2016/018787 A1 |1 000 OO0 0 K00 0

<

W

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2016/018787 Al

4 February 2016 (04.02.2016) WIPO | PCT
(51) International Patent Classification: (74) Agents: DOLBY LABORATORIES, INC. ¢t al.; Intel-
G10L 19/008 (2013.01) H04S 3/00 (2006.01) lectual Property Group, 100 Potrero Avenue, San Fran-
i lifornia 94103 .
(21) International Application Number: cisco, California 9 (US)
PCT/US2015/042190 (81) Designated States (unless otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: 27 Tuly 2015 (27.072015 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
uly 2015 (27.07.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L.) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/031,723 31 July 2014 (31.07.2014) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: DOLBY LABORATORIES LICENSING TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
CORPORATION [US/US]; 100 Potrero Avenue, San . L
Francisco, California 94103 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: EGGERDING, Timothy James; c/o, Dolby GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Laboratories, Inc., 100 Potrero Avenue, San Francisco,
California 94103-4813 (US). WOLFF, Christian; c/o
Dolby Laboratories, Inc., 100 Potrero Avenue, San Fran-
cisco, California 94103-4813 (US). NOEL, Adam Chris-
topher; c¢/o Dolby Laboratories, Inc., 100 Potrero Avenue,
San Francisco, California 94103-4813 (US). FISCHER,
David Matthew; c/o, Dolby Laboratories, Inc., 100 Po-
trero Avenue, San Francisco, California 94103-4813 (US).
MARTINEZ, Sergio; c/o, Dolby Laboratories, Inc., 100
Potrero Avenue, San Francisco, California 94103-4813

(US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: AUDIO PROCESSING SYSTEMS AND METHODS

300
Ty

,/“3{.72 ’/MS'HQ
Decoder
“0 304 308
w1 Upmixar %
,’\ Channels
SENENNEN N . Joiner
Audio] . />‘30? 306 Audio
in > Out
= OARI -)
Obiects

i

3

(57) Abstract: Embodiments are directed processing adaptive audio content by determining an audio type as one of channel-based
audio and object-based audio for each audio segment of an adaptive audio bitstream, tagging the each audio segment with a metadata
definition indicating the audio type of the corresponding audio segment, processing audio segments tagged as channel-based audio
in a channel audio renderer component, and processing audio segments tagged as object-based audio in an object audio renderer
component that is distinct from the channel audio renderer component. Object-based audio is rendered through an object audio ren-
derer interface that dynamically adjusts processing block sizes of the object audio segments based on timing and alignment of
metadata updates and maximum/minimum block size parameters.

WO 2016/018787 A1 AT 00TV 00O A A

— as to the applicant's entitlement to claim the priority of — before the expiration of the time limit for amending the
the earlier application (Rule 4.17(iii)) claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

AUDIO PROCESSING SYSTEMS AND METHODS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority from United States Provisional Patent Application
No. 62/031,723 filed 31 July 2014, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] One or more implementations relate generally to audio signal processing, and
more specifically to a method for smoothly switching between channel-based and object-
based audio, and an associated object audio renderer interface for use in an adaptive audio
processing system.

BACKGROUND

[0003] The introduction of digital cinema and the development of true three-dimensional
(“3D”) or virtual 3D content has created new standards for sound, such as the incorporation
of multiple channels of audio to allow for greater creativity for content creators and a more
enveloping and realistic auditory experience for audiences. Expanding beyond traditional
speaker feeds and channel-based audio as a means for distributing spatial audio is critical,
and there has been considerable interest in a model-based audio description that allows the
listener to select a desired playback configuration with the audio rendered specifically for
their chosen configuration. The spatial presentation of sound utilizes audio objects, which
are audio signals with associated parametric source descriptions of apparent source position
(e.g., 3D coordinates), apparent source width, and other parameters. Purther advancements
include a next generation spatial audio (also referred to as “adaptive audio”) format has been
developed that comprises a mix of audio objects and traditional channel-based speaker feeds
along with positional metadata for the audio objects. In a spatial audio decoder, the channels
are sent directly to their associated speakers or down-mixed to an existing speaker set, and
audio objects are rendered by the decoder in a flexible (adaptive) manner. The parametric
source description associated with each object, such as a positional trajectory in 3D space, is
taken as an input along with the number and position of speakers connected to the decoder.

The renderer then utilizes certain algorithms, such as a panning law, to distribute the audio

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

associated with each object (“object-based audio”) across the attached set of speakers. The
authored spatial intent of each object is thus optimally presented over the specific speaker
configuration that is present in the listening room.

[0004] In traditional channel-based audio systems, audio post-processing does not change
over time due to changes in bitstream content. Since audio carried throughout the system is
always identified using static channel identifiers (such as Left, Right, Center, etc.), individual
audio post-processing technology may always remain active. An object-based audio system,
however, uses new audio post-processing mechanisms that use specialized metadata to render
object-based audio to a channel-based speaker layout. In practice, an object-based audio
system must also support and handle channel-based audio, in part to support legacy audio
content. Since channel-based audio lacks the specialized metadata that enables audio
rendering, certain audio post-processing technologies may be different when the coded audio
source contains object-based or channel-based audio. For example, an upmixer may be used
to generate content for speakers that are not present in the incoming channel-based audio, and
such an upmixer would not be applied to object-based audio.

[0005] In most present systems, an audio program generally contains only one type of
audio, either object-based or channel-based, and thus the processing chain (rendering or
upmixing) may be chosen at initialization time. With the advent of new audio formats,
however, the audio type (channel or object) in a program may change over time, due to
transmission medium, creative choice, user interaction, or other similar factors. In a hybrid
audio system, it is possible for audio to switch between object-based and channel-based audio
without changing the codec. In this case, the system optimally does not exhibit muting or
audio delay, but rather provides a continuous audio stream to all of its speaker outputs by
switching between rendered object output and upmixed channel output, since one problem in
present audio systems is that they may mute or glitch on such a change in the bitstream.
[0006] For adaptive audio content having both objects and channels, modern
Audio/Video Receiver (AVR) systems, such as those that may utilize Dolby® Atmos®
technology or other adaptive audio standards, generally consist of one or more Digital Signal
Processor (DSP) chips, and one or more microcontroller chips or cores of a single chip (e.g. a
System on Chip, SoC). The microcontroller is responsible for managing the processing on
the DSP and interacting with the user, while the DSP is optimized specifically to perform
audio processing. When switching between object-based and channel-based audio, it may be

possible for the DSP to signal the change to the microcontroller, which then uses logic to

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

reconfigure the DSP to handle the new audio type. This type of signaling is referred to as
“out-of-band” signaling since it occurs between the DSP and microcontroller. Such out-of-
band signaling necessarily takes some amount of time due to factors such as processing
overhead, transmission latencies, data switching overhead, and this often leads to unnecessary
muting, or possible glitching of the audio if the DSP incorrectly processes the audio data.
[0007] What is needed, therefore, is a way to switch between object-based and channel-
based content that provides a continuous or smooth audio stream without gaps, mutes, or
glitches. What is further needed is a mechanism that allows an audio-processing DSP to
select the correct processing chain for the incoming audio, without needing to communicate
externally to other processors or microcontrollers.

[0008] With respect to object audio rendering systems having an object audio renderer,
object-based audio comprises portions of digital audio data (e.g., samples of PCM audio)
along with metadata that defines how the associated samples are to be rendered. The proper
timing of the metadata updates with the corresponding samples of audio data is therefore
important for accurate rendering of the audio objects. In a dynamic audio program with
many objects and/or with objects that may move quickly around the sound space, the
metadata updates may occur very quickly with respect to the audio frame rate. Present
object-based audio processing systems are generally capable of handling metadata updates
that occur regularly and at a rate that is within the processing capabilities of the decoder and
rendering processors. Such systems often rely on audio frames that are of a set size and
metadata updates that are applied at a uniformly periodic rate. However, as updates occur
more quickly or in a non-uniformly periodic manner, processing the updates becomes much
more challenging. Often, an update may not be properly aligned with the audio samples to
which it applies, either because updates occur too quickly or synchronization slips between
metadata updates and the corresponding audio samples. In this case, audio samples may be
rendered according to improper metadata definitions.

[0009] What is further needed is a mechanism to adapt a codec decoded output to
properly buffer and deserialize the metadata for adaptive audio systems in the most efficient
way possible. What is further needed is an object audio renderer interface that is configured
to ensure that object audio is rendered with the least amount of processing power and the high
accuracy, and that is also adjustable to customer needs, depending on their chip architecture.
[0010] The subject matter discussed in the background section should not be assumed to

be prior art merely as a result of its mention in the background section. Similarly, a problem

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

mentioned in the background section or associated with the subject matter of the background
section should not be assumed to have been previously recognized in the prior art. The
subject matter in the background section merely represents different approaches, which in
and of themselves may also be inventions. Dolby, Dolby Digital Plus, Dolby TrueHD, and

Atmos are trademarks of Dolby Laboratories Licensing Corporation.

