发明名称
液滴喷出装置和油墨组

摘要
本发明涉及液滴喷出装置和油墨组。本发明提供一种即使颜料油墨和染料油墨混合时，喷出稳定性也良好的液滴喷出装置。本发明的液滴喷出装置具有喷头部件，所述喷头部件具备喷嘴面，在所述喷嘴面排列有包括第1喷嘴列和第2喷嘴列的多个喷嘴列，所述喷嘴列由以规定的图案排列的多个喷嘴孔构成，所述第1喷嘴列喷出含有水和颜料的颜料油墨，所述第2喷嘴列喷出含有水和染料的染料油墨。所述颜料油墨的导电率E_1（mS/cm）和所述染料油墨的导电率E_2（mS/cm）的关系为$0 < (E_2 - E_1) \leq 3$。
1. 一种液滴喷出装置，其特征在于，是具有喷头部件的液滴喷出装置，所述喷头部件具备喷嘴面。
所述喷头部件包括喷嘴列，所述喷嘴列包括第1喷嘴列和第2喷嘴列的多个喷嘴列，所述喷嘴列由以规定的图案排列的多个喷嘴孔构成，所述第1喷嘴列喷出含有水和颜料的颜料油墨，所述第2喷嘴列喷出含有水和染料的染料油墨。
所述颜料油墨的导电率E_1和所述染料油墨的导电率E_2的关系为$0 < (E_2 - E_1) \leq 3$，所述导电率的单位是mS/cm。

2. 根据权利要求1所述的液滴喷出装置，其中，进一步具有用于擦拭所述喷嘴面的擦拭部件。

3. 根据权利要求1或2所述的液滴喷出装置，其中，在排列于所述喷嘴面的所述多个喷嘴列中，所述第1喷嘴列排列在最端处。

4. 根据权利要求1～3中任1项所述的液滴喷出装置，其中，具备多个所述第2喷嘴列以使得从不同的喷嘴列喷出多种颜料油墨。
多个所述第2喷嘴列以喷出的染料油墨的导电率递增的顺序从紧邻所述第1喷嘴列开始进行排列。

5. 根据权利要求2～4中任1项所述的液滴喷出装置，其中所述擦拭部件沿着所述多个喷嘴列排列的方向，从所述第1喷嘴列开始逆次擦拭所述喷嘴面。

6. 根据权利要求1～3中任1项所述的液滴喷出装置，其中，沿着喷嘴孔排列的方向，第2喷嘴列被分割成含有规定数目喷嘴孔的组来使用以使得喷出多种染料油墨。
所述组以喷出的染料油墨的导电率递增的顺序沿着所述喷嘴孔排列的方向进行排列。

7. 根据权利要求6所述的液滴喷出装置，其中，所述擦拭部件沿着所述喷嘴孔排列的方向，从喷出导电率低的染料油墨的所述组开始逆次擦拭所述喷嘴面。

8. 一种油墨组，其特征在于，具有含有水和颜料的颜料油墨与含有水和染料的染料油墨。
所述颜料油墨的导电率E_1和所述染料油墨的导电率E_2的关系为$0 < (E_2 - E_1) \leq 3$，所述导电率的单位是mS/cm。

9. 一种染料油墨，其特征在于，是在具有喷头部件的液滴喷出装置中使用的染料油墨，该喷头部件具有喷出导电率E_1为0.5～2.5mS/cm的颜料油墨的多个喷嘴孔，所述导电率E_1和所述染料油墨的导电率E_2满足$0 < (E_2 - E_1) \leq 3$的关系。

10. 根据权利要求9所述的染料油墨，其中，所述导电率E_2为2.0～5.0mS/cm。

11. 一种颜料油墨，其特征在于，是在具有喷头部件的液滴喷出装置中使用的颜料油墨，该喷头部件具有喷出导电率E_2为2.0～5.0mS/cm的染料油墨的多个喷嘴孔，所述颜料油墨的导电率E_1和所述导电率E_2满足$0 < (E_2 - E_1) \leq 3$的关系。

12. 根据权利要求11所述的颜料油墨，其中，所述导电率E_1为0.5～2.5mS/cm。
液滴喷出装置和油墨组

技术领域
[0001] 本发明涉及液滴喷出装置和油墨组。

背景技术
[0002] 以往，已知含有颜料或染料作为色料的油墨。含有颜料作为色料的颜料油墨因为
渗色少，耐水性或耐光性良好，所以特别优选用于文字等的记录。另外，含有染料作为色料
的染料油墨，由于光泽性和发色性良好、色彩鲜明，所以特别优选用于图像等的记录。
[0003] 如果并用具备上述特性的颜料油墨和染料油墨，则记录在被记录介质上的文字和
图像两者的记录品质均变得优异。因为这个原因，近年来，广泛使用具备颜料油墨和染料油
墨两者的液滴喷出装置。
[0004] 但是，使用具备颜料油墨和染料油墨的液滴喷出装置进行图像的记录时，有时在
具备用于喷出油墨的喷嘴孔的喷嘴面上，颜料油墨和染料油墨混合。此时，有时颜料油墨中
的颜料的分散性被染料油墨破坏，颜料凝集。特别是，利用用于清洁喷嘴面而设置的擦拭部
件清洁喷嘴面时，有时喷嘴孔被颜料的凝集物堵塞，结果使油墨的喷出稳定性下降。另外，
有时发生附着在喷嘴面的颜料的凝集物滴落在记录介质上的不良情况。
[0005] 为了降低这种颜料的凝集，专利文献 1 中记载了在染料油墨中添加具有内酰胺结
构的聚合物。另外，专利文献 2 中记载了对颜料油墨和染料油墨中含有的反离子（对离子）
量进行规定。
[0006] 现有技术文献
[0007] 专利文献
[0008] 专利文献 1：日本特开 2010-84136 号公报
[0009] 专利文献 2：日本特开 2006-2094 号公报

