(12) PATENT (11) Application No.. AU 200055212 B2

(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 763807
(54) Title
Method for data care in a network of partially replicated database systems
(51)5 International Patent Classification(s)
GO6F 017.-00
21) Application No: 200055212 (22) Application Date: 2000.05.13
(87) WIPONo: WOO00-79408
(30) Priority Data
(31 Number (32) Date (33) Country
19928035 1999 .06.18 DE
99120009 1999.10.14 EP
(43) Publication Date : 2001.01.09
(43) Publication Journal Date : 2001.03.22
(44) Accepted Journal Date : 2003 .07 .31
71 Applicant(s)
SAP Aktiengesellschaft
(72) Inventor(s)
Heinz Pauly: Rainer Brendle
(74) Agent/Attorney
GRIFFITH HACK,GPO Box 4164,SYDNEY NSW 2001
(56) Related Art
US 5873096

S 5870765

(12) NACH DEM VERTRAG UBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERQOFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation fir peistiges Eigentum
Internationales Biiro

0 0 O

(43) Internationales Verdffentlichungsdatum - (10) Internationale Versffentlichungsnummer
28, Dezember 2000 (28.12.2000) PCT WO 00/79408 A3
(51) Internationale Patentkiassifikation”: GO6F 17/30 (71) Anmelder (fiir alle Best 2 mit Ausnahme von
US): SAF AKTIENGESELLSCHAFT [DE/DE]; Neu-
{21} Internationales Al ich PCT/DEONO1552 rotistrasse 16, 69160 Walldorf (DE).

i 72) Erfinder; und
Ided: H (
(22} Internationales Anme atulms Mai 2000 (13.05.2000) (75} Erfinder/Anmelder (nur fir US): PAULY, Heinz

[DE/DE], Ellerstadter Swasse 34, 67071 Lud-
o wigshafen (DE). BRENDLE, Rainer [DE/DE]; Adal-
(25) Eioreichungssprache: Deutsch berl-Seifriz-Strasse 28, 69161 Neckargemiind (DE).

(26) Verofentlichungssprache: Dentsch (74) Anwilte: PFEIFER, Hans-Peter usw.; Beiertheimer
Allee 19, 76137 Karlsruhe (DE).
(30) Angaben zur Prioritit:
199 28 035.5 18. Juni 1999 (18.06.199) DE (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU,
99120009.8 14. Oktober 1999 (14.10,19%9) EP AZ BA, BB,BG,BR, BY,CA,CH, CN, CR, CU, CZ, DE,

[Fortsetzung auf der nichsten Seite]

(54) Titlet METHOD FOR DATA CARE IN A NETWORK OF PARTLALLY REPLICATED DATABASE SYSTEMS

(34) Bezeichnung: VERFAHREN ZUR DATENPFLEGE IN EINEM NETZWERK TEILWEISE REPLIZIERTER DATENBANK-
SYSTEME

vs re g s perr-AR7

Lapeop O Serer
s I8y 2

)-SR tifon: # Brrs i1 P- Q02 LT A

TS [@
Sovien 11" T
ﬁﬁ o e, &=
FL f
S L b [
I R H
= sc

e 2
EA
vtams} FD i - _u

. AS
i

aLre- M

A G0 0 A

) (57) Abstract: A method for data care in an offline distributed database network system (DBNS) comprising a central system (CS}

4 with a ceniral database (CD) and a plurality of node systems (NS} withi local data bases (LD), whereby the local databases (LE)} con-
tain at least partially different subsets of data from the centrat database (CD), update data for the information stored in the databases

G0 (CD, LD) of the databasc nctwaork system- (DBNS) is captured in o plurality of node systems (NS), and the update infarmation is
transferred from the node systems to the central system or from the central system ta the node systems- when an online link exists -

= in the form of replication objects which are structured into different types containing an identification key. When no online link is

I~ available, said replication objects are placed in an output line for sransmission at a Jater point in time.

-~

0

&= (57) Zusammenfassung: Verfahren zur Datenofkege in einem offline-verteilten Datenbank-Netzwerksystem (DBNS), welches ein
O Zentralsystem (CS) mit einer zentralen Datenbank (CD) und cine Mehrzah! von Knotensystem (NS) mit lokalen Dateabanken (LD)
umfafit, wobei die lokalen

[Fortsetzung auf der ndchsten Seite]

10

15

20

25

30

35

WO 00/79408 PCT/DE00/01552

Method for data maintenance in a network of partially
replicated database systems

The invention relates to a method for data maintenance
in a network of partially replicated database systems,
in particular relational database systems. The subject
matter of the invention also covers a database system
which operates using such a method, a computer program
product for such a database system, and a data storage

medium with such a computer program product.

Databases, in particular relational databases, are
widely wused for administration of data which are
processed in data processing systems. In relational
databases, the data form a large number of two-
dimensional tables, which describe a relationship. A
table may, for example, relate to an object and to data
which can be uniquely associated with this object. For
example, the customer data of a company c¢an be stored
in a “customer” table whose columns relate to different
customer attributes (name, address, contact, turnover
etc). The values for different customers form the rows
in the table. The tables contained in relational
databases relate not only to objects but also to
relationships between objects. For example, when an
crder for a specific customer is processed, the “order”
table which is generated for administration of the
orders contains a “for customer” attribute which is
used to define the customer-order relationship. Such
pointers play a major role for representing
relationships between objects which are described by
different tables in a database.

Owing to the widespread use of portable computers
{laptops), a task which often arises is to replicate
the data stored on a central database system (database
server] to a large number of local database systems

which are installed, for example, on laptops. The local

o

10

15

20

25

30

35

- 2 -

laptop database is used offline by its user (without
any continucus link to the central database server). In
the process, not only are the data from the local
database retrieved but such data are alsc medified,
added to or deleted on the basis of locally cbtained

information.

One typical example 1is customer management systems,
which are alsc referred to as SFA (Sales Force
Automation) or CRM {Customer Relation Management)
systems. Such systems are matched in particular tc the
computer-processing requirements for customer advice,
customer management and sales. This includes the
company representatives Dbeing equipped with a laptop
whose own local database contains all the data which
the respective representative requires (for example on
the basis of his sales ares and the customers who are

his responsibility).

The invention relates generally to cffline-distributed
database networks, in which the data are stored in a
number of database systems in different computers
{distributed) which are not continuocusly connected to
one another {offline}. Apart from laptops, other
staticnary or mobile computer systems, each having
their own databases, can, of course, be involved as

local database systems in such database networks.

In an offline-distributed database network, the data
are normally interchanged between the database systems
involved by means of messages. The messages are
interchanged in & star c¢onfiguration in a sc-called hub
structure, that is tc say messages are transmitted from
the local database systems only to the central database
system, where they are processed and are passed on as
required to other local database systems in the network
(“nodes”). No direct data interchange between the local
database systems takes place in & database network
having a hub structure.

-

10

15

20

25

30

35

In the following text, the central database system is
referred to as the central system. The term node
systems is used for the local database systems in the

database network.

The invention relates 1in particular to a database
network having a hub structure. This database network,
and/or the database systems invelved in it, may, of
course, be networked with further computer systems
between which the data are not interchanged using a hub
structure. The node systems in the database network
system according to the invention may also themselves
at the same time be the centrzl system of a sukordinate
database network system but likewise organized in &

star confiquration, thus producing a tree structure.

As a rule, the computer systems involved in the
database network according to the invention will not
only contain a database system but also other
applications which communicate directly with one
another (without taking into account the hub
structure). However, it 1is essential that the data
interchange which is reqguired for maintenance of the
databases involved in the database network be carried

out in a star configuration, in the manner described.

The maintenance of offline-distributed database

networks is associated with major problems.

The local databases of the node systems cannot, and
should nect, be a complete copy of the central database.
Firstly, the memory capacity is generally insufficient
for this purpose. Secondly, the continuous maintenance
of data which are not really regquired in the node
systems would lead to unacceptable computation and
connection times. Finally, security problems mean that
comprehensive data relating to a company should not be

completely replicated a number of times. This results

10

15

20

25

30

35

-4 -

in the cbject of partially and selectively replicating
the central database ¢f the central system in the local
databases of the node systems such that ecach node
system has available to it the data which it in each

case requires.

A further problem results from the fact that data
changes are recorded in different subsystems of the
network which are significant to other subsystems and
must be incorporated in their databases during the
course of data maintenance. For example, a data change
is recorded locally when a representative concludes a
deal and in consequence generates an order in his node
system database, when he records a new contact for a
custcmer in the database and deletes the previocus
contact, or when he modifies a customer’s address.
These examples show that all three change operations
which are normally carried out in database technclogy,
that 1s toc say insertion, medification {“update”} and
deletion, occur locally. Furthermecre, large amounts of
change information are generally processed 1in the
central database, for example when product data (which
are, of course, also regquired by the representatives

change, new products are introduced or Dprevious
products are discontinued. The following text uses the
term “change information” as a comprehensive
designation for the information on which the database
operations of updating, insertion and deletion are

based.

The necessity to allow local changes in each of the
databases involved leads to the data integrity between
the central system and the node systems (that is to say
the consistency of the databases involved in the
overall system] decreasing as the number of changes
made increases. In order to ensure data consistency, it
is necessary to make the contents of the offline-
distributed databases match from time to time. Since

data changes can be carried out in any computer system

10

15

20

25

30

35

- 5 -

involved in the database network, the modified or added
data must be compared with one another in the central
database and in the local databases, and modified and
new data must be interchanged as required. This data
interchange is subject, inter alia, to the following

requirements:

- all updates must be reported to those subscribers
within the overall system who require them, and

not to any other subscribers;

- new data must be inserted in all local databases

which require them, and

- all data which are no longer required in one of

the subsystems must be deleted.

