid V erhält.

Das erfindungsgemäße Verfahren erlaubt erstmalig die Herstellung von Iso(thio)cyanatobenzoylsulfamidsäureamiden der allgemeinen Formel I. Die Verbindungen I sind neu und ebenfalls Gegenstand der vorliegenden Erfindung.

Unter den Iso(thio)cyanatobenzoylsulfamidsäureamiden der allgemeinen Formel I sind solche der Formel IA bevorzugt, worin die Variablen R¹, R², R³, R⁴ die zuvor genannten Bedeutungen aufweisen.

Ganz besonders bevorzugt sind die Verbindungen der Formel IA.1,

![Chemical Structure](image)

in denen die Variablen R¹, R², R³, R⁴, R⁵, R⁶ die zuvor genannten Bedeutungen aufweisen.

Unter den Iso(thio)cyanatobenzoylsulfamidsäureamiden der allgemeinen Formel IA.1 sind insbesondere solche bevorzugt, in denen die Variablen R¹, R², R³, R⁴, R⁵, R⁶ unabhängig voneinander, vorzugsweise jedoch in Kombination, die nachfolgend angegebenen Bedeutungen aufweisen:

R¹ Cyano oder Halogen, insbesondere Cyano, Fluor oder Chlor;
R² Wasserstoff;
R³ Wasserstoff oder Halogen, insbesondere Wasserstoff, Fluor oder Chlor;
R⁴ Wasserstoff;
R¹ und R² stehen unabhängig voneinander für Wasserstoff, C₁–C₆–Alkyl, das gegebenenfalls durch einen Substituenten ausgewählt unter Halogen, Cyano, C₁–C₄–Alkoxy, C₁–C₄–Alkoxy carbonyl, C₁–C₄–Alkylthio, C₃–C₈–Cycloalkyl, Furfyl, Thiényl, 1,3-Dioxolanyl, Phenyl, das seinerseits gegebenenfalls durch Halogen oder C₁–C₄–Alkoxy substituiert ist, substituiert ist,

C₂–C₆–Alkenyl, C₂–C₆–Alkinyl, C₃–C₈–Cycloalkyl oder Phenyl, das gegebenenfalls durch 1 oder 2 Substituenten, ausgewählt unter Halogen, C₁–C₄–Alkyl, C₁–C₄–Fluoralkyl, C₁–C₄–Alkoxy, C₁–C₄–Alkoxy carbonyl, Nitro oder C₁–C₃–Dialkylamino substituiert ist, Naphthyl oder Pyridyl oder

Insbesondere steht einer der Reste R¹ oder R² für Wasserstoff, C₁–C₆–Alkyl, C₂–C₆–Alkenyl oder C₂–C₆–Alkinyl und der andere Rest R¹ oder R² für C₁–C₆–Alkyl, C₃–C₈–Cycloalkyl oder Phenyl.