发明内容
[0010] 然而，上述的现有技术中，颜料油墨和染料油墨混合时，无法充分抑制颜料的分散
破坏，有时在喷嘴面引起颜料的凝集，发生喷出不良。
[0011] 本发明的几个方式的目的之一是提供一种即使颜料油墨和染料油墨混合时，喷出
稳定性也良好的液滴喷出装置。
[0012] 本发明是为了解决上述课题中的至少一部分而完成的，能够作为以下的方式或应
用例而实现。
[0013] [应用例 1]
[0014] 本发明的液滴喷出装置的一个方式，是具有喷头部件的液滴喷出装置，上述喷头
部件具备喷嘴面，在上述喷嘴面排列有包括第 1 喷嘴列和第 2 喷嘴列的多个喷嘴列，上述喷
嘴列由以规定的图案排列的多个喷嘴孔构成，上述第 1 喷嘴列喷出含有水和颜料的颜料油
墨，上述第 2 喷嘴列喷出含有水和染料的染料油墨，上述颜料油墨的导电率 E_1 (mS/cm) 和
上述染料油墨的导电率 E_2 (mS/cm) 的关系为 $0 < (E_2 - E_1) \leq 3$。
[0015] 根据应用例 1 的液滴喷出装置，即便颜料油墨和染料油墨混合时，颜料油墨中含
有的颜料的分散性也良好，喷出稳定性也良好。
[0016] [应用例 2]
[0017] 在应用例 1 中，可以进一步具有用于擦拭上述喷嘴面的擦拭部件。
[0018] [应用例 3]
[0019] 在应用例 1 或应用例 2 中，在排列于上述喷嘴面的上述多个喷嘴列中，上述第 1 喷
嘴列可以排列在最端处。
[0020] [应用例 4]
[0021] 在应用例 1 ～ 3 中的任 1 例中，可以具备多个上述第 2 喷嘴列以使得从不同的喷
嘴列喷出色调互不相同的染料油墨。
[0022] 多个上述第 2 喷嘴列可以以喷出的染料油墨的导电率递增的顺序从紧邻上述第 1 喷
嘴列开始进行排列。
[0023] [应用例 5]
[0024] 在应用例 2 ～ 4 中的任 1 例中，上述擦拭部件可以沿着上述多个喷嘴列排列的方
向，从上述第 1 喷嘴列开始顺序擦拭上述喷嘴面。
[0025] [应用例 6]
[0026] 在应用例 1 ～ 3 中的任 1 例中，第 2 喷嘴列可以沿着喷嘴孔排列的方向而被分割
成含有规定数目喷嘴孔的组合使用以使得喷出色调互不相同的染料油墨。
[0027] 上述组以喷出的染料油墨的导电率递增的顺序沿着上述喷嘴孔排列的方向进行
排列。
[0028] [应用例 7]
[0029] 在应用例 6 中，上述擦拭部件可以沿着上述喷嘴孔排列的方向从喷出导电率低的
染料油墨的上述组开始顺序擦拭上述喷嘴面。
[0030] [应用例 8]
[0031] 本发明的油墨组的一个方式，具有含有水和颜料的颜料油墨与含有水和染料的染
料油墨，
[0032] 上述颜料油墨的导电率 [E_1 (mS/cm)] 和上述染料油墨的导电率 [E_2 (mS/cm)] 的
关系为 0 < (E_2 - E_1) \leq 3。
[0033] [应用例 9]
[0034] 本发明的染料油墨的一个方式，是在具有喷头部件的液滴喷出装置中使用的染料
油墨，该喷头部件具有喷出导电率 E_1 为 0.5 ～ 2.5 (mS/cm) 的颜料油墨的多个喷嘴孔，
[0035] 上述导电率 E_1 和上述染料油墨的导电率 E_2 满足 0 < (E_2 - E_1) \leq 3 的关系。
[0036] [应用例 10]
[0037] 在应用例 9 中，可以是上述导电率 E_2 为 2.0 ～ 5.0 (mS/cm) 的染料油墨。
[0038] [应用例 11]
[0039] 本发明的颜料油墨的一个方式，是在具有喷头部件的液滴喷出装置中使用的颜料
油墨，该喷头部件具有喷出导电率 E_2 为 2.0 ～ 5.0 (mS/cm) 的染料油墨的多个喷嘴孔，
[0040] 上述颜料油墨的导电率 E_1 和上述导电率 E_2 满足 0 < (E_2 - E_1) \leq 3 的关系。
[0041] [应用例 12]
[0042] 在应用例 11 中，可以是上述导电率 E_1 为 0.5 ～ 2.5 (mS/cm) 的颜料油墨。
[0043] 根据应用例 8 的油墨组，即使颜料油墨和染料油墨混合时，颜料油墨中含有的颜料的分散性也良好。

附图说明
[0044] 图 1 是表示第 1 实施方式和第 2 实施方式中的打印机的构成的立体图。
[0045] 图 2 是表示第 1 实施方式中的设置于喷嘴头的喷嘴的排列的简图。
[0046] 图 3 是表示第 1 实施方式和第 2 实施方式中的喷嘴头的内部构成的部分截面图。
[0047] 图 4 是表示第 2 实施方式中的设置于喷嘴头的喷嘴的排列的简图。
[0048] 图 5 是表示实施例 1 和比较例 1 中的设置于喷嘴头的喷嘴的排列的简图。
[0049] 图 6 是表示实施例 2 和比较例 2 中的设置于喷嘴头的喷嘴的排列的简图。
[0050] 图 7 是表示实施例 3 和比较例 3 中的设置于喷嘴头的喷嘴的排列的简图。
[0051] 符号说明
[0052] 1…打印机，2…喷嘴，3（3a, 3b, 3c, 3d）…墨盒，4…托架，5…压纸卷筒，6…被
记录介质，7…托架移动机构，8…介质传送机构，9…导杆，10…线性编码器，11…维护单元，
12…排墨部件，13，113…擦拭部件，16，116…多个喷嘴列，16A，16B，16C，16D，116A，116B…喷
嘴列，17，117…喷嘴孔，18…喷头主体，19…振动板，20…流路基板，21…喷嘴基板，21A，
21B…喷嘴面，22…流路形成单元，23…收纳空间，24…驱动单元，25…压电元件，26…固定
部件，27…电缆，28…内部流路，29…共用油墨室，30…油墨供应口，31…压力室，32…岛部，
33…可塑部，116a…第 1 组，116b…第 2 组，116c…第 3 组，CONT…控制装置

具体实施方式
[0053] 以下，对本发明优选的实施方式进行说明。以下说明的实施方式仅为说明本发明
的一个例子。另外，本发明并不限于以下的实施方式，在不改变本发明主旨的范围内也包括
实施的各种变形例。
[0054] 1. 油墨组
[0055] 本发明的一个实施方式的油墨组具有颜料油墨和染料油墨。本实施方式的油墨组
可以适用于后述的液滴喷出装置。以下，对可用于本实施方式的油墨组的颜料油墨和染料
油墨进行详细说明。
[0056] 本实施方式的油墨组中可使用的颜料油墨（以下，也简称为“颜料油墨”）含有水和
颜料，本实施方式的油墨组中可使用的染料油墨（以下，也简称为“染料油墨”）含有水和染
料。应予说明，以下，简称为“油墨”时，是指包括颜料油墨和染料油墨两者。
[0057] 颜料油墨的导电率 E_1 (mS/cm) 和染料油墨的导电率 E_2 (mS/cm) 的关系为 $0 < (E_2 - E_1) \leq 1$。如果颜料油墨的导电率 E_1 (mS/cm) 和染料油墨的导电率 E_2 (mS/cm) 满足 $0 < (E_2 - E_1) \leq 3$ 的关系，则在颜料油墨和染料油墨混合时，颜料油墨中含有的颜料的
分散性不易降低。由此，能够降低由喷嘴的堵塞等引起的喷出不良的发生。另一方面，
如果颜料油墨和染料油墨的导电率的关系超出上述范围，则颜料油墨和染料油墨混合时，
颜料油墨中含有的颜料的分散性降低，有时发生颜料的凝集等。另外，如果颜料油墨和染料
油墨的导电率的关系低于上述范围，则染料对水的溶解性降低，有时发生喷出不良或被记
录的图像的发色浓度降低等。
[0058] 对于颜料油墨和染料油墨的导电率的关系影响颜料的凝聚的理由，详细原因尚不明确，但可以考虑以下的机理。
[0059] 油墨的导电率有随着油墨中电离的离子量的增加而变高的趋势。换言之，染料油墨的导电率高表示染料油墨中电离的离子量多。
[0060] 例如，使用与颜料油墨相比导电率比较差的染料油墨时，如果发生颜料油墨和染料油墨的混合，则颜料粒子周围的导电率变高。其结果，认为由于颜料周围的双电层收缩，颜料粒子的粒子间距离缩短，发生颜料的凝聚。另一方面，如果使用导电率比较低的染料油墨，则来源于染料油墨的离子量变少。因此，即使发生颜料油墨和染料油墨的混合，颜料粒子周围的导电率也不易上升。认为由于这个原因，所以难以发生颜料的凝聚。
[0061] 颜料油墨的导电率 $[\text{E}_1 (\text{mS/cm})]$ 优选为 0.5 〜 2.5，更优选为 1.0 〜 2.0。如果颜料油墨的导电率在上述范围内，则颜料油墨中的颜料的分散性良好，颜料油墨的喷出稳定性良好。
[0062] 染料油墨的导电率 $[\text{E}_2 (\text{mS/cm})]$ 优选为 2.0 〜 5.0，更优选为 3.0 〜 4.0。如果染料油墨的导电率在上述范围内，则染料油墨中的染料的溶解性良好，染料油墨的喷出稳定性良好。
[0063] 油墨的导电率是将油墨的温度设定为 20 ℃使用电导率仪测定的。电导率仪，具体而言，可以使用 DS-52（商品名，株式会社堀场製作所制）。
[0064] 颜料油墨中使用的颜料如后所述，优选具有金属盐结构。由此，改善颜料的分散性，难以发生颜料的凝聚。
[0065] 染料油墨中使用的染料如后所述，优选具有金属盐结构。由此，可改善染料的溶解性。
[0066] 优选由颜料产生的金属离子的平均极尭当量传导率 $([\text{S} \cdot \text{cm}^2/\text{Eq})]$ 高于由染料产生的金属离子的极限当量传导率 $([\text{S} \cdot \text{cm}^2/\text{Eq})]$。由此，颜料油墨和染料油墨混合时，能够更进一步降低颜料的凝聚。
[0067] 对于极限当量传导率的关系影响颜料的凝聚的理由，详细原因尚不明确，但考虑到以下的机理。
[0068] 例如，如果与由颜料产生的金属离子的平均极尭当量传导率相比，由染料产生的金属离子的极限当量传导率高，则颜料油墨和染料油墨混合时，颜料粒子周围的导电率高。换言之，颜料粒子容易遇到极尭当量传导率高的金属离子。其结果，认为由于颜料周围的双电层收缩，颜料粒子的粒子间距离缩短，发生颜料的凝聚。
[0069] 另一方面，如果与由颜料产生的金属离子的极限当量传导率相比，由染料产生的金属离子的极限当量传导率低，则颜料粒子周围的导电率不易上升。认为由于这个原因，所以难以发生颜料的凝聚。
[0070] 金属离子的极限当量传导率（Limiting Equivalent conductivity，$\text{S} \cdot \text{cm}^2/\text{Eq}$）是指无限稀释状态下的固有值，作为由离子独立移动定律定义的值而被熟知。即，离子独立移动定律中，无限稀释状态下的电解质的极限摩尔传导率以阳离子和阴离子的极限摩尔传导率之和来表示。无限稀释状态下不是指电解质（离子）不存在，而是指溶液中的阳离子-阴离子间距离无限大，阳离子和阴离子不互相影响。应予说明，金属离子的当量传导率 $([\text{S} \cdot \text{cm}^2/$
是用该金属离子的价数去除该金属离子的极限摩尔导率（S·cm²/mol）而得到的值。

