发明名称
氯虫双酰胺及甲维盐混配乳剂及其制备方法

摘要
氯虫双酰胺及甲维盐混配新剂型，具体来说就是混配乳剂和水乳剂，由氯虫双酰胺0.1-50%；甲维盐0.1-50%；乳化剂5-25%；助溶剂1-15%；水加至100%组成；可添加增效剂1-10%；添加稳定剂1-10%；其制备方法为：先将氯虫双酰胺和甲维盐溶解在助溶剂当中；加入乳化剂；可添加增效剂及稳定剂；搅拌均匀，缓慢加入余量水，搅拌至均匀透明液体，即得乳剂；在搅拌同时用高速剪切机进行高速剪切可得水乳剂。主要应用于防治水稻、蔬菜、果树、玉米等害虫防。以水代替苯类有机溶剂，降低了产品毒性和生产成本；提高生产和贮运的安全性；两种杀虫剂相互增效；表面活性剂以及增效剂提高药剂的展着、润湿、渗透、成膜性，提高农药的利用率，减少实际用药量。
1. 一种氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述剂型的配方如下：

- 氟虫双酰胺 0.1—50%；
- 甲维盐 0.1—50%；
- 乳化剂 5—25%；
- 助溶剂 1—15%；
- 水 加至 100%。

2. 根据权利要求1所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述剂型的配方中添加增效剂 1—10%。

3. 根据权利要求2所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述乳剂的配方中添加稳定剂 1—10%。

4. 根据权利要求3所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述乳化剂为烷基酚聚氧乙烯醚系列、农乳 600 号系列、苯基苯乙烯聚氧丙稀聚氧乙烯嵌段聚合物、蓖麻油聚氧乙烯醚系列、苯乙基酚聚氧乙烯醚甲醇聚合物、异丙苯基酚聚氧乙烯醚、十二烷基苯磺酸盐中的一种或两种以上的复合物。

5. 根据权利要求4所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述助溶剂为自芳烃溶剂、C15—5 元醇、丙酮、环己酮、二甲基甲酰胺、氮甲基吡咯烷酮的任一种或两种以上的组合物。

6. 根据权利要求5所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述增效剂为增效醚、增效磷、八氯二丙醚、氟酮、嘧酮、快速渗透剂 T、脂肪醇聚氧乙烯醚、山梨酸酯、三甲基硅氧烷中的一种或两种以上的组合物。

7. 根据权利要求6所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：本发明氟虫双酰胺及甲维盐混配乳剂及水乳剂中，所述稳定剂为乙二醇、聚乙二醇、丙三醇、苯甲醛盐、黄原胶中的一种或两种以上的组合物。

8. 根据权利要求7所述的氟虫双酰胺及甲维盐混配乳剂及水乳剂，其特征在于：所述水是为自来水、地下水、去离子水、蒸馏水中的任意一种。

9. 根据权利要求8所述的氟虫双酰胺及甲维盐混配乳剂，其特征在于：所述乳剂的制备方法如下：

1) 将氟虫双酰胺和甲维盐溶解在助溶剂中；
2) 加入乳化剂；
3) 加或不加增效剂；
4) 加或不加稳定剂；
5) 搅拌均匀，缓慢加入余量水，充分搅拌至均匀透明液体，即得氟虫双酰胺和甲维盐微乳剂。

10. 根据权利要求9所述的氟虫双酰胺及甲维盐混配水乳剂，其特征在于：所述制备方法中的第 5 步用下述步骤替代：

搅拌均匀，然后用高速剪切机进行剪切剪切，剪切的同时缓慢加入余量水，充分剪切至符合水乳剂的生产标准，即得氟虫双酰胺和甲维盐水乳剂。
氟虫双酰胺及甲维盐混配乳剂及其制备方法

技术领域
[0001] 本发明涉及一种农用杀虫药，特别涉及一种氟虫双酰胺及甲维盐混配乳剂和水乳剂及其制备方法。

背景技术
[0002] 氟虫双酰胺（flubendiamide）由日本农药株式会社研发。对几乎所有的鳞翅目类害虫均具有很好的活性，不仅对成虫和幼虫都有优良的活性，而且作用速度快、持效期长。对蜜蜂毒性很低，对鲫鱼（水生生物的代表）毒性也很低。在一般用量下对有益虫没有活性（几乎无毒）。氟虫双酰胺属新型邻苯二甲酰胺类杀虫剂，激活兰尼碱受体细胞内钙释放通道，导致贮存钙离子的失控性释放。是目前为数不多的作用于昆虫细胞兰尼碱（Ryanodine）受体的化合物。对鳞翅目害虫有光谱性，与现有杀虫剂无交互抗性产生，非常适宜于现有杀虫剂产生抗性的害虫的防治。对幼虫有非常突出的防效，对成虫防效有限，没有杀卵作用。渗透性能体内后通过木质部略有传导。耐雨水冲洗。氟虫双酰胺价格比较昂贵，不利于大面积推广。