Ganz besonders bevorzugt sind die Isocyanatobenzoylsulfamidsäureamide der Formel IA.1-a (≡ I mit W = Sauerstoff, Ar = Ar-1 mit R⁰ = Cl und R⁵ = R⁷ = Wasserstoff und R⁴ = F, Ar = NR¹R²), worin R¹, R² die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-a.1 bis IA.1-a.495, in denen die Variablen R¹, R² gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>R¹</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>CH₂CH₂-Cl</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>CH₂CH₂-CN</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>CH₂-CO-OCH₃</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>CH₂-CO-OC₂H₅</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>CH(CH₃)-CO-OCH₃</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>CH₂CH₂-OCH₃</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>CH₂-C₂H₅</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>CH₂CH₂-C₂H₅</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>CH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>CH₂-CH(CH₃)₂</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>C(CH₃)₃</td>
</tr>
<tr>
<td>15</td>
<td>H</td>
<td>CH(CH₃)-CH₂-C₂H₅</td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>CH₂-CH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>17</td>
<td>H</td>
<td>CH₂CH₂-CH(CH₃)₂</td>
</tr>
<tr>
<td>18</td>
<td>H</td>
<td>CH₂-CH=CH₂</td>
</tr>
<tr>
<td>19</td>
<td>H</td>
<td>CH(CH₃)=CH₂</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>CH₂=CH-CH₃</td>
</tr>
<tr>
<td>21</td>
<td>H</td>
<td>CH₂-C≡CH</td>
</tr>
<tr>
<td>22</td>
<td>H</td>
<td>CH(CH₃)-C≡CH</td>
</tr>
<tr>
<td>23</td>
<td>H</td>
<td>Cyclopropyl</td>
</tr>
<tr>
<td>24</td>
<td>H</td>
<td>CH₂-Cyclopropyl</td>
</tr>
<tr>
<td>25</td>
<td>H</td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>26</td>
<td>H</td>
<td>CH₂-Cyclopentyl</td>
</tr>
<tr>
<td>27</td>
<td>H</td>
<td>CH₂-(1,3-Dioxolan-2-yl)</td>
</tr>
<tr>
<td>28</td>
<td>H</td>
<td>CH₂-(2-Furyl)</td>
</tr>
<tr>
<td>29</td>
<td>H</td>
<td>CH₂-(3-Furyl)</td>
</tr>
<tr>
<td>30</td>
<td>H</td>
<td>CH₂-(2-Thienyl)</td>
</tr>
<tr>
<td>31</td>
<td>H</td>
<td>CH₂-(3-Thienyl)</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>Phenyl</td>
</tr>
<tr>
<td>33</td>
<td>H</td>
<td>2-Chlorophenyl</td>
</tr>
<tr>
<td>34</td>
<td>H</td>
<td>3-Chlorophenyl</td>
</tr>
<tr>
<td>35</td>
<td>H</td>
<td>4-Chlorophenyl</td>
</tr>
<tr>
<td>36</td>
<td>H</td>
<td>2-Fluorophenyl</td>
</tr>
<tr>
<td>37</td>
<td>H</td>
<td>3-Fluorophenyl</td>
</tr>
<tr>
<td>38</td>
<td>H</td>
<td>4-Fluorophenyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>39</td>
<td>H</td>
<td>2-Methylphenyl</td>
</tr>
<tr>
<td>40</td>
<td>H</td>
<td>3-Methylphenyl</td>
</tr>
<tr>
<td>41</td>
<td>H</td>
<td>4-Methylphenyl</td>
</tr>
<tr>
<td>42</td>
<td>H</td>
<td>2-Methoxyphenyl</td>
</tr>
<tr>
<td>43</td>
<td>H</td>
<td>3-Methoxyphenyl</td>
</tr>
<tr>
<td>44</td>
<td>H</td>
<td>4-Methoxyphenyl</td>
</tr>
<tr>
<td>45</td>
<td>H</td>
<td>2-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>46</td>
<td>H</td>
<td>3-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>47</td>
<td>H</td>
<td>4-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>48</td>
<td>H</td>
<td>2-Nitrophenyl</td>
</tr>
<tr>
<td>49</td>
<td>H</td>
<td>3-Nitrophenyl</td>
</tr>
<tr>
<td>50</td>
<td>H</td>
<td>4-Nitrophenyl</td>
</tr>
<tr>
<td>51</td>
<td>H</td>
<td>2-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>52</td>
<td>H</td>
<td>3-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>53</td>
<td>H</td>
<td>4-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>54</td>
<td>H</td>
<td>2-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>55</td>
<td>H</td>
<td>3-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>56</td>
<td>H</td>
<td>4-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>57</td>
<td>H</td>
<td>3-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>58</td>
<td>H</td>
<td>4-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>59</td>
<td>H</td>
<td>2,4-Difluorophenyl</td>
</tr>
<tr>
<td>60</td>
<td>H</td>
<td>2,4-Dichlorophenyl</td>
</tr>
<tr>
<td>61</td>
<td>H</td>
<td>3,4-Difluorophenyl</td>
</tr>
<tr>
<td>62</td>
<td>H</td>
<td>3,4-Dichlorophenyl</td>
</tr>
<tr>
<td>63</td>
<td>H</td>
<td>3,5-Difluorophenyl</td>
</tr>
<tr>
<td>64</td>
<td>H</td>
<td>3,5-Dichlorophenyl</td>
</tr>
<tr>
<td>65</td>
<td>H</td>
<td>2-Pyridyl</td>
</tr>
<tr>
<td>66</td>
<td>H</td>
<td>3-Pyridyl</td>
</tr>
<tr>
<td>67</td>
<td>H</td>
<td>4-Pyridyl</td>
</tr>
<tr>
<td>68</td>
<td>H</td>
<td>α-Naphthyl</td>
</tr>
<tr>
<td>69</td>
<td>H</td>
<td>Benzyl</td>
</tr>
<tr>
<td>70</td>
<td>H</td>
<td>2-Chlorbenzyl</td>
</tr>
<tr>
<td>71</td>
<td>H</td>
<td>3-Chlorbenzyl</td>
</tr>
<tr>
<td>72</td>
<td>H</td>
<td>4-Chlorbenzyl</td>
</tr>
<tr>
<td>73</td>
<td>H</td>
<td>2-Methoxybenzyl</td>
</tr>
<tr>
<td>74</td>
<td>H</td>
<td>3-Methoxybenzyl</td>
</tr>
<tr>
<td>75</td>
<td>H</td>
<td>4-Methoxybenzyl</td>
</tr>
<tr>
<td>76</td>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>77</td>
<td>CH₃</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>Nr.</td>
<td>R^1</td>
<td>R^2</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>78</td>
<td>CH₃</td>
<td>CH₂CH₂–Cl</td>
</tr>
<tr>
<td>79</td>
<td>CH₃</td>
<td>CH₂CH₂–CN</td>
</tr>
<tr>
<td>80</td>
<td>CH₃</td>
<td>CH₂–CO–OCH₃</td>
</tr>
<tr>
<td>81</td>
<td>CH₃</td>
<td>CH₂–CO–OC₂H₅</td>
</tr>
<tr>
<td>82</td>
<td>CH₃</td>
<td>CH(CH₃)–CO–OCH₃</td>
</tr>
<tr>
<td>83</td>
<td>CH₃</td>
<td>CH₂CH₂–OCH₃</td>
</tr>
<tr>
<td>84</td>
<td>CH₃</td>
<td>CH₂–C₂H₅</td>
</tr>
<tr>
<td>85</td>
<td>CH₃</td>
<td>CH₂CH₂–C₂H₅</td>
</tr>
<tr>
<td>86</td>
<td>CH₃</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>87</td>
<td>CH₃</td>
<td>CH(CH₃)–C₂H₅</td>
</tr>
<tr>
<td>88</td>
<td>CH₃</td>
<td>CH₂–CH(CH₃)₂</td>
</tr>
<tr>
<td>89</td>
<td>CH₃</td>
<td>C(CH₃)₃</td>
</tr>
<tr>
<td>90</td>
<td>CH₃</td>
<td>CH(CH₃)–CH₂–C₂H₅</td>
</tr>
<tr>
<td>91</td>
<td>CH₃</td>
<td>CH₂–CH(CH₃)–C₂H₅</td>
</tr>
<tr>
<td>92</td>
<td>CH₃</td>
<td>CH₂CH₂–CH(CH₃)₂</td>
</tr>
<tr>
<td>93</td>
<td>CH₃</td>
<td>CH₂–CH=CH₂</td>
</tr>
<tr>
<td>94</td>
<td>CH₃</td>
<td>CH(CH₃)=CH₂</td>
</tr>
<tr>
<td>95</td>
<td>CH₃</td>
<td>CH₂=CH–CH₃</td>
</tr>
<tr>
<td>96</td>
<td>CH₃</td>
<td>CH₂–C≡CH</td>
</tr>
<tr>
<td>97</td>
<td>CH₃</td>
<td>CH(CH₃)–C≡CH</td>
</tr>
<tr>
<td>98</td>
<td>CH₃</td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>99</td>
<td>CH₃</td>
<td>CH₂–Cyclopentyl</td>
</tr>
<tr>
<td>100</td>
<td>CH₃</td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>101</td>
<td>CH₃</td>
<td>CH₂–Cyclopentyl</td>
</tr>
<tr>
<td>102</td>
<td>CH₃</td>
<td>CH₂–(1,3-Dioxolan–2-yl)</td>
</tr>
<tr>
<td>103</td>
<td>CH₃</td>
<td>CH₂–(2-Furyl)</td>
</tr>
<tr>
<td>104</td>
<td>CH₃</td>
<td>CH₂–(3-Furyl)</td>
</tr>
<tr>
<td>105</td>
<td>CH₃</td>
<td>CH₂–(2-Thienyl)</td>
</tr>
<tr>
<td>106</td>
<td>CH₃</td>
<td>CH₂–(3-Thienyl)</td>
</tr>
<tr>
<td>107</td>
<td>CH₃</td>
<td>Phenyl</td>
</tr>
<tr>
<td>108</td>
<td>CH₃</td>
<td>2-Chlorphenyl</td>
</tr>
<tr>
<td>109</td>
<td>CH₃</td>
<td>3-Chlorphenyl</td>
</tr>
<tr>
<td>110</td>
<td>CH₃</td>
<td>4-Chlorphenyl</td>
</tr>
<tr>
<td>111</td>
<td>CH₃</td>
<td>2-Fluorophenyl</td>
</tr>
<tr>
<td>112</td>
<td>CH₃</td>
<td>3-Fluorophenyl</td>
</tr>
<tr>
<td>113</td>
<td>CH₃</td>
<td>4-Fluorophenyl</td>
</tr>
<tr>
<td>114</td>
<td>CH₃</td>
<td>2-Methylphenyl</td>
</tr>
<tr>
<td>115</td>
<td>CH₃</td>
<td>3-Methylphenyl</td>
</tr>
<tr>
<td>116</td>
<td>CH₃</td>
<td>4-Methylphenyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>117</td>
<td>CH₃</td>
<td>2-Methoxyphenyl</td>
</tr>
<tr>
<td>118</td>
<td>CH₃</td>
<td>3-Methoxyphenyl</td>
</tr>
<tr>
<td>119</td>
<td>CH₃</td>
<td>4-Methoxyphenyl</td>
</tr>
<tr>
<td>120</td>
<td>CH₃</td>
<td>2-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>121</td>
<td>CH₃</td>
<td>3-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>122</td>
<td>CH₃</td>
<td>4-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>123</td>
<td>CH₃</td>
<td>2-Nitrophenyl</td>
</tr>
<tr>
<td>124</td>
<td>CH₃</td>
<td>3-Nitrophenyl</td>
</tr>
<tr>
<td>125</td>
<td>CH₃</td>
<td>4-Nitrophenyl</td>
</tr>
<tr>
<td>126</td>
<td>CH₃</td>
<td>2-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>127</td>
<td>CH₃</td>
<td>3-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>128</td>
<td>CH₃</td>
<td>4-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>129</td>
<td>CH₃</td>
<td>2-(Trifluoromethyl)phenyl</td>
</tr>
<tr>
<td>130</td>
<td>CH₃</td>
<td>3-(Trifluoromethyl)phenyl</td>
</tr>
<tr>
<td>131</td>
<td>CH₃</td>
<td>4-(Trifluoromethyl)phenyl</td>
</tr>
<tr>
<td>132</td>
<td>CH₃</td>
<td>3-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>133</td>
<td>CH₃</td>
<td>4-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>134</td>
<td>CH₃</td>
<td>2,4-Difluorophenyl</td>
</tr>
<tr>
<td>135</td>
<td>CH₃</td>
<td>2,4-Dichlorophenyl</td>
</tr>
<tr>
<td>136</td>
<td>CH₃</td>
<td>3,4-Difluorophenyl</td>
</tr>
<tr>
<td>137</td>
<td>CH₃</td>
<td>3,4-Dichlorophenyl</td>
</tr>
<tr>
<td>138</td>
<td>CH₃</td>
<td>3,5-Difluorophenyl</td>
</tr>
<tr>
<td>139</td>
<td>CH₃</td>
<td>3,5-Dichlorophenyl</td>
</tr>
<tr>
<td>140</td>
<td>CH₃</td>
<td>2-Pyridyl</td>
</tr>
<tr>
<td>141</td>
<td>CH₃</td>
<td>3-Pyridyl</td>
</tr>
<tr>
<td>142</td>
<td>CH₃</td>
<td>4-Pyridyl</td>
</tr>
<tr>
<td>143</td>
<td>CH₃</td>
<td>α-Naphthyl</td>
</tr>
<tr>
<td>144</td>
<td>CH₃</td>
<td>Benzyl</td>
</tr>
<tr>
<td>145</td>
<td>CH₃</td>
<td>2-Chlorbenzyl</td>
</tr>
<tr>
<td>146</td>
<td>CH₃</td>
<td>3-Chlorbenzyl</td>
</tr>
<tr>
<td>147</td>
<td>CH₃</td>
<td>4-Chlorbenzyl</td>
</tr>
<tr>
<td>148</td>
<td>CH₃</td>
<td>2-Methoxybenzyl</td>
</tr>
<tr>
<td>149</td>
<td>CH₃</td>
<td>3-Methoxybenzyl</td>
</tr>
<tr>
<td>150</td>
<td>CH₃</td>
<td>4-Methoxybenzyl</td>
</tr>
<tr>
<td>151</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>152</td>
<td>C₂H₅</td>
<td>CH₂CH₂-Cl</td>
</tr>
<tr>
<td>153</td>
<td>C₂H₅</td>
<td>CH₂CH₂-CN</td>
</tr>
<tr>
<td>154</td>
<td>C₂H₅</td>
<td>CH₂-CO-OCH₃</td>
</tr>
<tr>
<td>155</td>
<td>C₂H₅</td>
<td>CH₂-CO-OC₂H₅</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>156</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH((CH<sub>3</sub>)-CO-OCH<sub>3</sub>)</td>
</tr>
<tr>
<td>157</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub></td>
</tr>
<tr>
<td>158</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>159</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>160</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
</tr>
<tr>
<td>161</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>162</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
</tr>
<tr>
<td>163</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C(CH<sub>3</sub>)<sub>3</sub></td>
</tr>
<tr>
<td>164</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)-CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>165</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-CH(CH<sub>3</sub>)-C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>166</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>-CH(CH<sub>3</sub>)<sub>2</sub></td>
</tr>
<tr>
<td>167</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-CH=CH<sub>2</sub></td>
</tr>
<tr>
<td>168</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)=CH<sub>2</sub></td>
</tr>
<tr>
<td>169</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>170</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-C≡CH</td>
</tr>
<tr>
<td>171</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)-C≡CH</td>
</tr>
<tr>
<td>172</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclopropyl</td>
</tr>
<tr>
<td>173</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-Cyclopropyl</td>
</tr>
<tr>
<td>174</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>175</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-Cyclopentyl</td>
</tr>
<tr>
<td>176</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-(1,3-Dioxolan-2-yl)</td>
</tr>
<tr>
<td>177</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-(2-Furyl)</td>
</tr>
<tr>
<td>178</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-(3-Furyl)</td>
</tr>
<tr>
<td>179</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-(2-Thienyl)</td>
</tr>
<tr>
<td>180</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-(3-Thienyl)</td>
</tr>
<tr>
<td>181</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Phenyl</td>
</tr>
<tr>
<td>182</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Chlorophenyl</td>
</tr>
<tr>
<td>183</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Chlorophenyl</td>
</tr>
<tr>
<td>184</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Chlorophenyl</td>
</tr>
<tr>
<td>185</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Fluorophenyl</td>
</tr>
<tr>
<td>186</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Fluorophenyl</td>
</tr>
<tr>
<td>187</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Fluorophenyl</td>
</tr>
<tr>
<td>188</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Methylphenyl</td>
</tr>
<tr>
<td>189</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Methylphenyl</td>
</tr>
<tr>
<td>190</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Methylphenyl</td>
</tr>
<tr>
<td>191</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Methoxyphenyl</td>
</tr>
<tr>
<td>192</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Methoxyphenyl</td>
</tr>
<tr>
<td>193</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Methoxyphenyl</td>
</tr>
<tr>
<td>194</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>195</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Methoxy carbonyl)phenyl</td>
</tr>
<tr>
<td>196</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-(Methoxy carbonyl)phenyl</td>
</tr>
<tr>
<td>197</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Nitrophenyl</td>
</tr>
<tr>
<td>198</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Nitrophenyl</td>
</tr>
<tr>
<td>199</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Nitrophenyl</td>
</tr>
<tr>
<td>200</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>201</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>202</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>203</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>204</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>205</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>206</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>207</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>208</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2,4-Difluorophenyl</td>
</tr>
<tr>
<td>209</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2,4-Dichlorphenyl</td>
</tr>
<tr>
<td>210</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3,4-Difluorophenyl</td>
</tr>
<tr>
<td>211</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3,4-Dichlorphenyl</td>
</tr>
<tr>
<td>212</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3,5-Difluorophenyl</td>
</tr>
<tr>
<td>213</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3,5-Dichlorphenyl</td>
</tr>
<tr>
<td>214</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Pyridyl</td>
</tr>
<tr>
<td>215</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Pyridyl</td>
</tr>
<tr>
<td>216</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Pyridyl</td>
</tr>
<tr>
<td>217</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>α-Naphthyl</td>
</tr>
<tr>
<td>218</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Benzyl</td>
</tr>
<tr>
<td>219</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Chlorbenzyl</td>
</tr>
<tr>
<td>220</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Chlorbenzyl</td>
</tr>
<tr>
<td>221</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Chlorbenzyl</td>
</tr>
<tr>
<td>222</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>2-Methoxybenzyl</td>
</tr>
<tr>
<td>223</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>3-Methoxybenzyl</td>
</tr>
<tr>
<td>224</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>4-Methoxybenzyl</td>
</tr>
<tr>
<td>225</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>226</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>–Cl</td>
</tr>
<tr>
<td>227</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>–CN</td>
</tr>
<tr>
<td>228</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>–CO–OCH<sub>3</sub></td>
</tr>
<tr>
<td>229</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>–CO–OC<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>230</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)–CO–OCH<sub>3</sub></td>
</tr>
<tr>
<td>231</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>–OC<sub>3</sub>H<sub>7</sub></td>
</tr>
<tr>
<td>232</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>233</td>
<td>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>–C<sub>2</sub>H<sub>5</sub></td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>234</td>
<td>CH₂-C₂H₅</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>235</td>
<td>CH₂-C₂H₅</td>
<td>CH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>236</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-CH(CH₃)₂</td>
</tr>
<tr>
<td>237</td>
<td>CH₂-C₂H₅</td>
<td>C(CH₃)₃</td>
</tr>
<tr>
<td>238</td>
<td>CH₂-C₂H₅</td>
<td>CH(CH₃)-CH₂-C₂H₅</td>
</tr>
<tr>
<td>239</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-CH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>240</td>
<td>CH₂-C₂H₅</td>
<td>CH₂CH₂-CH(CH₃)₂</td>
</tr>
<tr>
<td>241</td>
<td>CH₂-C₂H₅</td>
<td>CH₂=CH=CH₂</td>
</tr>
<tr>
<td>242</td>
<td>CH₂-C₂H₅</td>
<td>CH(CH₃)=CH₂</td>
</tr>
<tr>
<td>243</td>
<td>CH₂-C₂H₅</td>
<td>CH₂=CH-CH₃</td>
</tr>
<tr>
<td>244</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-C≡CH</td>
</tr>
<tr>
<td>245</td>
<td>CH₂-C₂H₅</td>
<td>CH(CH₃)-C≡CH</td>
</tr>
<tr>
<td>246</td>
<td>CH₂-C₂H₅</td>
<td>Cyclopropyl</td>
</tr>
<tr>
<td>247</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-Cyclopropyl</td>
</tr>
<tr>
<td>248</td>
<td>CH₂-C₂H₅</td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>249</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-Cyclopentyl</td>
</tr>
<tr>
<td>250</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-(1,3-Dioxolan-2-yl)</td>
</tr>
<tr>
<td>251</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-(2-Furyl)</td>
</tr>
<tr>
<td>252</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-(3-Furyl)</td>
</tr>
<tr>
<td>253</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-(2-Thienyl)</td>
</tr>
<tr>
<td>254</td>
<td>CH₂-C₂H₅</td>
<td>CH₂-(3-Thienyl)</td>
</tr>
<tr>
<td>255</td>
<td>CH₂-C₂H₅</td>
<td>Phenyl</td>
</tr>
<tr>
<td>256</td>
<td>CH₂-C₂H₅</td>
<td>2-Chlorophenyl</td>
</tr>
<tr>
<td>257</td>
<td>CH₂-C₂H₅</td>
<td>3-Chlorophenyl</td>
</tr>
<tr>
<td>258</td>
<td>CH₂-C₂H₅</td>
<td>4-Chlorophenyl</td>
</tr>
<tr>
<td>259</td>
<td>CH₂-C₂H₅</td>
<td>2-Fluorophenyl</td>
</tr>
<tr>
<td>260</td>
<td>CH₂-C₂H₅</td>
<td>3-Fluorophenyl</td>
</tr>
<tr>
<td>261</td>
<td>CH₂-C₂H₅</td>
<td>4-Fluorophenyl</td>
</tr>
<tr>
<td>262</td>
<td>CH₂-C₂H₅</td>
<td>2-Methylphenyl</td>