对于金属离子的极限当量传导率，已知的较多，具体而言，对于 25℃的极限当量传导率（S·cm²/eq），钾离子（K⁺）为 73.5，钠离子（Na⁺）为 50.1，锂离子（Li⁺）为 38.7（电气化学学会“电气化学便览第 4 版”）。另外，金属离子的极限当量传导率也可以通过实验求得，可以通过测定当量传导率的浓度变化，使用适当的方法进行向零浓度的外推来决定。

另外，由颜料产生的金属离子为 2 种以上时，金属离子的极限当量传导率与平均的极限当量传导率。平均的极限当量传导率表示由颜料产生的金属离子的极限当量传导率的平均值。例如，m 个 X 离子和 n 个 Y 离子的平均极限当量传导率通过 [(X 离子的极限当量传导率)×m + (Y 离子的极限当量传导率)×n] / (m + n) 求得。应予明，由染料产生的金属离子为 2 种以上时，可以与由颜料产生的金属离子相同地进行，求出平均极限当量传导率。

1.1. 颜料油墨

颜料油墨含有水和颜料。以下，对颜料油墨中含有的成分进行说明。

1. 颜料

作为颜料可以使用公知的颜料，但优选自分散型的颜料。自分散型的颜料是指能够无分散剂地分散和 / 或溶解在水性介质中的颜料。在此，“无分散剂地分散和 / 或溶解在水性介质中”是指即使不使用用于使颜料分散的分散剂，也能够利用其表面的亲水基团而在水性介质中稳定地存在的状态。如果使用自分散型的颜料，则由于能够降低用于分散颜料的分散剂的使用量，所以能够降低由分散剂引起的油墨的发泡，容易制造出稳定性良好的油墨。

自分散型的颜料可以在其颜料表面具有亲水基团。优选颜料表面的亲水基团是选自 -O⁻、-COO⁻、-CO⁻、-SO₂⁻、-SO₃⁻、-SO₃⁻、-RSCO⁻、-PO₃⁻、-PO₃⁻、-SO₃⁻、-NH⁻、和 -NR₃⁻（式中的 M 表示氢原子、碱金属（例如，锂、钠、钾）、铵、可具有取代基的苯基、或有机铵，R 表示碳原子数为 1～12 的烷基或可具有取代基的烷基）中一个以上的亲水基团。

优选本实施方式的颜料油墨中使用的颜料具有金属盐结构。如上所述，如果颜料油墨具有金属盐结构，则可改善颜料的分散性，不易发生颜料的凝集。

作为由颜料产生的金属离子，优选为钾离子和钠离子中的至少一种。由此，能够提高颜料油墨中的颜色的分散性。

颜料例如通过实施物理处理或化学处理，使上述亲水基团键合（接枝）在颜料的表面来制造。作为上述物理处理，例如，可例示真空等离子体处理等。另外作为上述化学处理，例如，可例示在水中用氧化剂进行氧化的湿式氧化法、通过将对氨基苯甲酸键合在颜料表面从而介由苯甲酸键合羧基的方法等。

将颜料油墨作为黑色的油墨（以下，也称为“颜料黑色油墨”）使用时，从高发色的角度出发，优选使用次卤酸和 / 或次卤酸盐的氧化处理、利用臭氧的氧化处理、或利用过硫酸和 / 或过硫酸盐的氧化处理对颜料进行表面处理。

将颜料油墨作为黑色以外的彩色油墨（以下，也称为“颜料彩色油墨”）使用时，从高发色的角度出发，优选使用介由苯基使其表面具有上述亲水基团。作为介由苯基在颜料表面键合亲水基团的表面处理方法，可以适用于各种公知的表面处理方法，例如通过将对氨基苯磺酸、对氨基苯甲酸、4- 氨基水杨酸等连接在颜料表面而介由苯基键合亲水基团的
方法等。

【0083】颜料黑色油墨中使用的颜料没有特别限定，例如，可以使用利用接触法、炉法、热分解法等公知的方法制造的炭黑。作为炭黑的优选的具体例，可举出No. 2300、900、MCF88、No. 20B、No. 33、No. 40、No. 45、No. 52、MA7、MA8、MA100、No. 2200B（以上三菱化学株式会社制）、Color Black FW1、FW2、FW2V、FW18、FW200、S150、S160、S170、Pretex 35、U.V、140U、Special Black 6、5、4A、4、250（以上Degussa公会社制）、Conductex SC、Raven 1255、5750、5250、5000、3500、1255、700（以上Columbian炭黑社制）, REGAL 400R、330R、660R、MOGUL L、MONARCH 700、800、880、900、1000、1100、1300、1400、ELFTEX 12（CABOT公会社制）等。这些炭黑可以使用一种或作为二种以上的混合物使用。