BRIEF SUMMARY OF EMBODIMENTS
[0011] Embodiments are directed to a method of processing adaptive audio content by
determining an audio type as either channel-based or object-based for each audio segment of
an adaptive audio bitstream, tagging each audio segment with a metadata definition
indicating the audio type of the corresponding audio segment, processing audio segments
tagged as channel-based audio in a channel audio renderer component, and processing audio
segments tagged as object-based audio in an object audio renderer component that is distinct
from the channel-based audio renderer component. The method further includes encoding
the metadata definition as an audio type metadata element encoded as part of a metadata
payload associated with each audio segment. The metadata definition may comprise a binary
flag value that is set by a decoder and that is transmitted to the channel audio renderer
component and object audio renderer component. Tor this embodiment, the binary flag
value is decoded by the channel audio renderer component and object audio renderer
component for each received audio segment and audio data in the audio segment is rendered
by one of the channel audio renderer component and object audio renderer component based
on the decoded binary flag value. The channel-based audio may comprise stereo or legacy
surround-sound audio and the channel audio renderer component may comprise an upmixer
or simple passthrough node, and the object audio renderer component may comprise an
object audio renderer interface. The method may further include adjusting for transmission
and processing latency between any two successive audio segments by pre-compensating for
known latency differences during the initialization phase.
[0012] Embodiments are further directed to a method of rendering adaptive audio by
receiving, in a decoder, input audio comprising channel-based audio and object-based audio
segments encoded in an audio bitstream, detecting a change of type between the channel-
based audio and object-based audio segments in the decoder, generating a metadata definition
for each type of audio segment upon detection of the change of type, associating the metadata

definition with the appropriate audio segment, and processing each audio segment in an

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

appropriate post-decoder processing component depending on the associated metadata
definition. The channel-based audio may comprise legacy surround-sound audio to be
rendered through an upmixer of an adaptive audio rendering system, and the object-based
audio may be rendered through an object audio renderer interface of the system. In an
embodiment, the method further includes adjusting for processing latency between any two
successive audio segments by pre-compensating for known latency differences during an
initialization phase. The metadata definition for the method may comprise an audio-type flag
encoded by the decoder as part of a metadata payload associated with the audio bitstream.
For this embodiment, a first state of the flag indicates that an associated audio segment is
channel-based audio and a second state of the flag indicates that the associated audio segment
is object-based audio.

[0013] Embodiments are further directed to an adaptive audio rendering system having a
decoder receiving an input audio bitstream having audio content and associated metadata, the
audio content having an audio type comprising one of channel-based audio or object-based
type audio at any one time, an upmixer coupled to the decoder for processing the channel-
based audio, an object audio renderer interface coupled to the decoder in parallel with the
upmixer for rendering the object-based audio through an object audio renderer, and a
metadata element generator within the decoder configured to tag channel-based audio with a
first metadata definition and to tag object-based audio with a second metadata definition. In
this system, the upmixer receives both the tagged channel-based audio and tagged object-
based audio from the decoder and processes only the channel-based audio; and the object
audio renderer interface receives both the tagged channel-based audio and tagged object-
based audio from the decoder and processes only the object-based audio. A metadata
element generator may be configured to set a binary flag indicating the type of audio segment
transmitted from the decoder to the upmixer and the object audio renderer interface, and
wherein the binary flag is encoded by the decoder as part of a metadata payload associated
with the bitstream. The channel-based audio may comprise surround-sound audio beds, the
audio objects may comprise objects conforming to an object audio metadata (OAMD) format.
In an embodiment, the system further comprises a latency manager configured to adjust for
latency between any two successive audio segments by pre-compensating for known
latencies during an initialization phase to provide time-aligned output of different signal paths

through the upmixer and object audio renderer interface for the successive audio segments.

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

In some embodiments, the upmixer may be replaced with a simple passthrough node that
maps input audio channels to output speakers.

[0014] Embodiments are also directed to a method of processing object-based audio by
receiving, in an object audio renderer interface (OARI), a block of audio samples and one or
more associated object audio metadata payloads, de-serializing one or more audio block
updates from each object audio metadata payload, storing the audio samples and the audio
block updates in respective audio sample and audio block update memory caches, and
dynamically selecting processing block sizes of the audio saraples based on timing and
alignment of audic block updates relative to processing block boundaries, and one or more
other parameters including maximum/minimuem processing block size parameters. The
method may further comprise transmitting the object-based audio from the OARI to the OAR
in processing blocks of sizes determined by the dynamic selection. Fach metadata element is
passed in a metadata frame with a sample offset indicating at which sample in an audio block
the frame applies. The method may further comprise preparing the metadata containing the
metadata elements through one or more processes including object prioritization, width
removal, disabled object handling, filtering of excessively frequent updates, spatial position
clipping to a desired range, and converting update data into a desired format. The OAR may
support a limited number of processing block sizes, such as 32, 64, 128, 256, 480, 512, 1024,
1536, or 2048 samples in length, but is not so limited. In an embodiment, the processing
block size selection is made such that the audio block update is located as near to the first
sample of the processing block as allowed by a processing block size selection parameter.
The processing block size may be selected to be as large as possible as constrained by audio
block update location, OAR processing block sizes, and OARI maximum and minimum
block size parameter values. The metadata frames may contain metadata defining attributes
regarding rendering of one or more objects in the block of audio samples, the attributes
selected from the group consisting of: content-type attributes including dialog, music, effect,
Foley, background, and ambience definitions; spatial attributes including 3D position, object
size, and object velocity; and speaker rendering attributes including snap to speaker location,
channel weights, gain, ramp, and bass management information.

[0015] Embodiments are further directed to a method of processing audio objects by
receiving, in an object audio renderer interface (OARI), a block of audio samples and
associated metadata that defines how the audio samples are rendered in an object audio

renderer (OAR), wherein the metadata is updated over time to define different rendering

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

attributes of the audio objects, buffering the audio samples and metadata updates to be
processed by the OAR in an arrangement of processing blocks, dynamically selecting
processing block sizes based on timing and alignment of metadata updates relative to block
boundarics, and one or more other parameters including: maxinmurn/miniroum block size
parameters, and transmitting the object-based audio from the OARI to the OAR in blocks of
sizes determined by the dynamic selection step. The method may further comprise storing
the audio data and block updates for each block in respective audio and update memory
caches, wherein the block updates are encoded in metadata elements stored in object audio
metadata payloads. Fach metadata element may be passed in a metadata frame with a sample
offset indicating at which sample in a processing block the frame applies. The block size
selection may be made such that the block update is located as near to the first sample of the
block as allowed by the minimum output block size selection. In an embodiment, the block
size is selected to be as large as possible as constrained by block update location, OAR block
sizes, and OARI maximum block size parameter values. The method may further comprise
preparing the metadata containing the metadata elements through one or more processes
including object prioritization, width removal, disabled object handling, filtering of
excessively frequent updates, spatial position clipping to a desired range, and converting
update data into a desired format.

[0016] Embodiments are yet further directed to a method of processing adaptive audio
data, by determining through a defined metadata definition whether audio to be processed is
channel-based audio or object-based audio, processing the audio through a channel-based
audio renderer (CAR) if channel-based, and processing the audio through an object-based
audio renderer (OAR) if object-based, wherein the OAR utilizes an OAR interface (OARD)
that dynamically adjusts processing block sizes of the audio based on timing and alignment of
metadata updates and one or more other parameters including maximum and minirum block
sizes.

[0017] Embodiments are also directed to a method of switching between channel-based
or object-based audio rendering by encoding a metadata element with an audio block to have
a first state indicating channel-based audio content or a second state indicating object-based
audio content, transmitting the metadata element as part of an audio bitstream to a decoder,
decoding the metadata element in the decoder to route channel-based audio content to
channel audio renderer (CAR) if the metadata element is of the first state and object-based

audio content to an object audio renderer (OAR) if the metadata element is of the second

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

state. In this method, the metadata element comprises a metadata flag that is transmitted in-
band with a pulse code modulated (PCM) audio bitstream transmitted to the decoder. The
CAR may comprise one of an upmixer or a passthrough node that maps input channels of the
channel-based audio to output speakers; and the OAR comprises a renderer that utilizes an
OAR interface (OARI) that dynamically adjusts processing block sizes of the audio based on
timing and alignment of metadata epdates and one or more other parameters including
maximum and minimum block sizes.

[0018] Embodiments are yet further directed to digital signal processing systems that
implement the aforementioned methods and/or speaker systems that incorporate circuitry

implementing at least some of the aforementioned methods.

INCORPORATION BY REFERENCE
[0019] Each publication, patent, and/or patent application mentioned in this specification
is herein incorporated by reference in its entirety to the same extent as if each individual
publication and/or patent application was specifically and individually indicated to be

incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS
[0020] In the following drawings like reference numbers are used to refer to like
elements. Although the following figures depict various examples, the one or more
implementations are not limited to the examples depicted in the figures.
[0021] FIG. 1 illustrates an example speaker placement in a surround system (e.g., 9.1
surround) that provides height speakers for playback of height channels.
[0022] FIG. 2 illustrates the combination of channel and object-based data to produce an
adaptive audio mix, under an embodiment.
[0023] FIG. 3 is a block diagram of an adaptive audio system that processes channel-
based and object-based audio, under an embodiment.
[0024] FIG. 4A illustrates a processing path for channel-based decoding and upmixing in
an adaptive audio AVR system, under an embodiment.
[0025] FIG. 4B illustrates a processing path for object-based decoding and rendering in
the adaptive audio AVR system of IG. 4A, under an embodiment.