The data interchange associated with the maintenance of
offline-distributed database networks 1s extremely
complex as a result of these requirements, particularly
if one remembers that a large number of computer
systems may be involved in the network. Owing to the
worldwide activity of international organizations, some
offline-distributed database networks have several
thousand subscribers, or even several tens of thousands

oI subscribers.

US Patent 5,873,096 describes a method in which the
change information is transmitted betwsen the central
system and the node systems by means of a data
construct which 15 referred to as a docking object. The
docking object contains (in the form of identification
keys (identifiers) as a cross-reference to appropriate
database contents) the change information and, at the
same time, the distribution informaticn which
determines the responsibles of the change information,
that is to say defines the node systems te which the
respective change information contained in the docking

object is intended to be transmitted. This distribution

10

15

20

25

30

-6 -
the change information in the entire database network is
collated by means of appropriate transmission and mixing
processes in a central change register (central update log) and
is distributed from there - within the central system - to
subregisters (partial update logs), the number of which
corresponds to the number of node systems. This distribution
takes place by applying the visibility rules for each individual
node. system (that is to say N times for N node systems) to every
data change. This may be either direct applicaticon of a
distribution rule coded as an SQL-SQL statement, or be carried
out as a croas-reference to a "related docking cbject". The
latter situation arises in cases in which the change information
for the docking object currently being dealt with is distributed
to the node systems in the same way as that for the related
docking cbject. The change information gathered in this way in
the subregisters is tranamitted to the individual node systems

when they set up a link to the central system.

This method, which corresponds to using the visibility rules to
filter the data contained in the central change register, allows
all the data changes (update, insert and delete) throughout the
entire system to be distributed to the node systems selectively
in accordance with predetermined rules. However, the method is
inflexible, particularly for adapting the database network
system to different requirements. Furthermore, it is highly
complex in terms of the computation times regquired. The
performance is therefore inadequate for database systems having

a large number of node systems.

It would be advantageous of an embodiment of the present
invention provided an improved method for distribution of the
required change information to the node systems in an offline-

distributed database network.

10

15

20

25

30

- '7 -
In one aspect the present invention provides a method for data
maintenance in an cffline-distributed database network system
which comprises a central system having a central database, and
a number of node systems having local databases, with the local
databases at least in some cases containing different subsets
cf the data from the central database, change information
relating to the data stored in the databases in the database
network system being recorded in a number of node systems, the
change information for an existing online connection being
transmitted as replication objects, which are structured in a
mumber of different types and contain an identification key,
from the node systems to the central system or from the central
system to the node systems, if there is no online connecticn,
the replication objects being prepared, in an outbound queue,
for subsequent transmission, the replicaticn cbjects together
with the change information being allocated as responsibles to
the node systems to which they are intended tec be transmitted
by means of at least one lookup table in a replication
algorithm in the central system, and the at least one lookup
table being updated, in a realigmment algorithm, taking account

of the change information.

The invention will be explained in more detail in the following
text with reference to an exemplary embodiment which is
illustrated in the figures. The special features of the
invention which are described in this context may be used
individually or in combination in order tc create preferred

refinements of the invention. In the figures:

Figure 1 shows a schematic illustration of the major elements
of the architecture of a database network system

according to the invention;

10

15

20

25

30

35

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10

11

12

- B -

shows the structure of replication objects
(BDocs) which are used for the purposes of

the invention;

shows a flowchart of a program module for
dealing with change informatieon obtained

locally {in & node system);

shows a flowchart of a connection manager,
which produces and monitors the temporary
connection between a node system and the

central system;

shows a flowchart cf the processing of BDocs
in the central system by means of a flow

controller;

shows a flowchart of replication of the “bulk
replication” type;

shows a flowchart of replication of the
“intelligent replication” type;

shows & flowchart of replication of the

“dependent replication” type;

shows & first part of & flowchart of a

realignment program module;

shows a continuation of the flowchart from

Figure 9;

shows a first part of a flowchart of a
program module for carrying out the

interlinkage realignment shown in Fiqure 10;

shows a c¢ontinuation of the flowchart from

Figure 11;

10

15

20

25

30

35

-9 -

Figure 13 shows a flowchart for an extractor program

module;

Figure 14 shows a flowchart for a bulk subscription

checking module;

Figure 15 shows a flowchart for an object subscription

checking module.

Figure 1 provides an overview of the architecture of a
database network system DBENS acceording to the
invention, which comprises a central system CS and a
number of node systems NS. This may be, for example, a
CRM system, with the node systems NS primarily being in
the form of the laptops used by company
representatives. These are also referred to as mobile
system clients. The representative can enter
infeormation (for example order information) in his node
system NS and retrieve reguired data (for example
relating to the customers he is working with and their
orders) in his node system NS. In order to allow these
functions to be carried out autonomously on a temporary
basis, all the data required for this purpose are

stored in a local database LD.

Bpart from mobile clients, systems other than node
systems may also be involved in the database network
system, such as stationary computer systems in the
company oOr from customers who are connected to the
central system (5 either continuously (online) or
temporarily (cffline). This allows, for example,
customers to place orders directly without this having
to be handled by any representative. The databases in
such further computer systems may also form local
databases LD in the database network system DBNS
according to the invention organized on the basis of a
hub structure (in which case they can also at the same

time be included in other networks).

10

15

20

25

30

35

- 10 -

Change information which is also significant for the
central system €S and other node systems NS is
generated in the node systems NS (independently of one
another) . Depending on the specific system
configuration, further change information <can be
generated in the central system CS itself. The central
system ensures that each node system receives the
necessary and permissible information. 1Its certral
database CD is also referred to as a consolidated
database, since it contains the “public” (with regard
to the data interchange between the databases involved
in the database network system DBNS) content of all the
local databases LD of the node systems NS (at the time
of the last data interchange). “Public” in this case
means data which are interchanged in the database
network system. The local databases may, of course,
also contain information which is not important to any
other databases involved in the database network system
CBNS and for this reason is “not public”. The central
database CD allows the local databases LD each to be
supplied with the necessary data and, if necessary,
also to reproduce the local databases LD.

The node systems NS are connected to the central system
CS &t intervals, for example every evening, via
suitable communication paths (for example telephone
lines, Internet or Intranet). In the process, the data
which have been gathered since the last connection are
transmitted to the central system CS. Furthermore, the
node system NS uses this opportunity to transfer its
own data processed in the respective preceding time
period and newly entered date from other node systems

NS or from the central system CS.

The entire data flow between the application programs
AS {application software) and the local databases LD of
the node systems NS takes place using a fransaction
layer TL implemented in the node systems. This allows
all the changes of the local database LD to be recorded

10

15

20

25

30

35

- 11 -

before they are made persistent. The data transfer from
the central systems CS to the node systems NS also
takes place exclusively via its transaction layer TL.

The transacticn layer TL is transparent, that is to say
the application data which are transmitted from the
application program AS to the local database LD are not
changed by the transaction layer TL. On the output
side, the transaction layer can interact, between
different platforms, with differently implemented local
databases LD.

In the case of the example of a CRM system, the data
interchanged within the database network relate to
business matters, for example customers, orders and the
like. They are therefore referred to as business data.
The data interchange in the database network system
DBNS takes place by means of structured replication
objects which have an identification feature {(ID key)
and which are referred to as “BDoc”. BDocs are data
containers with a respectively predetermined structure
for one BDoc type, as will be explained in more detail
in the following text. These form the atomic unit for
the replication in the database network system DBNS.
For example, a BDoc for a specific order contains data
which are associated with that order, irrespective of
how such data are present in the logical structure of
the databases LD and CD which are involved (as tables
in a relational database). The control data which are
required for operation of the node systems NS and of
the central system CS are stored in a logically
separate part of the respective databases LD and CD,

and this is referred to &s the repository.

In the exemplary embodiment illustrated in Figure 1,
the central system CS is connected to a further system,
which is referred to as OLTP-R/3. OLTP-R/3 is an ERP
(Enterprise Resource Planning) system of SAP AG,

Walldorf, Germany. Such ERP systems allow computer

10

15

20

25

30

35

- 12 -

assistance to widely differing company areas, such as
personnel, sales, 'stores etc., on the basis of a common
database, which is referred to in Figure 1 as OLTP-DB.
The central system CS of the database network system
DBNS may be connected to the ERP system OLTP-R/3 wvia,
for example, a LAN (Local Area Network).

Where the following text refers to the replication
objects used for transmission of change information as
“BDoc"”, to the central system as the “CRM system” and
to the ERP system which 1s connected to the central
system CS as “OLTP-R/3”, this is intended to be by way
of example, without any limitation to generality. The
described special features apply in general to the
functions wused in the scope of the invention for
corresponding replication objects and computer systems

even in other software environments.

The data transmissicn between the node systems NS and
the central system CS - and optionally to other
external systems as well - takes place by means of a
functional module which is referred to as gRFC ({queued
remote function call). This is a remote call in which
additional intelligent features are used to ensure that
gRFCs in a queue are processed successively and that
common data regquired for a number of calls are stored

only once in the process.

The dats processing in the central system CS takes
place using program modules, which are referred to as
“service” or as T“adapter”. A service provides a
specific function which can be applied toc a BDoc. An
adapter is a specific type of service, which also
allows connection to an external system, A dedicated
adapter exists for each external system and 1is
generated specifically for the respective BDoc type in
conjunction with BDoc modelling on the basis of

repository entries. It is wused to translate the

10

15

20

25

30

35

- 13 -

protocol and the data structure of the external system
for the central system CS.