【0084】另外，作为颜料彩色油墨中使用的颜料，没有特别限定，可列举颜色索引中记载的颜料黄、颜料红、颜料紫、颜料蓝等颜料，以及酞菁系、偶氮系、蒽醌系、甲亚胺系、偶环系等颜料。另外，可举出橙色228号、405号、青色1号、404号等有机颜料或氧化钛、氧化锌、氧化铁、群青、铁蓝、氧化铬等无机颜料。具体而言，例如，可举出C. I. 颜料红1、3、5、8、9、16、17、19、22、38、57、1、90、112、12、112、2、123、127、146、184、C. I. 颜料蓝1、3、5、11、16、19、23、38、C. I. 颜料蓝1、2、15、1、11、15、2、15、3、15、4、16。

【0085】另外，作为颜料可以利用市售品，例如，可举出MICRO JET CW1（ORIENT化学工业株式会社制）、CAB-O-JET250C、CAB-O-JET260C（以上CABOT公会社制）等。

【0086】颜料的含量相对于颜料油墨的总质量优选为1质量％～20质量％，更优选为1质量％～10质量％。

【0087】另外，从油墨的保存稳定性，防止喷嘴的堵塞等观点考虑，优选颜料的平均粒径为50nm～250nm的范围。

【0088】(2)水

【0089】颜料油墨含有水。水作为分散或溶解上述颜料的主溶剂发挥功能。

【0090】水优选为像离子交换水、超滤水、反渗透水、蒸馏水等纯水或超纯水这样的尽可能除去了离子性杂质的水。另外，如果使用通过紫外线照射或添加过氧化氢等而灭菌的水，则长期保存颜料分散液和使用时的油墨时能够防止霉、细菌的产生，因而优选。

【0091】本实施方式的颜料油墨中含有的水相对于颜料油墨的总质量优选为50质量％以上。

【0092】(3)其它成分

【0093】本实施方式的颜料油墨可以含有表面活性剂。作为表面活性剂，可举出非离子系表面活性剂、阳离子系表面活性剂、阴离子系表面活性剂、两性表面活性剂等。表面活性剂可以单独使用1种，也可以混合2种以上使用。

【0094】其中，非离子系表面活性剂能够提高油墨对被记录介质的渗透性和固定性，并且能够使采用喷墨记录方法附着在被记录介质上的油墨的涂液的形状接近圆形，所以可以优选使用。

【0095】另外，非离子系表面活性剂中，从具有适当保持表面张力和界面张力的能力优异且几乎没有起泡性这样的特性角度出发，可以更加优选使用炔二醇系表面活性剂。作为炔二醇系表面活性剂，可举出2,4,7,9-四甲基-5-炔炔-4,7-二醇、3,6-二甲基-4-炔炔-3,6-二醇、或3,5-二甲基-1-己炔-3-醇、2,4-二甲基-5-己炔-3-醇等。另外，炔
二醇系表面活性剂也可以利用市售品，例如，可举出 SURFYNOX 104E、104H、104A、104BC、
104PM、104PA、104PG-50、104S、420、440、465、485、SE、SE-F、504、61、DF37、CT111、
CT121、CT131、CT136、TG-6A（以上全部商品名，Air Products and Chemicals，Inc. 公司制），OLFINE
B、Y、P、A、STG、SPC、E104、E1010、PD-001、PD-002W、PD-003、PD-004、EXP. 4001、EXP. 4036、
EXP. 4051、AF-103、AF-104、AK-02、SK-14；AE-3（以上全部商品名，信化学工业株式会社
制），Acetylenol E00、E00P、E40、E100（以上全部商品名，Kawaken Fine Chemicals 株式会
社制）等。

【0096】含有表面活性剂时，其含相对颜料油墨的总质量优选为 0.1 质量 % ～ 5 质
量 %。

【0097】本实施方式的颜料油墨可以含有渗透促进剂。渗透促进剂具备进一步提高油墨对
被记录介质的润湿性而均匀涂覆的作用。由此，能够进一步降低形成的图像的油墨浓淡
不均、滞后，能够更加提高图像的发色浓度。渗透促进剂可以单独使用 1 种，也可以混合 2
种以上使用。

【0098】作为渗透促进剂，例如，可举出二元醇醚类。二元醇醚类作为渗透促进剂的效果特
别优异。作为二元醇醚类，例如，可举出乙二醇单丁基醚、二乙二醇单丁基醚、三乙二醇单乙
基醚、三乙二醇单甲基醚、三乙二醇单甲基醚、丙二醇单乙基醚、丙二醇单甲基醚、丙二醇单甲基
醚等。其中，从与本实施方式的颜料油墨中含有的成分的相容性优异的角度出发，可
以优选使用三乙二醇单丁基醚。

【0099】含有渗透促进剂时，其含相对颜料油墨的总质量优选为 1 质量 % ～ 15 质量 %。

【0100】本实施方式的颜料油墨可以含有保湿剂。作为保湿剂，例如，可举出 1,2- 链烷二
醇类、多元醇类、吡咯烷酮衍生物、脲类等。保湿剂可以单独使用 1 种，也可以混合 2 种以上
使用。

【0101】由于 1,2- 链烷二醇类提高油墨对被记录介质的润湿性，均匀地湿润的作用优异，
所以能够在被记录介质上形成优异的图像。作为 1,2- 链烷二醇类，例如，可举出 1,2- 丙二
醇、1,2- 丁二醇与 1,2- 戊二醇、1,2- 己二醇、1,2- 辛二醇等。含有 1,2- 链烷二醇类时，其含
量相对液料油墨的总质量优选为 1 质量 % ～ 20 质量 %。

【0102】将油墨用于喷墨记录装置时，从能够抑制油墨在喷头的喷嘴面的干燥固化降低孔
堵塞、喷出不良等观点考虑，可以优选使用多元醇类。作为多元醇类，例如，可举出乙二醇、
二乙二醇、丙二醇、丙二醇、丙二醇、1,3- 丙二醇、1,4- 丁二醇、1,6- 己二醇、三羟甲基
丙烷、甘油等。含有多元醇类时，其含相对颜料油墨的总质量优选为 1 质量 % ～ 30 质
量 %。

【0103】从能够抑制油墨在喷头的喷嘴面的干燥固化降低孔堵塞、喷出不良等观点考虑，
可以优选使用吡咯烷酮衍生物。作为吡咯烷酮衍生物，例如，可举出 N- 甲基 -2- 吡咯烷酮、
N - 乙基 -2- 吡咯烷酮、N - 乙烯基 -2- 吡咯烷酮、N - 丁基 -2- 吡咯烷酮、N - 乙烯基 -5-
甲基 -2- 吡咯烷酮等。含有吡咯烷酮衍生物时，其含相对颜料油墨的总质量优选为 1 质量 % ～ 10 质量 %。