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

[0026] FIG. 5 is a flowchart that illustrates a method of providing in-band signaling
metadata to switch between object-based and channel-based audio data, under an
embodiment.

[0027] FIG. 6 illustrates the organization of metadata into a hierarchical structure as
processed by an object audio renderer, under an embodiment.

[0028] FIG. 7 illustrates the application of metadata updates and the framing of metadata
updates within a first type of codec, under an embodiment.

[0029] FIG. 8 illustrates the application of metadata updates and the framing of metadata
updates within a second type of codec, under an alternative embodiment.

[0030] FIG. 9 is a flow diagram illustrating process steps performed by an object audio
renderer interface, under an embodiment.

[0031] FIG. 10 illustrates the caching and deserialization processing cycle of an object
audio renderer interface, under an embodiment.

[0032] FIG. 11 illustrates the application of metadata updates by the object audio renderer
interface, under an embodiment.

[0033] FIG. 12 illustrates an example of an initial processing cycle performed by the
object audio renderer interface, under an embodiment.

[0034] FIG. 13 illustrates a subsequent processing cycle following the example processing
cycle of FIG. 12.

[0035] FIG. 14 illustrates a table that lists fields used in the calculation of the offset field

in an internal data structure, under an embodiment.

DETAILED DESCRIPTION
[0036] Systems and methods are described for switching between object-based and
channel-based audio in an adaptive audio system that allows for playback of a continuous
audio stream without gaps, mutes, or glitches. Embodiments are also described for an
associated object audio renderer interface that produces dynamically selected processing
block sizes to optimize processor efficiency and memory usage while maintaining proper
alignment of object audio metadata with the object audio PCM data in an object audio
renderer of an adaptive audio processing system. Aspects of the one or more embodiments
described herein may be implemented in an audio or audio-visual system that processes
source audio information in a mixing, rendering and playback system that includes one or

more computers or processing devices executing software instructions. Any of the described

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

embodiments may be used alone or together with one another in any combination. Although
various embodiments may have been motivated by various deficiencies with the prior art,
which may be discussed or alluded to in one or more places in the specification, the
embodiments do not necessarily address any of these deficiencies. In other words, different
embodiments may address different deficiencies that may be discussed in the specification.
Some embodiments may only partially address some deficiencies or just one deficiency that
may be discussed in the specification, and some embodiments may not address any of these
deficiencies.

[0037] For purposes of the present description, the following terms have the associated
meanings: the term “channel” means an audio signal plus metadata in which the position is
coded as a channel identifier, e.g., left-front or right-top surround; “channel-based audio” is
audio formatted for playback through a pre-defined set of speaker zones with associated
nominal locations, e.g., 5.1, 7.1, and so on; the term “object” or “object-based audio” means
one or more audio channels with a parametric source description, such as apparent source
position (e.g., 3D coordinates), apparent source width, etc.; “adaptive audio” means channel-
based and/or object-based audio signals plus metadata that renders the audio signals based on
the playback environment using an audio stream plus metadata in which the position is coded
as a 3D position in space; the term “adaptive streaming ” refers to an audio type that may
adaptively change (e.g., from channel-based to object-based or back again), and which is
common for online streaming applications where the format of the audio must scale to
varying bandwidth constraints (i.e., as object audio tends to come at higher data rates, the
fallback under lower bandwidth conditions is often channel based audio); and “listening
environment” means any open, partially enclosed, or fully enclosed area, such as a room that
can be used for playback of audio content alone or with video or other content, and can be
embodied in a home, cinema, theater, auditorium, studio, game console, and the like.

Adaptive Audio Format and System

[0038] In an embodiment, the interconnection system is implemented as part of an audio
system that is configured to work with a sound format and processing system that may be
referred to as a “spatial audio system,” “hybrid audio system,” or “adaptive audio system.”
Such a system is based on an audio format and rendering technology to allow enhanced
audience immersion, greater artistic control, and system flexibility and scalability. An
overall adaptive audio system generally comprises an audio encoding, distribution, and

decoding system configured to generate one or more bitstreams containing both conventional

10

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

channel-based audio elements and audio object coding elements (object-based audio). Such a
combined approach provides greater coding efficiency and rendering flexibility compared to
either channel-based or object-based approaches taken separately.

[0039] An example implementation of an adaptive audio system and associated audio
format is the Dolby® Atmos® platform. Such a system incorporates a height (up/down)
dimension that may be implemented as a 9.1 surround system, or similar surround sound
configurations. Such a height-based system may be designated by different nomenclature
where height speakers are differentiated from floor speakers through an x.y.z designation
where x is the number of floor speakers, y is the number of subwoofers, and z is the number
of height speakers. Thus, a 9.1 system may be called a 5.1.4 system comprising a 5.1 system
with 4 height speakers.

[0040] FIG. 1 illustrates the speaker placement in a present surround system (e.g., 5.1.4
surround) that provides height speakers for playback of height channels. The speaker
configuration of system 100 is composed of five speakers 102 in the floor plane and four
speakers 104 in the height plane. In general, these speakers may be used to produce sound
that is designed to emanate from any position more or less accurately within the room.
Predefined speaker configurations, such as those shown in FIG. 1, can naturally limit the
ability to accurately represent the position of a given sound source. For example, a sound
source cannot be panned further left than the left speaker itself. This applies to every
speaker, therefore forming a one-dimensional (e.g., left-right), two-dimensional (e.g., front-
back), or three-dimensional (e.g., left-right, front-back, up-down) geometric shape, in which
the downmix is constrained. Various different speaker configurations and types may be used
in such a speaker configuration. For example, certain enhanced audio systems may use
speakers in a 9.1, 11.1, 13.1, 19.4, or other configuration, such as those designated by the
x.y.z configuration. The speaker types may include full range direct speakers, speaker arrays,
surround speakers, subwoofers, tweeters, and other types of speakers.

[0041] Audio objects can be considered groups of sound elements that may be perceived
to emanate from a particular physical location or locations in the listening environment. Such
objects can be static (i.e., stationary) or dynamic (i.e., moving). Audio objects are controlled
by metadata that defines the position of the sound at a given point in time, along with other
functions. When objects are played back, they are rendered according to the positional
metadata using the speakers that are present, rather than necessarily being output to a

predefined physical channel. A track in a session can be an audio object, and standard

11

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

panning data is analogous to positional metadata. In this way, content placed on the screen
might pan in effectively the same way as with channel-based content, but content placed in
the surrounds can be rendered to an individual speaker if desired. While the use of audio
objects provides the desired control for discrete effects, other aspects of a soundtrack may
work effectively in a channel-based environment. For example, many ambient effects or
reverberation actually benefit from being fed to arrays of speakers. Although these could be
treated as objects with sufficient width to fill an array, it is beneficial to retain some channel-
based functionality.

[0042] The adaptive audio system is configured to support audio beds in addition to audio
objects, where beds are effectively channel-based sub-mixes or stems. These can be
delivered for final playback (rendering) either individually, or combined into a single bed,
depending on the intent of the content creator. These beds can be created in different
channel-based configurations such as 5.1, 7.1, and 9.1, and arrays that include overhead
speakers, such as shown in FIG. 1. FIG. 2 illustrates the combination of channel and object-
based data to produce an adaptive audio mix, under an embodiment. As shown in process
200, the channel-based data 202, which, for example, may be 5.1 or 7.1 surround sound data
provided in the form of pulse-code modulated (PCM) data is combined with audio object data
204 to produce an adaptive audio mix 208. The audio object data 204 is produced by
combining the elements of the original channel-based data with associated metadata that
specifies certain parameters pertaining to the location of the audio objects. As shown
conceptually in FIG. 2, the authoring tools provide the ability to create audio programs that
contain a combination of speaker channel groups and object channels simultaneously. For
example, an audio program could contain one or more speaker channels optionally organized
into groups (or tracks, e.g., a stereo or 5.1 track), descriptive metadata for one or more
speaker channels, one or more object channels, and descriptive metadata for one or more
object channels.

[0043] For the adaptive audio mix 208, a playback system can be configured to render
and playback audio content that is generated through one or more capture, pre-processing,
authoring and coding components that encode the input audio as a digital bitstream. An
adaptive audio component may be used to automatically generate appropriate metadata
through analysis of input audio by examining factors such as source separation and content
type. For example, positional metadata may be derived from a multi-channel recording

through an analysis of the relative levels of correlated input between channel pairs. Detection

12

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

of content type, such as speech or music, may be achieved, for example, by feature extraction
and classification. Certain authoring tools allow the authoring of audio programs by
optimizing the input and codification of the sound engineer’s creative intent allowing him to
create the final audio mix once that is optimized for playback in practically any playback
environment. This can be accomplished through the use of audio objects and positional data
that is associated and encoded with the original audio content. Once the adaptive audio
content has been authored and coded in the appropriate codec devices, it is decoded and
rendered for playback through speakers, such as shown in FIG. 1.