The flow controller FC is the central component of the
CS system. Based on flow definitions FD, it ensures
that BDocs are processed by transferring incoming BDocs
in the correct sequence to the services and adapters
and, if necessary, initiating an error handling
procedure. This is done generically for all services
and adapters via the same interface. The flow
definitions FD are defined specifically for the BDoc

type in a control data memory (repository).

The BDocs transmitted by the node systems NS are stored
in an inbound queue IBQ, and are transferred from there
by means of a launcher LCH for processing by the flow

centroller FC.

The communicaticon with the ERP system OLTP-R/3 takes
place wusing an appropriate service R/3-% and two
adapters, namely an outbound adapter OLTP-ADO and an
inbound adaptey OLTP-ADI.

A consolidated database service CDS is used for storing
data in the consolidated database CD. The service CDS
does not carry out any check for data consistency when
writing data to the database CD. Such checks must be
carried out by the node systems which are transferring
data to the central system. The other program modules
do not wuse the database service CDS to read the
database CD, but an extractor module EXT, which can be

called as required.

A replication service RPS is used to replicate data
from the central system CS5 to the necessary extent in
the node systems NS. It accepts the processed BDocs and
determines their responsibles by reading from a lookup
table LUT (only the abbreviation ™“LUT” will be used

from now on in the following text). The LUT is

10

15

20

25

30

35

- 14 -

preferably a very simple two-column table which in each
case allocates the keys (Site ID) of all the
responsibles to the primary keys of the BDocs. It is
indexed and access takes place wusing logarithmic
timings, so that the responsibles of a BDoc can be read

out very quickly even if the LUT is very extensive.

If the replication service RPS finds that the
responsible allocation in the LUT must be changed as a
consequence of a BDoc which is currently being
processed, it generates a realignment Jjob for a
realignment module RA. During realignment, the
realignment module uses replication rules which are
stored in a subscription table S$T. Furthermcre, the
realignment module RA uses an extractor module to
transfer change information for the node systems NS to
the flow controller, which provides them in an outbound
queuve, which is referred to as OBQ for transmission to

the node systems NS.

Additional services 81, S2 can be implemented for
further tasks. Since the sald program modules are
defined specifically for each BDoc type, the symbols
shown in Figure 1 (for example CDS, RPS) each symbolize
a series of corresponding modules for all the BDoc
types used in the database network system. The symbol
LUT alsc preferably represents a number of lookup
tables for different BDoc types.

The programming language ABAP from SAP AG, and their
R/3 technology, are preferably used for implementing
the software in the <central system €S, This 1is
transparent to different platforms. The functions of
the central systems CS can be distributed between a
numper of machines. In particular, separate machines
can be used <for the database and for processing

requirements and system administration.

10

15

20

30

35

- 15 -

In practice, it is expedient for the machine used for
system administration toc be one which is referred to as
an administration station AS and can, for example, run

under Windows NT.

A subscription checking module sC (subscripticn
checker) is used to update the LUT when, in the course
of system administration, system changes are carried
out on the administration station which are of
importance for distribution of change information to
the responsibles. Two different types of subscription
checking module SC are preferably used for this
purpose - depending on the BDoc type - with a first
type producing changes in an LUT directly, while a
second type carries out such changes indirectly, using

the realignment module.

The structure of the BDocs will be explained in more

detail with reference to Figure 2.

An essential feature of the replication objects (BDocs)
used for the invention is that they form a logical unit
which ensures that the change information contained in
it 1is transported and processed once and once only.
Thus, in particular, the BDocs form a bracket which
ensures that data transmission to a receiver is not
reqgarded as having been successful unless it is
complete. This is an important precondition for
complete and correct replication. Without this function
of the BDocs (for example in the event of system
crashes) there would be & risk of only partially
transmitted old data being regarded as being complete.

This would lead to replication errors.

As already mentioned, a BDoc is a data container (that
is to say a predetermined structure which is filled
with different data). A distinction must be drawn
between different BDoc types with (generally) different

structures. For example, there may be “customer”,

1G

15

20

25

30

335

- 16 -

“product” etc. BDoc types. The individual examples
(entities) of the BDocs then contain the data for a

specific customer, product etc.

The BDocs are preferably used for transmitting data
between platforms and between applications, that is to
say they allow data transmission between computer
systems which use different platforms [operating system
and database administration system) and in which
different applications are implemented. In order to
ensure this can be done, the structure of the database
systems involved must be mapped in the BDocs. This is
done in the course of a preparatory process, which is
referred to as BDoc modelling. In this case, segments
of the BDocs are defined on the basis of the tables in
the databases. The segments contain links (in the form
of corresponding keys) to the corresponding tables in
the databases. Thus - according to one preferred
embodiment - the BDocs do not physically contain the
data items themselves, but links to the data stored in
the databases. However, logically this means that they

form a container for transporting the data.

For example, in a database with “offer header” and
“offer items” tables, corresponding BDocs of the “order
header” type contain a link to the “offer header”
database table (which contains the core data, for
example identification of the customer, offer number
and the date of an offer). A BDoc “order item” arranged
below the BDoc “order header” contains a link to the
“offer items” database table (in which the individual
items of the offers are stored). In simple cases, the
assoclation between tables in the databases and
segments of the BDocs which are invelved is unique at
the two ends. However, there are also situations in
which table contents are split between a number of
BDocs or contents from a number of tables are combined
in one BDoc,

-

10

15

20

25

30

35

- 17 -

Overall, the BDocs represent breakdown of the entire
(in the sense defined above) public data set of all the
database systems invelved. The term “breakdown” should
in this case be understoed in the mathematical sense
that all the public data in the database are
transferred teo a BDoc once, and only once (without any

overlap and completely).

From what has been stated above, it is clear that the
entity formed by all the BDocs forms a map of the
public data of the database systems involved in the
database network system DBNS. 1In consequence, the
structure of all the databases involved must be taken
into account, at the semantic level, in the course of
the BDoc modellirng. Furthermore, the special features
¢f the branch for which the database network is used
must be taken into account in the course of the BDoc
modelling. In practice, this is done by the software
manufacturer supplying a branch-dependent base model
which is referred to as & “template”. This is used as
the basis for user-specific adaptation in the course of

implementation of the system for z specific company.

The upper part of Figure 2 shows the structure of the
definition of the BDoc type. The structure of the EDoc
itself is shown in the lower part. Both structures are

stored in the repesitory in the central system CS.

The BDoc comprises the BDoc header BDoc-H and the BDoc
body BDoc-B. The BDoc header BDoc-H contains control
information such as the type (“customer”, “order” ...)
of the BDoc, its sender (noade system NS) and a time
stamp. For performance reasons, it is advantageous for

it also to contain a duplicate of the primary key.

The data are contained in the BDoc body BDoc-B. A flag
in the root segment is used to indicate the database
operation (update, insert or delete] to which the

change information coded in the BDoc corresponds. A

10

15

20

25

30

35

- 18 -

data record DR contains the actual data. The structure
is defined in the definition of the associated data
segment DS. The segments form a type of table view of
the actuwal physical tables. Optionally, the BDoc also
contains an error segment ES with one or more error

records ER.

The data areas have a defined length. These comprise a
key and data fields. If they contain deletion
information, only the key field contains valid data. If
they contain “insert” or “update” information, either
all the fields contain valid data or unchanged fields
contain a default value (for example 0.0). So-called
“send bits” are used to indicate whether a field is
filled or is unused. Primery keys and fields which must
be taken into account during replication and
realignment are always sent (irrespective of whether
they have been changed). Send bits are set only when
the value has actually been changed.

The definition of the BDoc type, that is the
information about the structure specific for the
respective BDoc type from hierarchically organized
elements, is contained in the BDoc type definition
BDTD, which comprises a BDoc body definition BDoc-BD
and BDoc segment definitions BDoc-SD. The BDoc body
definition BDoc-BD contains one, and only one, root
Ssegment, which contains only a single data record. This
condition must be satisfied in order to ensure that the
information contained in the BDoc can be transmitted
individually to the respective node systems, or can be
processed in some other way. For example, a “customer”
type BDoc may contain steored information about only a
single customer, 50 that the customer information can
be supplied to the appropriate node systems
individually and specifically for each individual

customer.

10

15

20

25

30

35

- 19 -

While the segments in the BDoc type definition BDTD are
structured hierarchically, there is no such hierarchy
for the process of physically passing on the BDocs. The
BDocs contain the hierarchical relationship by the data
records DR of dependent segments containing the key of

their higher-level data reccrds.

Foer the performance of the system, it is important that
the BDocs transmit logically only the respectively
required change information. This is also referred to

w

as net field transmission”. They thus contain the
complete data record for the respective entity of the
respective BDoc type ({(that is te say, for example, all
the data relating to an order) only in the case of an
insert. In the case of an update, apart from the
identification of their type and the BDoc entity - seen
logically - they «contain only the contents of the
modified data field (that is to say, for example, a
change in the street address of & customer). In the
case of a deletion, it is sufficient to transmit the

required identification keys.

The flowcharts explained in the following text relate
te the example of a CRM system. In this case, the
central system CS is alsc referred to as the “CRM

server”.

Figure 3 relates to the handling of change information
originating from the node systems NS, that is to say
which hes first been implemented in their application
program A8 (“upload”). This program section is
therefore alsc referred to as “application modification

handling”, and is part of the transaction layer TL.

After starting application modification handling (step
301), the step 302 is used to transfer data which have
been modified by the application program AS and are
intended for storage in the local database LD, by means
of the transaction layer TL. After this, in step 303 of

i0

15

20

25

30

35

- 20 -

the same commit <c¢ycle, the new information (delta
information) contained in the modified data record is
determined, and a BDo¢ 1is generated as a transfer
format in the step 304, containing - as described - a

unigue key and the modified information.