【0104】将颜料油墨用于喷墨记录装置时，从能够抑制油墨在喷头的喷嘴面的干燥固化降
低孔堵塞、喷出不良等观点考虑，可以优选使用脲类。作为脲类，例如，可举出脲、硫脲、乙烯
脲、1,3- 二甲基咪唑啉酮类等。含有脲类时，其含相对颜料油墨的总质量优选为 1 质
量 % ~ 20 质量 %。
[0105] 本实施方式的颜料油墨可以含有 pH 调节剂。pH 调节剂可以使颜料油墨的 pH 值的调节变得容易。pH 调节剂可以单独使用 1 种，也可以混合 2 种以上使用。
[0106] 作为 pH 调节剂，可举出无机酸（例如，硫酸、盐酸、硝酸等）, 无机碱（例如，氢氧化锂、氢氧化钠、氢氧化钾, 氨等）, 有机碱（三乙醇胺、二乙醇胺, 二丙醇胺）等, 以及酸（例如, 己酸、柠檬酸, 琥珀酸等）等。
[0107] 作为 pH 调节剂, 上述中, 优选使用有机酸和有机碱中的至少一方。特别是在使用有机酸和有机碱时, 与无机酸和无机碱、有机酸和有机碱的组合相比, pH 缓冲能力高。因此, 组合使用有机酸和有机碱时, 进一步提高抑制 pH 值的变动的效果, 起到容易设定所希望的 pH 的效果。
[0108] 本实施方式的颜料油墨可以进一步含有防腐剂・防霉剂・防锈剂・螯合剂等。如果本实施方式的颜料油墨含有这些化合物, 则有时可进一步提高其特性。
[0109] 作为防腐剂・防霉剂, 例如, 可举出苯甲酸钠・五氯苯酚钠, 2- 羟基吡啶 -1- 氧化物钠, 山梨酸钠, 脱氢乙酸钠, 1, 2- 二苯并异噻唑啉 -3- 酮等。市售品中, 可举出 Proxel XL2、Proxel GXL（以上商品名, Avecia 公司制）, Denicide CSA, NS-500W（以上商品名, Nagase Chemtex 株式会社制）等。
[0110] 作为防锈剂, 例如, 可举出苯并三唑等。
[0111] 作为螯合剂, 例如, 可举出乙二胺四乙酸及其盐类（乙二胺四乙酸二氢二钠盐等）等。
[0112] 1.2. 染料油墨
[0113] 本实施方式的染料油墨含有水和染料。
[0114] 本实施方式的液滴喷出装置中，如后所述，并不限于仅使用 1 种染料油墨, 可使用多种染料油墨。使用多种染料油墨时, 作为多种染料油墨, 没有特别限定。例如, 可以使用色调互不相同的染料油墨, 也可以使用色调或亮度互不相同的染料油墨。作为色调互不相同的染料油墨, 例如, 可举出像青色油墨和品红色油墨那样含有的染料的种类互不相同的染料油墨。作为色度或亮度互不相同的染料油墨, 例如, 可举出像青色油墨和深青油色墨这样含有的染料的色调彼此相同但染料的含有率不同的染料油墨。
[0115] 以下, 对染料油墨中含有的成分进行说明。应予说明, 染料油墨中, 可以同样含有上述颜料油墨中含有的成分中除颜料以外的成分。因此, 对于染料油墨和颜料油墨中可以共同使用的成分, 省略其说明。
[0116] (1) 染料
[0117] 作为本实施方式的染料, 可举出以往公知的染料, 例如, 可举出直接染料、酸性染料、食用染料、碱性染料、反应性染料、分散染料、还原染料、可溶性还原染料、反应分散染料等通常喷墨记录中使用的各种染料。
[0118] 作为黄色系染料, 例如, 可举出 C. I. 酸性黄 1, 3, 11, 17, 19, 23, 25, 29, 36, 38, 40, 42, 44, 49, 59, 61, 70, 72, 75, 76, 78, 79, 98, 99, 110, 111, 127, 131, 135, 142, 162, 164, 165, C. I. 直接黄 1, 8, 11, 12, 24, 26, 27, 33, 39, 44, 50, 58, 85, 86, 87, 88, 89, 98, 110, 132, 142, 144, C. I. 活性黄 1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 37, 42, C. I. 食品黄 3, 4, C. I. 溶剂黄 15, 19, 21, 30, 109 等, 但并不限于这些。
[0119] 作为品红色系染料，例如，可举出 C.I. 酸性红 1, 6, 8, 9, 13, 14, 18, 26, 27, 32, 35, 37, 42, 51, 52, 57, 75, 77, 80, 82, 85, 87, 88, 89, 92, 94, 97, 106, 111, 114, 115, 117, 118, 119, 129, 130, 131, 133, 134, 138, 143, 145, 154, 155, 158, 168, 180, 183, 184, 186, 194, 198, 209, 211, 215, 219, 249, 252, 254, 262, 265, 274, 282, 289, 303, 317, 320, 321, 322, C.I. 直接红 1, 2, 4, 9, 11, 13, 17, 20, 23, 24, 28, 31, 33, 37, 39, 44, 46, 62, 63, 75, 79, 80, 81, 83, 84, 89, 95, 99, 113, 197, 201, 218, 220, 224, 225, 226, 227, 228, 229, 230, 231, C.I. 活性红 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 49, 50, 58, 59, 63, 64, C.I. 可溶性还原红 1, C.I. 食品红 7, 9, 14 等，但并不限于这些。

[0121] 另外，作为除品红色、青色和黄色以外的染料，例如，可举出 C.I. 酸性绿 7, 12, 25, 27, 35, 36, 40, 43, 44, 65, 79, C.I. 直接绿 1, 6, 8, 26, 28, 30, 31, 37, 59, 63, 64, C.I. 活性绿 6, 7, C.I. 酸性紫 15, 43, 66, 78, 106, C.I. 直接紫 2, 48, 63, 90, C.I. 活性紫 1, 5, 9, 10, C.I. 直接黑 154 等，但并不限于这些。

[0122] 优选本实施方式的染料能够利用分子内的磺基、羧基和磷酸基等官能团形成盐。形成盐时，优选分子内的磺基、羧基和磷酸基等与金属、氨或有机碱等各异阳离子形成盐。

[0123] 作为金属，可举出碱金属、碱土类金属。作为碱金属的例子，可举出锂、钠、钾等。作为碱土类金属，例如，可举出钙、镁等。

[0124] 作为有机碱，特别举出有机胺，例如可举出甲胺、乙胺等 C1-C3 烷胺类，单乙醇胺、二乙醇胺、三乙醇胺等单，二或三 C1-C4 烷醇胺类。

[0125] 优选本实施方式的染料具有金属盐结构。如上所述，如果染料具备金属盐结构，则改善染料的溶解性。

[0126] 另外，染料油墨的导电率也可以通过控制与金属离子形成盐的染料中的官能团数目来容易地设定。

[0127] 作为由染料产生的金属离子，优选钠离子和锂离子中至少一者。由此，能够提高染料油墨中的染料的溶解性。

[0128] 染料的含量相对于染料油墨的总质量优选为 1 质量％～20 质量％，更优选为 1 质量％～10 质量％。

[0129] 1.3. 油墨的物性

[0130] 颜料油墨和染料油墨在 20℃的粘度，分别优选为 2mPa·s～10mPa·s，更优选为 3mPa·s～6mPa·s。如果 20℃的油墨的粘度在上述范围内，则能够从喷嘴适量喷出油墨，
进一步降低发生飞行弯曲、飞散，所以可以优选用于喷墨记录装置。各油墨的粘度可以使用
振动式粘度计 VM-100AL（山一电机株式会社制），将油墨的温度保持在 20°C 来进行测定。