</tr>
<tr>
<td>263</td>
<td>CH₂-C₂H₅</td>
<td>3-Methylphenyl</td>
</tr>
<tr>
<td>264</td>
<td>CH₂-C₂H₅</td>
<td>4-Methylphenyl</td>
</tr>
<tr>
<td>265</td>
<td>CH₂-C₂H₅</td>
<td>2-Methoxyphenyl</td>
</tr>
<tr>
<td>266</td>
<td>CH₂-C₂H₅</td>
<td>3-Methoxyphenyl</td>
</tr>
<tr>
<td>267</td>
<td>CH₂-C₂H₅</td>
<td>4-Methoxyphenyl</td>
</tr>
<tr>
<td>268</td>
<td>CH₂-C₂H₅</td>
<td>2-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>269</td>
<td>CH₂-C₂H₅</td>
<td>3-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>270</td>
<td>CH₂-C₂H₅</td>
<td>4-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>271</td>
<td>CH₂-C₂H₅</td>
<td>2-Nitrophenyl</td>
</tr>
<tr>
<td>272</td>
<td>CH₂-C₂H₅</td>
<td>3-Nitrophenyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>273</td>
<td>CH₂-C₂H₅</td>
<td>4-Nitrophenyl</td>
</tr>
<tr>
<td>274</td>
<td>CH₂-C₂H₅</td>
<td>2-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>275</td>
<td>CH₂-C₂H₅</td>
<td>3-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>276</td>
<td>CH₂-C₂H₅</td>
<td>4-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>277</td>
<td>CH₂-C₂H₅</td>
<td>2-(Trifluoromethyl)phenyl</td>
</tr>
<tr>
<td>278</td>
<td>CH₂-C₂H₅</td>
<td>3-(Trifluoromethyl)phenyl</td>
</tr>
<tr>
<td>279</td>
<td>CH₂-C₂H₅</td>
<td>4-(Trifluoromethyl)phenyl</td>
</tr>
<tr>
<td>280</td>
<td>CH₂-C₂H₅</td>
<td>3-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>281</td>
<td>CH₂-C₂H₅</td>
<td>4-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>282</td>
<td>CH₂-C₂H₅</td>
<td>2,4-Difluorophenyl</td>
</tr>
<tr>
<td>283</td>
<td>CH₂-C₂H₅</td>
<td>2,4-Dichlorophenyl</td>
</tr>
<tr>
<td>284</td>
<td>CH₂-C₂H₅</td>
<td>3,4-Difluorophenyl</td>
</tr>
<tr>
<td>285</td>
<td>CH₂-C₂H₅</td>
<td>3,4-Dichlorophenyl</td>
</tr>
<tr>
<td>286</td>
<td>CH₂-C₂H₅</td>
<td>3,5-Difluorophenyl</td>
</tr>
<tr>
<td>287</td>
<td>CH₂-C₂H₅</td>
<td>3,5-Dichlorophenyl</td>
</tr>
<tr>
<td>288</td>
<td>CH₂-C₂H₅</td>
<td>2-Pyridyl</td>
</tr>
<tr>
<td>289</td>
<td>CH₂-C₂H₅</td>
<td>3-Pyridyl</td>
</tr>
<tr>
<td>290</td>
<td>CH₂-C₂H₅</td>
<td>4-Pyridyl</td>
</tr>
<tr>
<td>291</td>
<td>CH₂-C₂H₅</td>
<td>α-Naphthyl</td>
</tr>
<tr>
<td>292</td>
<td>CH₂-C₂H₅</td>
<td>Benzyl</td>
</tr>
<tr>
<td>293</td>
<td>CH₂-C₂H₅</td>
<td>2-Chlorobenzyl</td>
</tr>
<tr>
<td>294</td>
<td>CH₂-C₂H₅</td>
<td>3-Chlorobenzyl</td>
</tr>
<tr>
<td>295</td>
<td>CH₂-C₂H₅</td>
<td>4-Chlorobenzyl</td>
</tr>
<tr>
<td>296</td>
<td>CH₂-C₂H₅</td>
<td>2-Methoxybenzyl</td>
</tr>
<tr>
<td>297</td>
<td>CH₂-C₂H₅</td>
<td>3-Methoxybenzyl</td>
</tr>
<tr>
<td>298</td>
<td>CH₂-C₂H₅</td>
<td>4-Methoxybenzyl</td>
</tr>
<tr>
<td>299</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂CH₂-C₁</td>
</tr>
<tr>
<td>300</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂CH₂-CN</td>
</tr>
<tr>
<td>301</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂-CO-OC₂H₃</td>
</tr>
<tr>
<td>302</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂-CO-OC₂H₅</td>
</tr>
<tr>
<td>303</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH(CH₃)-CO-OC₂H₃</td>
</tr>
<tr>
<td>304</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂CH₂-OC₂H₃</td>
</tr>
<tr>
<td>305</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂CH₂-C₂H₅</td>
</tr>
<tr>
<td>306</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>307</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>308</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂-CH(CH₃)₂</td>
</tr>
<tr>
<td>309</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>C(CH₃)₃</td>
</tr>
<tr>
<td>310</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH(CH₃)-CH₂-C₂H₅</td>
</tr>
<tr>
<td>311</td>
<td>CH₂-CH₂-C₂H₅</td>
<td>CH₂-CH(CH₃)-C₂H₅</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>312</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>CH<sub>2</sub>·CH(CH<sub>3</sub>)<sub>2</sub></td>
</tr>
<tr>
<td>313</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·CH=CH<sub>2</sub></td>
</tr>
<tr>
<td>314</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)=CH<sub>2</sub></td>
</tr>
<tr>
<td>315</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>=CH·CH<sub>3</sub></td>
</tr>
<tr>
<td>316</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·C≡CH</td>
</tr>
<tr>
<td>317</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH(CH<sub>3</sub>)·C≡CH</td>
</tr>
<tr>
<td>318</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclopropyl</td>
</tr>
<tr>
<td>319</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·Cyclopropyl</td>
</tr>
<tr>
<td>320</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclopentyl</td>
</tr>
<tr>
<td>321</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·Cyclopentyl</td>
</tr>
<tr>
<td>322</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·(1,3-Dioxolan-2-yl)</td>
</tr>
<tr>
<td>323</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·(2-Furyl)</td>
</tr>
<tr>
<td>324</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·(3-Furyl)</td>
</tr>
<tr>
<td>325</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·(2-Thienyl)</td>
</tr>
<tr>
<td>326</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>·(3-Thienyl)</td>
</tr>
<tr>
<td>327</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>Phenyl</td>
</tr>
<tr>
<td>328</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-Chlorphenyl</td>
</tr>
<tr>
<td>329</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-Chlorphenyl</td>
</tr>
<tr>
<td>330</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-Chlorphenyl</td>
</tr>
<tr>
<td>331</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-Fluorophenyl</td>
</tr>
<tr>
<td>332</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-Fluorophenyl</td>
</tr>
<tr>
<td>333</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-Fluorophenyl</td>
</tr>
<tr>
<td>334</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-Methylphenyl</td>
</tr>
<tr>
<td>335</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-Methylphenyl</td>
</tr>
<tr>
<td>336</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-Methylphenyl</td>
</tr>
<tr>
<td>337</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-Methoxyphenyl</td>
</tr>
<tr>
<td>338</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-Methoxyphenyl</td>
</tr>
<tr>
<td>339</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-Methoxyphenyl</td>
</tr>
<tr>
<td>340</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>341</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>342</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>343</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-Nitrophenyl</td>
</tr>
<tr>
<td>344</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-Nitrophenyl</td>
</tr>
<tr>
<td>345</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-Nitrophenyl</td>
</tr>
<tr>
<td>346</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>347</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>348</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>4-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>349</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>2-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>350</td>
<td>CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub></td>
<td>3-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>351</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>4-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>352</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>353</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>4-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>354</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>2,4-Difluorophenyl</td>
</tr>
<tr>
<td>355</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>2,4-Dichlorophenyl</td>
</tr>
<tr>
<td>356</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3,4-Difluorophenyl</td>
</tr>
<tr>
<td>357</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3,4-Dichlorophenyl</td>
</tr>
<tr>
<td>358</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3,5-Difluorophenyl</td>
</tr>
<tr>
<td>359</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3,5-Dichlorophenyl</td>
</tr>
<tr>
<td>360</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>2-Pyridyl</td>
</tr>
<tr>
<td>361</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3-Pyridyl</td>
</tr>
<tr>
<td>362</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>4-Pyridyl</td>
</tr>
<tr>
<td>363</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>α-Naphthyl</td>
</tr>
<tr>
<td>364</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>Benzyl</td>
</tr>
<tr>
<td>365</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>2-Chlorbenzyl</td>
</tr>
<tr>
<td>366</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3-Chlorbenzyl</td>
</tr>
<tr>
<td>367</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>4-Chlorbenzyl</td>
</tr>
<tr>
<td>368</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>2-Methoxybenzyl</td>
</tr>
<tr>
<td>369</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>3-Methoxybenzyl</td>
</tr>
<tr>
<td>370</td>
<td>CH₂–CH₂–C₂H₅</td>
<td>4-Methoxybenzyl</td>
</tr>
<tr>
<td>371</td>
<td>CH(CH₃)₂</td>
<td>CH₂CH₂–Cl</td>
</tr>
<tr>
<td>372</td>
<td>CH(CH₃)₂</td>
<td>CH₂CH₂–CN</td>
</tr>
<tr>
<td>373</td>
<td>CH(CH₃)₂</td>
<td>CH₂–CO–OCH₃</td>
</tr>
<tr>
<td>374</td>
<td>CH(CH₃)₂</td>
<td>CH₂–CO–OC₂H₅</td>
</tr>
<tr>
<td>375</td>
<td>CH(CH₃)₂</td>
<td>CH(CH₃)–CO–OCH₃</td>
</tr>
<tr>
<td>376</td>
<td>CH(CH₃)₂</td>
<td>CH₂CH₂–OCH₃</td>
</tr>
<tr>
<td>377</td>
<td>CH(CH₃)₂</td>
<td>CH(CH₃)₂</td>
</tr>
<tr>
<td>378</td>
<td>CH(CH₃)₂</td>
<td>CH(CH₃)–C₂H₅</td>
</tr>
<tr>
<td>379</td>
<td>CH(CH₃)₂</td>
<td>CH₂–CH(CH₃)₂</td>
</tr>
<tr>
<td>380</td>
<td>CH(CH₃)₂</td>
<td>C(CH₃)₃</td>
</tr>
<tr>
<td>381</td>
<td>CH(CH₃)₂</td>
<td>CH(CH₃)–CH₂–C₂H₅</td>
</tr>
<tr>
<td>382</td>
<td>CH(CH₃)₂</td>
<td>CH₂–CH(CH₃)–C₂H₅</td>
</tr>
<tr>
<td>383</td>
<td>CH(CH₃)₂</td>
<td>CH₂CH₂–CH(CH₃)₂</td>
</tr>
<tr>
<td>384</td>
<td>CH(CH₃)₂</td>
<td>CH₂–CH=CH₂</td>
</tr>
<tr>
<td>385</td>
<td>CH(CH₃)₂</td>
<td>CH(CH₃)=CH₂</td>
</tr>
<tr>
<td>386</td>
<td>CH(CH₃)₂</td>
<td>CH₂=CH–CH₃</td>
</tr>
<tr>
<td>387</td>
<td>CH(CH₃)₂</td>
<td>CH₂–C≡CH</td>
</tr>
<tr>
<td>388</td>
<td>CH(CH₃)₂</td>
<td>CH(CH₃)=C≡CH</td>
</tr>
<tr>
<td>389</td>
<td>CH(CH₃)₂</td>
<td>Cyclopropyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>390</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-Cyclopropyl</td>
</tr>
<tr>
<td>391</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Cyclopenty1</td>
</tr>
<tr>
<td>392</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-Cyclopentyl</td>
</tr>
<tr>
<td>393</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-(1,3-Dioxolan-2-yl)</td>
</tr>
<tr>
<td>394</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-(2-Furyl)</td>
</tr>
<tr>
<td>395</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-(3-Furyl)</td>
</tr>
<tr>
<td>396</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-(2-Thienyl)</td>
</tr>
<tr>
<td>397</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>-(3-Thienyl)</td>
</tr>
<tr>
<td>398</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Phenyl</td>
</tr>
<tr>
<td>399</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Chlorophenyl</td>
</tr>
<tr>
<td>400</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Chlorophenyl</td>
</tr>
<tr>
<td>401</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Chlorophenyl</td>
</tr>
<tr>
<td>402</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Fluorophenyl</td>
</tr>
<tr>
<td>403</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Fluorophenyl</td>
</tr>
<tr>
<td>404</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Fluorophenyl</td>
</tr>
<tr>
<td>405</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Methylphenyl</td>
</tr>
<tr>
<td>406</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Methylphenyl</td>
</tr>
<tr>
<td>407</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Methylphenyl</td>
</tr>
<tr>
<td>408</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Methoxyphenyl</td>
</tr>
<tr>
<td>409</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Methoxyphenyl</td>
</tr>
<tr>
<td>410</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Methoxyphenyl</td>
</tr>
<tr>
<td>411</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>412</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>413</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-(Methoxycarbonyl)phenyl</td>
</tr>
<tr>
<td>414</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Nitrophenyl</td>
</tr>
<tr>
<td>415</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Nitrophenyl</td>
</tr>
<tr>
<td>416</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Nitrophenyl</td>
</tr>
<tr>
<td>417</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>418</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>419</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-(Dimethylamino)phenyl</td>
</tr>
<tr>
<td>420</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>421</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>422</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-(Trifluormethyl)phenyl</td>
</tr>
<tr>
<td>423</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>424</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-(Phenoxy)phenyl</td>
</tr>
<tr>
<td>425</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2,4-Difluorophenyl</td>
</tr>
<tr>
<td>426</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2,4-Dichlorophenyl</td>
</tr>
<tr>
<td>427</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3,4-Difluorophenyl</td>
</tr>
<tr>
<td>428</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3,4-Dichlorophenyl</td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>429</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3,5-Difluorophenyl</td>
</tr>
<tr>
<td>430</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3,5-Dichlorophenyl</td>
</tr>
<tr>
<td>431</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Pyridyl</td>
</tr>
<tr>
<td>432</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Pyridyl</td>
</tr>
<tr>
<td>433</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Pyridyl</td>
</tr>
<tr>
<td>434</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>α-Naphthyl</td>
</tr>
<tr>
<td>435</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Benzyl</td>
</tr>
<tr>
<td>436</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Chlorobenzyl</td>
</tr>
<tr>
<td>437</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Chlorobenzyl</td>
</tr>
<tr>
<td>438</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Chlorobenzyl</td>
</tr>
<tr>
<td>439</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>2-Methoxybenzyl</td>
</tr>
<tr>
<td>440</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>3-Methoxybenzyl</td>
</tr>
<tr>
<td>441</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4-Methoxybenzyl</td>
</tr>
<tr>
<td>442</td>
<td>-(CH<sub>2</sub>)<sub>4</sub>-</td>
<td>-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-</td>
</tr>
<tr>
<td>443</td>
<td>H</td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>444</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>445</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>446</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>447</td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>448</td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>449</td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>450</td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>451</td>
<td>tert.-C<sub>4</sub>H<sub>9</sub></td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>452</td>
<td>H</td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>453</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>454</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>455</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>456</td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>457</td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>458</td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>459</td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>460</td>
<td>tert.-C<sub>4</sub>H<sub>9</sub></td>
<td>CH<sub>2</sub>-CH=CH-CH<sub>3</sub></td>
</tr>
<tr>
<td>461</td>
<td>H</td>
<td>CH<sub>3</sub>S-CH<sub>2</sub>CH<sub>2</sub></td>
</tr>
<tr>
<td>462</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub>S-CH<sub>2</sub>CH<sub>2</sub></td>
</tr>
<tr>
<td>463</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>CH<sub>3</sub>S-CH<sub>2</sub>CH<sub>2</sub></td>
</tr>
<tr>
<td>464</td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>CH<sub>3</sub>S-CH<sub>2</sub>CH<sub>2</sub></td>
</tr>
<tr>
<td>465</td>
<td>i-C<sub>3</sub>N<sub>7</sub></td>
<td>CH<sub>3</sub>S-CH<sub>2</sub>CH<sub>2</sub></td>
</tr>
<tr>
<td>466</td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td>CH<sub>3</sub>S-CH<sub>2</sub>CH<sub>2</sub></td>
</tr>
<tr>
<td>Nr.</td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>468</td>
<td>i-C₄H₉</td>
<td>CH₃S-CH₂CH₂</td>
</tr>
<tr>
<td>469</td>
<td>sek.-C₄H₉</td>
<td>CH₃S-CH₂CH₂</td>
</tr>
<tr>
<td>470</td>
<td>tert.-C₄H₉</td>
<td>CH₃S-CH₂CH₂</td>
</tr>
<tr>
<td>471</td>
<td>H</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>472</td>
<td>CH₃</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>473</td>
<td>C₂H₅</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>474</td>
<td>n-C₃H₇</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>475</td>
<td>i-C₃H₇</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>476</td>
<td>n-C₄H₉</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>477</td>
<td>i-C₄H₉</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>478</td>
<td>sek.-C₄H₉</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>479</td>
<td>tert.-C₄H₉</td>
<td>C₂H₅-0-CH₂CH₂</td>
</tr>
<tr>
<td>480</td>
<td>CH₂CH₂-O-CH₂CH₂</td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>CH₂=CH=CH-CH₂</td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>CH=CH-CH₂.CH₂</td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>CH₂-CH₂-CH₂-CH₂-CH₂</td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>CH₂-CH₂-0-CH(CH₃)-CH₂</td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>CH₂-CH₂-0-CH₂-CH(CH₃)</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>CH₂-CH₂-N(CH₃)-CH₂-CH₂</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>CH₂-CH(CH₃)-0-CH(CH₃)-CH₂</td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>CH₂=CH=CH-CH₂-CH₂</td>
<td></td>
</tr>
<tr>
<td>489</td>
<td>CH=CH-CH₂-CH₂-CH₂</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>CH₂-CH₂-CH₂-CH₂-CH(CH₃)</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>CH₂-CH₂-CH₂-CH(CH₃)-CH₂</td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>CH₂-CH₂-CH(CH₃)-CH₂-CH₂</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td>CH₂-CH₂-CH₂-CH₂-CH(CH₂CH₂Cl)</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>CH₂-CH₂-CH₂-CH(CH₂CH₂Cl)-CH₂</td>
<td></td>
</tr>
<tr>
<td>495</td>
<td>CH₂-CH₂-CH(CH₂CH₂Cl)-CH₂-CH₂</td>
<td></td>
</tr>
</tbody>
</table>

