发明名称
混凝土钢筋腐蚀无线检测方法及传感器

摘要
一种混凝土钢筋腐蚀无线检测方法及传感器，属于混凝土钢筋腐蚀检测技术领域。包含传感部分及读取部分。传感部分主要为谐振电路，该谐振电路中至少有一个电容与钢丝开关串联后连于感应线圈两端，钢丝开关的闭合和打开由钢丝是否腐蚀断开控制；读取部分运用LC振荡回路工作，根据谐振电路的原理通过阻抗的相频特性曲线测量传感部分的谐振频率，以判断钢筋是否被腐蚀断裂。本发明可以在不损伤混凝土的前提下，通过在混凝土内部电场附近埋入传感器，较为准确地确定钢筋腐蚀的程度及速率，实现了钢筋在混凝土内外的无线传输，可应用于结构工程领域中钢筋混凝土结构耐久性检测和评估。
1. 混凝土钢筋腐蚀无线检测方法及传感器，其特征在于包括以下步骤：

 (a)、封装后的传感器埋于混凝土中，其电路部分为谐振电路，该谐振电路由感应线圈及至少两个电容组成，上述电容中至少有一个电容直接连于感应线圈两端，至少有一个电容与铜丝开关串联后连于感应线圈两端，所述铜丝开关即为检测用铜丝，该铜丝未被封装而直接埋于混凝土中，铜丝开关的闭合和打开由铜丝是否腐蚀断开控制；

 (b)、传感器读取部分，运用 LC 振荡回路工作，根据谐振电路的原理通过阻抗的相频特性曲线测量第 (1) 步中所述传感器的谐振频率，即在信号发生器的整个频率范围内进行扫描，得到阻抗的相频特性曲线，如果扫描的振荡器频率正好命中了振荡回路的谐振频率，则振荡回路就开始起振，并由此在振荡器线圈的电源电流中产生一个明显的变化，根据变化值确定传感器电路的谐振频率，通过测量的谐振频率的变化可判断铜丝是否腐蚀断开。

2. 根据权利要求 1 所述的混凝土钢筋腐蚀无线检测方法，其特征在于还包括以下步骤：

 (c)、不同细度的铜丝对应着钢筋不同程度的腐蚀，利用系列钢丝分别与相应电容串联再并联，以指示钢筋的多个腐蚀状态，从而推断钢筋腐蚀程度与速率。

3. 混凝土钢筋腐蚀无线检测传感器，其特征在于组成如下：

 (a)、传感器部分：由封装体 (5)、封装体 (5) 内的谐振电路组成，谐振电路由感应线圈 (1) 及至少两个电容组成，上述电容中至少有一个电容直接连于感应线圈 (1) 两端，至少有一个电容与铜丝开关串联后连于感应线圈 (1) 两端，所述铜丝开关即为检测用铜丝，该铜丝未被封装而直接埋于混凝土中，铜丝开关的闭合和打开由铜丝是否腐蚀断开控制；

 (b)、传感器读取部分：感应线圈 (7)、电阻 (8) 及信号发生器 (9) 串联成一回路，示波器 (10) 连接在感应线圈 (7) 两端，与之并联。
4. 根据权利要求3所述的混凝土钢筋腐蚀无线检测传感器，其特征在于：所述钢筋开关为多根由细至粗的钢筋，它们分别与相应电容串联后并联。
混凝土钢筋腐蚀无线检测方法及传感器

技术领域

本发明涉及一种混凝土钢筋腐蚀无线检测方法及传感器，属于混凝土钢筋腐蚀
检测技术领域，可对任何环境下钢筋混凝土构件中的钢筋腐蚀情况进行长期检测
而不损伤混凝土，应用于结构工程领域中钢筋混凝土结构的耐久性检测和评估。

背景技术

钢筋混凝土中的钢筋腐蚀是影响结构耐久性的主要影响因素之一。目前其研
究手段中比较成熟的非破损检测方法主要集中在半电位法、混凝土电阻法等通过
测定钢筋混凝土腐蚀电化学特性来确定混凝土中钢筋的腐蚀程度或速度的
化学检测法等，由于其传输线路埋在结构中，检测工作量大，受到外界因素影响大，
且在施工过程中容易损坏。