[0044] FIG. 3 is a block diagram of an adaptive audio system that processes channel-
based and object-based audio, under an embodiment. As shown in system 300, input audio
including object-based audio including object metadata, as well as channel-based audio are
input as an input audio bitstream (audio in) to one or more decoder circuits within
decoding/rendering (decoder) subsystem 302. The audio in bitstream encodes various audio
components, such as channels (audio beds) with associated speaker or channels identifiers,
and various audio objects (e.g., static or dynamic objects) with associated object metadata. In
an embodiment, only one type of audio, object or channel, is input at any particular time, but
the audio input stream may switch between these two types of audio content periodically or
somewhat frequently during the course of a program. An object-based stream may contain
both channels and objects, with both the channels and the objects, and the objects can be
different types: bed objects (i.e., channels), dynamic objects, and ISF (Intermediate Spatial
Format) objects. ISF is a format that optimizes the operation of audio object panners by
splitting the panning operation into two parts: a time-varying part and a static part, and other
similar objects may also be processed by the system. The OAR handles all these types
simultaneously, while the CAR is used to do blind upmixing of legacy channel based content
or function as a passthrough node.

[0045] The processing of the audio after decoder 302 is generally different for channel-
based audio versus object-based audio. Thus, for the embodiment of FIG. 3, the channel-
based audio is shown as being processed through an upmixer 304 or other channel-based
audio processor, while the object-based audio is shown as being processed through an object
audio renderer interface (OARI) 306. The CAR component may comprise an upmixer as
shown, or it may comprise a simple passthrough node that maps input audio channels to
output speakers, or it may be any other appropriate channel-based processing component.

The processed audio is then multiplexed or joined together in a joiner component 308 or

13

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

similar combinatorial circuit, and the resulting audio output is then sent to the appropriate
speaker or speakers 310 in a speaker array, such as array 100 of FIG. 1.

[0046] For the embodiment of FIG. 3, the audio input may comprise channels and objects
along with their respective associated metadata or identifier data. The encoded audio
bitstream thus contains both types of audio data as it is input to the decoder 302. In an
embodiment, the decoder 302 contains a switching mechanism 301 that utilizes in-band
signaling metadata to switch between object and channel based audio data so that each
particular type of audio content is routed to the appropriate processor 304 or 306. By using
such signaling metadata, a coded audio source may signal a switch between object and
channel based audio 301. In an embodiment, the signaling metadata signal is transmitted “in-
band” with the audio input bitstream and serves to activate the downstream processes, such as
audio rendering 306 or upmixing 304. This allows for a continuous audio stream without
gaps, mutes, glitches, or audio/video synchronization drift. At initialization time, the decoder
302 is prepared to process both object-based and channel-based audio. When a change
occurs between audio type, metadata is generated internal to the decoder DSP and is
transmitted between audio processing blocks. By utilizing this metadata, it is possible to
allow the DSP to select the correct processing chain for the incoming audio, without needing
to communicate externally to other DSPs or microcontrollers. This allows a coded audio
source to signal a switch between object-based and channel-based audio through a metadata
signal that is transmitted with the audio content.

[0047] FIGS. 4A and 4B illustrate the different processing paths traversed for object-
based decoding and rendering versus channel-based decoding and upmixing in an adaptive
audio AVR system, under an embodiment. FIG. 4A shows a processing path and the signal
flow for channel-based decoding and upmixing in an adaptive audio AVR system, and FIG.
4B shows the processing path and signal flow for object-based decoding and rendering in the
same AVR system. The input bitstream, which may be a Dolby Digital Plus or similar
bitstream, may change between object-based and channel-based content over time. As the
content changes, the decoder 402 (e.g., Dolby Digital Plus decoder) is configured to output
in-band metadata that encodes or indicates the audio configuration (object vs. channel). As
shown in FIG. 4A, the channel-based audio within the input bitstream is processed through an
upmixer 404 that also receives speaker configuration information; and as shown in FIG. 4B,
the object-based audio within the input bitstream is processed through an object audio

renderer (OAR) 406 that also receives the appropriate speaker configuration information.

14

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

The OAR interfaces with the AVR system 411 through an object audio renderer interface
(OARI) 306, shown in FIG. 3. The use of in-band metadata that is encoded with the audio
content, and that encodes the audio type allows the upmixer 404 and renderer 406 to choose
the appropriate audio to process. Thus, as shown in FIGS. 4A and 4B, the upmixer 404 will
detect the presence of channel-based audio through the in-line metadata and only process the
channel-based audio, while ignoring the object-based audio. Likewise, the renderer 406 will
detect the presence of object-based audio through the in-line metadata and only process the
object-based audio, while ignoring the channel-based audio. This in-line metadata effectively
allows the system to switch between the appropriate post-decoder processing components
(e.g., upmixer, OAR) based directly on the type of audio content detected by these
components, as shown by virtual switch 403.

[0048] When switching between rendered audio (object-based) and upmixed audio
(channel-based), it is also important to manage latency. The upmixer 404 and renderer 406
may both have differing, non-zero latencies. If the latency is not accounted for, then
audio/video synchronization may be affected, and audio glitches may be perceived. The
latency management may be handled separately, or it may be handled by the renderer or
upmixer. When the renderer or upmixer is first initialized, each component is queried for its
latency in samples, such as through a latency-determining algorithm within each component.
When the renderer or upmixer becomes active, the initial samples generated by the
component algorithm equal to its latency are discarded. When the renderer or upmixer
becomes inactive, an extra number of zero samples equal to its latency are processed. Thus,
the number of samples output is exactly equal to the number of samples input. No leading
zeroes are output, and no stale data is left in the component algorithm. Such management
and synchronization is provided by the latency management component 408 in systems 400
and 411. The latency manager 408 is also responsible for joining the output of upmixer 404
and renderer 406 into one continual audio stream. In an embodiment, the actual latency
management function may be handled internally to both the upmixer and renderer by
discarding leading zeros and processing extra data for each respective received audio segment
according to latency processing rules. The latency manager thus ensures a time-aligned
output of the different signal paths. This allows the system to handle bitstream changes
without producing audible and objectionable artifacts that may otherwise be produced due to

multiple playback conditions and the possibility of changes in the bitstream.

15

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

[0049] In an embodiment, latency alignment occurs by pre-compensating for known
latency differences during the initialization phase. During consecutive audio segments,
samples may be dropped because the audio doesn’t align to a minimum frame boundary size
(e.g., in the Channel Audio Renderer) or the system is applying “fades” to minimize
transients. As shown in FIGS. 4A and 4B, the latency synchronized audio is then processed
through one or more additional post-processes 410 that may utilize adaptive-audio enabled
speaker information that provides parameters regarding sound steering, object trajectory,
height effects, and so on.

[0050] In an embodiment, in order to enable switching on bitstream parameters, the
upmixer 404 must remain initialized in memory. This way, when a loss of adaptive audio
content is detected, the upmixer can immediately begin upmixing the channel-based audio.
[0051] FIG. 5 is a flowchart that illustrates a method of providing in-band signaling
metadata to switch between object-based and channel-based audio data, under an
embodiment. As shown in process 500 of FIG. 5, an input bitstream having channel-based
and object-based audio at different times is received in a decoder, 502. The decoder detects
the changes in the audio type as it receives the bitstream, 504. The decoder internally
generates metadata indicating the audio type for each received segment of audio and encodes
this generated metadata with each segment of audio for transmission to downstream
processors or processing blocks, 506. Thus, channel-based audio segments are each encoded
with a channel identifying metadata definition (tagged as channel-based), and object-based
audio segments are each encoded with object identifying metadata definition (tagged as
object-based). Each processing block after the decoder detects the type of incoming audio
signal segment based on this in-line signaling metadata, and processes it or ignores it
accordingly, 508. Thus, an upmixer or other similar process will process audio segments that
are signaled to be channel-based, and an OAR or similar process will process audio segments
that are signaled to be object-based. Any latency difference between successive audio
segments are adjusted through latency management processes within the system, or within
each downstream processing block, and the audio streams are joined to form an output audio
stream, 510. The output stream is then transmitted to a surround-sound speaker array, 512.
[0052] By utilizing the in-band metadata signaling mechanism and by managing the
latency, the audio system of IIG. 3 is capable of receiving and processing audio that is
changing between objects and channels over time, and maintains constant audio output for all

requested speaker feeds without glitches, mutes, or audio/video synchronization drift. This

16

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

allows the distribution and processing of audio content that contains both new (e.g., Dolby
Atmos audio/video) content and legacy (e.g., surround-sound audio) content in the same
bitstream. By using an appropriate upmixer 304, an AVR or other devices can switch
between content types, causing minimal spatial distortion. This allows newly developed
AVR products to be able to receive changes in a bitstream, such as bit-rate and channel
configuration, without any resulting audio dropouts or undesirable audio artifacts, which is
especially important as the industry moves towards new forms of content delivery and
adaptive streaming scenarios. The described surround upmix technology plays an important
role in helping decoders handle these bitstream changes.