【0131】 2. 液滴喷出装置
【0132】 2.1. 第1实施方式
【0133】本发明的一个实施方式的液滴喷出装置具有喷头组件。以下，参照图 1～图 3 对
本发明的一个实施方式的液滴喷出装置进行说明。应予说明，以下的说明中使用的各附图
中，为了使部件为能够识别的大小，适当改变了各部件的比例尺。本实施方式中，作为本
发明的液滴喷出装置，示例喷墨打印机（以下，简称为“打印机”）。
【0134】 2.1.1. 装置构成
【0135】图 1 是表示本实施方式中的打印机 1 的构成的立体图。应予说明，该打印机 1 表
示串行打印机。
【0136】如图 1 所示，打印机 1 具有：搭载喷墨头 2 且可装卸地安装墨盒 3 的托架 4，配设在
喷墨头 2 下方的输送被记录介质 6 的压纸卷筒 5，使托架 4 沿被记录介质 6 的介质宽度方向
移动的托架移动机构 7，和将被记录介质 6 沿介质传送方向输送的介质传送机构 8。此外，
打印机 1 还具有控制该打印机 1 全体动作的控制装置 CONT。应予说明，上述介质宽度方向
是指主扫描方向（喷头扫描方向）。上述介质传送方向是指副扫描方向（与主扫描方向正交
的方向）。要求保护的技术方案中的“喷头组件”相当于本实施方式的“喷墨头 2”。
【0137】本实施方式的墨盒 3 由独立的墨盒 3a、3b、3c、3d 组成。墨盒 3a～3d 中分别填充
上述的颜料油墨和染料油墨。本实施方式中，墨盒 3a 中填充了颜料油墨，墨盒 3b 中填充了
第 1 染料油墨，墨盒 3c 中填充了第 2 染料油墨，墨盒 3d 中填充了第 3 染料油墨。
【0138】墨盒 3 的排列顺序没有特别限定，可以排列成所期望的顺序。例如，图 1 的例子中，
墨盒 3a～3d 从主扫描方向的一侧（以下，也称为“S1”）向主扫描方向的另一侧（以下，也称
为“S2”）排列成墨盒 3a、3b、3c、3d 的顺序。应予说明，第 1 染料油墨、第 2 染料油墨、和第
3 染料油墨相当于上述的染料油墨，为色调互不相同的染料油墨。
【0139】本实施方式中，墨盒的数量为 4 个，但并不限于这个数目，可以搭载所希望的数目的
墨盒。
【0140】应予说明，墨盒 3 并不限于像本实施方式这样安装在托架 4 上，代替这个例子，也
可以是安装于打印机 1 的筐体侧介由油墨供给管而供给给喷墨头 2 的类型。
【0141】托架 4 以被作为架设在主扫描方向的支撑部件的导杆 9 支撑的状态安装。另外，
托架 4 利用托架移动机构 7 而沿着导杆 9 在主扫描方向上移动。
【0142】线性编码器 10 用信号检测托架 4 在主扫描方向上的位置。该被检测的信号作为
位置信息被送信到控制装置 CONT。控制装置 CONT 根据来自该线性编码器 10 的位置信息识
别喷墨头 2 的扫描位置，控制喷墨头 2 的记录动作（喷出动作）等。另外，控制装置 CONT 是
能够可变地控制托架 4 的移动速度的构成。
【0143】图 2 是表示本实施方式的喷墨头 2 中的喷嘴面 21A 的简图。如图 2 所示，喷墨头 2
具备喷嘴面 21A。作为油墨的喷出面的喷嘴面 21A 上，排列有多个喷嘴列 16。多个喷嘴列
16 的每个喷嘴列由用于喷出油墨的多个喷嘴孔 17 组成。
【0144】多个喷嘴列 16 在每个喷嘴列，例如能够喷出不同组成的油墨。图 2 的例子中，喷
嘴列对应油墨的组成设置成 4 列，各喷嘴列沿着主扫描方向排列。具体而言，由可喷出颜料
油墨的喷嘴列 16A, 可喷出第 1 染料油墨的喷嘴列 16B, 可喷出第 2 彩料油墨的喷嘴列 16C, 可喷出第 3 染料油墨的喷嘴列 16D 组成。

[0145] 图 2 的实例中，喷嘴列 16A ～ 16D 各自在喷嘴面 21 上沿与主扫描方向正交的方向延伸，但并不限定于此，也可以在喷嘴面 21 内对与主扫描方向正交的方向赋予角度地进行配置。

[0146] 为了对每个喷嘴列改变喷出的油墨的种类，例如，可以通过更换墨盒 3a ～ 3d 的排列顺序来进行。

[0147] 通过按规定的图案排列多个喷嘴孔 17 而形成喷嘴列。本实施方式中，喷嘴孔 17 沿着喷嘴面 21A 中的与主扫描方向正交的方向并列配置，但并不限定于此，例如也可以沿着喷嘴面 21A 中的与主扫描方向正交的方向成锯齿状地配置。应予说明，构成喷嘴列的喷嘴孔 17 的数目没有特别限定。

[0148] 图 3 是表示本实施方式中的喷嘴 2 的内部构成的部分截面图。

[0149] 如图 3 所示，喷嘴 2 具备喷嘴主体 18 和连接于喷嘴主体 18 的流路形成单元 22。流路形成单元 22 具备振动板 19, 油路基板 20 和喷嘴基板 21，并且形成共用油墨室 29, 油墨供给口 30 和压力室 31。另外，流路形成单元 22 具备作为隔膜部发挥功能的隔板 32 和对共用油墨室 29 内的压力变动进行吸收的可塑部 33。喷嘴主体 18 中，形成有与固定部件 26 一起收纳驱动单元 24 的收纳空间 23 和引导油墨到流路形成单元 22 的内部流路 28。

[0150] 根据上述构成，即加压电的喷嘴 2，如果介由电磁 27 向驱动单元 24 输入驱动信号，则驱动部件 25 伸缩。由此，振动板 19 沿接近压力室 31 的方向和离开压力室 31 的方向变形 (移动)。因此，压力室 31 的容积变化，收纳油墨的压力室 31 的压力变动。通过该压力的变动从喷嘴孔 17 喷出油墨。

[0151] 应予说明，本实施方式的打印机 1 中，以具备压电式的喷嘴 2 的打印机为例进行说明，但并不限于这个例子，例如可以使用具备 BubbleJet (注册商标) 式的喷嘴等的打印机。

[0152] 回到图 1，在喷嘴 2 的移动范围中的压纸卷筒 5 的外侧区域，设定了作为喷嘴 2 的扫描起点的初始位置。在该初始位置处设置有含有盖部件 12 和擦拭部件 13 的维护单元 11。

[0153] 维护单元 11 进行以下动作：保湿动作，除刷印动作以外将喷嘴 2 用盖部件 12 覆盖抑制油墨的蒸发；冲刷动作，通过从喷嘴 2 的各喷嘴孔 17 喷出油墨到盖部件 12 上来防止由增稠油墨引起的喷嘴孔 17 的堵塞；调整喷嘴孔 17 的弯液面，使油墨从喷嘴 2 正常地喷出；吸引动作（喷嘴清洁），用盖部件 12 覆盖喷嘴 2 后，驱动未图示的吸引泵，从各喷嘴孔 17 强制吸引粘性变高的油墨、附着的杂物等来调节弯液面，使油墨从喷嘴 2 正常地喷出；擦拭动作，通过用擦拭部件 13 擦拭 (擦拭) 喷嘴 2 的喷嘴面 21A （参照图 2）来除去附着在喷嘴孔 17 附近的油墨、增稠的油墨等或进行破坏喷嘴孔 17 的弯液面而再调节弯液面的清除处理。

[0154] 图 1 的实例中，擦拭部件 13 设置在设有维护单元 11 的区域中的印刷区域侧。另外，如图 2 所示，擦拭部件 13 与喷嘴面 21A 中的喷嘴列 16A ～ 16D 并列配置。

[0155] 在本实施方式中的液滴喷出装置中使用的颜料油墨和染料油墨具有如上所述的导电率的关系。因此，即便染料油墨和颜料油墨由于擦拭等在喷嘴面 21A 混合，也难以发生
颜料的凝集，所以能够降低由颜料的凝集物引起的喷嘴孔 17 的堵塞等。其结果，本实施方式的液滴喷出装置的喷出稳定性良好。

0156 2.1.2 擦拭方法

0157 参照图 1 和图 2 对本实施方式的喷嘴面 21A 的擦拭方法进行说明。

0158 首先，喷墨头 2 根据擦拭命令等指令，向主扫描方向的 S1 侧开始移动。喷墨头 2 到达维护单元 11 的印刷区域侧时，喷墨头 2 的喷嘴面 21A 和擦拭部件 13 接触。然后，随着喷墨头 2 向主扫描方向的 S1 侧移动，按喷嘴列 16A、喷嘴列 16B、喷嘴列 16C、喷嘴列 16D 的顺序，依次被擦拭。这样，喷嘴面 21A 被擦拭部件擦拭。

