
(19) United States
US 2008O133489A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0133489 A1
Armstead et al. (43) Pub. Date: Jun. 5, 2008

(54) RUN-TIME PERFORMANCE VERIFICATION
SYSTEM

(75) Thomas M. Armstead, Rochester,
MN (US); Lance R. Meyer,
Rochester, MN (US); Paul E.
Schardt, Rochester, MN (US);
Robert A. Shearer, Rochester, MN
(US)

Inventors:

Correspondence Address:
IBM CORPORATION, INTELLECTUAL PROP
ERTY LAW
DEPT 917, BLDG. 006-1
3605 HIGHWAY 52 NORTH
ROCHESTER, MN 55901-7829

International Business Machines
Corporation

(73) Assignee:

(21) Appl. No.: 12/018,329

LOGINTERESTING
EVENTS

201

202

2O3 STORE EVENTS AND

INTERPRET EVENT AND
MEASURE PERFORMANCE

(22) Filed: Jan. 23, 2008
Related U.S. Application Data

Continuation of application No. 1 1/259,294, filed on
Oct. 26, 2005, now Pat. No. 7,324,922.

Publication Classification

(63)

(51) Int. Cl.
G06F 7/10 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/3; 707/E17.014
(57) ABSTRACT

A method and apparatus that allow packet based communi
cation transactions between devices over an interconnect bus
to be captured to measure performance. Performance metrics
may be determined by capturing events at various locations as
they pass through the system. Performance may be verified at
run time by computing performance metrics for captured
events and comparing such metrics to predefined perfor
mance ranges and/or self learned performance ranges. Fur
thermore, embodiments of the present invention provide for
dynamic tailoring of bus traffic to generate potential failing
conditions. For some embodiments, performance verification
as described herein may be performed in a simulation envi
rOnment.

o -

QUERY
204

SHARED
RSULTS Db

PERFORMANCE METRICS
IN SHARED Db

US 2008/O133489 A1 Jun. 5, 2008 Sheet 1 of 3 Patent Application Publication

?HEAIRHCl LIN[]

04 ||

SILNE/AE ERHT) Ld\/O

Z EKOLAECI

SESON\/>' CIENNÆVET SLNEAE ERHT) Ld\/O

Patent Application Publication Jun. 5, 2008 Sheet 2 of 3 US 2008/O133489 A1

201
-

LOGINTERESTING
EVENTS

INTERPRET EVENT AND
MEASURE PERFORMANCE

202 204
SHARED

RSULTS Db

203 STORE EVENTS AND
PERFORMANCE METRICS - - - - - - - - -

IN SHAREDDb

FIG. 2

301 GET USER DEFINED RANGES

RUNEVENTS 302

ARE
EVENTS WITHIN
USER DEFINED

RANGES

YES

END TEST
(SUCCESSFUL)

305 FIG. 3

Patent Application Publication Jun. 5, 2008 Sheet 3 of 3 US 2008/O133489 A1

DYNAMICALLY
UPDATE SELF
LEARNED
RANGES OUERYDb TO ANALYZE 401
---- EVENTS AND SELF LEARN

PERFORMANCE RANGES

402 RUNEVENTS

ARE
EVENTS WITHIN
SELF LEARNED

RANGES

TEST
(SUCCESSFUL)