[0003] 甲维盐全称甲氨基阿维菌素苯甲酸盐。是从发酵产品阿维菌素B1开始合成的一种新型高效半合成抗生素杀虫剂，它具有超高效、低毒（制剂无毒），无残留，无公害等生物农药的特点，与阿维菌素比较首先杀虫活性提高了1～3个数量级，对鳞翅目昆虫的幼虫和其它许多害虫及螨类的活性极高，既有胃毒作用又兼触杀作用，在非常低的剂量（0.084～2g/ha）下具有很好的效果，而且在防治害虫的过程中对益虫没有伤害，有利于对害虫的综合防治，另外扩大了杀虫谱，降低了对人畜的毒性。甲维盐可以增强神经质如谷氨酸和γ-氨基丁酸（GABA）的作用，从而使大量氯离子进入神经细胞，使细胞功能丧失，扰乱神经传导，幼虫在接触后马上停止进食，发生不可逆转的麻痹，在3～4天内达到最高致死率。由于它和土壤结合紧密、不淋溶，在环境中也不积累，可以通过Translaminar运动转移，极易被作物吸收并渗透到表皮，使施药作物有长期残效，在10天以上又出现第二个杀虫致死率高峰，同时很少受环境因素如风、雨等影响。甲维盐在使用中经过大量临床发现，不能在作物的生长期间连续用药，最好是在第一期虫发于用过后，两次虫发期使用别的农药～间隔使用！

[0004] 因此，把氟虫双酰胺和甲维盐成混剂，不仅具有增效、延缓抗性的作用，还能提高使用作物的范围和扩大害虫的防治谱。农药乳剂和水乳剂是以水为基质，通过原药溶解，微乳化过程形成匀相的稳定体系。微乳剂的胶束直径小于光波长，颗粒细度小，因其助剂含量高，其药液的展着、渗透、湿润、成膜作用都有与乳油制剂和悬浮剂，其药液的有效利用率高，药效是相同剂量下乳油、悬浮剂、粉剂和水分散粒剂的1.2～1.5倍。水乳剂的使用效果和其它剂型类似，但生产工艺简单成本低。微乳剂和水乳剂都是以水为基质，也降低了农药的生产成本，有利于减轻对环境污染的压力，对发展绿色农业，维持生态有重大意义。

发明内容
本发明的目的是提供一种以氯虫双酰胺和甲维盐为有效成分的氯虫双酰胺及甲维盐混配乳剂氯虫双酰胺及甲维盐混配乳剂及制备方法。

本发明氯虫双酰胺及甲维盐混配乳剂，所述乳剂的配方如下：

- 氯虫双酰胺：0.1-50%；
- 甲维盐：0.1-50%；
- 乳化剂：5-25%；
- 助溶剂：1-15%；
- 水：加至100%。

本发明氯虫双酰胺及甲维盐混配乳剂，所述乳剂的配方中添加增效剂1-10%；

本发明氯虫双酰胺及甲维盐混配乳剂，所述乳剂的配方中添加稳定剂1-10%；

本发明氯虫双酰胺及甲维盐混配乳剂，其中，所述乳化剂为烷基酚聚氧乙烯醚系列、农乳600号系列、三苯基苯酚聚氧乙烯醚系列、乙氧基聚氧乙烯醚系列、苯乙基酚聚氧乙烯醚系列、十二烷基苯磺酸盐中的一种或两种以上的复合物。