The subseguent steps 303 to 311 are carried cut in the
same commit cycle. These form a transaction, in the
sense that they must necessarily be carried out
completely, that is to say each operation element of
the transaction is carried out only if all the other

operation elements have been carried out.

In the present case, the transaction relates to the
operations 306 “send delta information in a BDoc to the
central system” and 310 “store delta informztion in the
local database LD”. Programming as a transaction
ensures that these operations are carried out only if

the execution of both operations is guaranteed.

Step 306 is followed by step 307, in which a check 1is
carried out to determine whether the relevant node
system NS is currently connected to the central system
CS {online). If the result of this check is positive, a
remcte call is immediately transmitted to the inbound
queue IBQ of the central system CS. The BDoc to be

transmitted forms an attachment t¢ the remote call.

As a rule, there will be no online c¢onnection to the
central system C5. In cases such as this, the negative
result from the check 307 means that a remote call is
placed in an ocutbound queue in step 308, and is stored
in the local database LD in the node system NS.

This queue, like all the other queues, is subject to

the feollowing conditions:

10

15

20

25

30

35

- 21 -

- The system ensures that each call to the gqueue
reaches its receiver, otherwise an error signal is

produced (guaranteed delivery).

- The calls to the queue are processed in the

predetermined sequence (in order processing)

- Each call 1is carried out once, and only once

(exactly once).

In step 310, the change information is incorporated in
the local database LD. In the process, the transaction
layer TL breaks the BDocs down into tables, with all
the data records of all the associated tables being
processed in one commit cycle. Inserts are entered in
the database by means of an 5QL statement. Changes are
incorporated net {likewise by means of an SQL

statement) .

Figure 4 shows a flowchart of the software module which
is used to produce the link which is required for the
data interchange between the computer systems involved,
to maintain this link, and to end it after completion
of the required data interchange. This module 1is
referred to as ConTransManager CTM but, for the sake of
clarity, is not shown in Figure 1. It is designed such
that it coperates fully automatically, that is to say no

further user action is required after calling the CTM.

After starting the CTM in 401, a connection service is
calied in step 402, by means of which, in step 403, a
link is produced to the central system CS. This
comprises, for example, dialling the telephone number,
IP address, password etc., and corresponds to normal
techniques. A CRM transfer service is then called, in
step 404, which ensures that the BDocs in the outbound
gueue of the transaction layer TL of the corresponding
node system are transmitted py means of a remote call.

As long as such remote calls exist, they are

10

15

20

25

30

35

22

transmitted successively in step 406, on the basis of
the check 405. If there are no further remote calls,
the response to the check 405 is negative and the
procedure goes to the check 407, to determine whether
there are any data for the corresponding node system at
the central system end. If the response to this is
affirmative, such data are transmitted to the node
system in step 408.

The check 409 “connection lost?” ensures that, if the
result 1is positive, control passes to step 402, which
produces a new connection by means of the connection
service 402. If the result is negative, the check 410
“session ended?” is used to confirm whether any other
transfer services which can be implemented in the
central system CS (such as the transmission of e-mails)
need to be called. If this is the situation and, in
consequence, the session has not yet been ended, the
next transfer service is called in step 411, otherwise

the procedure is ended (step 412).

The processing of BDocs in the c¢entral system CS is
carried out by means of the flow controller FC. A
launcher process processes the inbound gueue IBQ and
starts a flow for each received BDoc. A graph for each
BDoc type is defined in the flow definitions FD and is
used to monitor the BDocs passing through all the
defined services. This 1is done completely generically.
The specific processing depends on the defined
services, in which case the services not only transport
the BDocs, but can also modify their contents, for
example adding additional fields or removing existing
field contents. One example is the insertion of system-
wide keys for semantic integration of different
database systems, which is descrilbed in European Patent
Application 88120009.8 ™“Integrated composite database
system” from the same applicant. This application is

referred to in the sense that its contents are intended

10

15

20

25

30

35

- 23 -

to be used fully to¢ supplement the contents of the

present application.

Figure 5 shows the general features of the flow
controller FC. If, after the start 501 of the flow in
step 502, a BDoc is transferred to the flow controller
for processing, the further flow takes place on the
basis of a graph which is imported from the stored flow
definitions FD in step 503. The required services from
the flow definition are processed in accordance with
this graph. For normal BDoc types {(for example
customer, order), the flow passes, for example, through

the following services, inter alia:

a) a service R/3-S in order to make the change
information accessible to the company ERP system
as well (if relevant for this system, otherwise
the R/3 service is not defined in the flow of the

corresponding BDoc type} .

b) E service CDS in crder to make the <change
information persistent in the consolidated
database CD. For this purpose, the datakase
service CDS breaks the BDocs down into tables and
processes all the data records of all the
assoclated tables in one commit cycle. Inserts are
entered in the database by an SQL statement.
Updates are incorporated net (likewise by means of

an SQL statement) .

c) A replication service RPS, in order to enter in a
responsibles list {recipient list} the node

systems NS responsible for the change information.

The processing of all the flow services defined in the
imported graph is ensured by a loop which comprises a
check 504 ™“flow ended?” and a step 505, which is used
to call the next service if the answer to the check is
negative,

10

15

20

25

30

35

- 24 -

Once all the services have been processed, the
distribution o¢©f the <change infeormaticen to the node
systems NS, which 1is referred to in Figure 5 as
“Expleding into the field”, takes place in step 506 [as
the final step of each flcow controlled by the flow
contreller FC). In the process, the flow controller
uses a remote function call to c¢all the responsibles
using the responsibles 1list. Normally (specifically
when there is nc online connection to the node system
being called at that time) this results in the calls
being gueuwed in the outbound gueues OBQ of the
individual node systems. If an online connection
exists, the call can be passed on immediately. In the
event of an error, the procedure branches to an error
handling service in order to initiate defined error

handling actions.

In the feollowing text, Figures 6 to 15 will be used to
explain the major special features in conjunction with
selective transmission of the change information from
the central system CS to the node systems NS. The
sequence of program modules will be described which,
according to preferred embodiments of the invention,
are used to ensure that the c¢hange information is
distributed to the respective correct responsibles
within the node systems even in the event of continuous
dynamic changes to the data in the database network
system DBNS, with relatively little computation
complexity and with good performance. At the same time,
the system is intended to ensure the maximum possible
flexibility not only with regard to adaptation to the
requirements from widely differing user groups, but
also with regard te¢ subseguent adaptation of already

installed systems to match changing requirements.

In this case, the following functions play & major

role:

10

i5

20

25

30

a2
(5

- 25 -

- replication by means of a replication service RPS
- realignment by means of a realignment module RA

- extraction by means of an extract service EXT

- subscription checking by means of & subscription

checking module SC.

In the program flowcharts illustrated in Figures 6, 7
and 8, which wuse three different basic types to
describe the replication, it is assumed that there is a
specific BDoc type for processing. As already
explained, the BDoc types which are used in a specific
database network system DBNS are defined in the course
of the BDoc modelling while the system is being set up.
Replication by means of a replication service RPS is
defined specifically for the BDoc type, that is to say
a specific replication service is defined for each BDoc
type, although, of course, the same replication service
can be used for a number of BDoc types. When the
database network system DBNS is being set up, the
required replication services are generated by means of
a generic engine and control data stored in @ a
repository. Each replication service starts by the flow

controller transferring a BDoc and calling the service.

To assist understanding, the following explanatory
notes refer to a CRM system by way of example, in which
the representatives are each responsible for a specific
physical sales area. Specific customers, who are looked
after by the representatives, are located in each of

the sales areas.

When the name of a contact for a customer changes, the
change information associated with this must be
transmitted as an update to all the representatives in
the respective area. This is done in the course of

replication.

However, for some change information, it is

insufficient only to pass it on to the appropriate

10

15

20

25

30

35

- 26 -

responsibles in accordance with the current LUT. 1In
fact, the change information in many cases leads to the
LUT also having to be modified. This includes all
change information of the insert and delete types,
since the insertion of new replication object entities
(for example a new customer or a new order) must in
each case lead to appropriate updating of the lookup
table (insertion of the responsibles for the new
replication object entity, deletion of the associations
for the replication c¢bject entity which no longer
exists). Updates can also lead to adaptation of the
LUT. One exemple is when a customer moves from a sales
area A to a sales area B. First of all, this leads to
changes in the “address” field in the “customer” BDoc.
For the purposes of the invention, such an update is
taken inte account when the change data are distributed
to the responsibles by defining a corresponding data
field (for example a data field which contains the
postcode for the customer address) as a “distribution-
critical field”. As will be explained in more detail
later, z change in & field such as this can lead to
changes in the LUT. Updating of the LUT is part of the

realignment functioen.

Such an address change means that the customer data
must Dbe transmitted to all the nede systems in sales
areca B, and must be deleted from the node systems for
the previous sales ares A. This means a change to the
LUT. Thus, when & ‘“customer” type BDoc is being
processed whose address field contains a change, it is
first of all necessary tc find ocut whether this change
in a distribution-critical field actually leads to a
change to the distribution. If the answer is negative,
the change must be reported to all the node systems in
the previous (unchanged) sales area A. If the answer is
pesitive, it must be reported to all the node systems
in the new sales area B while, at the same time, it is
deleted in the node systems in the old sales area A.

