A system for filling a prescription order for a patient includes a plurality of trays each having an RFID tag for storing a unique identifier corresponding to the prescription order, and a plurality of workstations operatively linked to one another, each workstation having an antenna for detecting the unique identifier in one of the plurality of trays, where the detecting is operative to trigger displaying of a profile of at least one prescription item for the corresponding prescription order.
Check Station - Check Order Screen - Mode: On Demand

<table>
<thead>
<tr>
<th>Patient / Rx</th>
<th>PickUp Time / Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOM GIBSON</td>
<td>12:00 AM TUE 28</td>
</tr>
<tr>
<td>67 Rx 61201</td>
<td>Tic Tacs 15 CAL, FastFill-Cassette #2</td>
</tr>
<tr>
<td>68 Rx 61202</td>
<td>Tic Tacs White 15 CAL, QuickFill + Cassette #65</td>
</tr>
<tr>
<td>67 Rx 61203</td>
<td>Caltrate 800 Plus, 600 mg</td>
</tr>
<tr>
<td>67 Rx 61204</td>
<td>Certs Green 5 Cal, QP300-2</td>
</tr>
</tbody>
</table>

FIG. 5

![Diagram of stock image of Tic Tacs](image)
INPUT Rx ORDER
QC Rx ORDER INPUT
NO
OK ?
YES
VALIDATE INPUTTED Rx ORDER
NO
OK ?
YES
MATCH Rx ORDER TO TRAY INFO
PICK UP TRAY

GO TO A STATION
PLACE TRAY ON READER
READER TRIGGERS DISPLAY
OBSERVE DISPLAY

FIG. 7A
SELECT ITEM AND ACTIVATE SELECTION

MANUAL FILLING?

YES

DISPLAY LOCATION

GET ITEM

PRINT LABEL

ATTACH LABEL

PLACE IN TOTE

LAST ITEM?

NO

AUTOMATICALLY FILL THE Rx

CARRY TOTE TO NEXT STATION (IF ANY)

FIG. 7B
PHARMACY DISPENSING SYSTEM AND METHOD

RELATED APPLICATIONS

FIELD OF THE INVENTION

[0002] The invention is directed to workflow in a pharmacy and, more particularly, to quality and process control in a personnel-driven pharmacy operation.

BACKGROUND OF THE INVENTION

[0003] Pharmacies are an important source of medications and health-related products for a wide range of people including, for example, retail customers, mail-order customers, hospitalized patients and residents of alternate site (e.g., long term care) facilities. A pharmacy serving the needs of such people may be located, for example, in a retail environment such as a drugstore, or in a location adjacent to the hospital or alternate site facility. A typical pharmacy is staffed by at least one registered pharmacist and may be further staffed by trained pharmacy technicians and clerks.

[0004] Pharmacy personnel provide a broad range of services and information. For example, the pharmacist typically has overall responsibility for ensuring that all 20 prescription orders for medications and health-related products are filled properly. The pharmacy technicians may assist the pharmacist in filling of the prescription orders and in replenishment of the medication inventory. Pharmacists and pharmacy technicians commonly provide other important services such as interaction with customers, doctors and care givers, providing of health-related advice, data entry, and a processing of medical and financial information associated with a filling of the prescription orders. Providing advice and information may include direct interaction with others, while data processing and order filling typically involve interaction between the pharmacy personnel and a computer or with the medications and products needed to fill the prescription orders. For example, filling of the prescription orders may involve locating one or more medications or products at a static storage shelf or other storage location, dispensing a quantity of the medications or products required to fill each prescription in an order, manually packaging the medications in containers (such as bottles and vials), and dispensing the packaged medications and products to the customer, doctor, or care giver. As used herein, the term “patient” refers to any person or persons for whom a prescription order is filled.

[0005] It is highly desirable for the pharmacist and pharmacy technician to be available for providing value added services, such as by providing health-related advice and information to customers, doctors and care givers. It is also desirable to fill each prescription order at a lowest possible cost, as explained for example in copending application Ser. No. 10/283,529, herein incorporated by reference. Such cost function may be defined in terms of many variables, such as the total time required to fill each prescription order, the spacial distance traveled by the pharmacy personnel within the pharmacy in order to fill each prescription order, and the cost to the pharmacy of the medication and products used to fill each prescription order. The cost function may also be constructed in order to obtain cost reduction through coordination of the filling of co-pending prescription orders.

[0006] Additional desired characteristics of a pharmacy include a need for accuracy and the elimination of errors in the filling of prescription orders.