Ganz besonders bevorzugt sind die Isocyanatobenzoylsulfamidsäureamide der Formel IA.1-b (== I mit W = Sauerstoff, Ar = Ar-1 mit R^a = Cl und R^b = R^d = Wasserstoff und R^c = H, A = NR¹R²), worin R¹, R² die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-b.1 bis IA.1-b.495, in denen die Variablen R¹, R² gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Ganz besonders bevorzugt sind die Isocyanatbenzoylsulfamidsäureamide der Formel IA.1-c (≡ I mit W = Sauerstoff, Ar = Ar-1 mit R^a = Cl und R^b = R^d = Wasserstoff und R^c = Cl, A = NR^1R^2), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-c.1 bis IA.1-c.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

Ganz besonders bevorzugt sind die Isocyanatbenzoylsulfamidsäureamide der Formel IA.1-d (≡ I mit W = Sauerstoff, Ar = Ar-1 mit R^a = F und R^b = R^d = Wasserstoff und R^c = F, A = NR^1R^2), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-d.1 bis IA.1-d.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Ganz besonders bevorzugt sind die Isocyanatbenzoylsulfamidsäureamide der Formel IA.1-e (≡ I mit W = Sauerstoff, Ar = Ar-1 mit R^a = CN und R^b = R^d = Wasserstoff und R^c = F, A = NR^1R^2), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-e.1 bis IA.1-e.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\text{(IA.1-e)}
\]

\[
\begin{align*}
\text{F} & \\
\text{O} & \text{C} = \text{N} & \text{N} & \text{SO}_2 & \text{N} & \text{R}^1 & \text{R}^2
\end{align*}
\]

\[
\text{CN}
\]

Ganz besonders bevorzugt sind die Isocyanatbenzoylsulfamidsäureamide der Formel IA.1-f (≡ I mit W = Sauerstoff, Ar = Ar-1 mit R^a = CN und R^b = R^d = Wasserstoff und R^c = Cl, A = NR^1R^2), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-f.1 bis IA.1-f.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\text{(IA.1-f)}
\]

\[
\begin{align*}
\text{Cl} & \\
\text{O} & \text{C} = \text{N} & \text{CN} & \text{R}^1 & \text{R}^2
\end{align*}
\]

\[
\text{N} & \text{SO}_2 & \text{N} & \text{R}^1 & \text{R}^2
\]

Ganz besonders bevorzugt sind die Isothiocyanatbenzoylsulfamidsäureamide der Formel IA.1-g (≡ I mit W = Schwefel, Ar = Ar-1 mit R^a = Cl und R^b = R^d = Wasserstoff und R^c = F, A = NR^1R^2), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IA.1-g.1 bis IA.1-g.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Ganz besonders bevorzugt sind die Isothiocyamatobenzoylsulfamid-
säureamide der Formel IA.1-h (≡ I mit W = Schwefel, Ar = Ar-1 mit
R^a = Cl und R^b = R^d = Wasserstoff und R^c = H, A = NR^1R^2), worin R^1,
R^2 die oben genannten, insbesondere die als bevorzugt genannten
Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind
die Verbindungen IA.1-h.1 bis IA.1-h.495, in denen die Variablen
R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Be-
deutungen aufweisen.

Ganz besonders bevorzugt sind die Isothiocyamatobenzoylsulfamid-
säureamide der Formel IA.1-i (≡ I mit W = Schwefel, Ar = Ar-1 mit
R^a = Cl und R^b = R^d = Wasserstoff und R^c = Cl, A = NR^1R^2), worin
R^1, R^2 die oben genannten, insbesondere die als bevorzugt genann-
ten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen
sind die Verbindungen IA.1-i.1 bis IA.1-i.495, in denen die Va-
riablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angege-
benen Bedeutungen aufweisen.
Ganz besonders bevorzugt sind die Isothiocyanatbenzoylsulfamid-
säureamide der Formel IA.1-j (≡ I mit W = Schwefel, Ar = Ar-1 mit
R^a = F und R^b = R^d = Wasserstoff und R^c = F, A = NR^1R^2), worin R^1,
R^2 die oben genannten, insbesondere die als bevorzugt genannten
Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind
die Verbindungen IA.1-j.1 bis IA.1-j.495, in denen die Variablen
R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Be-
deutungen aufweisen.

\[\text{Ganz besonders bevorzugt sind die Isothiocyanatbenzoylsulfamid-} \]
\[\text{säureamide der Formel IA.1-k (≡ I mit W = Schwefel, Ar = Ar-1 mit} \]
\[\text{R^a = CN und R^b = R^d = Wasserstoff und R^c = F, A = NR^1R^2), worin R^1,} \]
\[\text{R^2 die oben genannten, insbesondere die als bevorzugt genann-} \]
\[\text{ten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen} \]
\[\text{sind die Verbindungen IA.1-k.1 bis IA.1-k.495, in denen die Variablen} \]
\[\text{R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Be-} \]
\[\text{deutungen aufweisen.} \]

\[\text{Ganz besonders bevorzugt sind die Isothiocyanatbenzoylsulfamid-} \]
\[\text{säureamide der Formel IA.1-l (≡ I mit W = Schwefel, Ar = Ar-1 mit} \]
\[\text{R^a = CN und R^b = R^d = Wasserstoff und R^c = Cl, A = NR^1R^2), worin} \]
\[\text{R^1, R^2 die oben genannten, insbesondere die als bevorzugt genann-} \]
\[\text{ten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen} \]
\[\text{sind die Verbindungen IA.1-l.1 bis IA.1-l.495, in denen die Va-} \]
\[\text{riablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angege-} \]
\[\text{benen Bedeutungen aufweisen.} \]
Im erfindungsgemäßen Verfahren werden als Edukt Aminobenzoylsulfamidsäureamide der allgemeinen Formel II eingesetzt. Diese sind ebenfalls neu und stellen wertvolle Zwischenprodukte zur Herstellung der Iso(thio)cyanatobenzoylsulfamidsäreamide I dar. Bezüglich des Herstellungsverfahrens wird auf das zuvor Gesagte verwiesen.

Die vorliegende Erfindung betrifft daher auch die Anilinverbindungen der Formel II, insbesondere Verbindungen der Formel IIA (≡ II mit Ar = Ar-1),

worin R^a, R^b, R^c, R^d und A die zuvor genannten Bedeutungen aufweisen. In der Formel IIA stehen R^a, R^b, R^c, R^d und A vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindung I als bevorzugt für diese Variablen genannt wurden.

Besonders bevorzugt sind die Verbindungen der Formel IIA.1,
in denen die Variablen R^1, R^2, R^a, R^b, R^c, R^d die zuvor genannten Bedeutungen aufweisen. In Formel IIA.1 weisen die Variablen R^1, R^2, R^a, R^b, R^c, R^d vorzugsweise die Bedeutung auf, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen IIA.1 als bevorzugt genannt wurden.

Ganz besonders bevorzugt sind die Aminobenzoylsulfamidsäureamide der Formel IIA.1-a (\equiv II mit $A = Ar - 1$ mit $R^a = Cl$ und $R^b = R^d =$ Wasserstoff und $R^c = F$, $A = NR^1R^2$), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IIA.1-a.1 bis IIA.1-a.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\begin{align*}
&\text{F} \\
&\text{H}_2\text{N} \\
&\text{Cl} \\
&\text{N} \quad \text{SO}_2 \quad \text{N} \\
&\text{O} \quad \text{H} \\
&\text{R}^1 \\
&\text{R}^2
\end{align*}
\]

Ganz besonders bevorzugt sind die Aminobenzoylsulfamidsäureamide der Formel IIA.1-b (\equiv II mit $A = Ar - 1$ mit $R^a = Cl$ und $R^b = R^d =$ Wasserstoff und $R^c = H$, $A = NR^1R^2$), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IIA.1-b.1 bis IIA.1-b.495, in denen die Variablen R^1, R^2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\begin{align*}
&\text{H} \\
&\text{H}_2\text{N} \\
&\text{Cl} \\
&\text{N} \quad \text{SO}_2 \quad \text{N} \\
&\text{O} \quad \text{H} \\
&\text{R}^1 \\
&\text{R}^2
\end{align*}
\]

Ganz besonders bevorzugt sind die Aminobenzoylsulfamidsäureamide der Formel IIA.1-c (\equiv II mit $A = Ar - 1$ mit $R^a = Cl$ und $R^b = R^d =$ Wasserstoff und $R^c = Cl$, $A = NR^1R^2$), worin R^1, R^2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindun-
gen IIA.1-c.1 bis IIA.1-c.495, in denen die Variablen \(R^1, R^2 \) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{Cl} \\
\text{N} & \quad \text{SO}_2 \quad \text{N} \\
\text{O} & \quad \text{H} \\
\text{R}^1 & \\
\text{R}^2 & \\
\end{align*}
\]

(GIIA.1-c)

Ganz besonders bevorzugt sind die Aminobenzoylsulfamidsäureamide der Formel IIA.1-d (\(\equiv \text{II mit } \text{Ar } = \text{Ar-1 mit } R^a = F \) und \(R^b = R^d = \text{Wasserstoff und } R^c = F, A = NR^1R^2 \)), worin \(R^1, R^2 \) die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IIA.1-d.1 bis IIA.1-d.495, in denen die Variablen \(R^1, R^2 \) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{F} \\
\text{N} & \quad \text{SO}_2 \quad \text{N} \\
\text{O} & \quad \text{H} \\
\text{R}^1 & \\
\text{R}^2 & \\
\end{align*}
\]

(GIIA.1-d)

Ganz besonders bevorzugt sind die Aminobenzoylsulfamidsäureamide der Formel IIA.1-e (\(\equiv \text{II mit } \text{Ar } = \text{Ar-1 mit } R^a = CN \) und \(R^b = R^d = \text{Wasserstoff und } R^c = F, A = NR^1R^2 \)), worin \(R^1, R^2 \) die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IIA.1-e.1 bis IIA.1-e.495, in denen die Variablen \(R^1, R^2 \) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

45
Ganz besonders bevorzugt sind die Aminobenzooylsulfamsäureamide der Formel IIA.1-f (≡ II mit Ar = Ar-1 mit R^a = CN und R^b = R^d = Wasserstoff und R^c = Cl, A = NR\(^1\)R\(^2\)), worin R\(^1\), R\(^2\) die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen IIA.1-f.1 bis IIA.1-f.495, in denen die Variablen R\(^1\), R\(^2\) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

Die Nitrobenzooylsulfamsäureamide der allgemeinen Formel V sind ebenfalls neu und stellen ebenfalls wertvolle Zwischenprodukte zur Herstellung der Iso(thio)cyanatbenzooylsulfamsäureamide dar. Sie sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die vorliegende Erfindung betrifft daher auch die Nitroverbindungen der Formel V, insbesondere Verbindungen der Formel VA (≡ V mit Ar = Ar-1),
worin Ra, Rb, Rc, Rd und A die zuvor genannten Bedeutungen aufweisen. In der Formel VA stehen Ra, Rb, Rc, Rd und A vorzugsweise für diejenigen Reste, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindung I als bevorzugt für diese Variablen genannt wurden.

Ganz besonders bevorzugt sind die Verbindungen der Formel VA.1,

\[\text{(VA.1)} \]

in denen die Variablen R1, R2, Ra, Rb, Rc, Rd die zuvor genannten Bedeutungen aufweisen. In Formel VA.1 weisen die Variablen R1, R2, Ra, Rb, Rc, Rd vorzugsweise die Bedeutung auf, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen VA.1 als bevorzugt genannt wurden.