10

15

20

25

30

35

- 27 -

Insert and delete operations, which are initiated in
the course of realignment, are required tc incorporate
these changes. However, preferably, they are not
carried out immediately, and an extract Jjob is
generated which is processed independently and
asynchronously by the extractor model EXT. The
extractor module produces BDocs which can be
transmitted to one of the databases involved in the
database network system DBNS in order to carry out an

insert or delete operation.

Finally, there is a need to take account of system
changes which are carried out by the system
administrator via the administration station AS. This
applies in particular tc reorganizations of the
database network system which result, for example, from
the insertion of additional node systems or from other
changes to the rules applicable to the distribution of
change information to the responsibles (which lead to a
change to the subscription table}. Changes such as this
are incorporated in the system by means of the

subscriptien checking module SC.

Figure ¢ shows the program sequence of a replication
service type which is referred to as bulk replication.
This 1is wused for BDocs which are transmitted to
specific responsibles as a function of their t%pe!(but
independently of the respective BDoc entity and its
data contents). A typical example is core data which
must be available to every company representative, for
example relating to the company products (BDoc type
“Product core data”).

Bulk BDoce such as this can be processed easily and
with minimum computation time (that is to say very
quickly) within the scope of the invention. Figure 6
shows one typical algorithm.

10

15

20

25

30

35

- 28 -

After the start 601 and transfer of the BDoc 602 by the
flow controller, the present responsibles {(current
respensibles) for the BDoc type are read from the LUT
in step 603. A filter function in the database software
can be used for this purpose. The LUT in each case
allocates the keys (Site ID) of all the responsibles
who are listed as subscribers to this BDoc type in the
subscription table to the primary keys of the BDoc
types. A common LUT, which is referred to as B-LUT
{bulk LUT} in Figure 6, is preferably used for a number
of bulk replications, or for all of them (that is to
say for a number of BDoc types, or all of them, which
is/are distributed to the responsibles in the course of

bulk replication}.

The next bulk replication step 604, inveolves a guestion
as to whether the sender of the BDoc is among the
respcnsibles for the change information contained in
it. If the answer is affirmative, the responsibles list
is entered in the header BDoc-H of the BDoc, in step
605. This is preferably physically done by cross-
reference to 2 data record, which defines the
respensibles 1list, in & responsibles list AL which

contains the keys (Site ID) for the responsibles.

It is alsc possible for the author of change
information (that is to say the node system in which
the change information contained in the BDoc was
recorded] not to be one of the responsibles and, for
this reason, for the guestion 604 to lead to a negative
result. This possibility is linked to the fact that the
system is intended to allow data interliasing. For
example, it 1is possible for & representative from a
sales area B to stand in for a colleague and enter
changes from s sales area B in the system and to use
his own laptop for this purpose, although this is
associated with sales area A.

10

15

20

25

30

35

- 29 -

In a case such as this, before the responsibles list
(step 605) is created, an extract job is placed in an
extractor queue in step 606 and leads to deletion of
the corresponding receiver information, as will be
explained in more detail further below. This is
necessary to prevent the modified data record from
remaining in the node system associated with sales area
A even though it 1is not only not required there
but - since it is not maintained - rapidly becomes out
of date and leads to data inconsistencies,

The intelligent replication illustrated in Figure 7,
and the dependent replication illustrated in Figure 8,
¢can be combined under the generic term “object
replication”. This refers to situations in which the
distribution to the responsibles is dependent not only
on the BDoc type, but on the individual BDoc entity,
that is to say the respective data object. A
distinction «can be drawn between the following

situations, in this case:

- the contents of a distribution-critical field can
lead to the LUT for this BDoc, and possibly also
for BDocs linked to it, having to be modified.
This is done by “intelligent replication”, in

which a realignment job is generated.

- Although the replication has to be carried out at
the BDoc entity level {(on an object basis), this
is done as a function of a higher-level object.
Such a relationship between the replication
objects generally corresponds to a corresponding
relationship for the tables in the databases
involved 1in the database network system. One
typical example is orders, which are always linked
to & customer (orders exist only from a customer).
For this reason, all the orders from & customer
must be distributed to the responsibles in

precisely the same way as the customer data

10

15

20

25

30

35

- 30 -

themselves. The BDoc type “order” is, however,
used for a large number of orders from different
customers. Each entity of this type contains a
field for identification (GUID} of the customer,
which indicates the Thigher-level replication
object for which a relationship exists, and which

is used for distribution to the responsibles.

Figure 7 shows an algorithm for intelligent
replication. Once the service has been started 701 and
the BDoc transferred (field 702}, this is followed by a
question asking for the database operation type
(defined in a field in the BDoc).

If this is an insert or a delete, a realignment jcb is
generated in step 704. This does not mean that
realignment is carried out immediately. In fact, a
command 1s just produced which is ©placed in a
realignment queue RAQ and is processed asynchronously,

at any desired time.

It the database operation coded in the BDoc is an
update, a question 706 is asked to determine whether a
distribution-critical field has been modified. If the
answer 1s positive, a realignment Jjob is once again
generated in step 704.

The preductien of a realignment job is always followed
by a question 707 asking whether the BDoc contains a
link to oc¢ther BDocs (replicaticon objects). If the
answer is positive, a realignment job is also generated
for the linked object, in step 708. This relates, for
example, to situations in which the customer has based
himself in sales area A but is part of a concern whose
headguarters are in sales area B. This information is
coded in the appropriate customer BDoc by means of a
link and is used in step 708 to ensure that both the
representatives in the area A and the representatives

in the area B receive change information which is

10

15

20

25

30

35

- 31 -

important to them owing to the location of the parent

company .

In any case, the algorithm is continued in the same way
as in Figure & by reading the up-to-date valid
responsibles from the LUT (without taking into account
the changes which may result from processing of the
present BDoc) and using this as the basis, in step 710,
to create the responsibles 1list in the header of the
BDoc.

In some cases, the responsibles list contains no
entries. If, for example, the data coded in the BDoc
which is passing thrcough the algorithm illustrated in
Figure 7 relate to a new customer {generally the case
for all inserts), the O-LUT for the new replication
object does not contain any entries. Distribution to
the node systems responsible for the new customer does

not take place until realignment.

Since intelligent replication takes place at the BDoc
entity level, that is to say there must be assignments
for all the responsibles in the LUT for each entity,
this results in very extensive LUTs (for example for a
mail-order company having a large number of customers).
The entity responsible allocations for a BDoc type are
preferably combined to form a common LUT, which is
referred to as the O-LUT (cbject LUT).

It is particularly preferable for there to be one B-LUT
(address allocations of the BDeoc types distributed by
bulk replicaticn) and a large number of O-LUTs in the
central system CS, which each contain the allocation of
the responsibles (Site IDs! for each individual entity
in & BDoc type distributed by means of intelligent
replication.

Step 711 marks the end of the service (the BDoc is
handed over to the flow controller FC).

10

15

20

25

30

35

Figure 8 shows the seguence, referred to as “dependent
replication”, of a service for replication of a BDoc,
the passing on of which to the responsibles is
dependent on a higher-level BDoc (referred to as
RO = replication object in Figure 8}, In this case,
once the service has been started 801 and the BDoc
transferred (step 802), step 803 uses a lookup table to
ask for the responsibles of the higher-level BDoc (that
is to say, for example, for the customer for whom an
order is being carried out) from the LUT. The further
steps 804 to 808 correspond to the steps 604 to 608 for
bulk replication (Figure 6j.

It 1is «clear that dependent replication is a simple
algorithm, which can be carried out wvery guickly. This
is of major importance for the performance of the
overall system since, in practice, the number of

dependent replication objects is generally very high.

Figures 9 to 12 will be used to explain the functions
which are carried out by a realignment module RA. These

are broken down into two subtasks, namely:

- the updating of the LUTs on the basis of data
changes in one of the local databases LD or in the
consolidated database CD, and

- initiation of the insert and delete operations

required on the basis of such changes.

The realignment is carried out using the batch method,
asynchronously and at any desired time, which is
normally defined by the system administrator. Since the
realignment module is not monitored by the flow
controlier FC, it 1is not referred to as & service. The
process of carrying out the alignment asynchronously,
independently of the replication, is of major

importance with respect to wunifcrm coding of the

10

15

20

25

30

35

- 33 -

overall system (load balancing). If, for example, the
realignment is carried out at night, this reduces the
locad on the system at the peak usage time, thus

improving the performance.

The realignment jobs in the realignment gqueue
preferably contain only the primary key for the
respective BDoc (which uniquely identifies the BDoc
entity, for example a specific customer) and the
identification ¢f the BDoc type. The data contents of
the BDoc are checked, if required, on the basis of the
primary key from the consolidated database CD. The BDoc
type 1s the governing factor for the way in which the
data are assigned to the nodes.

Figures ¢ and 10 show the program seguence for a
realignment algorithm with the exception of the
“interlinkage” functicn, which will be explained later

with reference to Figures 11 and 12.

After the start 901, the jobs in the realignment queue
RAQ are transferred sequentially by & gueue reader, in
a step 902. Sequential processing ensures that the
sequence 1s the same as that in which the change
information cn which the realignment jobs are based

have been processed in the central system CS.

The type of assignment is then checked, in step 903,
that 1s to say the nature of the assignment between the
BDoc in the realignment queue RAQ and the node systems
N3. This assignment depends on the BDoc type. The type
of assignment tc be used for the individual BDoc types
is stored in the repository. & distinction is drawn

between the fcllowing options:

a) Direct Assignment.
This assignment is used for situations in which
the responsibles are directly dependent on the
data contents of a field in the BDoc. For example,

10

15

20

25

30

35

b}

- 34 -

the sales area field is checked to determine the
responsibles, and the responsibles are defined,
depending on the contents of this field, on the
basis of the subscription table 3T stored in the
CS repository.