[0007] Accordingly, there has been a growing use and acceptance of automation in connection with filling of prescription orders by pharmacies. Such automation can include the use of computerization information databases for processing medical and financial information, the use of automated apparatus for dispensing medications and articles, and the use of machine-readable codes (e.g., bar coding) for purposes of ensuring accuracy in filling of the prescription orders and in maintaining inventory control. An improvement in pharmacy efficiency results in a better overall level of service to the customer, doctor or care giver.

[0008] Despite benefits resulting from a use of automation in the pharmacy environment, there is generally a need for human beings as participants in the prescription order filling process. Pharmacy personnel are required to make many complex decisions and many tasks may be performed more efficiently in a manual manner. In addition, judgments must be made, for example, as to the medications and products best suited to the customer’s needs. It may be necessary to determine the most efficient path for locating, obtaining, packaging, and dispensing individual components of a prescription order, in a manner that minimizes a potential for error.

[0009] It is therefore desirable to implement systems that eliminate risks of error while improving efficiency. It is also desirable to improve logistics and quality control in a human-assisted prescription order filling process within the pharmacy.

OBJECTS OF THE INVENTION

[0010] It is an object of the invention to provide an improved system and method of filling prescription orders overcoming some of the problems and shortcomings of the prior art, including those referred to above.

[0011] Another object of the invention is to provide a system and method of filling prescription orders providing traceability of individual order filling operations.

[0012] Another object of the invention is to provide an automated pharmacy system having a small footprint.

[0013] Still another object of the invention is to provide a system and method of filling prescription orders that automatically organizes operations of various pharmacy storage locations by their proximity to a receptacle.

[0014] Yet another object of the invention is to provide a scalable level of automation for a prescription filling operation in a pharmacy.

[0015] Another object of the invention is to provide an integrated modular system and method of filling prescription orders where partitioning of a prescription order for filling is triggered by a portable receptacle.

[0016] How these and other objects are accomplished will become apparent from the following descriptions and drawing figures.
SUMMARY OF THE INVENTION

[0017] According to an aspect of the invention, a system for filling a prescription order for a patient includes a plurality of trays each having a radio frequency identification (RFID) tag, a tray programmer structured for programming a unique identifier into the RFID tag of one of the plurality of trays, the unique identifier being associated with the prescription order, and a plurality of workstations operatively linked to one another, each workstation having an antenna for detecting the unique identifier, and automatically displaying a profile of medication for the prescription order.

[0018] According to another aspect of the invention, a system for filling a prescription order for a patient includes a plurality of trays each having a unique identifier corresponding to the prescription order, and a plurality of workstations operatively linked to one another, each workstation having an antenna for detecting the unique identifier in one of the plurality of trays, where the detecting is operative to trigger displaying a profile of at least one prescription item for the corresponding prescription order.

[0019] According to a further aspect of the invention, a system includes a tray having an RFID tag containing a unique identifier, a plurality of automated medication dispensing machines each structured for dispensing individual medication amounts, and a workstation adapted for receiving the tray and reading the unique identifier, and having a memory for storing information of a prescription order, where the workstation is structured so that when the unique identifier read by the workstation is associated with the prescription order, the workstation accesses the information of the prescription order and reads an individual prescription item for dispensing by one of the medication dispensing machines.

[0020] According to a still further aspect of the invention, a method of filling a prescription order includes entering a prescription order, associating the prescription order with an RFID identifier of a tray, detecting the RFID identifier when the tray is placed proximate a human-assisted prescription order filling station, and displaying items of the prescription order at the human-assisted prescription order filling workstation.

[0021] According to another aspect of the invention, a method includes providing a tray having an RFID tag containing a unique identifier, providing a plurality of automated medication dispensing machines each structured for dispensing individual medication amounts, and providing at least one workstation adapted for receiving the tray and reading the unique identifier, and adapted for retrieving information of a prescription order, where the workstation is structured so that when the unique identifier read by the workstation is associated with the prescription order, the workstation accesses the information of the prescription order and reads an individual prescription item for dispensing by one of the medication dispensing machines.

[0022] According to another aspect of the invention, a method includes providing a plurality of trays each having an RFID tag for storing a unique identifier corresponding to the prescription order, and providing a plurality of workstations operatively linked to one another, each workstation having an antenna for detecting the unique identifier in one of the plurality of trays, where the detecting is operative to trigger displaying a profile of at least one prescription item for the corresponding prescription order.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] According to yet another aspect of the invention, a method includes providing a plurality of trays each having an RFID tag, providing a tray programmer structured for programming a unique identifier into the RFID tag of one of the plurality of trays, the unique identifier being associated with the prescription order, and providing a plurality of workstations operatively linked to one another, each workstation having an antenna for detecting the unique identifier, and each being structured for automatically displaying a profile of medication for the prescription order.