405

FIG. 4

US 2008/O 133489 A1

RUN-TIME PERFORMANCE VERIFICATION
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This is a continuation of co-pending U.S. patent
application Ser. No. 1 1/259,294 filed Oct. 26, 2005, which is
herein incorporated by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention generally relates to exchang
ing packets of data on an interconnect bus connecting two
devices, and more particularly, to measuring and Verifying the
performance of Such an exchange.
0004 2. Description of the Related Art
0005. A system on a chip (SOC) generally includes one or
more integrated processor cores, some type of embedded
memory Such as a cache shared between the processor cores,
and peripheral interfaces such as an external bus interface, on
a single chip to form a complete (or nearly complete) system.
The external bus interface is often used to pass data in packets
over an external bus between these systems and an external
device Such as an external memory controller, Input/Output
(I/O) controller, or graphics processing unit (GPU).
0006. The performance of such a system may depend on
several factors which may include device characteristics,
characteristics of interconnect buses, memory hierarchy,
operating system, and various other factors. A reasonable
prediction of ranges for system performance can still be made
after considering Such factors. However, it is generally desir
able to verify that performance falls within these ranges dur
ing simulation. For example, it may be desirable to verify that
the throughput (or bandwidth) and the latency (or response
time) of communication over an interconnect bus between a
transmitting and receiving device fall within their predicted
range.
0007 Conventionally, simulation involves running pre
defined test cases modeled to emulate normal system opera
tion. During simulation, bus traffic is monitored, interesting
events on the bus are captured, and performance is measured
based on the captured events. The captured events and their
performance metrics are recorded in a simulation log. It is
only after simulation that a user can view all the bus events in
the simulation log and identify categories of events that fall
outside the predicted performance range. However, because
the information contained in the simulation logs is rather
cryptic, significant effort will be required to manually ana
lyze, identify and parse those categories of events that do not
fall within their performance range. Another problem with
conventional simulation is that predefined test cases may not
adequately test a given category of bus events. For example, a
test case may not contain a sufficient number of read opera
tions. As a result, the performance measurements for the read
operation may not be statistically significant.
0008. Yet another problem with the conventional testing
method is that degradations in performance are unlikely to be
detected, without tedious manual analysis, when the pre
dicted range of performance is too lenient. For example, if the
average latency associated with a particular transaction
between two devices is predicted to be 1 second, but the
measured average latency is only 0.2 seconds, then a degra
dation of the average latency from 0.2 seconds to 0.8 seconds

Jun. 5, 2008

is unlikely to be caught even though there is a significant,
undesired change in performance.
0009. Accordingly, what is needed is improved methods
and apparatus for measuring and verifying performance of
packet based data exchanges between devices connected by
an interconnect bus.

SUMMARY OF THE INVENTION

00.10 Embodiments of the present invention generally
provide methods, computer readable storage media, and sys
tems for measuring and verifying performance of packet
based communication transactions between devices over an
interconnect bus.
0011. One embodiment provides a method for determin
ing performance characteristics of a system. The method
generally includes executing a program to cause data to be
exchanged between at least two devices of the system via a
bus, capturing events indicative of data exchanged between
the at least two devices by at least one interface monitor,
calculating one or more performance metrics based on the
captured events during execution of the program, storing the
calculated performance metrics in a database, and determin
ing whether the calculated performance metrics fall within a
determined performance range.
0012 Another embodiment provides a computer readable
storage medium containing a program for determining per
formance characteristics of a system. When executed by a
processor, the program performs operations generally includ
ing generating data to be exchanged between at least two
devices of the system via a bus, capturing events indicative of
data exchanged between the at least two devices by at least
one interface monitor, calculating one or more performance
metrics based on the captured events during execution of the
program, storing the calculated performance metrics in a
database, and determining whether the calculated perfor
mance metrics fall within a determined performance range.
0013 Yet another embodiment provides a system gener
ally including a first processing device, a second processing
device coupled with the first processing device via a bus, at
least one interface monitor for capturing events indicative of
data exchanged between the at least two processing devices
via the bus, and a performance monitor configured to calcu
late one or more performance metrics based on the captured
events, store the one or more calculated performance metrics
in a database, and determine whether the calculated perfor
mance metrics fall within a determined performance range.

BRIEF DESCRIPTION OF THE DRAWINGS

0014 So that the manner in which the above recited fea
tures, advantages and objects of the present invention are
attained and can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.
0015. It is to be noted, however, that the appended draw
ings illustrate only typical embodiments of this invention and
are therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodiments.
0016 FIG. 1 illustrates an exemplary test environment in
accordance with one embodiment of the present invention.
0017 FIG. 2 is a flow diagram of exemplary operations for
capturing bus events and calculating performance metrics for
those events.