Referential Assignment.

This type of assignment is used in sitwnations in
which the responsibles can primarily be read from
an already existing LUT for a higher-level
replication object but in which an intelligent
check based on data contents is alsc required. One
example is orders, which are distributed to the
responsibles who look after the respective
customers, essentially (as explained further
above) depending on the customers for which they
are being processed. If there is no need to take
account of any additional distribution criteria,
this distribution takes place as a dependent
replication, in accordance with Figure &. In these
situations, no realignment is required, and there

are no realignment jobs in the realignment gqueue,

However, there are situations in which additional
criteria must be taken into account for the
distribution to the responsibles. This applies,
for example, to networks in which the node systems
NS are used by architects. A frequent situation in
this case is where an architect is locking after a
specific building site (order) even though he is
not based in the area of the customer (building
site company) and is therefore not responsible for
this area. In this situation, the data relating to
the Dbuilding site must be distributed not
only - as dependent replication - to the node
systems located in the sales area of the customer
but also {on the basis of an intelligent check of
a specific field) to the architect responsible for
this building site.

10

15

20

25

30

35

- 35 -

c) Interlinkage.
This type o0f assignment will be explained in

conjunction with Figures 11 and 12.

In the case of a direct or referential assignment, the
program seguence jumps to steps 904 to 912, which are

carried out successively (in some cases optionally}.

In step 904, the contents of the distribution-critical
fields of the BDoc are transferred from the
consolidated database CD. The feollowing steps 905 and
906 are optional in the sense that at least one of the
steps 1is carried out depending on the nature of the
assignment and the BDecc belng processed, and in which

case step 905 may alsc be carried out mere than once.

In step 905, the new responsibles {current
responsibles) are asked for from LUTs for higher-level
replication objects SRO-LUT (Lookup table of superior
replication object}. This may be necessary more than
once if the processed BDoc contains links to a number
of higher-level cbjects (for example an order which is
being carried out for & number of customers, for
example a building site for a building site management

company) .

The new responsibles are calculated in step 906, on the
basis of direct assignment. This is done by comparing
distributicon-critical fields 1in the BDoc with a
subscription table ST which 1is stored in the
repository. Both steps 905 and 906 may be required for
a referential assignment. ©Only step 906 is carried out

for a BDoc with direct assignment.

For their part, the subscription tables ST are modified
frequently, that is to say they are highly dynamic. If,
for example, a new representative is used in a sales
area A, the system administrator carries out a

medification so that the representative XY is inserted

10

15

20

25

30

35

- 36 -

as a new subscriber for the changes relating to sales
area A. The changes to the subscription table ST which
result from this are processed by the subscription
check (Figures 14 and 15}.

Steps 907 to 909 are used to carry out the necessary
updating of the leookup table for the processed BDoc, If
the responsibles for the change information remain
unchanged, no change is required to the LUT. For this
reason, the “old” responsibles are first of &ll read
from the LUT in step 907 and a comparison is carried
out, 1in step 908, between the present and the old
responsibles, in order to determine additional (“new”)
responsibles and (“ex-") responsibles who are no longer

up-to-date.

The changes required to update the LUT are defined on
this basis in step 909. However, the update is not yet
active at this time, that is tc say the changes are not
carried out at this stage, but are only marked (by
setting a flag). This is of considerable practical
impecrtance, in particular because it is necessary to
prevent changes for a specific node system being placed
in the outbound gueue OBQ even though this has not yet
been filled with the basic data for the relevant
replication object {insert). Thus, with regard to the
example under discussion, it is necessary to prevent a
change to a contact with a customer being prepared for
transmission to a specific laptop before this laptop

contains the customer data items themselves.

The steps 910 and 911 illustrated in Figure 10 are used
to initiate the necessary insert operations for the new
responsibles, and delete operations for the ex-
responsibles. The extract jobs (see Figure 13) required
for this purpose are generated, and are placed in the
extractor queue EXQ. This in each case relates to the
BDoc currently being processed and, possibly, to BDocs

which are dependent on it.

10

15

20

25

30

35

37

Extract jobs also have to be produced for BDocs which
are dependent on the BDoc currently being processed, in
order to ensure that all the necessary informatien is
transmitted during the provision of the initial data
for a node system NS. If, for example, the data for a
new customer are being transmitted tc the responsible
representatives, the new responsibles must receive not
only the data for this customer but also further data
(for example relating to contacts, orders for the

customer and the like).

The insert operations result in all the new
respensibles receiving the entire data record for the
BDoc entity currently being processed. All the data for
this BDoc entity are deleted for the ex-responsibles.
This provides the precondition teo allow future data
changes for this replication object to be transmitted
to the new responsibles as well, and to prevent such
changes from being transmitted to the ex-responsibles.
The new responsibles and the ex-responsibles are now
therefore transferred to O-LUT, that is to say the
updating cf O-LUT, which has not yet been carried out,
is activated. This 1is preferably done in the same

commit cycle as the production of the extract jobs.

Finally, in step 912, follow-up orders are generated,
and placed in the realignment gqueue, for BDocs which
are distributed in accordance with their own rules and
are additionally dependent on higher-level replication
objects (“dependent intelligent BDocs”). One example is
situations relating to referential assignment, as has
been explained. If, for example, the BDoc currently
being processed is an order which, in the case of the
described architect system, contains e 1link to an’
architect, an additionazl realignment djob is generated
for this architect.

A further question 913 is used to find out whether the

BDoc being processed must also be replicated via

10

15

20

25

30

35

~- 38 -

interlinkage. If the answer is positive, an
interlinkage realignment takes place in step 914, and
this will be explained in meore detail with reference to
Figures 11 and 12. After completion of the interlinkage
realignment or if the response to the previous question

is negative, the service is ended (%15).

The dependent replication shown in Figure 8 allows only
1:N relationships to be processed, such as those
between a customer and the orders being processed for
that customer. However, in practice, cases of N:N
relationships frequently also occur. If, for example,
in the case of the architect system mentioned above, an
architect is respcnsible for & building site of an
“out-cof-area” customer, who 15 based outside this
architect’s area of activity, although he receives the
data for the building site (order) in the course of the
referential assignment, he does not receive the data
for the customer. He receives the customer data by
means of & link to the customer provided in the “order”
BDoc. This is an interlinkage between different BDoc
types (order-customer). However, links also frequently
exist between different entities for the same BDoc type
in corder, for example, to take account of relationships
between different customers which affect the

distribution of change information.

Tasks such as this are carried out by the program
module referred to as interlinkage. This is dependent
on appropriate links having been defined when the
system was set up, or at some later time. The
definition of 1links can also be produced by the
application software AS in the node systems NS, for
example 1f a representative finds & relationship
between customers which has not yet been taken into
account in the system. Such change information is also
coded into BDocs, is transported to the central system
CS and is processed recursively there, in order to
generate appropriate links.

10

15

20

25

30

35

- 39 -

All 1links between BDocs (of the same type or of
different types) are preferably stored in the
consolidated database CS as so-called interlinkage
table. This table contains the assignments between the
keys (GUIDs}) of all the replication objects which are
linked to one another (preferably in pairs in a two-
column table). The BDocs «contain the information
relating to links originating from them, preferably by

cross-reterence to such an interlinkage table.

This is dependent on the keys used for identificaticn
of the BDocs being unique throughout the entire system,
that is to say no key 1is used more than once, to
identify different replication object entities,
anywhere in the entire database network system (DBNS).

This precondition is, of course, satisfied for GUIDs.

Figures 11 and 12 explain the steps which were combined
as the field 914 in Figure 10. After the start of the
program module 1101, and the transfer of the BDoc (step
1102), =2ll those BDocs which are connected to one
another by links (that is to say pointers in the
consolidated database CD) are first of all combined, in
the step 1103, to form a “cluster”. Specifically, a
list is created of the primary keys of all the BDoc
entities which are 1linked to one another by links.
These may be of different BDoc types and are processed
jointly in the subseguent algorithm. This can be done
by using keys which are unigue for all types (for
example, GUIDs). This joint processing is important for
the performance of the system. The processing time can
be shortened considerably by processing the BDocs using
algorithms for all types.

Where the above text refers to “all” links being
combined by links to form a cluster this applies, of

course, only provided there are no restricticns

10

15

20

25

30

35

- 40 -

relating to the distribution of the data (for example

owing to their confidentiality).

The for-loop which is illustrated in Figure 11 and
comprises the steps 1104 to 1108 is carried out for all
the BDocs in a cluster. In this case, in & similar way
to that for steps 907 and 908 in Figure 9, the current
responsibles are determined and compared with the old

responsibles in order to define (new] responsibles

‘which have been added and (ex-) responsibles who are no

longer up-to-date. In this case, definition of the
current responsibles does not necessitate referring
back to the subscription table, but can be done
directly from the LUT of the BDoc since there is no
need for calculation of responsibkbles by means of

assignment in this algorithm.

The subsequent updating of the LUTs in step 1109 is
carried out analogously to the procedure in Figure 9.
It is important for performance that this step 1is
carried out jointly feor all the BDocs in the cluster,

once the previous loop has been processed completrely.

The steps illustrated in Figure 12 for initiation of
the required insert and delete operaticns are alsco
carried out analogously to the procedure in Figure 10
but in a further for-loop, which comprises steps 1110
to 1116, and in which all those BDocs in the cluster
for which modified responsibles result from the

previous loop are processed successively.