[0024] As a result of implementing the invention, paperwork associated with filling prescription orders is reduced or eliminated. Workflow is fully adaptable to a technician's choice of which workstation of a plurality of workstations she wishes to proceed to next, thereby providing adaptation to changing circumstances such as a temporary bottleneck at a given location. A scalable pharmacy design is accommodated for implementing automation and high levels of quality assurance while maintaining a human-assisted control of pharmacy operations.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0025] FIG. 1 is a highly schematic view of a prescription order fulfillment system according to an exemplary embodiment of the invention.

[0026] FIG. 2 is a highly schematic view of a workstation that may be used in the system of FIG. 1.

[0027] FIG. 3 is a highly schematic view of a computer network used in an exemplary embodiment of the invention.

[0028] FIG. 4 is a display screen showing information regarding an individual prescription item being manually filled from a predetermined shelf location according to an exemplary embodiment of the invention.

[0029] FIG. 5 is a display screen showing information regarding a prescription order being filled according to an exemplary embodiment of the invention.

[0030] FIG. 6 is a display screen showing information regarding a prescription order being filled from a predetermined shelf location according to an exemplary embodiment of the invention.

[0031] FIGS. 7A-7B show a flowchart for describing a method according to an exemplary embodiment of the invention.

[0032] FIG. 8A shows a top view of a tray, and FIG. 8B is a top view of the tray of FIG. 8A, according to an exemplary embodiment of the invention.

[0033] FIG. 9 shows a checkboard that may be printed and/or displayed for all or part of a prescription order, according to an exemplary embodiment of the invention.
Another example of an order entry location 50 is a dedicated computer terminal at which an order entry technician receives a paper prescription from a patient, nurse, etc. The paper prescription contains information regarding individual prescription items of the prescription order. The order entry technician enters the prescription order information and related information, such as that regarding insurance, method of payment, etc. An adjudication of the prescription order may be performed at the order entry location 50 in cooperation with a pharmacy information system (PIS). A properly adjudicated prescription order is then released by the PIS to a database, such as a database cooperating with a central computer. Queuing and associated functions of order filling may be implemented using such a system. Additional control may be provided by designating particular workstations for receipt of prescription order information from the database.

Another variation of an order entry configuration includes an interface between the workstation 10 and a telephone network (not shown), so that a nurse at a doctor’s office, a doctor, or a patient is able to phone in her prescription order via a known automated system.

A given workstation 10 has a computer 11 with a number of standard input and/or output devices including a keyboard 12, a mouse 13, and a display 14. The display 14 may be either a touchscreen or non-touchscreen type. In addition, the workstation 10 includes an RFID reader 15 for reading a unique identifier in an RFID tag 81 located in a tray 80 (see, e.g., FIGS. 8A-13). RFID reader 15 is able to read and/or write data from/to RFID tag 81 without contacting RFID tag 81.

By placing the RFID tag 81 within tray 80, RFID tag 81 is resistant to damage from dirt, water, abrasion, chemicals, reflected lights, etc. The size of the RFID tag 81 may be very small and have a thin shape since RFID tag 81 does not require a battery. For example, electric power may be transmitted by electromagnetic induction from a flat read/write antenna element in RFID reader 15 to RFID tag 81. RFID tag 81 may be an inductive, capacitive, or other RFID type, and the cost of RFID tag 81 is preferably minimized since the requirements for RFID tag 81 may be minimal compared with some RFID applications. For example, an RFID tag generally contains integrated non-volatile memory that allows data to be written to and read from individual tags, but a system and method of the invention does not require user programming of RFID tag 81, and RFID tag 81 may be factory programmed with a unique identification number so that the tray 80 may be uniquely identified. Therefore, the RFID reader 15 need not program RFID tag 81, and RFID tag 81 need not be reprogrammable. RFID tag 81 has a memory of 44 bytes, 96 bytes, 128 bytes, or other similar size, being large enough to provide trillions of possible unique identifiers. Accordingly, if desired for a particular application, trays 80 may be recycled by reprogramming that always uses a new unique identifier. For example, security reasons and accounting software may dictate that a new number be assigned for each new prescription order.

RFID reader 15 preferably has a flat upper surface adapted for securely holding a tray 80 while a prescription order is being filled. The face of the read antenna of RFID reader 15 is preferably disposed in parallel with such upper surface, and the face of the antenna of RFID tag 81 is also disposed in parallel with the upper surface when tray 80 is placed on RFID reader 15. The communication range for reading an RFID tag 81 is designed to prevent detection of the RFID tag 81 at any time other than when tray 80 is in the reading position on RFID reader 15. By controlling the communication range, premature or unintended detections are prevented. Suitable read/write antenna elements and RFID tags 81 are available from Omron. A system 1 may include such a controller for interfacing computer 11 with the antenna of RFID reader 15. Such a controller is also available from Omron.