US 2008/O 133489 A1

0018 FIG.3 is a flow diagram of exemplary operations for
verifying that captured bus events fall within the predefined
performance ranges.
0019 FIG. 4 is a flow diagram of operations performed for
verifying that captured events fall within the self learned
performance ranges.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0020 Embodiments of the present invention allow packet
based communication transactions between devices over an
interconnect bus to be captured to measure performance.
Performance metrics may be determined by capturing events
at various nodes as they pass through the system. Perfor
mance may be verified at run time by computing performance
metrics for captured events and comparing Such metrics to
predefined performance ranges and/or self learned perfor
mance ranges. Furthermore, embodiments of the present
invention provide for dynamic tailoring of bus traffic togen
erate potential failing conditions.
0021. In the following, reference is made to embodiments
of the invention. However, it should be understood that the
invention is not limited to specific described embodiments.
Instead, any combination of the following features and ele
ments, whether related to different embodiments or not, is
contemplated to implement and practice the invention. Fur
thermore, in various embodiments the invention provides
numerous advantages over the prior art. However, although
embodiments of the invention may achieve advantages over
other possible solutions and/or over the prior art, whether or
not aparticular advantage is achieved by a given embodiment
is not limiting of the invention. Thus, the following aspects,
features, embodiments and advantages are merely illustrative
and not considered elements or limitations of the appended
claims except where explicitly recited in the claim(s). Like
wise, reference to “the invention' shall not be construed as a
generalization of any inventive Subject matter disclosed
herein and shall not be considered to be an element or limi
tation of the appended claims except where explicitly recited
in a claim(s).

An Exemplary Test System

0022 FIG. 1 illustrates an exemplary testing system in
which a Performance Monitor 100 monitors performance
between two devices (or nodes) 120 and 130 over an Inter
connect Bus 180 (e.g., commonly referred to as a front side
bus). The two devices 120 and 130, for example, may be a
central processing unit (CPU) and a graphics processing unit
(GPU). For some embodiments, the Bus 180 may be a bi
directional multi-bit bus, for example, having eight or more
lines for communication from the CPU to the GPU and
another eight or more lines for communication from the GPU
to the CPU.

0023 Communication between the devices 120 and 130
may be monitored by a Link Interface Monitor (IM) 140. Link
IM 140 may be any combination of hardware and/or software
configured to sample data lines of the InterconnectBus 180 in
conjunction with a clock signal. The Link IM may be further
configured to examine the sampled data and recognize pre
defined categories of events. If a known event is captured, the
Link IM may notify the performance monitor that the event is
presented on the Interconnect Bus 180. For example, a CPU
may perform a read operation on a specific location in the

Jun. 5, 2008

GPU by sending a read packet over an interconnect bus con
necting the CPU and the GPU. The Link IM for the intercon
nect bus may capture the read packet when it is presented on
the bus and notify the performance monitor that a read packet
is found on the bus.

0024. In some embodiments of the invention the Link IM
may be configured to inject noise on to the Interconnect Bus
180. Such noise injection may be performed to simulate
actual noise on the interconnect bus during normal operation
of the system. In other embodiments, the Link IM may also be
configured to introduce errors into an event captured on the
bus before the event is dispatched to the destination device.
For example, the Link IM may toggle Some bits in the packet.
As with noise injection, the introduction of errors may be
performed to simulate actual errors that may occur while
transferring packets during normal operation of the system.
The goal of introducing such errors may be to verify that the
destination device properly determines an error in the packet,
for example by using a Cyclic Redundancy Check (CRC),
and performs error correcting steps which may include cor
recting erroneous bits or requesting that the packet be sent
again. While the above mentioned embodiments describe
noise and error injection performed by the Link IM, those
skilled in the art will recognize that such noise and error
injection may be performed by a separate and independent
device. Such as an irritator device.
(0025. Each device 120 and 130 may be driven by Unit
Drivers 160 and 161 respectively. Each Unit Driver may be
Software that is configured to cause an associated device to
perform a series of functions, including sending packets to
another device. For example, Unit Driver 160 may generate
instructions to Device 120 to send a read packet to Device 130
over the Interconnect Bus 180. Such instructions by unit
drivers 160 and 161 to devices 120 and 130 may be monitored
by Application Interface Monitors (IM) 150 and 151 respec
tively. Each Application IM may be any combination of hard
ware and/or software configured to sample data lines connect
ing the Application IM and an associated device in
conjunction with a clock signal. Furthermore, each Applica
tion IM may be configured to examine the sampled data and
recognize predefined categories of instructions. As with the
Link IM, if a known instruction is captured, the Application
IM may notify the performance monitor that the event is
presented to the associated device.
(0026. The events captured by the Link IM 140 and the
Application IM's 150 and 151 may be received by a Perfor
mance Monitor 100 and stored in a shared Database 170. In
some embodiments of the invention the Performance Monitor
may store in the Database 170, a timestamp associated with
each captured event. For example, the Performance may store
in the database the simulation time at which each event was
captured by the interface monitors.
(0027. The Performance Monitor 100 may be configured to
calculate several performance metrics for the system based on
the captured events. For example, to compute the latency of a
read operation across Device 120, the Performance Monitor
may subtract the timestamps for a read instruction issued by
Unit Driver 160 and captured by Application IM 150, and an
associated read packet captured by Link IM 140. Similarly,
the Performance Monitor may also compute the latency of
read responses between Device 1 and Device 2 over the
Interconnect Bus 180 by subtracting the timestamps of a read
packet and an associated data packet captured by Link IM