Ganz besonders bevorzugt sind die Nitrobenzoylsulfamsäureamide der Formel VA.1-a (≡ V mit Ar = Ar-1 mit Ra = Cl und Rb = Rd = Wasserstoff und Rc = F, A = NR1R2), worin R1, R2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen VA.1-a.1 bis VA.1-a.495, in denen die Variablen R1, R2 gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[\text{(VA.1-a)} \]

Ganz besonders bevorzugt sind die Nitrobenzoylsulfamsäureamide der Formel VA.1-b (≡ V mit Ar = Ar-1 mit Ra = Cl und Rb = Rd = Wasserstoff und Rc = H, A = NR1R2), worin R1, R2 die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen VA.1-b.1 bis VA.1-b.495, in denen die Variablen R1, R2 gemeinsam...
Ganz besonders bevorzugt sind die Nitrobenzoylsulfamidsäureamide der Formel VA.1-c (\(\equiv V\) mit \(\text{Ar} = \text{Ar}-1\) mit \(R^a = \text{Cl}\) und \(R^b = R^d = \text{Wasserstoff}\) und \(R^c = \text{Cl}\), \(A = NR^1R^2\)), worin \(R^1\), \(R^2\) die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen VA.1-c.1 bis VA.1-c.495, in denen die Variablen \(R^1\), \(R^2\) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Ganz besonders bevorzugt sind die Nitrobenzoylsulfamidsäureamide
der Formel VA.1-e (\(\equiv V\) mit \(\text{Ar} = \text{Ar}-1\) mit \(\text{R}^a = \text{CN}\) und \(\text{R}^b = \text{R}^d =\)Wasserstoff und \(\text{R}^c = \text{F}, \text{A} = \text{NR}^1\text{R}^2\)), worin \(\text{R}^1, \text{R}^2\) die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen VA.1-e.1 bis VA.1-e.495, in denen die Variablen \(\text{R}^1, \text{R}^2\) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{CN} \\
\text{F} & \\
\end{align*}
\]

(VA.1-e)

Ganz besonders bevorzugt sind die Nitrobenzoylsulfamidsäureamide
der Formel VA.1-f (\(\equiv V\) mit \(\text{Ar} = \text{Ar}-1\) mit \(\text{R}^a = \text{CN}\) und \(\text{R}^b = \text{R}^d =\)Wasserstoff und \(\text{R}^c = \text{Cl}, \text{A} = \text{NR}^1\text{R}^2\)), worin \(\text{R}^1, \text{R}^2\) die oben genannten, insbesondere die als bevorzugt genannten Bedeutungen, aufweisen. Beispiele für derartige Verbindungen sind die Verbindungen VA.1-f.1 bis VA.1-f.495, in denen die Variablen \(\text{R}^1, \text{R}^2\) gemeinsam die in einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.

\[
\begin{align*}
\text{Cl} & \\
\text{O}_2\text{N} & \quad \text{CN} \\
\text{O} & \\
\end{align*}
\]

(VA.1-f)

Die erfindungsgemäßen bifunktionellen Phenyliso(thio)cyanate Ikönnen als Ausgangsmaterialien für pharmakologisch aktive Verbindungen oder Pflanzenschutzwirkstoffe verwendet werden. Beislweise werden in der WO 01/83459 herbizide 3-(Triazolidindion)
substituierte Benzoësãuresulfamoylamide der nachfolgenden allgemeinen Formel beschrieben,
worin X^1 für Wasserstoff, Halogen, C$_1$-C$_4$-Alkyl, X^2 für Wasserstoff, CN, CS-NH$_2$, Halogen, C$_1$-C$_4$-Alkyl, C$_1$-C$_4$-Halogenalkyl, R^{11}, R^{21} für die zuvor für R^1, R^2 angegebenen Bedeutungen und insbesondere für Wasserstoff, gegebenenfalls substituiertes Hydroxy, C$_1$-C$_{10}$-Alkyl, C$_2$-C$_{10}$-Alkenyl, C$_3$-C$_{10}$-Alkinyl, C$_3$-C$_7$-Cycloalkyl, Phenyl, Benzyl oder C$_5$-C$_7$-Cycloalkenyl stehen oder R^{11}, R^{21} zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 3- bis 7gliedrigen heterocyclischen Ring bilden und Q für einen Rest der Formel a

steht, worin W die zuvor genannten Bedeutungen aufweist, W' für O oder S steht und R^3 und R^4 unabhängig voneinander für einen der folgenden Reste stehen: Wasserstoff, Cyano, Amino, C$_1$-C$_6$-Alkyl, C$_1$-C$_6$-Halogenalkyl, C$_1$-C$_6$-Halogenalkoxy, C$_3$-C$_7$-Cycloalkyl, C$_2$-C$_6$-Alkenyl, C$_2$-C$_6$-Halogenalkenyl, C$_3$-C$_6$-Alkinyl, Benzyl, OR5 (worin R5 für Wasserstoff, C$_1$-C$_6$-Alkyl, C$_1$-C$_6$-Halogenalkyl, C$_3$-C$_7$-Cycloalkyl, C$_2$-C$_6$-Alkenyl, C$_3$-C$_6$-Alkinyl, gegebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes Benzyl steht), C$_1$-C$_3$-Cyanoalkyl, oder R^3 und R^4 zusammen mit den Stickstoffatomen, an die sie gebunden sind, einen vier- bis siebengliedrigen, gegebenenfalls durch Schwefel, Sauerstoff, eine Gruppe NR6 (worin R6 die zuvor genannten Bedeutungen aufweist) oder Stickstoff unterbrochenen Heterocyclus bilden, der gegebenenfalls ein- oder mehrfach durch Halogen oder C$_1$-C$_4$-Alkyl substituiert ist,

und insbesondere für einen Rest der Formel b steht:
worin W die zuvor genannte Bedeutung und \(W' \), \(Z \) unabhängig voneinander für Sauerstoff oder Schwefel stehen.

Die in der WO 01/83459 beschriebenen Herbizide sind sind nicht immer in ausreichender Ausbeute und Reinheit zugänglich. Die dort beschriebenen Verfahren beruhen beispielsweise:

A) auf der Kondensation einer substituierten Benzoessäure mit einem substituierten Sulfamidsäureamid in Gegenwart von \(N,N \)-Carbonyldiimidazol (CDI) oder Umwandlung der Carbonsäure in ihr Säurechlorid und anschließende Umsetzung des Säurechlorids mit dem Sulfamidsäureamid.

Hierbei können die Variablen \(R^{11} \), \(R^{21} \), \(X^1 \) und \(X^2 \) die zuvor genannten Bedeutungen aufweisen und \(Q \) steht für einen 5- oder 6-gliedrigen Heterocyclus, z. B. für einen Rest a oder b.

Nachteilig an dem Verfahren ist, dass die eingesetzte Benzoessäure erst durch Spaltung mit Bortribromid bei entsprechendem Salzanfall aus dem vorangehenden Ester erhältlich ist. Zudem liegt die Ausbeute der Kondensation mit Sulfamidsäureamiden nur zwischen 16 und 45 %. Auch der Umweg über ein vorher hergestelltes Säurechlorid führt in nur 26 % Ausbeute zu dem gewünschten Benzyolsulfamidsäureamid, das zudem chromatographisch von seinen Verunreinigungen befreit werden muss.

B) Ersatz eines Halogenrestes durch den heterocyclischen Rest Q:
Hierbei können die Variablen R^{11}, R^{21}, X^1 und X^2 die zuvor genannten Bedeutungen aufweisen, Hal steht für Fluor, Chlor oder Brom und Q steht für einen 5- oder 6-gliedrigen Heterocyclus, z. B. für einen Rest a oder b.

Nachteile dieses Verfahrens sind, dass der eingesetzte Halogenaromat erst umständlich über eine Sandmeyer-Reaktion bereitgestellt werden muss und außerdem die unbefriedigende Selektivität bei der Reaktion der 5-Halogen substituierten Verbindung im Vergleich zu den im gleichen Molekül enthaltenen -aktivierten - 2,4-Dihalogen substituenten.

Nach dem Stand der Technik sind daher alle bisherigen Verfahren zur Herstellung von 3-(Triazolidindion) substituierten Benzoylsulfamoylamiden und deren Schwefel-Analoga im Hinblick auf einen kurzen Reaktionsverlauf, Einfachheit der Reaktionsführung, Ausbeuten und Reinheit der Endprodukte noch nicht hinreichend zufriedenstellend und daher nicht wirtschaftlich.

Der vorliegenden Erfindung liegt somit auch die Aufgabe zugrunde, ein Verfahren zur Herstellung von Verbindungen der Formel VI,

\[
\begin{align*}
&\text{VI} \\
&\text{bereitzustellen, worin } W, \text{ Ar und A die in Anspruch 1 genannten Bedeutungen aufweisen, } W' \text{ für } 0 \text{ oder } S \text{ steht, und } R^3 \text{ und } R^4 \text{ unabhängig voneinander für Wasserstoff, Cyano, Amino, C}_1\text{-C}_6\text{-Alkyl, C}_1\text{-C}_6\text{-Halogenalkyl, C}_1\text{-C}_6\text{-Halogenalkoxy, C}_3\text{-C}_7\text{-Cycloalkyl, C}_2\text{-C}_6\text{-Alkenyl, C}_2\text{-C}_6\text{-Halogenalkenyl, C}_3\text{-C}_6\text{-Alkinyl, Benzyl, OR}}
\end{align*}
\]

(worin R^5 für Wasserstoff, C$_1$-C$_6$-Alkyl, C$_1$-C$_6$-Halogenalkyl, C$_3$-C$_7$-Cycloalkyl, C$_2$-C$_6$-Alkenyl, C$_3$-C$_6$-Alkinyl, gegebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes Benzyl
52

steht), C₁-C₄-Cyanoalkyl, stehen, oder R³ und R⁴ zusammen mit den
Stickstoffatomen, an die sie gebunden sind, einen vier- bis sie-
bengliedrigen, gegebenenfalls durch Schwefel, Sauerstoff, eine
Gruppe NR⁶ (worin R⁶ die zuvor genannten Bedeutungen aufweist)
oder Stickstoff unterbrochenen Heterocyclus, der gegebenenfalls
ein- oder mehrfach durch Halogen oder C₁-C₄-Alkyl substituiert
ist, bilden.

Überraschend wurde nun gefunden, dass man ausgehend von den er-
findungsgemäßen Verbindungen der Formel I, insbesondere der For-
mel IA, die in WO 01/83459 beschriebenen Verbindungen der Formel
VI sehr viel einfacher, ohne Nebenreaktionen und in höherer Aus-
beute und Reinheit herstellen kann.

15 Gegenstand der vorliegenden Erfindung ist somit auch ein Verfah-
ren zur Herstellung der Verbindungen der allgemeinen Formel VI

(VI)

worin R³, R⁴, W, W', Ar, A die zuvor genannten Bedeutungen aufwei-

30 sen,

umfassend die Schritte

(i) Umsetzung einer Verbindung der Formel I wie zuvor definiert,
mit einem Oxadiazincarbonsäureester der Formel VII,

(VII)

worin W' die zuvor genannte Bedeutung aufweist und R' für
C₁-C₄-Alkyl steht, wobei man ein Harnstoffderivat der Formel
VIII erhält,
worin die Variablen R^3, R^4, R', W, W', Ar und A die zuvor genannten Bedeutungen aufweisen, und

(ii) Cyclisierung des erhaltenen Zwischenproduktes VIII, wobei man eine Verbindung der Formel VI erhält.

Die Durchführung des Schritts (i) erfolgt in an sich bekannter Weise, z. B. wie in der WO 02/20531 beschrieben. In der Regel gibt man das erfindungsgemäße Iso(thio)cyanat der Formel I zu einer Verbindung der Formel VII, vorzugsweise in einem Lösungsmittel, zu. Als Lösungsmittel kommen Kohlenwasserstoffe wie Pentan, Hexan, Cyclopentan, Cyclohexan, Toluol, Xylol, chlorierte Kohlenwasserstoffe wie Methylchlorid, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Tetrachlorethan, Chlorbenzol, 1,2-, 1,3- oder 1,4-Dichlorbenzol, Ether wie 1,4-Dioxan, Anisol, Glykolether wie Dimethylglykolether, Diethylglykolether, Diethylenglykoldimethylether, Ester wie Ethylacetat, Propylacetat, Methylisobutyrat, Isobutylacetat, Carbonsäureamide wie N,N-Dimethylformamid, N-Methylpyrrolidon, Nitro Kohlenwasserstoffe wie Nitrobenzol, Nitrile wie Acetonitril, Propionitril, Butyronitril oder Isobutyronitril oder auch Gemische einzelner Lösungsmittel in Betracht. Die Zugabe erfolgt in der Regel innerhalb 5 bis 30 Minuten. Üblicherweise beträgt die Temperatur während der Zugabe 10 bis 25 °C. Zur Vervollständigung der Reaktion rührt man noch 0,5 bis 24 Stunden bei 20 bis 80 °C nach. Selbstverständlich kann man auch das Iso(thio)cyanat I in einem der vorgenannten Lösungsmittel vorlegen und die Verbindung VII zugeben und dann die Reaktion wie oben beschrieben zu Ende führen. Üblicherweise setzt man 0,9 bis 1,4 mol, vorzugsweise 0,95 bis 1,1 mol und besonders bevorzugt 0,98 bis 1,15 mol der Verbindung VII pro mol der Verbindung I ein. Die in Schritt (i) eingesetzte Verbindung der allgemeinen Formel VII ist bekannt oder lässt sich in Anlehnung an das in der WO 02/20531 beschriebene Verfahren herstellen.

Schritt (ii) erfolgt wiederum in an sich bekannter Weise, z. B. wie in der WO 02/20531 beschrieben, indem man die Verbindung der Formel VIII mit einer Base behandelt.
Als Base kommen grundsätzlich alle Verbindungen in Betracht, die das azide Proton der NH-Gruppe der Harnstofffunktion in den Verbindungen der Formel VIII abstrahieren können. Hierzu zählen Oxobasen, Stickstoffbasen und Hydridbasen.

Hydridbasen sind beispielsweise Alkalimetallhydride wie Natriumhydrid oder Kaliumhydrid. Bevorzugte Basen sind tertiäre Amine, insbesondere Trialkylamine.

Vorzugsweise setzt man 0,9 bis 1,4 mol, insbesondere 0,95 bis 1,2 mol und besonders bevorzugt 0,98 bis 1,15 mol der Verbindung VIII pro mol Base ein.

Zur Umsetzung von Verbindung VIII mit der Base legt man vorzugsweise die Verbindung VIII in einem der vorgenannten Lösungsmittel oder einen Lösungsmittelgemisch vor, gibt unter Durchmischen, z. B. unter Rühren, die Base in den Reaktionsansatz. Vorzugsweise erfolgt die Basenzugabe bei einer Temperatur im Bereich von 0 bis 50 °C und insbesondere bei 10 bis 30 °C.