Since realignment is a process consuming a large amount
of computation time, parallel processing of the jobs in
the realignment queue RAQ may be expedient. This is
permissible, but care must be taken to ensure that the
processing of the realignment jobs for one BDoc entity
takes place in the same sequence as that in which the
realignment jobs were created (in the course of

replication}. In other words, the realignment jobs for

10

20

25

30

- 41 -

a replication object entity must always be processed in
the sequence in which they were produced. In the case
of parallel processing, for example, this can be
ensured by all the realignment jobs for a BDoc entity
always being placed in the same realignment gueue, and

thus necessarily being processed successively.

As explained, the realignment module RA is used not
only to update the LUTs, but alse to initiate the
insert and delete operations required as a consequence
of LUT changes. These change operations are carried out
by generating an extract Jjob, which is processed
independently and asynchronously by the extractor
module EXT. The extractor module is also used in
another context to produce BDocs which are used for
carrying out an insert or delete operation in one of

the databases involved.

The flowchart shown in Figure 13 illustrates an
algorithm that is suitable for the extractor module.
After the start of the module 1301, a job is
transferred, in step 1302, from the extractor queue EXQ
by means of a queue reader, which ensures sequential
processing. The extractor job contains the primary key
of the BDoc to which it relates and the addresses (site
IDs) of one or more node systems in which the insert or
delete operation is intended to be carried out. If this
is an insert operaticn, data for the BDoc are read from
the consolidated database CD in step 1304. Then, in
step 1305, the addresses of the responsibles are
entered in the BDoc header BDoc-H ({once again by cross-
reference to an address list AL). Finally, in step
1306, the extracted BDoc is transferred to the flow
controller FC, and the flow is started. The step 1307
marks the end of the module.

Changes to the LUT, and insert and delete operations
required on the basis of such changes can result not

just from change information transmitted from the node

10

15

24

25

30

35

- 42 -

systems NS. In fact, as already described, changes
which are made by the system administrater via the
administration station AS in many cases lead to a
change to the information distribution within the
database system. In particular, changes are frequently
required to the subscription table ST, for example when
new representatives are appointed and their laptops are
intended to be included as node systems in the database
network system DBNS, or if changes relating to the
assignment of the node systems NS to the sales areas
result (for example one or more of the representatives

changes to a different sales area).

Changes such as this are incorporated in the system by
means of a program module which is referred to as a
subscription checking module SC (subscription checker).
Figures 14 and 15 show flowcharts of algorithms for two
types of subscription checking modules SC, which are
used depending on the BDoc type. The bulk subscription
checking module illustrated in Figure 14 is used for
those BDoc types which are replicated by bulk
replication as shown in Figure &, while the object
subscription checking module illustrated in Figure 15
is used for those BDocs which are replicated by

intelligent replication as shown in Figure 7.

After the start 1401 of the bulk subscription checking
module, & bulk subscription job, generated in the
administration station AS, is transferred in step 1402.
For a BDoc distributed in the course of bulk
replication (for example product core data), this Job
contains links to all the responsibles applicable for
the current standard. In step 1403, those responsibles
registered in the bulk LUT for the appropriate BDec are
read from said bulk LUT. Then, in step 1404, the links
centained in the bulk subscription job are used tec read
the corresponding subscribers from the subscription
tabie ST. New responsibles and (ex-) responsibles who

are no longer up-te-date are determined by comparing

10

15

20

25

30

35

- 43 -

the data obtained in steps 1403 and 1404, If a
subsequent guestion 1406, asking whether there are any
new responsibles, leads to a positive result,
appropriate entries for the bulk LUT are generated, and
entered, in a step 1407. Furthermore, in step 1408,
extract Jjobs are generated and are placed in the
extractor queue EXQ, whose processing initiates the

appropriate insert operations.

In a corresponding way, 1if the answer to the further
question 140%, which asks whether ex-responsibles have
been defined, is positive, delete orders are generated
in a step 1410 and are used to delete the corresponding
entries in the bulk LUT. In this case as well,
extractor jobs are generated in a step 1411 which, when
processed, result in the production of BDocs with
delete stamps, which lead to deletion of the
corresponding data in the node systems. The step 1412
marks the end of the module.

After the start 1501 of the object subscription
checking module illustrated in Figure 15, an object
subscription Jjob generated by the administration
station AS is transferred in step 1502, and contains an
assignment between corresponding contents of
distribution-critical data fields and the relevant
responsibles. It thus contains, for example, the
statement that representatives 1, 3, 5 and 8 are
intended to be responsible for a sales area A, and
representatives 2, 4, € and 7 are intended to be

responsible for a sales area B.

In a subsequent step 1503, the keys for all those BDocs
for which these conditions are satisfied are read from
the consolidated database CD, that is to say, for
example, all the customers who have the entry A in a
data field which marks their sales area. Finally, in a
step 1504, realignment jobs for all these EDocs are
generated and are placed in the realignment gqueue RAQ,

10

15

20

25

30

- 44 -

S0 that they are processed {independently and
asynchronously} by the realignment module described
with reference to Figures 9 to 12. After this, the
module ends (1505).

The invention allows a solution, which is particularly
advantageous from a number of points of view, to the
problems associated with data maintenance in a network
of partially replicated database systems. In particular
and with good performance it allows the formation and
operation of database network systems having a very
large number of subscribers (mere than 10 GO0
subscribers) and allows extraordinarily flexible and
relatively simple matching to the requirements of the

respective database network system operator.

One characteristic element is the interaction of
program modules which coperate asynchronously and
independently of one another, each carry out a defined
task, and communicate with one another via defined
interfaces. One central function is replication on the
basis of lookup tables from which the up-to-date
responsibles (at the respective time) for a replication
object are read ({without taking account of any changes
resulting from the change information coded in the
replication object), without any processing of data
being required. If the change information results in a
change in the distribution to the responsibles in the
network system, the lookup tables are adapted by means
of @& realignment ©process which is carried out
asynchronously. Inserts and deleticons are likewise
transmitted to the relevant responsibles in the course
of realignment, once new respongibles and ex-
responsibles have been defined.

10

15

20

25

30

35

WO 00/79408 - 45 - PCT/DE00/01552

Patent Claims

Method for data maintenance in an offline-
distributed database network system (DBNS) which
comprises a central system (CS) having & central
database (CD), and a number of nocde systems (NS)
having local databases (LD), with

the local databases (LD) at least in some cases
containing different subsets of the data from the
central database (CD),

change information relating to the data stored in
the databases (CD, LD) in the database network
system (DBNS) being recorded in a number of node
systems (NS),

the change informaticn for an existing eonline
connecticn being transmitted as replication
objects, which are structured in a number of
different types and contain an identification key,
from the node systems to the central system or
from the central system to the node systems,

if there is no online connection, the replicatiocn
objects being prepared, in an outbound queue, for
subsequent transmission,

the replication objects together with the change
information being allocated as responsibles to the
node systems (NS) to which they are intended to be
transmitted by means of at least one lookup table
(LUT) in a replication algorithm in the central
system (CS), and the at least one lockup table
being updated, in a realignment algorithm, taking

account of the change information.,

Method according to Claim 1, in which the
replication objects form a breakdown of all the
data sets which are public between the databases
(CD, LD) in the database network system (DBNS).

10

15

20

25

30

35

- 46 -

Method according to one of Claims 1 or 2, in which
the replication objects contain an identification
of their type and identification of the database
operation update, insert or delete, which
corresponds to the change information coded in the
replication object,

Method according to cne of the preceding claims,
in which the processing of the replication objects
in the central system (CS) is controlled by means
of a flow controller (FC) in accordance with =a
flow definition (FD) which is specific for the
type of replication object.

Method according to one of the preceding claims,
in which remote <calls (gRFC) are used for
transmitting change information from the central
system (CS) to the node. systems (NS) and are
designed such that common data items which are
required for a number of calls in an outbound

gueue need be stored only once.

Method according to one of the preceding claims,
in which at least two types of lookup tables are
used, of which a first type (B-LUT) contains an
allocation between types of replication chjects
and the responsibles, and a second type (O-LUT)
contains an allocation between entities of

replication cbjects and the responsibles.

Method according to Claim 6, in which a number cof
lookup tables of the second type (0-LUT) are used,
which each contain allocations between the
entities of a replication object type and the
responsibles of the entities.

Methed according to one of Claims 6 or 7, in which
different types of replication algorithms are

i0

15

20

25

30

35

10.

11.

12.

- 47 -

carried out depending on the type of replication
cbject, with

a first replication algorithm type (bulk
replication} being used to allocate &z specific
subset of the replicatiocn objects to the
responsibles as a function of the type of said
replication objects, using a lookup table of the
first type (B-LUT), and a second replication
algorithm type (intelligent replication) .being
used to allocate a specific subset of replication
objects, which does not overlap the first subset,
to the responsibles as a function of their entity
using a lookup table of the second type (O-LUT).

Method according to Claim 8, in which a third
replication algerithm type (dependent replication)
is used to allocate a specific third subset as
replication objects, which does not overlap the
first or the second subset, to the responsibles as
a function of the allccation entered for a higher-
level replication object in a lookup table of the
second type (0O-LUT).

Method according to one of the preceding claims,
in which the realignment algorithm is carried out
independently of the replication algorithm, and

asynchronously with respect to it.

Method according to one of Claims 3 to 10, in
which a job for the realignment algorithm is
generated in the zreplication algorithm on the
basis of a check (703) of the identification of
the database operation, if the database operation
which corresponds tc the change information coded
in the processed replication object is an

insertion or a deletion.

Method according to one of Claims 3 te¢ 10, in
which a Job for the realignment algorithm is

10

15

20

25

30

35

13.

14.

15.

16.

48

generated in the replication algerithm on the
basis of a check (703, 706) of the identification
of the database operation, if the database
operation which corresponds to the change
information coded in the processed replication
object is a modification (update), and the data in
at least one predetermined distribution-critical
data field of the replication object have been
changed.