FIG. 3 shows an exemplary computer network 60 used for implementing a system according to the invention. Various workstations 10, 30, and central computer 55 may be configured respectively as clients and server in a known manner. For example, workstations 10, 30 may obtain prescription information as clients connected to central server computer 55. A small workgroup network (e.g., Ethernet) having standard cabling between computers may be used. Any suitable computer networking system 56 such as a LAN or WAN may be implemented for exchanging prescription order and other related information such as insurance, billing, inventory, etc. between computers (e.g., including a use of the PIS). Various devices such as printers, automated dispensing machines, barcode readers, order entry terminals, checkouts, registers, telephone networks, other local or wide area networks, and other equipment may also be a part of computer network 56. In a simple form, one or more trays 80 indicate a patient’s prescription order, so that a workstation 10, 30 reading the RFID information of a tray 80 only needs to associate the RFID information with the prescription order by accessing the database of the central computer 55.

An exemplary multiple workstation pharmacy 2 is shown in FIG. 4. A pharmacy or other prescription fulfillment center may have a tray programmer 25 that communicates with central computer 55 and/or a workstation 10, 30 for initiating the filling process for a prescription order. Tray programmer 25 may include a tray feed station 21, a conveyor transport mechanism 23, an RFID programmer 20, and an output station 22. An exemplary tray feed station is disclosed, for example, in U.S. Pat. No. 6,370,841 granted to Chudy et al., herein incorporated by reference. Tray programmer 25 adds RFID programmer 20 along with associated control systems.

When the filling of a prescription order is initiated, the prescription order is associated with a unique identifier and the identifier is programmed by the tray programmer 25 into RFID tag 81 in a tray 80. For example, central computer 55 assigns unique numbers and then programs the trays 80, or tray programmer 25 reads a pre-programmed unique identifier of a tray 80 being fed to output station 22 and central computer 55 associates this read number with a prescription order being initiated. An order filler such as a pharmacy technician retrieves the associated tray 80 from output station 22 and carries the tray 80 to a first workstation 10.

Workstations 10, 30 may be used at intervals in a pharmacy as order-filling stations, the intervals being designed so that work flow achieves a desired goal such as efficiency, optimum use of floorspace, maximum throughput, adapting to particular configurations of storage locations, etc. For example, workstation 10 is located proximate tablet dispensing station 26 and ampule dispensing station 27. When the technician places tray 80 on RFID reader 15,
individual items of the associated prescription order are displayed on touchscreen 14 of workstation 10. The prescription items in the area proximate workstation 10 may be highlighted on display screen 61 of touchscreen 14. The technician may press a graphical user interface (GUI) icon on touchscreen 14, which activates the corresponding automated dispenser 26, 27, or other, causing the dispenser 26, 27, or other to proceed to fill the selected prescription item. A selection of a particular item of the prescription order activates a display of an image 318 of the individual prescription item. When tray 80 is placed on RFID reader 15, the display screen 61 may include images 318 for any and/or all of the individual prescription items of a prescription order. In addition, pressing a Gill icon 62 may place information regarding filling the respective prescription item into a queue.

[0044] The ‘529 application cited above details a WorkPath™ software that may be adapted for use with the present system 1, 2, such as in a client-server architecture. Workstations 10, 30 may include a label printer 17 (e.g., FIG. 2) that automatically prints a label, when required, for a prescription item being filled, the particular automated dispensing machine 19 may have its own internal label printer (not shown), the prescription item may have its label already attached, or the particular label may be printed at a standalone printer (not shown) for attachment to the prescription item at a separate location. In addition, WorkPath has a checklist function, whereby a checklist 269 (FIG. 9) may be displayed and/or printed for all or part of a prescription order. The checklist 269 may include displaying images 318 for any or all of the listed prescription items 307, and may include the name 301 of a patient, a prescription number 309, a quantity 316, special instructions 273, barcode(s) 271, descriptive text information 311, storage location information 313, storage location icon 315, and other information.