In der Regel wird man dann zur Vervollständigung der Reaktion die Komponenten noch 10 Minuten bis 48 Stunden bei 20 bis 150 °C, vorzugsweise 20 bis 100 °C und insbesondere 20 bis 60 °C nachregieren lassen. Die Reaktion ist bei Thioharnstoffen der Formel VIII (W = S) im allgemeinen nach 0,5 bis 10 Stunden, bei Harnstoffen der Formel VIII (W = O) nach 4 bis 48 Stunden und insbesondere nach 8 bis 24 Stunden weitgehend vollständig (Umsatz > 90%). Man
kann jedoch auch die Base, vorzugsweise in einem der vorgenannten Lösungsmittel vorlegen, und dann die Verbindung VIII zugeben und wie oben die Reaktion zu Ende führen.

Die Konzentration der Edukte im Lösungsmittel liegt im allgemei-

nen im Bereich von 0,5 bis 5 mol/l, bevorzugt im Bereich von 0,2

bis 2 mol/l.

Die Aufarbeitung der Reaktion erfolgt in üblicher Weise, bei-

spielsweise wässrig extraktiv, durch Dialyse und/oder chromato-

graphisch.

Insbesondere betrifft das vorliegende Verfahren die Herstellung

der Verbindungen VIA

worin R³ und R⁴ die zuvor genannten Bedeutungen, die Variablen W,
W', R⁰, Rᵇ, Rᶜ, Rᵈ, A die zuvor genannten Bedeutungen, und insbes-
ondere die bereits im Zusammenhang mit der Beschreibung der Ver-
bindung IA als bevorzugt für diese Variablen genannten Bedeutun-
gen aufweisen. Die im erfindungsgemäßen Verfahren zur Herstellung

der Verbindung VIA eingesetzte Verbindung ist dann eine Verbin-
dungen der Formel IA, vorzugsweise eine Verbindung der Formel

IA.1.

Eine bevorzugte Verbindung der Formel VII ist beispielsweise eine

Verbindung der Formel (VII′)

worin Z für O oder S und R' für C₁-C₄-Alkyl steht. Diese Verbin-
dung ist aus der WO 02/20531 bekannt.

Insbesondere gelingt es auf diesem Weg, ausgehend von den Verbin-
dungen der Formel IA, gemäß dem folgenden Schema 3, Verbindungen
der Formel IX (= Verbindung VIA mit Rᵇ = Rᵈ = H, A = NR¹R², W = W′
= 0 und R³, R⁴ stehen für CH₂CH₂OCH₂) herzustellen.

Schema 3:

Die Variablen R⁺, R⁻, R¹ und R² weisen hierin die zuvor genannten Bedeutungen auf.

Die folgenden Beispiele dienen der Erläuterung der Erfindung

I Herstellung der Nitrobenzoylsulfaminsäureamide (Vorstufe der allgemeinen Formel VA.1; Vorprodukte VA.1-1 bis VA.1-24):

Beispiel 1: N-(2-Chlor-4-fluor-5-nitro-benzoyl)-N'--n-propyl-N'--allylsulfamid (VA.1-a.241)

(VA.1-a.241)
Bei -5 °C bis 0 °C gab man zu einer Mischung von 8,50 g (0,048 mol) N'-Propyl-N'-allylsulfamid, 10,38 g (0,103 mol) Triethylamin und 0,09 g (0,736 mmol) 4,N,N-Dimethylaminopyridin in 90 ml Methylenchlorid unter Rühren innerhalb 30 Minuten 11,62 g (0,0474 mol) 2-Chlor-4-fluor-5-nitrobenzoylchlorid in 50 ml Methylenchlorid. Man spülte mit 10 ml des Lösungsmittels nach. Man rührte zunächst 1 Stunde bei 0 °C und anschließend 2 Stunden bei 22 °C nach. Anschließend gab man 50 ml 1N Salzsäure zu, rührte und trennte die Phasen. Man wusch die organische Phase noch zweimal mit 1N Salzsäure und extrahierte die wässrige Phase mit Methylenchlorid. Nach dem Trocknen der organischen Phase über Magnesiumsulfat filtrierte man und engte die Lösung ein. Den Rückstand verrührte man mit Diethylether/Pentan, saugte ab und trocknete, wobei man 18,41 g (91,9% der Theorie) der Titelverbindung mit einem Schmelzpunkt (Schmp.) von 110-112 °C erhielt.

In analoger Weise wurden die in Tabelle 2 angegebenen Vorstufen VA.1 (Verbindungen der Formel VI mit Ar = Ar-1 mit R² = H mit den in Tabelle 1 angegebenen Bedeutungen für R¹ und R²) der Beispiel 2 bis 24 erhalten.

Tabelle 2:

<table>
<thead>
<tr>
<th>Beispiel / Nr. ¹)</th>
<th>R²</th>
<th>R²</th>
<th>R¹</th>
<th>R²</th>
<th>Schmp. [°C] / ¹H-NMR (400 MHz, CDCl₃) δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VA.1-a.241</td>
<td>F</td>
<td>Cl</td>
<td>n-C₃H₇</td>
<td>CH₂=CH-CH₂</td>
<td>110-112</td>
</tr>
<tr>
<td>2 VA.1-a.490</td>
<td>F</td>
<td>Cl</td>
<td>CH₂-CH₂-CH(CH₃)-CH₂-CH₂</td>
<td>137-138</td>
<td></td>
</tr>
<tr>
<td>3 VA.1-a.387</td>
<td>F</td>
<td>Cl</td>
<td>i-C₃H₇</td>
<td>HC=CH-CH₂</td>
<td>160-161</td>
</tr>
<tr>
<td>4 VA.1-b.492</td>
<td>H</td>
<td>Cl</td>
<td>CH₂-CH₂-CH(CH₃)-CH₂-CH₂</td>
<td>151-152</td>
<td></td>
</tr>
<tr>
<td>5 VA.1-b.241</td>
<td>H</td>
<td>Cl</td>
<td>n-C₃H₇</td>
<td>CH₂=CH-CH₂</td>
<td>132-134</td>
</tr>
<tr>
<td>6 VA.1-b.387</td>
<td>H</td>
<td>Cl</td>
<td>i-C₃H₇</td>
<td>HC=CH-CH₂</td>
<td>138-140</td>
</tr>
<tr>
<td>7 VA.1-a.86</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>i-C₃H₇</td>
<td>121-122</td>
</tr>
<tr>
<td>Beispiel / Nr. 1)</td>
<td>R<sup>c</sup></td>
<td>R<sup>a</sup></td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
<td>Schmp. [°C]/
1H-NMR (400 MHz,
CDCl<sub>3</sub>) δ (ppm)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>c-C<sub>3</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>tert.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>HC=CH-CH<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td>8,4 (d, 1H), 8,2 (m, 1H), 7,6 (d, 1H), 4,0 (sept., 1H), 2,9 (s, 3H), 1,5 (m, 2H), 1,2 (d, 6H), 0,9 (t, 3H)</td>
</tr>
</tbody>
</table>

1) Verbindungszahl gemäß Tabelle 1

II Herstellung der Aminobenzoylsulfamidsäureamide der allgemeinen Formel IIA (Vorprodukte IIA.1):

IIA Reduktion der Nitrogruppe mit Eisenpulver in Essigsäure

Beispiel 25: N-(5-Amino-2-chlor-4-fluor-benzoyl)-N'-allyl-N'-n-propylsulfamid (IIA.1-a.241)
Zu einer Suspension von 7,54 g (135,072 mmol) Eisenpulver in 60 ml Essigsäure gab man unter Rühren innerhalb 25 Minuten eine Lösung von 17,1 g (45,02 mmol) der Verbindung VA.1-a.241 aus Beispiel 1 in einer Mischung von 5 ml Tetrahydrofuran und 40 ml Essigsäure bei 70 bis 75 °C. Man rührte noch 1 Stunde bei 70 bis 75 °C nach, ließ abkühlen und engte im Vakuum ein. Man rührte den Rückstand mit Essigester, filtrierte und wusch den Niederschlag mit Essigester. Man rührte das Filtrat mit Aktivkohle und Magnesiumsulfat, filtrierte, wusch und engte ein. Nach dem Anteigen des Rückstands mit Essigester, Verrühren mit Pentan, Absaugen und Trocknen erhielt man 12,1 g (75,3% der Theorie) der Titelverbindung mit einem Schmelzpunkt von 104 bis 106 °C.

IIb Katalytische Hydrierung der Nitrogruppe

Beispiel 31: N-(5-Amino-2-chlor-4-fluor-benzoyl)-N′-methyl-N′-isopropylsulfamid (IIA.1-a.86)

Man legte 112,0 g (0,317 mol) der Verbindung VA.1-a.86 aus Beispiel 7 und 100 g Raney-Nickel in 1200 ml Methanol in einer Hydrierapparatur vor. Unter Rühren spülte man mit 10 l Stickstoff und mit 10 l Wasserstoff. Unter Rühren hydrierte man bei 22 - 23 °C mit 0,1 bar Wasserstoff. Insgesamt wurden 21,3 l Wasserstoff aufgenommen. Nach dem Abblasen des Überdrucks spülte man erneut mit 10 l Stickstoff. Man saugte das Reaktionsgemisch über Kieselgel ab und engte das Filtrat im Vakuum ein. Man erhielt 100,5 g
(97 % der Theorie) der Titelverbindung mit einem Schmelzpunkt von 160 - 162 °C (HPLC-Reinheit: 99,1 %).

In analoger Weise wurden ausgehend von den in Tabelle 2 angegebenen Nitrobenzylsulfamidsäureamiden VA.1 die in Tabelle 3 angegebenen Vorstufen IIA (Verbindungen der Formel II mit Ar = Ar-1 mit R², R³ = H mit den in Tabelle 1 angegebenen Bedeutungen für R¹ und R²) der Beispiele 26 bis Beispiel 48 erhalten.

Tabelle 3:

<table>
<thead>
<tr>
<th>Beispiel / Nr. 1)</th>
<th>RC</th>
<th>RA</th>
<th>R¹</th>
<th>R²</th>
<th>Schmp. [°C]/ ¹H-NMR (400 MHz, CDCl₃) δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 IIA.1-a.241</td>
<td>F</td>
<td>Cl</td>
<td>n-C₃H₇</td>
<td>CH₂=CH-CH₂</td>
<td>104 - 106</td>
</tr>
<tr>
<td>26 IIA.1-a.492</td>
<td>F</td>
<td>Cl</td>
<td>CH₂-CH₂-CH(CH₃)-CH₂-CH₂</td>
<td>144 - 145</td>
<td></td>
</tr>
<tr>
<td>27 IIA.1-a.387</td>
<td>F</td>
<td>Cl</td>
<td>i-C₃H₇</td>
<td>HC=CH₂</td>
<td>153 - 154</td>
</tr>
<tr>
<td>28 IIA.1-b.492</td>
<td>H</td>
<td>Cl</td>
<td>CH₂-CH₂-CH(CH₃)-CH₂-CH₂</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>29 IIA.1-b.241</td>
<td>H</td>
<td>Cl</td>
<td>n-C₃H₇</td>
<td>CH₂=CH-CH₂</td>
<td>138</td>
</tr>
<tr>
<td>30 IIA.1-b.387</td>
<td>H</td>
<td>Cl</td>
<td>i-C₃H₇</td>
<td>HC=CH₂</td>
<td>139 - 140</td>
</tr>
<tr>
<td>31 IIA.1-a.86</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>i-C₃H₇</td>
<td>160 - 162</td>
</tr>
<tr>
<td>32 IIA.1-a.76</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
</tr>
<tr>
<td>33 IIA.1-a.77</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td></td>
</tr>
<tr>
<td>34 IIA.1-a.84</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>n-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>35 IIA.1-a.98</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>c-C₃H₅</td>
<td></td>
</tr>
<tr>
<td>36 IIA.1-a.85</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>n-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>37 IIA.1-a.88</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>i-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>38 IIA.1-a.87</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>sek.-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>Beispiel / Nr. 1)</td>
<td>R²</td>
<td>R¹</td>
<td>R³</td>
<td>R⁴</td>
<td>Schmp. [°C]/ ¹H-NMR (400 MHz, CDCl₃) δ (ppm)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>39 IIA.1-a.89</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>tert.-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>40 IIA.1-a.93</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>CH₂=CH-CH₂</td>
<td></td>
</tr>
<tr>
<td>41 IIA.1-a.96</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>HC=CH₂</td>
<td></td>
</tr>
<tr>
<td>42 IIA.1-a.107</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>C₆H₅</td>
<td></td>
</tr>
<tr>
<td>43 IIA.1-a.445</td>
<td>F</td>
<td>Cl</td>
<td>CH₃</td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>44 IIA.1-a.181</td>
<td>F</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>C₆H₅</td>
<td></td>
</tr>
<tr>
<td>45 IIA.1-a.446</td>
<td>F</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>46 IIA.1-a.160</td>
<td>F</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>i-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>47 IIA.1-a.167</td>
<td>F</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>CH₂=CH-CH₂</td>
<td></td>
</tr>
<tr>
<td>48 IIA.1-b.87</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>sek.-C₄H₉</td>
<td>8,8 (br. s), 7,2 (d, 1H), 7,1 (m, 1H), 6,8 (d, 1H), 4,0 (m, 1H), 3,8 (br. s, 2H), 2,9 (s, 3H), 1,6-1,4 (m, 2H), 1,2 (d, 3H), 0,9 (t, 3H)</td>
</tr>
</tbody>
</table>

1) Verbindungsnummer gemäß Tabelle 1

III Herstellung der Phenyliso(thio)cyanate I

Beispiel 109: N-(2-Chlor-4-fluor-5-isocyanato-benzoyl)-N’-allyl-N’-n-propylsulfamid (IA.1-a.241)

Zu 6,0 g (17,2 mmol) der Verbindung IIA.1-a.241 aus Beispiel 25 in 50 ml Dioxan gab man unter Rühren bei 15 bis 25 °C 4,7 ml einer 4 M HCl-Lösung in Dioxan (entspricht 18,9 mmol Chlorwasserstoff). Man rührte noch 1 Stunde bei 22 °C nach. Anschließend leitete man unter Rühren und langsamer Erhöhung der Temperatur auf 95 °C 3,4 g
(34,3 mmol) Phosgen innerhalb 1 h ein. Nicht umgesetztes Phosgen wurde mit Stickstoff ausgetragen. Man engte danach die Reaktionsmischung im Vakuum ein, verrührte den Rückstand mit Pentan, dekantierte den Überstand ab und engte den Überstand im Vakuum ein. Man erhielt 6,5 g (95,8% d. Th., Reinheit laut \(^1\)H-NMR: 95 %) der Titelverbindung mit einem Schmelzpunkt von 85 - 95°C (Zers.). IR (KBr): N=C=O 2265 cm\(^{-1}\); C=O 1724 cm\(^{-1}\).