Method according to Claims 8 and 11 or 12, in
which the check (703) of the identification of the
database operation is carried out in the course of
the second replication algorithm type (intelligent
replication).

Method according tc one of Claims 10 teo 13, in
which, in the realignment algorithm, the contents
of the distribution-critical data field are
compared with distribution rules which are
predetermined in a subscription table ST, and the
lookup table (O-LUT) is updated on the basis of

this comparison.

Method according to one of Claims 10 to 14, in
which, in the realignment algorithm, a lookup
table for a replication object (G-LUT) is updated
taking account of the lookup takle (SRO-LUT) for a
higher-level replication object.

Method according to one of Claims 10 to 15, in
which, in the realignment algorithm, all the
responsibles who are up-to-date taking account of
the change information coded in the replication
object are first of all determined, these
responsibles are compared with the responsibles
listed din a lookup table (0-LUT) in order to
determine additional new responsibles and ex-

responsikbles who are no longer up-to-date, and the

10

15

20

25

30

35

17.

18.

19.

20.

- 49 -

information about the new responsibles and the ex-
responsibles is provided for transfer to the
lookup table (O-LUT).

Method accerding to Claim 16, in which, in the
realignment algorithm, once the new responsibles
and the ex-responsibles have been determined, the
necessary insert operations for the new
responsibles and delete operations for the ex-
responsibles are initiated, by means of which the
complete data contents of the replication object
processed in the realignment algorithm are
transmitted to the new responsibles, and the data
contents which correspond to the replication
object are deleted in the databases of the ex-
responsibles.,

Method according to Claim 17, in which the
necessary insert or delete cperations are
initiated by means of a separate extract
algorithm, which runs independently of the
realignment algorithm and asynchronously with
respect to it, in which replication objects are
produced which are transmitted to the new
responsibles in order to carry out the insert
operation, and to the ex-responsibles in corder to
carry out the delete operations.

Method according to one of Claims 17 or 18, in
which the new responsibles and the ex-responsibles
are not transferred to the lockup table (LUT)
until assurance has been obtained that the
necessary insert or delete operations have been
carried out, before the changed lookup table is
accessed for thne first time in a replication
algorithm.

Method according to one of the preceding claims,

in which clusters of replication objects which are

10

15

20

25

30

21.

22,

23.

24.

- 50 -

linked to one another are formed in order to take
account o¢f 1links, which are coded in the
replication objects, to other replication objects
in the realignment algerithm, for which clusters
all those responsibles who are up-to-date taking
account of the change information coded in the
replication object are first of all determined in
a for-loop, these up-to-date responsibles are
compared with the responsibles listed in a lookup
table (O-LUT} in order to determine any additional
new responsibles and ex-respensibles who are no
longer up-to-date and the information about the
new responsibles and the ex-responsibles for all
the replication objects in the cluster is provided
for transfer to the lookup table (O-LUT) after
completion of the for-loop.

Method according to one of the preceding claims,
in which the replication objects are identified by
keys which are unique throughout the entire

database network system.

Computer program product, which can be loaded
directly into the memory of a digital computer and
which comprises software code sections using which
the steps of the method according to one of
Claims 1 to 20 are carried out when the product is

running on a computer.

Computer-compatible memory medium having a

computer program product according to Claim 22.

Database network system containing a computer

program product according to Claim 22,

PCT/DEQQ/Q1552

WO 00/79408

13

A
L

Wy
<

1115

Efd-d1N0

153
4]

S3aD|AS5

[T
$io

} Big

SN
{
, Wu in u L_ Sdu _unm_. e
Cortlmly o
[I_on_q.a:o_dﬂi_ s jo 8o .
e
w\ , -_doyde
82 /mzmn

SN

WO 00/79408 PCT/DE0C/01552

2115

BDTD

l 1 ¥ 101
BDoc-BD BDoc-SD
| 5> defined by << 1‘ roof segmentl‘i '|dependent l

BDoc

L——% BDac-H

Y BoocB feMU Es J»— ER

DS DR

Fig. 2

Wo 00/79408

3/15
301

302

303

Dietermination of the|
delta information

!

Create BDOC

Start transaction

Send defta
informationina |
BDOC

PCT/DE0OQ/01552

308

yes
306 309] Remote call to
310 >

Queue for remote
call to IBQ

-
Store delta e
information “

End transaction

K1k

312

ey)

e

Wo 00/79408

Fig. 4

PCT/DEOQ/01552

4113

401

Call connection

Automatic

re

dial

408

)

405

Yes

Receive remote

calis

service S~ 402

!

Set up link to the

CRM server ~ 403

K]

CallCRM

transfer service ™ 404

408

Yes S

Transmit remote
calls

Queued
remote calls
present 2

Data ready in
the central syste

407

Yes

409

Connection
lost

Session
ended?

A~

Call next
transfer service

T

WO 00/79408 PCT/DEQO/0QL552

5115
Fig. 5

(Start)/"‘501

502
Incoming
' BDOC
e
503 ~ mport e
flow graph u
Yes
Flowend 7 »-
Call next Exploding info
service the fleld
505 506

End 507

WO 00779408 PCT/DEOQ/01552

6115

Fig. 6

Coan)~

602

Bulk BDOC
from flow
control

Getcurrent |
responsibles

606

Create extract /
job for deletion

EXQ

Fill in
responsibles list

AL

End 608

WO 00/79408

operation
w ype

Criteria

706

field modified?

: IncertDelete

Yes

703

704

Create

realingnment
jcb

—

another object

709

deleted?

Create
realignment job
for the linked

o%a_ct

Read current

responsibles O-LUT
¥
Fillin
responsibles
list C AL

710
™m

PCT/DE00/01552

ig. 7

RAQ

WO 00/75408 PCT/DED0Q/01552

8/15
Fig. 8

802

Dependent ’
BDOC from
flow control

Get responsibles -/-803 Q

e

from intelligent | [
RO higher-level

Sender
responsible ?

8§06 EXQ

N

Create extract |
job for deletion

s |

Fill in
responsibles
list

End 808

o1 9/15

Reallgnment

PCT/DE00/01552

Fig. 9

ge from
queue reader,

902

Director
referential
assignment?

Transfer current

BDOCs can be
replicated using
referential lookup
tables or direct
assignment

values of
criteria fields

1

Calculate current

responsibles using

referential lookup
table

903 904 ~7

Calculate current

(f applicable)

(If applicable)

908 fand "ex-" responsibles}
3

Update lookup

resp« using ST
direct assignment BDOCs can be
906 'f . replicated using
‘ Ireferential lookup _
N tables or direct
Get “old assignment
resp from fe
907_/’ lookup tables
Determine "new"
O-LUT

table

Compare “current”
and "old" responsibles
and remove common entries

WO 00/79408 PCT/DE0O/01552

101715

O Fig. 10

810 \ Create extract job
for insert (current

BDOC and EXQ

dependent BDOCS) 4

91 1 _ Create extract job

for delete {current
BDOC and

dependent BDOCs)

912 ! RAQ
\. Create realignment)

jobs for d dent

" ineligent BDOC —R-—i [TTTTITTT]

(if applicable)

BDOC replicate Yes

via interlinkage ?

913 M 4

Interlinkage
realignment

B~

1101

Intelligent
BDOC (from
realignment),

1102

PCT/DE00/01552

Fig. 11

to the current cluster

| Determine all
1103 BDOCs belongin94|. ch

For all BDOCs
in the current
cluster

1104 ~_

J Only lookup table

'

of the current
BDOC is used

Get old
responsibles
from lookup table.

1105 —1

i

!

STy

Calculate
current
responsibles

=

Mare than one
ookup table can be
used

Determine "new"

Compare "current”
and "old” responsibles

and remove common entries

MOT—"] rerees
¥
End loop
1108 S
Update

1091 abie

O.LuT

k

4

Wo 00/75408

For all BDOCs
in the current
lcluster with modified
responsibles

Write extract

12/1§

jobs

Pependent
BDOCs 7

Create extract
jobs for
dependent BDOCs

1113

l

Dependent
intelligent
BOOC?

1114

1115

No

‘Create realignment "
jobs for dependent
intelllgent BDOCs

End loop

1116

117

PCT/DE00/01552

BXQ

RAQ

ot

iy

WO 00/79408 PCT/DE00/01552

13115

Fig. 13

EXQ

71303 |)
Getjob
from queue jjlllll]lrlli

readi/v

-~ 1304
Read data from ‘\--
the current BDOC “

ill'in N 1305
responsibles
list (from extract AL
essa

1306
Start flow for }-./-

. extracted BDOC

End

WO 00/79408 PCT/DE00/01552

Fig. 14

Get responsibles
from lookup table

!

Get responsibles
from the subscriptions
of corresponding
publicaticns

|

Get new and
ex- responsibles

1405 1407

yes | Create lookup
entries for new
responsibles

Y

1408\ rea xtrac
ntormeet F—{TTTITIITIT]

]

New
responsibles ?

EXQ
1410
yes Delete lookup / -..

entries for ex-
responsibles

Ex-
responsibles?

"o 1411 :
\‘,-‘éf:’:f::.‘;;z‘n —{TTTTTT111T]

i
EXQ

£nd

1412

Fig. 15

Start

Object
subscription
job

PCT/DE0G/01552

15115

1501

1502

Call criteria transaction
(where - clause with criteria
values of the subscription)

Get keys for
all corresponding
BDOCs

N ch
P 1503

Create realignment
Jobs fer all BDOCs

<ARNRNARRANR

[~~~ 1504

End

RAQ

1505

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