0159 应予说明，示出了通过喷墨头 2 移动而利用擦拭部件 13 擦拭喷嘴面 21A 的方法，但并不限于这种方法，例如，也可以通过擦拭部件 13 移动来擦拭喷嘴面 21A。

0160 本实施方式中，如果喷嘴列 16A（用于喷出颜料油墨的喷嘴列）排列在各喷嘴列中首先被擦拭的位置，则在用于喷出颜料油墨的喷嘴列 17 内，因擦拭导致的染料油墨的混入较少。其结果，构成喷嘴列 16A 的喷嘴孔 17 中，颜料的凝集较少，所以可得到喷出稳定性优异的液滴喷出装置。

0161 另外，喷嘴列 16B、16C 和 16D 是用于喷出第 1 ～第 3 染料油墨的喷嘴列，优选以喷出的染料油墨的导电率递增的顺序从紧邻喷嘴列 16A 开始进行排列。如果这样，则颜料油墨的飞沫附着在喷嘴面 21A 上时，颜料油墨的飞沫可以到达喷出导电率最高的染料油墨的喷嘴列。另外，染料油墨的飞沫附着在喷嘴面 21A 上时，导电率最高的染料油墨的飞沫难以到达喷出颜料油墨的喷嘴列。由此，在喷嘴面 21A，颜料油墨和导电率最高的染料油墨难以混合，所以颜料凝集的发生更进一步减少。

0162 另外，当喷嘴列 16B ～16D 以喷出的染料油墨的导电率递增的顺序从紧邻喷嘴列 16A 开始进行排列时，优选喷嘴面 21A 的擦拭沿着喷嘴列排列的方向（主扫描方向）从喷嘴列 16A 开始顺次进行。此时，颜料油墨和导电率最高的染料油墨的混合在擦拭的最后进行。因此，即便由该混合产生凝集物，但凝集物对已经擦拭结束的喷嘴列的附着显著降低。其结果，本实施方式的液滴喷出装置的喷出稳定性更进一步提高。

0163 2.2 第 2 实施方式

0164 本实施方式的液滴喷出装置除喷嘴列的排列、擦拭部件的设置位置和喷嘴面的擦拭方法以外，其它与第 1 实施方式相同。以下，对于本实施方式的液滴喷出装置，对与第 1 实施方式相同的构成省略其说明，对与第 1 实施方式的主要不同点进行说明。

0165 2.2.1 装置构成

0166 图 4 是表示本实施方式的喷墨头 2 的喷嘴面 121A 的简图。在喷嘴面 121A 排列有许多喷嘴列 116。图 4 的例子中，多个喷嘴列 116 由用于喷出颜料油墨的喷嘴列 116A 和用于喷出染料油墨的喷嘴列 116B 组成。应予说明，喷嘴列并不限于 2 列，也可以进一步设置。

0167 为了喷出相互不同色调的染料油墨，沿着喷嘴列 117 排列的方向（以下，也称为“B 方向”），喷嘴列 116B 被分割成含有规定数目的喷嘴孔 117 的多个组来使用。应予说明，B 方向也可称为喷嘴面 121A 中的与主扫描方向正交的方向。

0168 图 4 的例子中，喷嘴列 116B 以 6 个喷嘴孔 117 为一个组被分割，由第 1 组 116a、第 2 组 116b 和第 3 组 116c 组成。应予说明，构成一个组的喷嘴孔 117 的数目没有特别限定。另外，对于构成组的喷嘴孔 117 的数目，每组可以相同，也可以不同。
[0169] 虽未图示，但墨盒按照能够分别从第 1 组 116a 喷出第 1 染料，从第 2 组 116b 喷出第 2 染料，从第 3 组 116c 喷出第 3 染料的方式配置。

[0170] 图 4 的例子中，喷嘴列 116a 和 116b 分别在喷嘴面 121A 上沿与扫描方向正交的方向延伸，但并不限于此，也可以在喷嘴面 121A 内对与扫描方向正交的方向赋予角度地来配置。

[0171] 本实施方式中，擦拭部件 113 配置在设置有维护单元的区域（初始位置）中的扫描方向的上游侧（参照图 1）。另外，如图 4 所示，擦拭部件 113 沿着喷嘴面 121A 中的喷嘴列 116A 和 116B 的排列方向（喷嘴面 121A 中的主扫描方向）配置。

[0172] 本实施方式的液滴喷出装置中使用的颜料油墨和染料油墨存在上述的导电率关系。因此，即使染料油墨和颜料油墨由于擦拭等在喷嘴面 121A 混合，也难以发生颜料的凝聚，所以能够降低由颜料的凝聚物引起的喷嘴孔 117 的堵塞等。其结果，本实施方式的液滴喷出装置的喷出稳定性良好。

[0173] 2.2. 擦拭方法

[0174] 参照图 1 和图 4 对本实施方式的喷嘴面 121A 的擦拭方法进行说明。

[0175] 首先，喷墨头 2 根据擦拭命令等指令，开始向初始位置的移动。当喷墨头 2 到达初始位置时，擦拭部件 113 沿着 B 方向（副扫描方向）移动至擦拭喷嘴面 121A。此时，喷嘴列 116A 和 116B 被擦拭部件 113 同时擦拭。应予说明，喷嘴列 116B 中，按第 1 组 116a、第 2 组 116b、第 3 组 116c 的顺序来擦拭。

[0176] 应予说明，显示出了通过擦拭部件 113 移动来擦拭喷嘴面 121A 的方法，但并不限于这种方法。例如，喷嘴面 121A 的擦拭也可以预先按副扫描方向移动喷墨头 2 的方式设计，通过副扫描方向移动喷墨头 2 进行。

[0177] 在此，如果接近地设置用于喷出颜料的喷嘴列 116A 和用于喷出染料的喷嘴列 116B，则沿着喷嘴孔的排列方向擦拭喷嘴列 116A 和 116B 时，有时颜料油墨和染料油墨混合。此时，如果颜料油墨和染料油墨的导电率差别大，则颜料油墨中含有的颜料在喷嘴孔 117 内凝集，有时引起喷嘴的喷出不良等。

[0178] 为了降低上述不良情况，优选第 1 组 116a、第 2 组 116b 和第 3 组 116c 按照以喷出的染料油墨的导电率递增的顺序被擦拭部件 113 擦拭的方式来排列。这样，颜料油墨和导电率最高的染料油墨的混合在擦拭的最后进行。因此，即便由于该混合产生凝集物，凝集物对已经擦拭结束的喷嘴列的附着也显著降低。其结果，本实施方式的液滴喷出装置的喷出稳定性进一步优异。

[0179] 3. 实施例

[0180] 以下，根据实施例和比较例进一步具体说明本发明，但本发明并不限于这些实施例。

[0181] 3.1. 油墨的制备

[0182] 3.1.1. 颜料油墨的制备

[0183] (1) 颜料分散液的制备

[0184] 首先加入 20 质量份作为色料的黑色颜料和 80 质量份离子交换水，混合搅拌后，使用混砂机（安川制作所株式会社制）与氧化铈微珠（直径 1.5mm）一起进行 6 小时的分散处理。其后，通过将氧化铈微珠用分离剂分离，得到颜料分散液。
（2）颜料油墨的制备

接着，以表 1 所示的配方量混合搅拌各成分，用孔径 10μm 的膜滤器进行加压过滤，得到黑色颜料油墨(K)。应予说明，表 1 中记载的单位为质量%。

3.1.2. 染料油墨的制备

以表 1 所示的配方量混合搅拌各成分，利用孔径 1.0μm 的膜滤器进行加压过滤，得到青色染料油墨(C)、品红色染料油墨(M)、第 1 黄色染料油墨(Y1)、第 2 黄色染料油墨(Y2)。