[0053] It should be noted that the system of FIG. 3, as further detailed in FIGS. 4A and
4B, represents an example of a playback system for adaptive audio, and other configurations,
components, and interconnections are also possible. For example, the decoder 302 may be
implemented as a microcontroller coupled to two separate processors (DSPs) for upmixing
and object rendering, and these components may be implemented as separate devices coupled
together by a physical transmission interface or network. The decoder microcontroller and
processing DSPs may be each contained within a separate component or subsystem or they
may be separate components contained in the same subsystem, such as an integrated
decoder/renderer component. Alternatively, the decoder and post-decoder processes may be
implemented as separate processing components within a monolithic integrated circuit
device.

Metadata Definition

[0054] In an embodiment, the adaptive audio system includes components that generate
metadata from an original spatial audio format. The methods and components of the
described systems comprise an audio rendering system configured to process one or more
bitstreams containing both conventional channel-based audio elements and audio object
coding elements. The spatial audio content from the spatial audio processor comprises audio
objects, channels, and position metadata. Metadata is generated in the audio workstation in
response to the engineer’s mixing inputs to provide rendering queues that control spatial
parameters (e.g., position, velocity, intensity, timbre, etc.) and specify which driver(s) or
speaker(s) in the listening environment play respective sounds during exhibition. The
metadata is associated with the respective audio data in the workstation for packaging and

transport by an audio processor.

17

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

[0055] In an embodiment, the audio type (i.e., channel or object-based audio) metadata
definition is added to, encoded within, or otherwise associated with the metadata payload
transmitted as part of the audio bitstream processed by an adaptive audio processing system.
In general, authoring and distribution systems for adaptive audio create and deliver audio that
allows playback via fixed speaker locations (left channel, right channel, etc.) and object-
based audio elements that have generalized 3D spatial information including position, size
and velocity. The system provides useful information about the audio content through
metadata that is paired with the audio essence by the content creator at the time of content
creation/authoring. The metadata thus encodes detailed information about the attributes of
the audio that can be used during rendering. Such attributes may include content type (e.g.,
dialog, music, effect, Foley, background / ambience, etc.) as well as audio object information
such as spatial attributes (e.g., 3D position, object size, velocity, etc.) and useful rendering
information (e.g., snap to speaker location, channel weights, gain, ramp, bass management
information, etc.). The audio content and reproduction intent metadata can either be
manually created by the content creator or created through the use of automatic, media
intelligence algorithms that can be run in the background during the authoring process and be
reviewed by the content creator during a final quality control phase if desired.

[0056] In an embodiment, there are several different metadata types that work together to
describe the data. First, there is a connection between each processing node, such as between
the decoder and upmixer or renderer. This connection contains a data buffer, and a metadata
buffer. As described in greater detail below with respect to the OARI, the metadata buffer is
implemented as a list, with pointers into certain byte offsets of the data buffer. The interface
for the node to the connection is through the "pin". A node may have zero or more input
pins, and zero or more output pins. A connection is made between the input pin of one node
and the output pin of another node. One trait of a pin is its data type. That is, the data buffer
in the connection may represent various different types of data - PCM audio, encoded audio,
video, etc. It is the responsibility of a node to indicate through its output pin what type of
data is being output. A processing node should also query its input pin, so that it knows what
type of data is being processed.

[0057] Once a node queries its input pin, it can then decide how to process the incoming
data. If the incoming data is PCM audio, then the node needs to know exactly what the
format of that PCM audio is. The format of the audio is described by a "pcm_config"

metadata payload structure. This structure describes e.g., the channel count, the stride, and

18

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

the channel assignment of the PCM audio. It also contains a flag "object_audio", which if set
to 1 indicates the PCM audio is object-based, or set to 0 if the PCM audio is channel-based,
though other flag setting values are also possible. In an embodiment, this pcm_config
structure is set by the decoder node, and received by both the OARI and CAR nodes. When
the rendering node receives the pcm_config metadata update, it checks the object_audio flag
and reacts accordingly, beginning a new stream or ending a current stream as needed.

[0058] Many other metadata types may be defined by the audio processing

framework. In general, a metadatum consists of an identifier, a payload size, an offset into
the data buffer, and an optional payload. Many metadata types do not have any actual
payload, and are purely informational. For instance, the "sequence start" and "sequence end"
signaling metadata have no payload, as they are just signals without further information. The
actual object audio metadata is carried in "Evolution" frames, and the metadata type for
Evolution has a payload size equal to the size of the Evolution frame, which is not fixed and
can change from frame to frame. The term Evolution frame generally refers to a secure,
extensible metadata packaging and delivery framework in which a frame can contain one or
more metadata payloads and associated timing and security information. Although
embodiments are described with respect to Evolution frames, it should be noted that any
appropriate frame configuration that provides similar capabilities may be used.

Object Audio Renderer Interface

[0059] As shown in FIG. 3, the object-based audio is processed through an object audio
renderer interface 306 that includes or wraps around an object audio renderer (OAR) to
rendering the object-based audio. In an embodiment, the OARI 306 receives the audio data
from decoder 302 and processes the audio data that has been signaled by appropriate in-line
metadata as object-based audio. The OARI generally works to filter metadata updates for
certain AVR products and playback components such as adaptive-audio enabled speakers and
soundbars. It implements techniques such as proper alignment of metadata with incoming
buffered samples; adapting the system to varying complexities to meet processor needs;
intelligent filtering of metadata updates that do not align on block boundaries; and filtering
metadata updates for applications like a soundbar and other specialized speaker products.
[0060] The object audio renderer interface is essentially a wrapper for the object audio
renderer that performs two operations: first, it deserializes Evolution framework and object
audio metadata bitstreams; and second, it buffers input samples and metadata updates that are

to be processed by the OAR at the appropriate time and with the appropriate block size. In an

19

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

embodiment, the OARI implements an asynchronous input/output API (application program
interface), where samples and metadata updates are pushed onto the input audio bitstream.
After this input call is made, the number of available samples is returned to the caller, and then
those samples are processed.

[0061] The object audio metadata contains all relevant information needed to render an
adaptive audio program with an associated set of object-based PCM audio outputs from a
decoder (e.g., Dolby Digital Plus, Dolby TrueHD, Dolby MAT decoder, or other decoder).
FIG. 6 illustrates the organization of metadata into a hierarchical structure as processed by an
object audio renderer, under an embodiment. As shown in diagram 600, an object audio
metadata payload is divided into a program assignment and associated object audio element.
The object audio element comprises data for multiple objects, and each object data element
has an associated object information block that contains object basic information and object
render information. The object audio element also has metadata update information and
block update information for each object audio element.

[0062] The PCM samples of the input audio bitstream are associated with certain metadata
that defines how those samples are rendered. As the objects and rendering parameters change,
the metadata is updated for new or successive PCM samples. With regard to metadata
framing, the metadata updates can be stored differently depending on the type of codec. In
general, however, when codec-specific framing is removed, metadata updates shall have
equivalent timing and render information, independent of their transport. FIG. 7 illustrates the
application of metadata updates and the framing of metadata updates within a first type of
codec, under an embodiment. Depending on the data codec used, all frames contain a
metadata update that may contain multiple blocks in a single frame, or the access units may
contain updates, generally with only one block per frame. As shown in diagram 700, PCM
samples 702 are associated with periodic metadata updates 704. In the diagram, five such
updates are shown. In certain codecs, such as the Dolby Digital Plus format, one or more
metadata updates may be stored in Evolution frame 706, which contains the object audio
metadata and block updates for each associated metadata update. Thus, the example of FIG. 7
shows the first two metadata updates stored in a first Evolution frame with two block updates,
and the next three metadata updates stored in a second Evolution frame with three block
updates. These Evolution frames correspond to uniform frames 708 and 710, each of a

defined number of samples (e.g., 1536 samples long for a Dolby Digital Plus frame).

20

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

[0063] The embodiment of FIG. 7 illustrates storage of metadata updates for one type of
codec, such as a Dolby Digital Plus codec. However, other codecs and framing schemes may
be used. FIG. § illustrates the storage of metadata according to an alternative framing scheme
for use with a different codec, such as a Dolby TrueHD codec. As shown in diagram 800,
metadata updates 802 are each packaged into a corresponding Evolution frame 804 that has an
object audio metadata element (OAMD) and an associated block update. These are framed
into Access Units 806 of a certain number of samples (e.g., 40 samples for a Dolby TrueHD
codec). Although embodiments have been described for certain example codecs, such as
Dolby Digital Plus and Dolby TrueHD, it should be noted that any appropriate codec for
object-based audio may be used, and the metadata framing scheme may be configured
accordingly.

OARI Operation

[0064] The object audio renderer interface is responsible for the connection of audio data
and Evolution metadata to the object audio renderer. To achieve this, the object audio
renderer interface (OARI) provides audio samples and accompanying metadata to the object
audio renderer (OAR) in manageable data portions or frames. FPIGS. 7 and § illustrate how
metadata updates are stored in the audio coming into the OARI, and the audio samples and
accompanying metadata for the OAR are illustrated in FIGS. 11, 12 and 13.