US 2008/O 133489 A1

140. Several other similar performance metrics may be
defined to measure latencies and throughput for the system.
0028. The Performance Monitor may be further config
ured to store the calculated performance metrics in the shared
Database 170. For example, the Performance Monitor may
store the latencies of write and read operations in Database
170. A user may be allowed to query Database 170 to generate
graphs that illustrate performance results for various bus
events. Such graphs may allow a user to easily compare
results between bus events in the same test run and/or differ
ent test runs.

0029. The Performance Monitor 100 may be configured to
fail a simulation test based on predefined or self learned
performance ranges 101. The performance ranges 101 may
define upper and lower range limits or an upper or lower
threshold value. A predefined range may be defined by a user
before running a test on the system. The predefined ranges
may be chosen arbitrarily or according to ideal performance
metrics calculated considering factors such as device charac
teristics, system architecture, system software, and the like.
The self learned ranges, on the other hand, may be calculated
based on historic system performance data contained in Data
base 170. For example, the self-learned ranges may be deter
mined by computing an average of previously obtained per
formance metrics or by selecting values at or near the peak of
a bell curve representing historic performance results. Any
other reasonable method for calculating performance ranges
may be used to determine expected performance based on
historic performance.
0030 FIG. 2 is a flow diagram for exemplary operations
performed to capture and store bus events in accordance with
embodiments of the present invention. The operations may be
performed, for example, by components illustrated in FIG. 1,
while executing a specific program designed to emulate nor
mal system operation (and produce typical bus traffic). How
ever, those skilled in the art will recognize that the operations
of FIG. 2 may be performed by other components and, fur
ther, that the components illustrated in FIG.1 may be capable
of performing other operations.
0031. The operations begin, at step 201, by capturing
events on the bus. As previously described, a Link IM or an
Application IM may detect events indicating a transaction
between devices or between a unit driver and an associated
device, capture such an event, and send it to a Performance
Monitor. In some embodiments of the invention the Link IM
and Application IM may be a part of the Performance Moni
tor, therefore the events may be captured by the performance
monitor directly. Captured events may be stored in a shared
Database 204, as illustrated.
0032. At step 202, the Performance Monitor may interpret
the captured event and calculate Performance metrics for that
event. This may require the Performance Monitor to query the
database to find other events associated with the captured
event. For example, when the Performance Monitor captures
a read packet on the Interconnect Bus 180, it may query
Database 170 for a read instruction issued from the Unit
Driver 160 in order to calculate the latency of the read opera
tion through Device 120. Several other performance metrics
may also be computed at this time.
0033. At step 203, the Performance Monitor may store the
calculated performance metrics in the shared database. The
performance metrics stored in the database may be used later
to compute self learned ranges for system performance.