Beispiel 94: N-(2-Chlor-4-fluor-5-isocyanato-benzoyl)-N’-methyl-N’-isopropyl-sulfamid (IA.1-a.86)

\[
\begin{align*}
\text{F} \quad \text{Cl} \\
\text{O=C=N} \quad \text{N=SO}_2 \text{N} \\
\text{CH}_3 \quad \text{CH(CH}_3)_2 \\
\end{align*}
\]

IA.1-a.86

A) durch Umsetzung mit Phosgen

In eine Lösung von 5,0 g (15,4 mmol) der Verbindung IIA.1-a.86 aus Beispiel 31 in 50 ml Dioxan leitete man bei 22 °C unter Rühren Phosgen ein. Innerhalb 20 Minuten erhöhte man die Temperatur bis zum Rückfluss des Lösungsmittels. Man leitete noch 1 Stunde Phosgen ein, ließ auf Raumtemperatur abkühlen und spülte mit Stickstoff. Man engte das Reaktionsgemisch im Vakuum zunächst bei 22 °C und anschließend bei 70 °C ein. Den Rückstand verrührte man mit n-Hexan, dekantierte und trocknete den Rückstand bei 70 °C, wobei man 5,5 g (99,8 % der Theorie mit einer \(^1\)H-NMR-Reinheit von 98 %) der Titelverbindung mit einem Schmelzpunkt von 146 - 149 °C erhielt.

B) durch Umsetzung mit Diphosgen

Zu einer Lösung von 5,0 g (15,4 mmol) der Verbindung IIA.1-a.86 in 50 ml Dioxan tropfte man unter Rühren bei 10 °C 6,11 g (30,9 mmol) Diphosgen. Man ließ das Reaktionsgemisch auf 22 °C erwärmen und rührte noch 1,5 Stunden. Laut dünnlichchromatographischer Untersuchungen war die Umsetzung dann vollständig. Nach Rühren über Nacht spülte man mit Stickstoff und arbeitete wie zuvor in Beispiel 94A beschrieben auf. Man erhielt 5,5 g (99,8 % der Theorie, mit einer \(^1\)H-NMR-Reinheit von 98 %) der Titelverbindung mit einem Schmelzpunkt von 148 - 150 °C.
Beispiel 118
N-(2-Chlor-4-fluor-5-isocyanato-benzoyl)-N-(4-methyl-piperidinsulfonsäureamid) (IA.1-a.492)

\[
\begin{align*}
\text{F} & \quad \text{Cl} \\
\text{N} & \quad \text{SO}_2 \quad \text{N} \\
\text{O} & \quad \text{C}=\text{N} \\
\end{align*}
\]

Zu 1,8 g (5,1 mmol) der Verbindung IIA.1-a.492 aus Beispiel 26 in 50 ml Dioxan gab man unter Rühren bei 20 bis 25°C 2,6 ml einer 4 M HCl-Lösung (entsprechend 0,38 g (10,3 mmol) Chlorwasserstoff) in Dioxan. Man rührte noch 1 Stunde bei 22 °C nach. Anschließend gab man weitere 1,12 g (5,66 mmol) Diphosgen unter Rühren zu, rührte 30 min bei 22 °C, erhielt langsam auf 95°C und rührte 1 Stunde nach. Nach dem Abkühlen auf Raumtemperatur engte man im Vakuum ein, verrührte den Rückstand mit Pentan, dekantierte die überstehende Lösung ab und engte die Lösung erneut im Vakuum ein. Man erhielt 2,0 g (98,3% der Theorie, mit 95% 1H-NMR-Reinheit) der Titelverbindung mit einem Schmelzpunkt von 122-124 °C (Zers.), 135°C klar.
IR (KBr): N=C=O 2246 cm\(^{-1}\); C=O 1697 cm\(^{-1}\).

Beispiel 193: N-(2-Chlor-4-fluor-5-isothiocyanato-benzoyl)-N'-allyl-N'-n-propyl-sulfamid (IA.1-g.241)

\[
\begin{align*}
\text{F} & \quad \text{Cl} \\
\text{S} & \quad \text{C}=\text{N} \\
\text{O} & \quad \text{SO}_2 \quad \text{N} \\
\text{N} & \quad \text{n-C}_3\text{H}_7 \\
\text{O} & \quad \text{CH}_2\text{CH}=\text{CH}_2
\end{align*}
\]

Zu 3,0 g (8,6 mmol) der Verbindung IIA.1-a.241 aus Beispiel 25 in 50 ml Essigester gab man unter Rühren bei 22°C 1,1 g (9,4 mmol) Thiophosgen, rührte anschließend 1 Stunde nach, erwärmte dann auf 75 °C und rührte eine weitere Stunde nach. Nach dem Einengen im
Vakuum, Verrühren des Rückstandes mit Pentan, Absaugen und Trocknen erhielt man 3,4 g (96,1% der Theorie, 95% ¹H-NMR-Reinheit) der Titelverbindung mit einem Schmelzpunkt von 83–85 °C. IR (KBr): N=C=S 2030 cm⁻¹, C=O 1725 cm⁻¹.

In analoger Weise wurden ausgehend von den in Tabelle 3 angegebenen Aminobenzoylsulfamidsäureamiden II.A.1 die in Tabelle 4 angegebenen Titelverbindungen IA.1 (Verbindungen der Formel I mit Ar = Ar-1 mit R⁹, R⁴ = H mit den in Tabelle 1 angegebenen Bedeutungen für R¹ und R²) der Beispiele 49 bis Beispiele 216 erhalten.

![Chemical structure](image)

(IA.1)

<table>
<thead>
<tr>
<th>Bsp.</th>
<th>W</th>
<th>R⁷</th>
<th>R⁸</th>
<th>R¹</th>
<th>R²</th>
<th>Schmp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>49</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>50</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>C₂H₅</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>n-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>i-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>c-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>n-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>i-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>sek.-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₃</td>
<td>tert.-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>n-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>i-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>c-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>n-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>i-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C₂H₅</td>
<td>sek.-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₂=CH-CH₂</td>
<td>CH₃</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₂=CH-CH₂</td>
<td>C₂H₅</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₂=CH-CH₂</td>
<td>n-C₃H₇</td>
<td>102 – 104 (Zers.)</td>
</tr>
<tr>
<td>68</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₂=CH-CH₂</td>
<td>i-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₂=CH-CH₂</td>
<td>n-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH₂=CH-CH₂</td>
<td>sek.-C₄H₉</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>HC=CH₂</td>
<td>CH₃</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>HC=CH₂</td>
<td>C₂H₅</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>HC=CH₂</td>
<td>n-C₃H₇</td>
<td></td>
</tr>
<tr>
<td>Bsp.</td>
<td>W</td>
<td>R<sup>c</sup></td>
<td>R<sup>a</sup></td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
<td>Schmp. [°C]</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>74</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>HC=CH<sub>2</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>133 - 141</td>
</tr>
<tr>
<td>75</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>HC=CH<sub>2</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CH<sub>2</sub>-CH<sub>2</sub></td>
<td>110 - 115</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>4</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>O</td>
<td>H</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>5</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>O</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>144 - 148</td>
</tr>
<tr>
<td>95</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>c-C<sub>3</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>tert.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>c-C<sub>3</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>85 - 95 (Zers.)</td>
</tr>
<tr>
<td>108</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-CH<sub>2</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH-CH<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH-CH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH-CH<sub>2</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH-CH<sub>2</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>124 - 126</td>
</tr>
<tr>
<td>117</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH-CH<sub>2</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>-CH<sub>2</sub>-CH(CH<sub>3</sub>)=CH<sub>2</sub>-CH<sub>2</sub></td>
<td>122 - 124</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Zers.)</td>
</tr>
<tr>
<td>Bsp.</td>
<td>W</td>
<td>R<sup>e</sup></td>
<td>R<sup>a</sup></td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
<td>Schmp. [°C]</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>119</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>4</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>O</td>
<td>F</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>5</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>O</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>c-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>sek.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>tert.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>c-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>sek.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-</td>
<td>CH<sub>2</sub>-CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-</td>
<td>CH<sub>2</sub>-C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-</td>
<td>CH<sub>2</sub>-n-C<sub>3</sub>H<sub>7</sub></td>
<td>99 - 100</td>
</tr>
<tr>
<td>152</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-</td>
<td>CH<sub>2</sub>-i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-</td>
<td>CH<sub>2</sub>-n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH-</td>
<td>sek.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>HC=C-CH<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>HC=C-CH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>HC=C-CH<sub>2</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>HC=C-CH<sub>2</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>163 - 164</td>
</tr>
<tr>
<td>159</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>HC=C-CH<sub>2</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>2</sub>-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub></td>
<td>143 - 144</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>4</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>S</td>
<td>H</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>5</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>Bsp.</td>
<td>W</td>
<td>R<sup>c</sup></td>
<td>R<sup>a</sup></td>
<td>R<sup>1</sup></td>
<td>R<sup>2</sup></td>
<td>Schmp. [°C]</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>169</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>S</td>
<td>H</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>c-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>sek.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>tert.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>c-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>sek.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td>83 - 85</td>
</tr>
<tr>
<td>194</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub></td>
<td>sek.- C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH=CH<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH=CH<sub>2</sub></td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH=CH<sub>2</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH=CH<sub>2</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td>155 - 156</td>
</tr>
<tr>
<td>201</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>HC=CH=CH<sub>2</sub></td>
<td>n-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>2</sub>=CH=CH<sub>2</sub>-(CH<sub>3</sub>)=CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub></td>
<td>152 - 153</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>C<sub>2</sub>H<sub>5</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>4</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>S</td>
<td>F</td>
<td>Cl</td>
<td>[CH<sub>2</sub>]<sub>5</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>n-C<sub>3</sub>H<sub>7</sub></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>i-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>sek.-C<sub>4</sub>H<sub>9</sub></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>Cyclohexyl</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>S</td>
<td>F</td>
<td>CN</td>
<td>CH<sub>3</sub></td>
<td>C<sub>6</sub>H<sub>5</sub></td>
<td></td>
</tr>
</tbody>
</table>
Beispiel 217: 8-(5'-N-Isopropyl-N-methylsulfamoyl-carboxamido-4'-chlor-2'-fluorphenyl)-4-oxo-7,9-dioxo-1,2,8-triaza[4.3.0]nonan (Beispiel 146 der WO 01/83459)

5 217.1: Tetrahydro-N-(4-chlor-2-fluor-5-N-isopropyl-N-methyl-sulfamoyl-carboxamido-phenyl)-4H-1,3,4-oxadiazin-3-carboxamid-4-carbonsäuremethylester

Zu einer Mischung von 3,5 g (10,1 mmol) N-(2-Chlor-4-fluor-5-isocyanato-benzoyl)-N'-isopropyl-N'-methyl-sulfamid IA-a.86 aus Beispiel 94 in 100 ml 1,2-Dichlorehran gab man innerhalb 5 Minuten bei 22 °C unter Rühren 9,8 g (10,1 mmol) Tetrahydro-4H-1,3,4-oxadiazin-4-carbonsäuremethylester als 15%ige Lösung in 1,2-Dichlorethan und rührte 18 Stunden nach. Anschließend rei
5 5igte man das Reaktionsgemisch durch Flash-Chromatographie an Kieselgel, wobei man mit 200 ml Portionen eines Gemischs aus Methylenchlorid/Diethylether = 1:6 eluierte. Nach dem Entfernen des Lösungsmittels im Vakuum erhielt man 4,3 g (82,3% der Theorie) Tetrahydro-N-(4-chlor-2-fluor-5-N-isopropyl-N-methyl-sulfamoyl-
15 carboxamido-phenyl)-4H-1,3,4-oxadiazin-3-carboxamid-4-carbonsäuremethylester mit Schmelzpunkt 69 °C (Zersetzung).

217.2: 8-(5'-N-Isopropyl-N-methylsulfamoyl-carboxamido-4'-chlor-
-2'-fluorphenyl)-4-oxo-7,9-dioxo-1,2,8-triaza[4.3.0]nonan

25 In einem Reaktionsgefäss mit Rührer und Wasserabscheider legte man 0,85 g (1,7 mmol) der Verbindung aus Beispiel 217.1 in 80 ml Tol
ol vor. Hierzu gab man unter Rühren bei 22 °C 0,18 g (1,8 mmol) 97%iges Natrium-tert.-butylat und erhitzte dann unter Rühren zum Rückfluss. Von Zeit zu Zeit erneuerte man das Toluol. Insgesamt erhitzte man 7 Stunden zum Rückfluss, bis die Reaktionsmischung dünnflüssiger wurde und Feststoffe fast ganz gelöst waren. Nach dem Abkühlen säuerte man das Reaktionsgemisch mit einer 1M HCl-Lösung in 10 ml Diethylether an und engte im Vakuum ein. Man löste den Rückstand in Methylenchlorid, extrahierte mit 1N Salzsäure und Wasser, trocknete und engte im Vakuum ein. Man erhielt 0,67 g (76% der Theorie) der Titelverbindung mit einem Schmelzpunkt von 112-118 °C. Nach dem Verrühren mit Diethylether betrug der Schmelzpunkt 115-120 °C.
Patentansprüche

1. Verfahren zur Herstellung von Phenyliso(thio)cyanaten der allgemeinen Formel I,

\[
\begin{align*}
W & \text{C}=N-Ar \\
& \text{N} \quad \text{SO}_2 \quad A
\end{align*}
\] (I)

worin die Variablen folgende Bedeutung haben:

\begin{itemize}
 \item \text{W} \ Sauerstoff oder Schwefel,
 \item \text{Ar} \ Phenyl, das durch folgende Gruppen ein- oder mehrfach substituiert sein kann: Wasserstoff, Halogen, C\textsubscript{1}-C\textsubscript{4}-Haloalkyl oder Cyano,
 \item \text{A} \ ein von einem primären oder sekundären Amin abgeleiteter Rest oder \text{NH}_2,
\end{itemize}

dadurch gekennzeichnet, dass man eine Verbindung der allgemeinen Formel II,

\[
\begin{align*}
\text{H}_2\text{N} & \text{Ar} \\
& \text{N} \quad \text{SO}_2 \quad A
\end{align*}
\] (II)

worin die Variablen \text{Ar} und \text{A} die zuvor genannten Bedeutungen aufweisen, oder deren HCl-Addukt mit Phosgen, Thiophosgen oder Diphosgen umsetzt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man das HCl-Addukt der Verbindung II einsetzt.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man 0,9 bis 2 Moläquivalente Phosgen, Thiophosgen oder Diphosgen bezogen auf die Verbindung II einsetzt.