发明内容：

本发明的目的在于提供一种混凝土钢筋腐蚀无线检测方法及传感器，采用无
线传输的方式，在施工中只需将封装好的传感器固定在钢筋笼上就可以按照普
通的施工方法进行施工，可以大大降低施工过程及结构本身的影响。

一种混凝土钢筋腐蚀无线检测方法，其特征在于包括以下步骤：

(a)、封装后的传感器埋于混凝土中，其电路部分为谐振电路，该谐振电路
由感应线圈及至少两个电容组成，上述电容中至少有一个电容直接连接感应线圈
两端，至少有一个电容与钢丝开关串联后连于感应线圈两端，所述钢丝开关即为
检测用钢丝，该钢丝未被封装而直接埋于混凝土中，钢丝开关的闭合和打开由钢
丝是否腐蚀而控制；

(b)、传感器读取部分，运用LC振荡回路工作，根据谐振电路的原理通过阻
抗的相频特性曲线测量第（1）步中所述传感器的谐振频率，即振荡器发生器的整
个频率范围内进行扫频，得到阻抗的相频特性曲线，如果扫频的振荡器频率正好
命中了振荡回路的谐振频率，则振荡回路就开始起振，并由此在振荡器线圈的电
源电流中产生一个明显的变化，根据变化值确定传感器电路的谐振频率，通过测量的谐振频率的变化可判断钢丝是否腐蚀断开。

一种混凝土钢筋腐蚀无线检测传感器，其特征在于组成如下：

(a) 传感器部分：由传感器部分、传感器线圈的自然电容组成，自然电容线圈 I 及至少两个自然电容组成，上述电容中至少有一个自然电容串联于自然电容线圈 I 两端，至少有一个自然电容与钢丝开关串联后串联于自然电容线圈 I 两端，所述钢丝开关即为检测用钢丝，该钢丝未被封装而直接埋于混凝土中，钢丝开关的闭合和打开由钢丝是否腐蚀断开控制；

(b) 传感器读取部分：自然电容线圈 II、电阻及信号发生器串联成一回路，示波器连接在自然电容线圈 II 两端，与之并联。

本发明针对现有检测方法中传输电线埋在结构中的不足，提供一种采用无线传输的方式检测钢筋混凝土中钢筋腐蚀的方法，大大减小了检测的工作量，能比较准确、无损地检测出具体工作环境下钢筋腐蚀状态。

附图说明：

图 1 为本发明的传感器结构示意图。图 1(a) 为读取部分，图 1(b) 为传感器部分。

图 2 为本发明的可检测多个腐蚀状态的传感器结构示意图。图 2(a) 为读取部分，图 2(b) 为传感器部分。

图 1、图 2 中读取部分 (a) 完全相同。

具体实施方式：

以下结合附图对本发明的具体实施方式作进一步详细描述。

本发明采用的传感器结构如图 1，由图 1 中读取部分 (a) 和传感器部分 (b) 组成。
本发明的方法具体包括如下内容（如图1）：

(a)、传感器制作：由图1中读取部分(a)和传感部分(b)组成。

传感器部分制作：选取合适的电容，选取较粗的漆包线绕塑料芯若干圈制成电感线圈，并在线圈中间加入磁芯，选取检测用的钢丝，然后按如图1所示电路连接成回路，钢丝作为回路的开关。