[0065] The object audio renderer interface operation consists of a number of discrete steps
or processing operations, as shown in the flow diagram 900 of FIG. 9. The method of FIG. 9
generally illustrates a process of processing object-based audio by receiving, in an object
audio renderer interface (OARI), a block of audio samples and one or more associated object
audio metadata payloads, de-serializing one or more audio block updates from each object
audio metadata payload, storing the audio samples and the audio block updates in respective
audio sample and audio block update memory caches, and dynamically selecting processing
block sizes of the audio samples based on timing and alignment of audio block updates
relative to processing block boundaries, and one or more other parameters including
maximunymininmum processing block size parameters. In this method, the object-based
audio is transmitted from the OARI to the OAR in processing blocks of sizes determined by
the dynamic selection process.

[0066] With reference to FIG. 9, the object audio renderer interface first receives a block
of audio samples and deserialized evolution metadata frames, 902. The audio sample block

can be of arbitrary size, such as up to a max_input_block_size parameter passed in during the

21

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

object audio renderer interface initialization. The OAR may be configured to support a
limited number of block sizes, such as block sizes of: 32, 64, 128, 256, 480, 512, 1024, 1536,
and 2048 samples in length, but is not so limited, and any practical block size may be used.
[0067] The metadata is passed as a deserialized evolution framework frame with a binary
payload (e.g., data type evo_payload_t) and a sample offset, indicating at which sample in the
audio block the Evolution framework frame applies. Only Evolution framework payloads
containing object audio metadata are passed to the object audio renderer interface. Next, the
audio block update data is deserialized from the object audio metadata payloads, 904. Block
updates carry spatial position and other metadata (such as object type, gain, and ramp data)
about a block of samples. Depending on system configuration, up to e.g., eight block updates
are stored in an object audio metadata structure. The offset calculation incorporates the
Evolution framework offset, the progression of the object audio renderer interface sample
cache, and offset values of the object audio metadata, in addition to individual block updates.
The audio data and block updates are then cached, 906. The caching operation retains the
relationship between the metadata and the sample positions in the cache. As shown in block
908, the object audio renderer interface selects a size for a processing block of audio samples.
The metadata is then prepared for the processing block, 910. This step includes certain
procedures, such as object prioritization, width removal, handling of disabled objects, filtering
of updates that are too frequent for selected block sizes, spatial position clipping to a range
supported by the object audio renderer (to ensure no negative Z values), and converting update
data into a special format for use by the object audio renderer. The object audio renderer then
is called with the selected processing block, 912.

[0068] In an embodiment, the object audio renderer interface steps are performed by API
functions. One function (e.g., oari_addsamples_evo) decodes object audio metadata payloads
into block updates, caches samples and block updates, and selects the first processing block
size. A second function (e.g., a first cari_process) processes one block, and selects the next
processing block size. An example call sequence of one processing cycle is as follows: first,
one call to oari_addsamples_evo., and second, zero or more calls to oari_process provided that a
processing block is available; and these steps are repeated for each cycle.

[0069] As shown in step 906 of FIG. 9, the OARI performs a caching and deserializing
operation. FIG. 10 illustrates in more detail the caching and deserialization processing cycle of
an object audio renderer interface, under an embodiment. As shown in diagram 1000, object

audio data in the form of PCM samples are input to a PCM audio cache 1004, and the

22

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

corresponding metadata payloads are input to an update cache 1008 through an object audio
metadata parser 1007. Block updates are represented by numbered circles, and each has a
fixed relationship to a sample position in the PCM audio cache 1004, as shown by the arrows.
For the example update scenario shown in FIG. 10, the last two updates are related to samples
past the end of the current cache, associated with audio of a future cycle. The caching process
involves retaining any unused portion of audio and the accompanying metadata from a
previous processing cycle. This holdover cache for the block updates is separated from the
update cache 1008, because the object audio metadata parser is always deserializing a full
complement of updates into the main cache 1004. The size of the audio cache is influenced by
the input parameters given at the time of initialization, such as by the max_input_block_size,
max_output_block_size, and max_objs parameters. The metadata cache sizes are fixed, though it
is possible to change the oART_max_evo_mp parameter inside the object audio renderer interface
implementation, if needed.

[0070] To select a new value for the oarRT_max_Evo Mp definition, the chosen
max_input_block_size parameter must be considered. The 0ARI_MAX_EVO_MD parameter represents
the number of object audio metadata payloads that can be sent to the object audio renderer
interface with one call to the cari_addsamples_evo function. If the input block of samples is
covered by more object audio metadata, the input size must be reduced by the calling code to
arrive at the allowed amount of object audio metadata. Excess audio and object audio
metadata are processed by an additional call to oari_addsamples_evo in a future processing
cycle. Held over updates are sent to a held over PCM portion 1003 of the audio cache 1004.
In a certain implementation, the theoretical worst case for the number of object audio
metadata is max_input_block size/4e, while a more realistic worst case is
max_input_block_size/128. Calling code that can handle a varying block size when calling the
oari_addsamples_evo function should choose the realistic worst case, while code reliant on a
fixed input block size must choose the theoretical worst case. In such an implementation, the
default value for 0ARI_MAX_EVO MDIiS 16.

[0071] Rendering objects with width (sometimes referred to as “size”) generally requires
more processing power than otherwise. In an embodiment, the object audio renderer interface
can remove width from some or all objects. This feature is controlled by a parameter, such as a
max_width_objects parameter. Width is removed from objects in excess of this count. The
objects selected for width removal are of a lesser priority, if priority information is specified in

the object audio metadata, or by a higher object index.

23

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

[0072] Additionally, the object audio renderer interface compensates for the processing
latency introduced by the limiter in the object audio renderer. This can be enabled or disabled
by a parameter setting, such as with the b_compensate_latency parameter. The object audio
renderer interface compensates by dropping initial silence and by zero-flushing at the end.
[0073] As shown in step 908 of FIG. 9, the OARI performs a processing block size
selection operation. A processing block is a block of samples with zero or one update.
Without an update, the object audio renderer continues to use the metadata of a previous
update for the new audio data. As mentioned above, the object audio renderer can be
configured to support a limited number of block sizes: 32, 64, 128, 256, 480, 512, 1,024,
1,536, and 2,048 samples, though other sizes are also possible. In general, larger processing
block sizes are more CPU effective. The object audio renderer may be configured to not
support an offset between the start of a processing block and the metadata. In this case, the
block update must be at or near the start of a processing block. In general, the block update is
located as near to the first sample of the block as allowed by the minimum output block size
selection. The objective of the processing block size selection is to select a processing block
size as large as possible, with a block update located at the first sample of the processing
block. This selection is constrained by the available object audio renderer block sizes and the
block update locations. Additional constraints stem from the object audio renderer interface
parameters, such as the min_output_block_size and max_output_block_size parameters. The
cache size and input block size are not factors in the selection of the processing block size. If
more than one update occurs within min_output_block_size samples, only the first update is
retained and any additional updates are discarded. If a block update is not positioned at the
first sample of the processing block, the metadata applies too early, resulting in an imprecise
update. The maximum possible imprecision is given by a parameter values, such as
min_output_block_size - 1, Initial samples without any block update data result in silent
output. If no update data has been received for a number of samples, the output is also muted.
The number of samples until an error case is detected is given by the parameter

max_lag samples at the initialization time.

[0074] FIG. 11 illustrates the application of metadata updates by the object audio renderer
interface, under an embodiment. In this example, min_output_block_size is set to 128 samples
and max_output_block_sizeis set to 512 samples. Therefore, four possible block sizes are
available for processing as follows: 128, 256, 480, and 512. FIG. 11 illustrates the process of

selecting the correct size of samples to send to the object audio renderer. In general,

24

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

determining the proper block size is based on certain criteria based on optimizing overall
computational efficiency by calling the maximum block size possible given certain
conditions. For a first condition, if there are two updates that are closer together than the
minimum block size, the second update should be removed prior to the calculation of the
block size determination. The block size should be chosen such that: a single update applies
to the block of samples to be processed, the update is a close as possible to the first sample in
the block to be processed; the block size must be no smaller than the min_output_block_size
parameter value passed during initialization; and the block size must be no larger than the
max_output_block_size parameter value passed in during initialization.

[0075] FIG. 12 illustrates an example of an initial processing cycle performed by the
object audio renderer interface, under an embodiment. As shown in diagram 1200, metadata
updates are represented by numbers circles from 1 to 5. The processing cycle begins with a
call to the oari_addsamples_evo function 1204 that fills the audio and metadata caches, and is
followed by a series of oari_process rendering functions 1206. Thus, after the call to function
1204, a call is made to the first oari_process function, which sends a first block of audio
together with update 0 to the object audio renderer. The block and update areas are shown as
hatched areas in FIG. 12. Subsequently, the progression through the sample cache is shown
with each function call 1206, Note how the maximum output block size is enforced, that is
the size of each hatched area does not exceed the max_output_block_size 1202, For the example
shown, updates 2 and 3 have more audio data associated with them than allowed by the
max_output_block_size parameter and are therefore sent as multiple processing blocks. Only
the first processing block has update metadata. The last chunk is not yet processed, because it
is smaller than max_output_block_size. The processing block selection is waiting for additional
samples in the next round to maximize the processing block. A subsequent call to the
oari_addsamples_evo function is made, starting a new processing cycle. As can be seen in the
Figure, update 5 applies to audio that has not yet been added.