表 1
表 1 中的各成分如下所示。

（色料）
- 黑色颜料（将 Evonik Degussa 株式会社制、商品名 Printex 30 制成钾盐）
- 青色染料（C.I. 直接蓝 108 的锂盐）
品红色染料（C. I. 酸性红 57 的锂盐）
第 1 黄色染料（C. I. 直接黄 12 的锂盐）
第 2 黄色染料（C. I. 直接黄 142 的锂盐）
应予说明，上述的金属盐均可通过常用方法处理而得到。
(渗透促进剂)
三乙二醇单丁基醚
(保湿剂)
1, 2- 乙二醇
甘油
三乙二醇
三羟甲基丙烷
2- 吐咯烷酮（表面活性剂）
炔二醇系表面活性剂 A（商品名 “OLFINE E1010”，日信化学工业株式会社制）
炔二醇系表面活性剂 B（商品名 “SURFYNOL 104”，Air Products and Chemicals. Inc. 公司制）
(pH 调节剂)
三乙醇胺
氢氧化钾
水
离子交换水
3.2. 评价试验
3.2.1. 导电率的测定
利用导电率仪 DS-52（商品名，株式会社堀场制作所）测定颜料油墨和各染料油墨
在 20℃的导电率。将测定结果一并示于表 1。
3.2.2. 喷出稳定性评价
(1) 实施例 1
(2) 按照成为与图 1 所示的打印机 1 相同的构成，使用将喷墨打印机（Seiko Epson
株式会社制，商品名“PX-B500”）改型的打印机，将颜料油墨（K）、青色染料油墨（C）、品红色
染料油墨（M）和第 1 黄色染料油墨（Y1）分别填充到专用墨盘中。
(3) 然后，（a）使用了颜料油墨和全部的染料油墨的检验印刷，（b）涂嘴面的吸引动作
（喷头清洁）和涂嘴面的擦拭，（c）使用了颜料油墨和全部的染料油墨的检验印刷，（d）喷墨
打印机放置 24 小时，将以上（a）～（d）的各操作按该顺序进行 10 循环。
(4) 应予说明，用于喷出油墨的喷嘴列的排列和喷嘴面的擦拭方向如图 5 所示。图 5
是表示实施例 1 和比较例 1 （后述）中使用的喷嘴头的喷嘴面的简图。
(5) 其后，从喷嘴喷出颜料油墨和全部的染料油墨，进行检验印刷，确认喷嘴滴漏和油
墨的飞行弯曲的有无，由此进行喷出稳定性的评价。将评价结果示于表 2。另外，对于评价
基准的分类，如下所述，可以说 A 以上的评价具备实用上的使用没有问题的程度的喷出稳
定性。
“AA”：没有喷嘴滴漏和油墨的飞行弯曲。
【0224】“A”：没有喷嘴滴漏，但稍微看到油墨的飞行弯曲。
【0225】“B”：稍微看到喷嘴滴漏，看到油墨的飞行弯曲。
【0226】“C”：看到喷嘴滴漏和油墨的飞行弯曲。
【0227】（2）实施例 2
【0228】实施例 2 中，用于喷出油墨的喷嘴列的排列和喷嘴面的擦拭方向如图 6 所示，除此之外，与实施例 1 同样地进行。图 6 是表示实施例 2 和比较例 5（后述）中使用的喷墨头的喷嘴面的简图。
【0229】（3）实施例 3
【0230】实施例 3 中，用于喷出油墨的喷嘴列的排列和喷嘴面的擦拭方向如图 7 所示，除此之外，与实施例 1 同样地进行。图 7 是表示实施例 3 和比较例 6（后述）中使用的喷墨头的喷嘴面的简图。
【0231】（4）比较例 1
【0232】比较例 1 中，使用第 2 黄色染料油墨 (Y2) 代替第 1 黄色染料油墨 (Y1)，除此之外，与实施例 1 同样地进行。
【0233】（5）比较例 2
【0234】比较例 2 中，使用第 2 黄色染料油墨 (Y2) 代替第 1 黄色染料油墨 (Y1)，除此之外，与实施例 2 同样地进行。
【0235】（6）比较例 3
【0236】比较例 3 中，使用第 2 黄色染料油墨 (Y2) 代替第 1 黄色染料油墨 (Y1)，除此之外，与实施例 3 同样地进行。
【0237】3.3. 评价结果
【0238】将以上的评价试验的结果示于表 2。
【0239】表 2
<table>
<thead>
<tr>
<th>实施例1</th>
<th>使用的油墨</th>
<th>油墨的导电率(mS/cm)</th>
<th>喷嘴排列和擦拭方向</th>
<th>喷出稳定性</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.2</td>
<td>图5</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
<td></td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>实施例2</th>
<th>使用的油墨</th>
<th>油墨的导电率(mS/cm)</th>
<th>喷嘴排列和擦拭方向</th>
<th>喷出稳定性</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.2</td>
<td>图6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>实施例3</th>
<th>使用的油墨</th>
<th>油墨的导电率(mS/cm)</th>
<th>喷嘴排列和擦拭方向</th>
<th>喷出稳定性</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.2</td>
<td>图7</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
<td></td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>比较例1</th>
<th>使用的油墨</th>
<th>油墨的导电率(mS/cm)</th>
<th>喷嘴排列和擦拭方向</th>
<th>喷出稳定性</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.2</td>
<td>图5</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>比较例2</th>
<th>使用的油墨</th>
<th>油墨的导电率(mS/cm)</th>
<th>喷嘴排列和擦拭方向</th>
<th>喷出稳定性</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.2</td>
<td>图6</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>比较例3</th>
<th>使用的油墨</th>
<th>油墨的导电率(mS/cm)</th>
<th>喷嘴排列和擦拭方向</th>
<th>喷出稳定性</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.2</td>
<td>图7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0241] 表2的实施例1～3的液滴喷出装置,颜料油墨的导电率[E1 (mS/cm)]和染料油墨的导电率[E2 (mS/cm)]的关系均满足0 < (E2-E1) ≤ 3的关系。因此,从喷出稳定性试验的结果可知,实施例1～实施例3的液滴喷出装置的喷出稳定性良好。由此可知即便颜料油墨和染料油墨混合,也难以发生颜料的凝聚。

[0242] 特别是如实施例1和实施例3所示,如果按喷出的染料油墨的导电率递增的顺序来进行喷嘴面的擦拭,则喷出稳定性特别优异。

[0243] 另一方面,表2的比较例1～3的液滴喷出装置,颜料油墨的导电率[E1 (mS/cm)]和染料油墨的导电率[E2 (mS/cm)]的关系均不满足0 < (E2-E1) ≤ 3的关系。因此,喷出稳定性试验中,发生喷嘴滴漏、飞行弯曲。由此可知由于颜料油墨和染料油墨的混合,发生颜料的凝聚。

[0244] 特别是如比较例2所示,如果将喷出导电率差大的颜料油墨和染料油墨喷嘴列邻接,则喷出稳定性显著降低。

[0245] 本发明不限定于上述的实施方式，可以进行各种变形。例如，本发明包括与实施方式中说明的构成实质上相同的构成（例如，功能、方法和结果相同的构成，或者目的和效果相同的构成）。另外，本发明包括置换实施方式中说明的构成的非本质部分的构成。另外，本发明包括与实施方式中说明的构成能够起到相同的作用效果的构成或达到相同目的的构成。另外，本发明包括在实施方式中说明的构成中附加公知技术的构成。
图 2
图 4
图 7