[0045] When all the prescription items for the prescription order to be filled by tablet dispensing station 26 and by ampule dispensing station 27 have been processed, the technician picks up tray 80, proceeds to workstation 30, and places tray 80 onto RFID reader 15 of workstation 30. Upon placing tray 80 onto RFID reader 15, the prescription items to be filled from storage locations proximate workstation 30 are displayed on touchscreen 14 of workstation 30. In this example, workstation 30 is proximate automatic unit-of-use article dispenser 28 and storage shelves 41. When the technician presses a Gill icon 62 corresponding to a prescription item to be filled from unit-of-use dispenser 28, the prescription item is automatically filled. When the prescription item selected by the technician is located on a storage shelf 41, the touchscreen display screen 201 indicates the exact shelf location where a quantity of the respective prescription item may be found, as shown in FIG. 6. The technician may activate a printing of a corresponding label for the prescription item by touching a separate icon on the touchscreen 14, or the workstation 30 may automatically print such label when the corresponding prescription item is selected on the touchscreen 14.

[0046] When a given prescription order has been filled, the technician places the filled tray 80 onto a nurse’s cart, onto a will-call shelf location, or on an other filled prescription area. Alternatively, the technician may place tray 80 onto an intermediate shelf (not shown), such as when she has partially filled a prescription order and desires to take a lunch break and fill the remainder of the prescription order at a later time. The intermediate shelf may also be used when a particular prescription item of a prescription order is back-ordered and the prescription order remains incomplete. Similarly, since the tray 80 automatically activates a display of the individual items in a prescription order whenever the tray 80 is placed onto an RFID reader 15, the technician may fill the order in any manner she deems appropriate, such as by first proceeding to a remote workstation if a nearby workstation is busy. The sequence of filling is independent of the movement of tray 80 so that, for example, in an emergency, a partially-filled tray 80 may be placed aside while the emergency (e.g., STAT) prescription order is being filled. When tray 80 resumes the process of being filled, a placement of tray 80 onto an RFID reader 15 at a workstation displays any remaining unfilled prescription items of the order.

[0047] FIG. 5 shows an exemplary touchscreen display 61 having a list 67, 68 of prescription items to be filled at a given workstation. In this example, the display screen 61 contains Gill icon 62 representing a storage location that is in an automated dispensing machine. A manual type Gill icon 63 represents that the respective prescription item is at a particular shelf location. When the technician presses her finger on Gill icon 63, a label is automatically printed for the prescription item and, as shown in FIG. 6, screen display 201 is provided with a popup box 301 requesting that the technician scan verify the filled prescription item by scanning the label with a barcode reader 18 and by visually comparing the displayed image 318 of a representative pill with the contents of the filled vial.

[0048] Any number of automated medication dispensing machines may be used in conjunction with a workstation 10, 30, including but not limited to dispensers of oral solids, units-of-use, injectables, IVs, ampules, vials, syringes, etc. The form of an automated dispensing machine may include a vending, cassette, vibration feed, roll packetizing, robotic, conveyor feed, automated line filling, and/or other type of automated machine. Shelves and machines may be semi-automated, such as by using a carousel or similar rotating storage and retrieval structure where access to a prescription item storage location is simplified and/or storage capacity is increased. Individual workstations 10, 30 communicate with the various devices to send them commands or receive status, such as by a hard-wired serial interface. Any suitable interface between workstations 10, 30 and automated dispensing machines may be used, including wireless, RS 232/485, USB, etc. Programs in workstations 10, 30 update a central database on central computer 55 (e.g., server). The database is accessed by all client computers and the server to communicate progress of the prescription order from entry to checking and filling. In addition, a wireless handheld computer (not shown) may be used for tracking replenishment of storage locations, for locating stock in the drawers and shelves, etc. The information exchanged with automated dispensing machines may differ according to a number of processes being performed by the particular machine. At a minimum, the serial information transmitted to automated dispensing machines includes the location of the particular medication and the quantity. Additional serial communication information between a workstation 10, 30 and an automated dispensing machine 19 may be required.
for implementing processes such as label printing, sequencing of roll packetizing, refrigeration of compartments in a dispenser, etc.

[0049] In addition, a tote transfer conveyor system (not shown) may be used to accommodate a particular site’s requirements. In such a system, a number of conveyors may be placed end-to-end to move trays/totes from one station to another. Such a system may include corner conveyors that facilitate a change in direction (e.g., ninety degree turn in tote direction), straight conveyors, conveyor tote elevator(s) that change a position of a given tote from a floor level conveyor for automated machine dispensing to a raised level for manual pick and filling operations. Such a system may also include a conveyor queue tower that receives totes/trays, for example, from the conveyor tote elevator and retains them for a subsequent checking or bagging process, or for queuing during a sequenced or similar order filling process. An example of such a system is the AUTOFILL system, available from AutoMed Technologies, Inc., of Vernon Hills, Ill.