[0076] In the subsequent processing cycle, the oari_addsamples_evo function first moves all
remaining audio to the start of the cache and adjusts the offset of the remaining updates. FIG.
13 illustrates a second processing cycle following the example processing cycle of FIG. 12. The
oari_addsamples_evo function then adds the new audio and metadata after the held-over content
in the cache. The processing of update 1 shows an enforcement of the min_output_block_size
parameter. The second processing block of update 0 is smaller than this parameter and is

therefore expanded to match this minimum size. As a result, the processing block now

25

10

15

20

25

WO 2016/018787 PCT/US2015/042190

contains update 1, which must be processed along this block of audio. Because update 1 is not
located at the first sample of the processing block, but the object audio renderer applies it
there, the metadata is applied early. This results in a lowered precision of the audio rendering.
[0077] With respect to metadata timing, embodiments include mechanisms to maintain
accurate timing when applying metadata to the object audio renderer in the object audio
renderer interface. One such mechanism includes the use of sample offset fields in an internal
data structure. FIG. 14 illustrates a table (Table 1) that lists fields used in the calculation of
the offset field in the internal oari md update data structure, under an embodiment,

[0078] For higher sample rates, some of the indicated sample offsets must be scaled. The

time scale of the following bit fields is based on the audio sample rate:

Timestamp
oa_sample_offset

block offset_ factor

The oa_sample_offset bit field is given by the combination of the oa_sample_offset_type,
oa_sample offset code, and oa_sample offset fields. The value of these bit fields must be scaled
by a scale factor dependent on the audio sampling frequency, as listed in the following Table

2.

96 48 2
192 48 4
44.1 44.1 1
88.2 44.1 2
176.4 441 4

TABLE 2

[0079] For example, if a 96 kHz bitstream Evolution framework payload has a payload
offset of 2,000 samples, then this value must be scaled by the scale factor of 2, and the time
stamp in the evolution framework payload must indicate 1,000 samples. Because the object

audio metadata payload has no knowledge of the audio sampling rate, it assumes a time-scale

26

10

15

20

25

30

35

WO 2016/018787 PCT/US2015/042190

basis of 48 kHz, which has a scale factor of 1. It is important to note that within object audio
metadata, the ramp duration value (given by the combination of the ramp_duration_code,

use ramp_table, ramp_duration table, and ramp duration fields) also uses a time-scale basis of 48
kHz. The ramp_durationvalue must be scaled according to the sampling frequency of the
associated audio.

[0080] Once the scaling operation is performed, a final sample offset calculation may be
made. In an embodiment, the equation for the overall calculation of the offset value is given

by the following program routine:

/* N represents the number of metadata blocks in the object audio metadata payload and
must be in the range [1, 8] */

for (i=@; i<N; i++) {

metadata_update_buffer[i].offset = sample_offset + (timestamp * fs_scale_factor) +
(oa_sample_offset * fs_scale_factor) + (32 * block_offset_factor[i] * fs_scale_factor);

[0081] The object audio renderer interface dynamically adjusts processing block sizes of
the audio based on timing and alignment of metadata updates, as well as maximum/minimom
block size definitions, and other possible {actors. This allows metadata updates to occur
optimally with respect to the audio blocks to which the metadata is meant to be applied.
Metadata can thus be paired with the audio essence in a way that accommodates rendering of
multiple objects and objects that update non-uniformly with respect to the data block
boundaries, and in a way that allows the system processors to function efficiently with
respect to processor cycles.

[0082] Although embodiments have been described and illustrated with respect to
implementation in one or more specific codecs, such as Dolby Digital Plus, MAT 2.0, and
TrueHD, it should be noted that any codec or decoder format may be used.

[0083] Aspects of the audio environment of described herein represents the playback of
the audio or audio/visual content through appropriate speakers and playback devices, and
may represent any environment in which a listener is experiencing playback of the captured
content, such as a cinema, concert hall, outdoor theater, a home or room, listening booth, car,
game console, headphone or headset system, public address (PA) system, or any other
playback environment. Although embodiments have been described primarily with respect to
examples and implementations in a home theater environment in which the spatial audio

content is associated with television content, it should be noted that embodiments may also

27

10

15

20

25

30

WO 2016/018787 PCT/US2015/042190

be implemented in other consumer-based systems, such as games, screening systems, and any
other monitor-based A/V system. The spatial audio content comprising object-based audio
and channel-based audio may be used in conjunction with any related content (associated
audio, video, graphic, etc.), or it may constitute standalone audio content. The playback
environment may be any appropriate listening environment from headphones or near field
monitors to small or large rooms, cars, open air arenas, concert halls, and so on.

[0084] Aspects of the systems described herein may be implemented in an appropriate
computer-based sound processing network environment for processing digital or digitized
audio files. Portions of the adaptive audio system may include one or more networks that
comprise any desired number of individual machines, including one or more routers (not
shown) that serve to buffer and route the data transmitted among the computers. Such a
network may be built on various different network protocols, and may be the Internet, a Wide
Area Network (WAN), a Local Area Network (LAN), or any combination thereof. In an
embodiment in which the network comprises the Internet, one or more machines may be
configured to access the Internet through web browser programs.

[0085] One or more of the components, blocks, processes or other functional components
may be implemented through a computer program that controls execution of a processor-
based computing device of the system. It should also be noted that the various functions
disclosed herein may be described using any number of combinations of hardware, firmware,
and/or as data and/or instructions embodied in various machine-readable or computer-
readable media, in terms of their behavioral, register transfer, logic component, and/or other
characteristics. Computer-readable media in which such formatted data and/or instructions
may be embodied include, but are not limited to, physical (non-transitory), non-volatile
storage media in various forms, such as optical, magnetic or semiconductor storage media.
[0086] Unless the context clearly requires otherwise, throughout the description and the

k13

claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive
sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including,
but not limited to.” Words using the singular or plural number also include the plural or

k13

singular number respectively. Additionally, the words “herein,” “hereunder,” “above,”
“below,” and words of similar import refer to this application as a whole and not to any
particular portions of this application. When the word “or” is used in reference to a list of
two or more items, that word covers all of the following interpretations of the word: any of

the items in the list, all of the items in the list and any combination of the items in the list.

28

10

15

WO 2016/018787 PCT/US2015/042190

2% ¢

[0087] Reference throughout this specification to “one embodiment”, “some
embodiments” or “an embodiment” means that a particular feature, structure or
characteristic described in connection with the embodiment is included in at least one
embodiment of the discloses system(s) and method(s). Thus, appearances of the phrases
“in one embodiment”, “in some embodiments’ or “in an embodiment” in various places
throughout this description may or may not necessarily refer to the same embodiment.
Furthermore, the particular features, structures, or characteristics may be combined in any
suitable manner as would be apparent to one of ordinary skill in the art.

[0088] While one or more implementations have been described by way of example and
in terms of the specific embodiments, it is to be understood that one or more implementations
are not limited to the disclosed embodiments. To the contrary, it is intended to cover various
modifications and similar arrangements as would be apparent to those skilled in the art.

Therefore, the scope of the appended claims should be accorded the broadest interpretation so

as to encompass all such modifications and similar arrangements.

29

WO 2016/018787 PCT/US2015/042190

CLAIMS:

1. A method of processing adaptive audio content, comprising:

determining an audio type as one of channel-based audio and object-based audio for
each audio segment of an adaptive audio bitstream comprising a plurality of audio segments;

tagging the each audio segment with a metadata definition indicating the audio type of
the corresponding audio segment;

processing audio segments tagged as channel-based audio in a channel audio renderer
component; and

processing audio segments tagged as object-based audio in an object audio renderer

component that is distinct from the channel audio renderer component.

2. The method of claim 1 further comprising encoding the metadata definition as an
audio type metadata element encoded as part of a metadata payload associated with each

audio segment.

3. The method of claim 1 or claim 2 wherein the metadata definition comprises a binary
flag value that is set by a decoder component and that is transmitted to the channel audio

renderer component and object audio renderer component.

4. The method of claim 3 wherein the binary flag value is decoded by the channel audio
renderer component and object audio renderer component for each received audio segment,
and wherein audio data in the audio segment is rendered by one of the channel audio renderer

component and object audio renderer component based on the decoded binary flag value.

5. The method of any of claims 1 to 4 wherein the channel-based audio comprises legacy
surround-sound audio and the channel audio renderer component comprises an upmixer, and
further wherein the object audio renderer component comprises an object audio renderer

interface.
6. The method of any of claims 1 to 5 further comprising adjusting for transmission and

processing latency between any two successive audio segments by pre-compensating for

known latency differences during an initialization phase.