5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man eine Verbindung der Formel IIA,

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{Ra} \\
\text{R}^c & \quad \text{R}^b \\
\text{R}^d & \quad \text{N} \quad \text{SO}_2 \quad \text{A}
\end{align*}
\]

(worin

\[
\begin{align*}
\text{Ra}, \text{R}^b, \text{R}^c \text{ und } \text{R}^d \text{ unabhängig voneinander für Wasserstoff, Halogen, C}_1-\text{C}_4-\text{Halogenalkyl oder Cyano stehen und } \\
\text{A die zuvor genannte Bedeutung aufweist,}
\end{align*}
\]

oder deren HCl-Addukt mit Phosgen, Thiophosgen oder Diphosgen umsetzt, wobei man eine Verbindung der Formel IA,

\[
\begin{align*}
\text{W} & \quad \text{C} \quad \text{N} \\
\text{R}^c & \quad \text{R}^b \\
\text{R}^d & \quad \text{N} \quad \text{SO}_2 \quad \text{A}
\end{align*}
\]

(worin die Variablen \text{Ra}, \text{R}^b, \text{R}^c, \text{R}^d, \text{A} und \text{W} die zuvorgenannten Bedeutungen aufweisen, erhält.

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rest A in Formel I für -\text{NR}^1\text{R}^2 steht, worin die Variablen \text{R}^1 und \text{R}^2 die folgenden Bedeutungen aufweisen:

\[
\begin{align*}
\text{R}^1 \text{ und } \text{R}^2 \text{ stehen unabhängig voneinander für Wasserstoff, } \\
\text{C}_1-\text{C}_{10}-\text{Alkyl}, \text{C}_2-\text{C}_{10}-\text{Alkenyl oder C}_2-\text{C}_{10}-\text{Alkinyl, die unsubstituiert oder durch einen der folgenden Reste substituiert sein können: C}_1-\text{C}_4-\text{Alkoxy, C}_1-\text{C}_4-\text{Alkylthio, CN, NO}_2, \text{Formyl, C}_1-\text{C}_4-\text{Alkylcarbonyl, C}_1-\text{C}_4-\text{Alkoxy carbonyl, C}_1-\text{C}_4-\text{Alkylaminocarbonyl, C}_1-\text{C}_4-\text{Dialkylaminocarbonyl, C}_1-\text{C}_4-\text{Alkylsulfinyl, C}_1-\text{C}_4-\text{Alkylsulfonyl, C}_3-\text{C}_{10}-\text{Cycloalkyl, 3- bis 8-gliedriges Heterocyclyl mit ein, zwei oder drei unter O, S, N und einer Gruppe NR}^6 (\text{worin R}^6 \text{ für}
\end{align*}
\]
Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht) ausgewählten Heteroatomen, Phenyl, das seinerseits 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Fluoralkyl, C₁-C₄-Alkyloxyxycarbonyl, Trifuoromethylsulfonyl, C₁-C₃-Alkylamino, C₁-C₃-Dialkylamino, Formyl, Nitro oder Cyano, aufweisen kann,

C₁-C₁₀-Halogenalkyl, C₂-C₁₀-Halogenalkenyl, C₂-C₁₀-Halogenalkinyl, C₃-C₈-Cycloalkyl, C₃-C₁₀-Cycloalkenyl, 3- bis 8-gliedriges Heterocyclen mit ein bis drei Heteroatomen, ausgewählt unter O, S, N und einer Gruppe NR⁶ (worin R⁶ für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl steht), Phenyl oder Naphthyl, wobei C₃-C₈-Cycloalkyl, C₃-C₁₀-Cycloalkeny1, 3- bis 8-gliedriges Heterocyclen, Phenyl oder Naphthyl, ihrerseits 1, 2, 3 oder 4 Substituenten, ausgewählt unter Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Fluoralkyl, C₁-C₄-Alkylxycarbonyl, Trifuoromethylsulfonyl, Formyl, C₁-C₃-Alkylamino, C₁-C₃-Dialkylamino, Phenoxy, Nitro oder Cyano, aufweisen können, oder

R¹ und R² bilden gemeinsam einen gesättigten oder teilweise ungesättigten 5- bis 8-gliedrigen Stickstoffheterocyclus, der seinerseits durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy und/oder C₁-C₄-Halogenalkyl, substituiert sein kann, ein oder zwei Carboxylgruppen, Thiocarboxylgruppen und/oder ein oder zwei weitere Heteroatome, ausgewählt unter O, S, N und einer Gruppe NR⁶ (worin R⁶ die zuvor genannten Bedeutungen aufweist), als Ringglieder aufweisen kann.

7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren zusätzlich die folgenden Schritte umfasst:
 i) Umsetzung einer Aroylverbindung der allgemeinen Formel

 \[
 \text{O}_2\text{N} \quad \text{Ar} \\
 \text{X}
 \]

 (III)

 worin die Variable Ar die zuvorgenannten Bedeutungen aufweist und X für Halogen, OH oder C₁-C₄-Alkoxy steht, mit einem Sulfamidsäureamid der Formel IV
worin A die zuvor genannten Bedeutungen aufweist und

ii) Reduktion des in Schritt \(i^\circ \) erhaltenen N-Aroylsulfamid-säureamid der allgemeinen Formel V,

\[
\begin{align*}
\text{O}_2\text{N} \quad \text{Ar} & \quad \text{O} \\
\text{N} & \quad \text{SO}_2 \quad \text{A} \\
\text{H}
\end{align*}
\]

worin \(\text{Ar} \) und A die zuvor genannten Bedeutungen aufweisen, wobei man eine Verbindung der Formel II erhält.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in Schritt (ii) die Reduktion in Gegenwart von Eisen und wenigstens einer \(\text{C}_1-\text{C}_4 \)-Carbonsäure erfolgt.

10. Phenyliso(thio)cyanate der allgemeinen Formel I wie in Anspruch 1 definiert.

11. Phenyliso(thio)cyanate der allgemeinen Formel IA wie in Anspruch 5 definiert, dadurch gekennzeichnet, dass \(R^a \) für Fluor, Chlor oder Cyano steht, \(R^b \) für Wasserstoff, Fluor oder Chlor steht und \(R^c \) und \(R^d \) jeweils für Wasserstoff stehen.

12. Phenyliso(thio)cyanate der allgemeinen Formel IA wie in Anspruch 5 definiert, dadurch gekennzeichnet, dass A für einen Rest der Formel \(NR^1R^2 \) steht, worin \(R^1 \) und \(R^2 \) die in Anspruch 6 angegebenen Bedeutungen aufweisen.

13. Phenyliso(thio)cyanate der allgemeinen Formel IA nach Anspruch 12, dadurch gekennzeichnet, dass \(R^1 \) und \(R^2 \) unabhängig voneinander für Wasserstoff, \(\text{C}_1-\text{C}_6 \)-Alkyl, das gegebenenfalls durch einen Substituenten ausgewählt unter Halogen, Cyano, \(\text{C}_1-\text{C}_4 \)-Alkoxy, \(\text{C}_1-\text{C}_4 \)-Alkoxy Carbonyl, \(\text{C}_1-\text{C}_4 \)-Alkylthio, \(\text{C}_3-\text{C}_8 \)-Cycloalkyl, Furfuryl, Thiényl, 1,3-Dioxolanyl, Phenyl, das seinerseits gegebenenfalls durch Halogen oder \(\text{C}_1-\text{C}_4 \)-Alkoxy substituiert ist, substituiert ist,

14. Verfahren zur Herstellung von Verbindungen der Formel VI,

\[\text{VII} \]

worin W, Ar und A die in Anspruch 1 genannten Bedeutungen aufweisen, W' für O oder S steht und R³ und R⁴ unabhängig von einander für Wasserstoff, Cyano, Amino, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, C₃-C₇-Cycloalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyll, C₃-C₆-Alkinyll, Benzyl, OR⁵ (worin R⁵ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₃-C₇-Cycloalkyl, C₂-C₆-Alkenyl, C₃-C₆-Alkinyll, gegebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes Benzyl steht), C₁-C₃-Cyanoalkyl, stehen, oder R³ und R⁴ zusammen mit den Stickstoffatomen, an die sie gebunden sind, einen vier- bis siebengliedrigen, gegebenenfalls durch Schwefel, Sauerstoff, eine Gruppe NR⁶ (worin R⁶ die zuvor genannten Bedeutungen aufweist) oder Stickstoff unterbrochenen Heterocyclus, der gegebenenfalls ein- oder mehrfach durch Halogen oder C₁-C₄-Alkyl substituiert ist, bilden,

dadurch gekennzeichnet, dass man (i) eine Verbindung der Formel I wie in Anspruch 1 definiert, mit einem Oxadiazincarbonsäureester der Formel VII,
worin \(W' \) die zuvor genannte Bedeutung aufweist und \(R' \) für \(C_1-C_4 \)-Alkyl steht, umsetzt, wobei man ein Harnstoffderivat der Formel VIII erhält,

worin die Variablen \(R^3, R^4, R', W, W', Ar \) und \(A \) die zuvor genannten Bedeutungen aufweisen, erhält und

(ii) das erhaltene Zwischenprodukt VIII cyclisiert, wobei man eine Verbindung der Formel VI erhält.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die in Schritt (i) eingesetzte Verbindung der Formel I für eine Verbindung der Formel IA

worin die Variablen \(R^a, R^b, R^c, R^d, A \) und \(W \) die zuvor genannten Bedeutungen aufweisen, steht.

16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die in Schritt (i) eingesetzte Verbindung VII für eine Verbindung der Formel VII' steht,
worin W' für O oder S und R' für C₁-C₄-Alkyl stehen.

17. Aminobenzoylsulfamidsäureamide der allgemeinen Formel II wie in Anspruch 1 definiert.

18. Nitrobenzoylsulfamidsäureamide der allgemeinen Formel V wie in Anspruch 7 definiert.
A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C303/34 C07C307/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, CHEM ABS Data, BEILSTEIN Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01 83459 A (BASF AG) 8 November 2001 (2001-11-08) cited in the application see pages 37-38: formulae VI and XI</td>
<td>17,18</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 & document member of the same patent family

Date of the actual completion of the international search
19 February 2004

Date of mailing of the international search report
08/03/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk
Tel. (31-70) 340-3010, Tx. 31 651 epo nl, Fax (31-70) 340-3016

Authorized officer
Goetz, G
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; BODRIKOV, I. V. ET AL: "Adducts of nitriles with sulfur trioxide and their reactions" retrieved from STN Database accession no. 84:59407 CA XP002270931 see RN: 58010-77-8, 58032-99-8 abstract & ZHURNAL ORGANICHESKOI KHIMII (1975), 11(10), 2217,</td>
<td>18</td>
</tr>
<tr>
<td>X</td>
<td>DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; retrieved from XFIRE Database accession no. brn 2309607 XP002270932 abstract & J ORG CHEM USSR, vol. 13, 1977, pages 390-394,</td>
<td>18</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 0183459 A</td>
<td>08-11-2001</td>
<td>AU 5838401 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 106473 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2383858 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1383425 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20020805 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0183459 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1226127 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0204434 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 3232002 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003224941 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002045550 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200201776 A</td>
</tr>
</tbody>
</table>
A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07C303/34 C07C307/06

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHE ERGEBNISSE

B.1. Recherchegebiete

Recherchegebiet Mindeststoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07C

Rechercheergebnisse, abgerufen aus der internationalen Recherche, sind in der internationalen Recherche konsultiert.

C. ALS WESENTLICH ANGESEHEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 01 83459 A (BASF AG) 8. November 2001 (2001-11-08) in der Anmeldung erwähnt see pages 37-38: formulae VI and XI</td>
<td>17,18</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

19. Februar 2004

Datum des Abschlusses der internationalen Recherche

08/03/2004

Absendetermin des internationalen Rechercheberichts

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswij
Tel. (+31-70) 940-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 940-3016

Bevollmächtigter Bediensteter

Goetz, G
<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; BODRIKOV, I. V. ET AL: "Adducts of nitriles with sulfur trioxide and their reactions" retrieved from STN Database accession no. 84:59407 CA XP002270931 see RN: 58010-77-8, 58032-99-8 Zusammenfassung & ZURNAL ORGANICHESKOI KHIMII (1975), 11(10), 2217</td>
<td>18</td>
</tr>
<tr>
<td>X</td>
<td>DATABASE CROSSFIRE BEILSTEIN 'Online! Beilstein Institut zur Förderung der Chemischen Wissenschaften, Frankfurt am Main, DE; retrieved from XFIRE Database accession no. brn 2309607 XP002270932 Zusammenfassung & J ORG CHEM USSR, Bd. 13, 1977, Seiten 390-394</td>
<td>18</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>WO 0183459 A</td>
<td>08-11-2001</td>
<td>AU 5838401 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 106473 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2383858 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1383425 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20020805 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0183459 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1226127 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0204434 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 3232002 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003224941 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002045550 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200201776 A</td>
</tr>
</tbody>
</table>