[0050] It is noted that a large prescription order may be assigned to more than one tray 80. In such a case, each tray 80 may be assigned to specific items of the prescription order. A multiple position RFID reader (not shown) may be used at a final quality control station for determining whether all of the individual prescription items for the prescription order are present in the multiple trays 80. Different colored trays 80 may be used, for example to differentiate a STAT order, an order for a particular nursing cart, an order for a particular destination, etc. Workstation 10, 30 may include a printer 17 adapted for printing a checksheet along with labels for identifying the Particular patient corresponding to the prescription order. Such a checksheet and labels may be placed in the tray 80, and may be in the form of a printed bag into which all or some of the individual prescription items of an order may be placed. In addition, workstations 10, 30 may be used at any time by a pharmacy technician, nurse, doctor, pharmacist, etc. for checking a filled tray for accuracy, for example, prior to releasing the prescription order to a patient, nursing cart, etc.

[0051] An exemplary prescription order filling process is now described with reference to FIGS. 7A-B. At step 100, a prescription order is input to a computer. For example, a patient takes her prescription to a pharmacy and hands the prescription to a pharmacy technician and the technician types the individual prescription information 10 on a computer keyboard. The prescription information becomes an order entry in a database (e.g., PIS) that is in communication with an order entry computer, either locally or at a remote location. The order entry may be obtained by the database in a variety of ways. For example, a group of one or more individual prescription orders may be transferred between locations using intranets, internets, the Internet, etc.

[0052] At step 105 the order entry is checked for accuracy, such as by the order entry technician or by the pharmacy technician who retrieves the order. Many methods may be concurrently implemented for checking order accuracy, including but not limited to use of charts such as computer algorithms that match a profile of the patient with a dosage, type of medication, quantity, interaction information, etc., algorithms that perform spell checking or similar evaluation of entered text, etc. In step 107, when it is determined that order entry has been performed correctly, the prescription order may be forwarded to a database for subsequent retrieval and processing. If it is determined that the order has been incorrectly entered, the order is kicked back to an order entry station for re-entry or correction. An example of step 107 is a spell checker.

[0053] When a prescription order is retrieved by a pharmacy technician at step 110, she validates the prescription order, for example, by telephoning the doctor’s office indicated on the prescription slip, by accessing validation information from a central computer such as by retrieving a participant’s date of birth, mother’s maiden name, or other personal information. Adjudication and validation of the prescription order may include a use of a PIS, and may include a combination of automated and manual processes, including obtaining a release of the prescription order from a PIS, placing prescription order information in a queue, etc. The technician may ask the pharmacist to validate/verify such personal information or provide health insurance information. At step 113, when it is determined that the prescription order has been validated, the technician proceeds to fill the order. If the prescription order is not able to be validated, the technician may put the prescription order on hold pending receipt of the validation, or may cancel the order for processing until the order is able to be validated. The processes of order entry, order retrieval, and validation may be combined or kept separate depending on a particular application.

[0054] At step 115, the technician matches a chosen validated prescription order to a tray. She may activate a tray programmer or assigner to do such matching, for example by assigning a unique identifier contained in an RFID tag located in the tray to the chosen prescription order. The unique identifier may be programmed into the RFID tag at the time the technician selects the particular prescription order for fulfillment, by activating a programmer to enter a new unique identifier into a tray. Such a program may automatically dispense the tray to a separate location for order filling, or the tray programmer may be proximate the technician’s workstation. Alternatively, the pharmacy technician may first retrieve a prescription order, then pick up a new tray from a stack, place the tray onto an RFID reader, and assign a unique identifier that is preloaded in the tray to the prescription order on her display screen.

[0055] At step 120, the technician picks up the tray and proceeds to a prescription filling workstation 10 at step 125. Workstation 10 may be connected to automated dispensing machines, it may be a workstation in a pharmacy location proximate shelves and other storage locations, or workstation 10 may be intended to service both a manual filling of prescription items from shelves as well as automatically filling prescription items by use of automated dispensers. At step 130, the technician places the tray onto a tray reader located at the chosen workstation. The tray reader detects the unique identifier in the RFID tag and presents information concerning this unique identifier to a retrieve_order routine running on the workstation. The retrieve_order routine formats this information into a request for order information. The request for order information is then presented to the database manager for retrieving the stored order information from the database. The request for order information may be included in a data stream over a network, either via a locally managed operating system or via an engine cooperating with a standard system configuration such as UNIX. The database may in fact reside locally in the workstation, as a result of the workstation being connected with the order entry device,
by the workstation previously receiving a batch of orders, and by other methods. The request for order information may alternatively be transmitted via a wireless communication path, processed in a batch manner, or may be communicated by any suitable process and structure to a database manager.