本发明氯虫双酰胺及甲维盐混配乳剂，其中，所述助溶剂为苯甲酸、丙酸、环己酮、二甲基甲酰胺、氯甲基吡咯烷酮的任一种或两种以上的组合物。

本发明氯虫双酰胺及甲维盐混配乳剂，其中，所述稳定剂为C1-5 一元醇、丙酮、环己酮、二甲基甲酰胺、氯甲基吡咯烷酮的任一种或两种以上的组合物。

本发明氯虫双酰胺及甲维盐混配乳剂，其中，所述水为自来水、地下水、去离子水、蒸馏水中的任意一种。

将氟虫双酰胺和甲维盐溶解于助溶剂中；

加入乳化剂；

加或不加增效剂；

加或不加稳定剂；

搅拌均匀，缓慢加入余量水，充分搅拌至均匀透明液体，即得氟虫双酰胺和甲维盐微乳剂。

本发明氟虫双酰胺及甲维盐混配乳剂的制备方法中的第5步用上述步骤替代。

搅拌均匀，然后用高速剪切机进行剪切，剪切的同时缓慢加入余量水，充分剪切至符合乳剂的生产标准，即得氟虫双酰胺和甲维盐乳剂。

本发明氟虫双酰胺及甲维盐混配乳剂的应用为防治水稻化螟虫、大螟、三化螟、稻飞虱、蔬菜甜菜夜蛾、菜小菜蛾、玉米钻心虫、玉米虫、豆角豆荚螟、瓜绢螟、蚜虫、红粉虱、蓟马、跳甲等害虫。因为以水代替大量易燃的苯类有机溶剂，降低了产品毒
具体实施方式

[0030] 下面结合实施例对本发明氟虫双酰胺及甲维盐混配乳剂作更详尽的说明。

[0031] 实施例 1-3 为微乳剂。

[0032] 实施例 1

[0033] 12%氟虫双酰胺甲维盐微乳剂

[0034] 配方：

[0035] 氟虫双酰胺 8%；
[0036] 甲维盐 4%；
[0037] 环己酮 10%；
[0038] 二甲基甲酰胺 (DMF) 5%；
[0039] 农乳 602 15%；
[0040] 脂肪醇聚氧乙烯醚 (10) 醚 (AEO-10) 10%；
[0041] 水 加至 100%。

[0042] 制备方法：将氟虫双酰胺和甲维盐原药用环己酮溶解后，加入 DMF，搅拌均匀后，
再加入乳化剂农乳 602 和增效剂脂肪醇聚氧乙烯醚 (AEO-10)，搅拌均匀，缓慢加入余量水，
充分搅拌至均匀透明液体。

[0043] 实施例 2

[0044] 16%氟虫双酰胺甲维盐微乳剂

[0045] 配方：

[0046] 氟虫双酰胺 12%；
[0047] 甲维盐 4%；
[0048] 丙酮 10%；
[0049] DMF 5%；
[0050] 壬基酚聚氧乙烯醚 (NP-10) 15%；
[0051] 602 8%；
[0052] 水 加至 100%。

[0053] 制备方法：将氟虫双酰胺和甲维盐原药用丙酮溶解后，加入 DMF，搅拌均匀后，再
加入乳化剂壬基酚聚氧乙烯醚 (NP-10) 和农乳 602，搅拌均匀，缓慢加入余量水，充分搅拌
至均匀透明液体。

[0054] 实施例 3

[0055] 14%氟虫双酰胺甲维盐微乳剂

[0056] 配方：

[0057] 氟虫双酰胺 8%；
[0058] 甲维盐 6%；
[0059] 环己酮 10%；
[0060] 正丁醇 5%
[0061] 辛烷基聚氧乙烯醚 (OP-10) 5%
[0062] 602 15%
[0063] 脂肪醇聚氧乙烯醚 (AE0-9) 3%
[0064] 水 加至 100%。

[0065] 制备方法：将氟虫双酰胺和甲维盐用环己酮溶解后，加入正丁醇，搅拌均匀后加入乳化剂辛烷基聚氧乙烯醚 (OP-10) 和农乳 602，以及增效剂脂肪醇聚氧乙烯醚 (AE0-9)，搅拌均匀，缓慢加入余量水，充分搅拌至均匀透明液体。

[0066] 以上乳剂理化性能如下：
[0067] 外观：淡黄色均相透明液体；
[0068] 透明度范围：-5～60℃；
[0069] 亲水亲油比：常温下贮存 2 年稳定；
[0070] 热贮稳定性：54℃（加减 2℃）两周不分层不析出；
[0071] 低温稳定性：-10～0℃两周不分层，不析出，不混浊；
[0072] 乳液稳定性：合格（200 倍液）。
[0073] 微乳剂使用的方法为喷雾，使用浓度视作物和防治对象通常使用 200～800ppm。下面结合实施例对本发明作更具体的说明，但实施例不限制本发明，实施例中的百分数均为质量百分数。

[0074] 实施例 4
[0075] 水乳剂可用下述制备方法制备：先将氟虫双酰胺和甲维盐溶解在助溶剂当中，加入乳化剂，加或不加增溶剂，加或不加稳定剂，然后用匀速剪切机进行剪切，同时缓慢加入余量水，充分剪切搅拌至符合水乳剂生产标准，既得氟虫双酰胺和甲维盐水乳剂。该水乳剂使用的方法为喷雾，使用浓度视作物和防治对象通常使用 200～800ppm。下面结合实施例对本发明作更具体的说明，但实施例不限制本发明，实施例中的百分数均为质量百分数。