Jun. 5, 2008

0034 FIG. 3 is a flow diagram for exemplary operations
performed to verify, during run time, that performance of a
system falls within predefined ranges. The operations beginat
step 301 by getting the user defined ranges. At this step, the
user may be prompted to define ranges for one or more per
formance metrics. Alternatively, the user may also be allowed
to select predefined ranges used in previous simulations. Sets
of predefined ranges may also be organized into test profiles.
Each test profile may contain a unique combination of per
formance range settings. A user may be prompted to select
one of these profiles at the outset of simulation. In one
embodiment of the invention, the predefined ranges may be
selected for a plurality of simulation tests to facilitate batch
testing with the same predefined parameters.
0035. At step 302, simulation begins by Unit Drivers gen
erating stimulus to the devices in order to emulate normal
system operation and produce typical bus traffic. As simula
tion continues, the Performance Monitor performs the steps
outlined in FIG. 2 to capture events and measure perfor
mance. In some embodiments of the invention, the Perfor
mance Monitor may compute performance results only after
the simulation is run for a predetermined period of time. As
each event is captured and performance metrics calculated,
the test in step 303 is performed to determine whether the
performance metrics calculated fall within the predefined
ranges. If a calculated performance metric for a captured
event falls outside of its predefined range, simulation may be
stopped and a system failure message may be generated at
step 306. In some embodiments of the invention, simulation
may be stopped only if a certain threshold number of events
fall outside the predefined range. Stopping simulation on the
occurrence of a failing condition may save valuable simula
tion time and make performance verification more efficient.
0036) If, on the other hand, the performance metric is
deemed to fall within the predefined range, the Performance
Monitor continues to capture and calculate performance met
rics for events until another performance metric falls outside
the predefined range or an end-of-test is detected in step 304.
If an end-of-test is detected and all performance metrics fall
within the predefined ranges, then the simulation run is
deemed successful at step 305.
0037 FIG. 4 is a flow diagram for exemplary operations
performed to verify, during run time, that performance of a
system falls within ranges determined by the system (self
learned ranges). The operations begin in step 401 by deter
mining the ranges that will be used to Verify performance
metrics. The ranges may be determined by querying the Data
base 170 for performance metrics stored from previously run
simulations and computing the self learned ranges based on
Such historic data. As discussed earlier, any method such as
computing averages and normal curve peaks may be used to
determine an expected performance range based on historic
data.

0038. In step 402, the simulation may begin once the self
learned performance ranges are determined. As in the
description for FIG.3, the Performance Monitor may monitor
and calculate the performance metrics for events as they are
captured during run time. These calculated performance met
rics may be stored for later calculations of self learned ranges.
In some embodiments of the invention, however, the Perfor
mance monitor may use the calculated performance metric
for a captured event to dynamically update the self learned
ranges being applied in the current simulation.

US 2008/O 133489 A1

0039. In step 403, if a calculated performance metric for a
captured event falls outside of the self learned range, simula
tion may be stopped and a system failure message may be
generated at step 406. In some embodiments of the invention,
simulation may be stopped only if a certain threshold number
of events fall outside the self learned range. If, on the other
hand, the performance metric is deemed to fall within the
predefined range, the Performance Monitor continues to cap
ture and calculate performance metrics for events until
another performance falls outside the self learned range oran
end-of-test is detected in step 404. If an end-of-test is detected
and all performance metrics fall within the predefined ranges,
then the simulation run is deemed successful at step 405.
0040. In some embodiments of the invention, the user may
be allowed to configure the Performance Monitor to compare
the performance metrics for a captured event with predefined
ranges, self learned ranges, or both the predefined ranges and
self learned ranges. For example, a user may choose to run
simulation according to user defined ranges when the Data
base 170 does not contain sufficient information to calculate
statistically significant selflearned ranges. On the other hand,
a user may run simulation according to the selflearned ranges
in order to detect any drastic changes in performance when
the predefined ranges are Suspected to be too lenient. Alter
natively, a user may elect to run simulation according to both
the predefined and self learned ranges to obtain the benefits of
both approaches to Verifying performance.