At step 135, the workstation receives the requested order information from the database manager and processes the order information for displaying the information to the technician on a display device connected to the workstation.

At step 140, the technician views the displayed order screen 61 and determines which individual prescription items the technician wants to fill next. The technician may, at step 145, select order items and may initiate processes by, for example, pressing her finger against a graphical user interface (GUI) symbol located on a touchscreen display, by positioning a pointer on a screen symbol and then click-selecting the screen symbol, by entering keystrokes on a keyboard, by voice activation, etc. The GUI symbol may represent a location where an individual prescription item is located. For example, the GUI symbol may represent an automatic unit-of-use dispensing machine, an automatic oral solids dispensing machine, an automatic amniotic dispensing machine, an automated medication packaging machine, a storage shelf location, or any other location for the particular selected individual prescription item.

At step 150, the technician determines whether the selected prescription item is located at a storage location requiring manual retrieval or at an automated storage location. When the selected prescription item is at a shelf location requiring manual retrieval, the display at step 155 indicates the shelf number and shelf location of the item so that the technician may proceed directly to the item in step 160. Preferably, the shelves are located in an area where the desired medication may be easily obtained from a bulk container, counted, and packaged while reducing the risk of spillage or other mishap. The shelved prescription item may alternatively be pre-packaged in convenient quantities such as in quantities favored by doctors when writing the prescription orders. When the selected prescription item is located at an automated location, the workstation at step 165 communicates information regarding the prescription item to the automated dispensing machine for subsequent automated filling of the prescription item. The workstation transmits information concerning the desired item into machine language for communication to the given automated dispensing machine. The automated dispensing machine receives the machine code and dispenses the prescription item, either directly into the tray or to a convenient location for retrieval by the technician.

At step 170, a label is printed for the prescription item. The automated dispensing machine may have a self-contained label printer structured for formatting information concerning a prescription item being filled and then printing such information on a label to be affixed to a vial or other container for holding the medication or related prescription item. The automated dispensing machine may apply the label to the vial automatically, may separate dispense the label, may communicate print machine code to an external printer, etc. A label for the selected prescription item may be separately printed by the technician selecting a label print routine at the workstation. The label print routine may be integrated into a workstation algorithm, for example, associated with a selection of a next item. The printed label may be manually or automatically placed onto a container, such as a vial. It may be desirable to add redundancy to quality assurance procedures such as by preventing the selection, filling, or label printing of a subsequent prescription item until a label has been removed from a printer, until a label has been attached to a vial, scanned by a barcode reader, and verified, until a handshaking signal is received from an automated dispensing machine, etc.

The label information may include a text description of the prescription item, the quantity information, a barcode, an address and phone number of the pharmacy, doctor information, patient information, a graphic showing the particular tablet, capsule, or other form of the particular medication, etc. The label information may be displayed on the display device of the workstation so that the technician may verify that the prescription item on the screen matches an actual filled item in her hand or in the tray. Alternatively, the technician may pass the affixed label across a barcode reader connected to the workstation. The barcode information thereby obtained is then automatically compared with the items of the particular prescription order to verify that the information matches a previously selected item. When the technician is satisfied that the selected prescription item has been filled correctly, she places the filled prescription item into the tray at step 180.

At step 185, it is determined whether the filled prescription item is the last item of the prescription order to be filled at the present workstation. If not, the technician proceeds to step 145 and repeats the order filling process by selecting a next prescription item on the workstation display. If the just-filled prescription item is the last prescription item to be filled at the present workstation, the screen may indicate a next workstation or other location for subsequent placement of the tray containing filled prescription items. The display may indicate a next workstation based on efficiency and reduction of cost, proximity, availability, etc. determined by an efficiency routine in software. At step 190, the technician carries the tray to another workstation and places the tray onto the RFID reader of the new workstation, whereupon the reader detects the unique identifier of the RFID tag of the tray and displays a list of prescription items to be filled at that workstation. Subsequently, the technician performs filling of additional prescription items at the new workstation, in a manner as just described beginning at step 125.

As noted above, a person desiring to perform additional quality control or checking of the contents of a tray may pick up the tray and place it on an RFID reader of a given workstation. A system may include separate workstations dedicated to checking and verification of prescription orders, for example prior to packing and shipping, at a nursing station, etc. When the person places the tray onto the RFID reader, a list of the individual prescription items of a prescription order are displayed. The person may then visually inspect the items in the tray, scan barcodes on labels of the items, may match a displayed image of a particular medication with a filled order, etc. After verifying the items for a prescription order, the person may proceed to a subsequent process such as forwarding the prescription order to a patient or healthcare facility, receiving payment for the order, communicating verification information with a PIS, etc.
Many variations in a workflow method are envisaged and it is intended that the invention be adaptable for order filling that includes any type of computer network and any type of computer, such as computers integrated with other aspects of a pharmacy, including those responsive to relative movements of a technician. In addition, the invention may incorporate additional writing of information to RFID tags and other media for effecting additional control of prescription order processing. For example, a system may be structured for using an RFID antenna to store updated filling information in an RFID tag.