[0076] 实施例 4
[0077] 12%氟虫双酰胺甲维盐水乳剂

[0078] 配方：
[0079] 氟虫双酰胺 8%
[0080] 甲维盐 4%
[0081] 环己酮 8%
[0082] 二甲苯 5%
[0083] 602 5%
[0084] 十二烷基苯磺酸钠 3%
[0085] 水 加至 100%

[0086] 制备方法：将氟虫双酰胺和甲维盐用环己酮和二甲苯溶解后，加入农乳 602 和十二烷基苯磺酸钠（属于阴离子表面活性剂，是水乳剂生产中常用的乳化剂），搅拌均匀后用匀质剪切机进行剪切同时缓慢加入水，剪切搅拌均匀，充分搅拌至水乳剂生产标准。

[0087] 配制的水乳剂理化性能如下：
[0088] 外观：乳白色或稍带黄色牛奶状液体；
[0089] 经时稳定性，常温下贮放2年稳定；
[0090] 热贮稳定性：54℃（加减2℃）两周后不分层不析出；
[0091] 低温稳定性：-10~0℃两周不分层，不析出，不混浊；
[0092] 乳液稳定性：合格（200倍液）。
[0093] 本发明本发明氟虫双酰胺及甲维盐混配乳剂的微乳剂与乳油、悬浮剂、
分撒粒剂和粉剂比有如下优点：
[0094] 1. 大量的减少有机溶剂，降低了生产成本和对环境的污染，产品不易燃，不易爆，
生产，贮运安全。
[0095] 2. 药剂兑水后有效成分粒径比乳油制剂小100倍以上，对靶标穿透能力更强；
药液的润湿能力较乳油提高20~30倍，药液的着着性好，有效利用率高，药效好于乳油和悬
浮剂。经田间试验，12%氟虫双酰胺和甲维盐微乳剂和水乳剂比其它不同剂型的氟虫双
酰胺和甲维盐混配剂田间药效情况有较大的提高。
[0096] 12%氟虫双酰胺·甲氨基阿维菌素苯甲酸盐（8：4）不同剂型对水稻稻纵卷叶虫
防治效果

<table>
<thead>
<tr>
<th>处理</th>
<th>药前</th>
<th>药后1天</th>
<th>药后7天</th>
<th>药后14天</th>
</tr>
</thead>
<tbody>
<tr>
<td>12%WG10克/亩</td>
<td>50</td>
<td>32</td>
<td>46.67</td>
<td>3</td>
</tr>
<tr>
<td>12%WP10克/亩</td>
<td>49</td>
<td>16</td>
<td>21.77</td>
<td>12</td>
</tr>
<tr>
<td>12%SC10克/亩</td>
<td>48</td>
<td>32</td>
<td>44.44</td>
<td>5</td>
</tr>
<tr>
<td>12%ME10克/亩</td>
<td>48</td>
<td>28</td>
<td>51.39</td>
<td>1</td>
</tr>
<tr>
<td>12%EW10克/亩</td>
<td>40</td>
<td>22</td>
<td>54.17</td>
<td>2</td>
</tr>
<tr>
<td>12%EC10克/亩</td>
<td>52</td>
<td>35</td>
<td>43.91</td>
<td>2</td>
</tr>
<tr>
<td>清水对照</td>
<td>50</td>
<td>56</td>
<td>0.00</td>
<td>50</td>
</tr>
</tbody>
</table>

[0098] 以上表格可以看出，微乳剂（ME）、乳油（EC）、水乳（EW）药效最好，但乳油对环境影
响大，并且生产成本高，工信部已经停止乳油制剂发证。分散剂乳剂（WG）、悬浮剂（SC）药效
次之，相对生产成本低。可湿粉（WP）生产成本低，但药效较差。
[0099] 3. 产品复配以后，很大程度上减缓了害虫的抗药性，提高了杀虫谱，更有利于害虫
的综合防治。可广泛应用于水稻、蔬菜、果树、玉米等作物。
[0100] 4. 微乳剂和乳油剂以水为基质，减轻了乳油制剂中有机溶剂对幼虫和卵的伤
害，提高了使用安全性，喷雾时无异味，也降低对使用者的伤害。
[0101] 5. 生产加工工艺简单，降低生产成本，批量生产后经济效益明显。