传感部分中钢丝开关1也可采用一组由细至粗的并联钢丝来代替，从而可以对应指示钢筋的多个腐蚀状态。

读取部分制作：选取较粗的漆包线绕塑料芯若干圈制成电感线圈和电阻8、示波器10、信号发生器9按如图1所示电路连接成回路。

(b)、传感部分封装：在传感部分的电路焊接完成后，采用绝缘胶布将其接头裸露部分封住，以防放入塑料盒中时接触短路。然后将其放入塑料盒中，将引出线从塑料盒上预先打好的孔中穿出固定。将环氧树脂、苯二甲胺、二氧化硅按2:1:7的比例进行混合，搅拌均匀，待产生的气泡冒完后填入塑料盒中。环氧树脂用量稍微过量一些，将塑料盒盖上时将多余的环氧树脂从引线孔中挤出。待环氧树脂硬化之后将703硅橡胶涂于引线孔和盒盖处，进一步加以保护。由于除了钢丝开关1之外，传感部分的其余部分都进行了封装，而钢丝开关1则暴露在待检测钢筋附近的混凝土中，然后浇注在混凝土（6）中。由于钢丝所处的环境（包括氯浓度、氯离子浓度、温度、湿度等）和结构中钢筋相同，因此钢丝腐蚀可以反应钢筋的腐蚀状态。钢丝受腐蚀造成开关电路开路，使得传感器的谐振频率由初始频率变成了终止频率。

(c)、传感器就位：将若干传感部分分别封装好埋置于混凝土结构中的若干待监测钢筋附近。

(d)、测试：将读取部分放在混凝土外，其距离比混凝土保护层厚度略大，依靠磁芯的磁性可以很方便地将读取器线圈准确地定位到传感器正上方。然后用读取部分在整个频率范围内进行扫频，根据谐振电路的原理可以通过阻抗的相频特性曲线得到电路的谐振频率，即在整个频率范围内进行扫频，得到阻抗的相频特
性曲线，如果扫频的振荡器频率正好命中了振荡回路的谐振频率，则振荡回路就
开始起振，并由此在振荡器线圈的电源电流中产生一个明显的变化，根据变化值
确定传感器电路的谐振频率。

定期测试得到的谐振频率，若有明显的差值，则显示钢丝腐蚀状态，结合实验
得到的直径钢丝的腐蚀断裂情况与钢筋的腐蚀状态的对应关系，推断相同环
境下钢筋的腐蚀状态。

其中主要公式为：

\[f = \frac{1}{2\pi \sqrt{LC}} \]

其中：L ——传感部分电路的总电感，C ——传感部分电路的总电容。

当开关闭合时（钢丝未腐蚀），\(C = C_1 + C_2 \)

当开关打开时（钢丝腐蚀断开），\(C = C_1 \)

其中：\(C_1 ——\)图1中（2）的电容，\(C_2 ——\)图1中（3）的电容。

若采用检测多个腐蚀状态的传感器，则上述公式中\(C_2 \)为图2中多个电容（电
容II，电容III，电容IV）并联的总电容。

由上述公式知，当钢丝开关1闭合时传感部分电路的总电容较大，所测得的
频率较小，为初始频率；当钢丝开关1打开时传感部分电路的总电容变小，所测
得的频率变大，为终止频率。因此通过钢丝腐蚀前后（即钢丝开关1闭合和打开
时）所测得的频率变化来推断钢丝是否腐蚀断开；

由于开关的闭合和打开会引起电路电容的变化，从而对应的谐振频率不同。
对扫频系统来说，在振荡回路谐振频率的变化取决于扫频速率，并可调整到最佳
识别率。振荡回路的谐振频率容许偏差受制造容许偏差的限制，但是对识别的可
靠性来说是没有问题的。

影响传感器响应测量效果的主要因素是传感器内部的线圈和读取器线圈之间

7
的耦合效率和线圈的品质因数。即用于制造传感器的元件影响响应的质量。由于谐振频率变化越明显表明传感器的灵敏度越好，而谐振频率差对应的电压差最为直观地表现了谐振频率变化的明显程度。随着读取距离的增加，传感器的灵敏度下降，故选择读取距离比混凝土保护层厚度略大。

本发明通过在混凝土中钢筋处理埋入无线腐蚀传感器，并通过定期对传感器进行数据采集，可比较准确地确定钢筋腐蚀程度，包含两重含义：一为测定的钢筋腐蚀环境确实是具体检测环境下的钢筋腐蚀程度；二为对钢筋锈蚀断开的判断方法是准确的、可行的。

本发明检测传感器结构简单，加工方便，价格便宜，测试环境与实际构件环境相同，钢筋腐蚀断开的测量方法简单、直观、准确，可以通过在结构的不同部位布置以上传感器，从而很容易地判断钢筋的腐蚀状态，应用于结构工程领域中钢筋混凝土结构的耐久性检测和评估。