While the principles of the invention have been shown and described in connection with specific embodiments, it is to be understood that such embodiments are by way of example and are not limiting.

What is claimed is:

1. A system for filling a prescription order for a patient comprising:
 a tray including a unique identifier associated with a prescription order of a patient;
 a filling workstation including a display screen; and
 a reader communicatively coupled to the filling workstation configured to read the unique identifier of the tray when the tray is located at the filling workstation;
 wherein the filling workstation is configured to display information related to the prescription order to be filled at the filling workstation on the display screen as a result of the reader reading the unique identifier.

2. The system of claim 1 wherein the prescription order consists of a first subset and a second subset, and wherein the unique identifier is associated with the first subset of the prescription order, the system further comprising:
 a second tray including a second unique identifier associated with the second subset of the prescription order.

3. The system of claim 1 wherein the unique identifier is an RFID tag, and the reader includes an antenna configured to receive a signal from the RFID tag.

4. The system of claim 3 further comprising a tray programmer configured to program the RFID tag with the unique identifier.

5. The system of claim 1 wherein the prescription order includes at least two unfilled individual prescription items, and further wherein the filling workstation is configured to highlight on the display at least one of the unfilled individual prescription items as a result of the at least one of the unfilled individual prescription items being stored in an area proximate the filling workstation.

6. The system of claim 1 wherein the information related to the prescription order includes an image of an individual prescription item.

7. The system of claim 6 wherein the information related to the prescription order includes text information identifying the patient, text information identifying the individual prescription item, and the image of the individual prescription item.

8. The system of claim 1 wherein the information related to the prescription order includes information identifying a storage location of an individual prescription item.

9. The system of claim 8 wherein the information identifying the storage location is an indication of shelf location where the individual prescription item is stored.

10. The system of claim 1 wherein the filling workstation is configured to display information related to multiple unfilled individual prescription items of the prescription order on the display screen in response to the reader reading the unique identifier.

11. The system of claim 1 wherein the prescription order includes at least two unfilled individual prescription items, and further wherein the filling workstation is configured to order the display of information for the unfilled individual prescription items to minimize a cost function associated with filling the prescription order.

12. The system of claim 1 wherein the prescription order includes at least two unfilled individual prescription items, and further wherein the filling workstation is configured to order the display of information for the unfilled individual prescription items to minimize a distance traveled by pharmacy personnel to fill the prescription order.

13. The system of claim 1 further comprising an automated dispenser, wherein the filling workstation is configured to trigger dispensing by the automated dispenser as a result of the reader reading the unique identifier.

14. A system for filling a prescription order for a patient, comprising:
 a tray having an RFID tag;
 a tray programmer to program a unique identifier into the RFID tag of the tray, wherein the unique identifier is associated with a prescription order; and
 a workstation that comprises:
 a display, and
 a reader coupled to the display for detecting the unique identifier,
 wherein, as a result of detecting the unique identifier, the display presents a profile information corresponding to at least one individual prescription item to be filled for the prescription order while the tray is located at the workstation.

15. The system of claim 14 wherein the profile information includes textual information representing at least one of:
 an individual prescription item of the prescription order, and
 a respective storage location for the individual prescription item.

16. The system of claim 14 wherein the profile information includes an image representing the individual prescription item.

17. The system of claim 14 wherein the profile information includes a graphical user interface symbol representing a respective storage location for the individual prescription item.

18. A system for filling a prescription medication order, comprising:
 a prescription medication order that consists of a first subset and a second subset;
 a plurality of trays that include a respective plurality of unique machine-readable tray identifiers, the plurality of trays including a first tray with a first tray identifier associated with the first subset of the prescription medication order and a second tray with a second tray identifier associated with the second subset of the prescription medication order;
 a database which includes prescription data representative of at least one prescription item, data representative of the at least one of the plurality of tray identifiers, and data which associates the first tray identifier with the prescription data; and
a workstation in communication with the database, and
including a display screen and a tray identifier reader
configured to read the plurality of tray identifiers.

19. The system of claim 18 wherein the prescription data
includes data representative of a patient name.

20. The system of claim 18 wherein the prescription data
includes data representative of a prescription order.