Dynamic Command Weighting
0041. One common problem with using predefined test
cases to generate traffic during simulation is that a problem
causing event may not be adequately tested by the test case.
For example, a test case may have only a few read operations
which may be insufficient to bring about a failing condition.
Therefore, another test case must be written that has sufficient
read operations. However, under this approach an innumer
able number of test cases will have to be written to account for
all the various permutations and combinations of failing con
ditions.
0042. The present invention provides for dynamically tai
loring the events generated by the Unit Drivers by weighting
commands based on run time results. For example, if a write
operation latency is deemed to be approaching a failing con
dition, a weight parameter associated with the write operation
may be dynamically adjusted so that the write operation is
generated more frequently. One method for determining
whether a performance metric is approaching a failing con
dition may be to determine if the performance metric falls
outside a threshold range within the predefined range and/or
self-learned range.
0043. Referring back to FIG. 1, the Performance Monitor
100 may contain the necessary logic to compute weights for
different categories of events based on run time results and
provide feedback to the Unit Drivers 160 and 161. In response
to this feedback, the Unit Drivers may dispatch instructions to
reflect the dynamically adjusted weights for the instructions.

CONCLUSION

0044. By monitoring key performance metrics real time
during simulation, then using that information along with
predefined and/or self learned performance ranges and
dynamic command weighting based on real time results to fail
the simulation, the present invention may notify a user that

Jun. 5, 2008

there is a potential problem, and identify the offending event.
As a result, a more efficient and effective verification of
system performance may be achieved.
0045 While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.
What is claimed is:
1. A computer readable storage medium containing a pro

gram which generates data exchanges for determining bus
performance characteristics of a system bus which, when
executed, performs operations, comprising, during execution
of the program:

(a) measuring bus performance of the system bus, compris
ing:
(i) capturing events indicative of data exchanges by at

least one interface monitor between at least two
devices of the system via a system bus of the system;

(ii) interpreting the captured events and calculating per
formance metrics for those captured events;

(iii) Storing the calculated performance metrics in a data
base; and

(b) Verifying bus performance of the system bus, compris
ing:
(i) determining whether the calculated performance

metrics fall within a determined performance range,
wherein the determined performance range com
prises at least a self-learned performance range;
wherein the self-learned performance range is gener
ated by:
(1) querying the database to receive a sample of pre

viously stored performance metrics, wherein the
sample of previously stored performance metrics
comprises at least Some performance metrics
stored prior to the execution of the program and
during the execution of the program; and

(2) calculating the self-learned performance range
based on values of the sample:

(c) in response to the determining, varying a rate at which
one or more events occur on the bus during the execution
of the program, resulting in the generation of potential
events which fall outside the predetermined perfor
mance range and the generation of those events more
frequently.

2. The computer readable storage medium of claim 1,
wherein whether to vary the rate is determined by querying
the database.

3. A system, comprising:
a first processing device;
a second processing device coupled with the first process

ing device via a system bus;
at least one interface monitor for capturing events indica

tive of data exchanged between the at least two process
ing devices via the system bus during execution of a
program which generates the data exchanges;

a performance monitor configured to, during execution of
a program:
calculate one or more performance metrics based on the

captured events;
store the one or more calculated performance metrics in

a database;
determine whether the calculated performance metrics

fall within a determined performance range, wherein

US 2008/O 133489 A1

the determined performance range comprises at least
a self-learned performance range; wherein the perfor
mance monitor is further configured to generate the
self-learned performance range by:
(1) querying the database to receive a sample of pre

viously stored performance metrics, wherein the
sample of previously stored performance metrics
comprises at least Some performance metrics
stored prior to the execution of the program and
during the execution of the program; and

(2) calculating the self-learned performance range
based on values of the sample; and

in response to the determining, vary a rate at which one
or more events occur on the bus during the execution

Jun. 5, 2008

of the program, resulting in the generation of potential
events which fall outside the predetermined perfor
mance range and the generation of those events more
frequently.

4. The system of claim 3, wherein whether to vary the rate
is determined by querying the database.

5. The system of claim 3, wherein the first processing
device is a central processing unit (CPU) and the second
processing device is a graphics processing unit (GPU).

6. The system of claim 3, wherein the first processing
device is an Input/Output (I/O) bridge chip.

c c c c c