30

WO 2016/018787 PCT/US2015/042190

7. A method of rendering adaptive audio, comprising:

receiving, in a decoder, input audio comprising channel-based audio and object-based
audio segments encoded in an audio bitstream;

detecting a change of type between the channel-based audio and object-based audio
segments in the decoder;

generating a metadata definition for each type of audio segment upon detection of the
change of type;

associating the metadata definition with the appropriate audio segment; and

processing each audio segment in an appropriate post-decoder processing component

depending on the associated metadata definition.

8. The method of claim 7 wherein the channel-based audio comprises legacy surround-
sound audio to be rendered through an upmixer of an adaptive audio rendering system, and
further wherein the object-based audio is rendered through an object audio renderer interface

of the adaptive audio rendering system.

9. The method of claim 7 or claim 8 further comprising adjusting for transmission and
processing latency between any two successive audio segments by pre-compensating for

known latency differences during an initialization phase.

10. The method of any of claims 7 to 9 wherein the metadata definition comprises an
audio-type flag encoded by the decoder as part of a metadata payload associated with the

audio bitstream.

11. The method of claim 10 wherein a first state of the flag indicates that an associated
audio segment is channel-based audio and a second state of the flag indicates that the

associated audio segment is object-based audio.

12. A system for rendering adaptive audio, comprising:

a decoder receiving input audio in a bitstream having audio content and associated
metadata, the audio content having an audio type comprising one of channel-based audio or
object-based type audio at any one time;

an upmixer coupled to the decoder for processing the channel-based audio;

31

WO 2016/018787 PCT/US2015/042190

an object audio renderer interface coupled to the decoder in parallel with the upmixer
for rendering the object-based audio through an object audio renderer; and

a metadata element generator within the decoder configured to tag channel-based
audio with a first metadata definition and to tag object-based audio with a second metadata

definition.

13. The system of claim 12 wherein the upmixer receives both the tagged channel-based
audio and tagged object-based audio from the decoder and processes only the channel-based

audio.

14. The system of claim 12 or claim 13 wherein the object audio renderer interface
receives both the tagged channel-based audio and tagged object-based audio from the decoder

and processes only the object-based audio.

15. The system of any of claims 12 to 14 wherein the metadata element generator sets a
binary flag indicating the type of audio segment transmitted from the decoder to the upmixer
and the object audio renderer interface, and wherein the binary flag is encoded by the decoder

as part of a metadata payload associated with the bitstream.

16. The system of any of claims 12 to 15 wherein the channel-based audio comprises
surround-sound audio beds, the audio objects comprise objects conforming to an object audio

metadata (OAMD) format.

17. The system of any of claims 12 to 16 further comprising a latency manager
configured to adjust for transmission and processing latency between any two successive
audio segments by pre-compensating for known latency differences during an initialization
phase to provide time-aligned output of different signal paths through the upmixer and object

audio renderer interface for the successive audio segments.
18. A method of processing object-based audio, comprising:

receiving, in an object audio renderer interface (OARI), a block of audio samples and

one or more associated object audio metadata payloads;

32

WO 2016/018787 PCT/US2015/042190

de-serializing one or more audio block updates from each object audio metadata
payload;

storing the audio samples and the audio block updates in respective audio sample and
audio block update memory caches; and

dynamically selecting processing block sizes of the audio samples based on timing
and alignment of audio block updates relative to processing block boundaries, and one or

more other parameters including: maximum/minimum processing block size parameters.

19. The method of claim 18 further comprising transmitting the object-based audio from

the OARI to the OAR in processing blocks of sizes determined by the dynamic selection step.

20. The method of claims 18 or 19 wherein each metadata element is passed in a metadata

frame with a sample offset indicating at which sample in an audio block the frame applies.

21. The method of any of claims 18 to 20 further comprising preparing the metadata
containing the metadata elements through one or more processes including object
prioritization, width removal, disabled object handling, filtering of excessively frequent
updates, spatial position clipping to a desired range, and converting update data into a desired

format.

22. The method of claim 19 wherein the OAR supports a limited number of processing

block sizes.

23. The method of claim 22 wherein the processing block size is selected from the group

consisting of: 32, 64, 128, 256, 480, 512, 1024, 1536, and 2048 samples in length.

24, The method of claim 19 wherein the processing block size selection is made such that
the audio block update is located as near to the first sample of the processing block as

allowed by a processing block size selection parameter.
25. The method of claim 24 wherein the processing block size is selected to be as large as

possible as constrained by audio block update location, OAR processing block sizes, and

OARI maximum and minimum block size parameter values.

33

WO 2016/018787 PCT/US2015/042190

26. The method of any of claims 18 to 25 wherein the metadata frames contain metadata
defining attributes regarding rendering of one or more objects in the block of audio samples,
the attributes selected from the group consisting of: content-type attributes including dialog,
music, effect, Foley, background, and ambience definitions; spatial attributes including 3D
position, object size, and object velocity; and speaker rendering attributes including snap to

speaker location, channel weights, gain, ramp, and bass management information.

27. A method of processing audio objects, comprising:

receiving, in an object audio renderer interface (OARI), a block of audio samples and
associated metadata that defines how the audio samples are rendered in an object audio
renderer (OAR), wherein the metadata is updated over time to define different rendering
attributes of the audio objects;

buffering the audio samples and metadata updates to be processed by the OAR in an
arrangement of processing blocks;

dynamically selecting processing block sizes based on timing and alignment of
metadata updates relative to block boundaries, and one or more other parameters including:
maximum/minimum block size parameters; and

transmitting the object-based audio from the OARI to the OAR in blocks of sizes

determined by the dynamic selection step.

28. The method of claim 27 further comprising: storing the audio data and block updates
for each block in respective audio and update memory caches, wherein the block updates are

encoded in metadata elements stored in object audio metadata payloads.

29. The method of claim 28 wherein each metadata element is passed in a metadata frame

with a sample offset indicating at which sample in a processing block the frame applies.
30. The method of any of claims 27 to 29 wherein the block size selection is made such

that the block update is located as near to the first sample of the block as allowed by a block

size selection parameter.

34

WO 2016/018787 PCT/US2015/042190

31. The method of claim 30 wherein the block size is selected to be as large as possible as
constrained by block update location, OAR block sizes, and OARI maximum and minimum

block size parameter values.

32. The method of any of claims 27 to 31 further comprising preparing the metadata
containing the metadata elements through one or more processes including object
prioritization, width removal, disabled object handling, filtering of excessively frequent
updates, spatial position clipping to a desired range, and converting update data into a desired

format.

33, A method of processing adaptive audio data, comprising:

determining through a defined metadata definition whether audio to be processed is
channel-based audio or object-based audio;

processing the audio through a channel-based audio renderer (CAR) if channel-based;
and

processing the audio through an object-based audio renderer (OAR) if object-based,
wherein the OAR utilizes an OAR interface (OART) that dynamically adjusts processing
block sizes of the audio based on timing and alignment of metadara updates and one or more

other parameters including maxinwm and mininnm block sizes,

34. A method of switching between channel-based audio and object-based audio
rendering, comprising:

encoding a metadata element to have a first state indicating channel-based audio
content or a second state indicating object-based audio content for an associated audio block;

transmitting the metadata element as part of an audio bitstream comprising a plurality
of audio blocks to a decoder;

decoding the metadata element for each audio block in the decoder to route channel-
based audio content to a channel audio renderer (CAR) if the metadata element is of the first
state and object-based audio content to an object audio renderer (OAR) if the metadata

element is of the second state.

35

WO 2016/018787 PCT/US2015/042190

35. The method of claim 34 wherein the metadata element comprises a metadata flag that
is transmitted in-band with a pulse code modulated (PCM) audio bitstream transmitted to the

decoder.

36. The method of claims 34 or 35 wherein the CAR comprises one of an upmixer or a

passthrough node that maps input channels of the channel-based audio to output speakers.

37. The method as in any of claims 34 to 36 wherein the OAR comprises a renderer that
utilizes an OAR interface (OARD) that dynamically adjusts processing block sizes of the
audio based on timing and alignment of metadata updates and one or more other parameters

inchuding maximum and minimom block sizes.

36

PCT/US2015/042190

WO 2016/018787

1712

HEl

DUNCLNG
W

wbisp
jeay

el

pUNoLNG
By
201 1B 18U
bty
jeay
Wby
wibiay BBk
St G4
YL~ UM ye

wr:;&mh

WO 2016/018787

27112
200\
Channels Objects Adaptive Audio Mix
{/‘202 {,,294 /—-2Q8

wwwwwwwwwwww A"A...........“........
mmmmmmmmmmmm " A w | mmmmmeeen A
mmmmmmmmmmmm A S

&

!/‘“2@5
Channel Dala
+
Metadata
3(30\
/MSGE {/MS‘iG
Decod
eeoaer 304 308
el LIpmiXer g
);\ Channels
----M’ L JOINGT Booooefitn
Audio] Ve 307 306 Audio
in ol OARl s Ot
Objects

PCT/US2015/042190

PCT/US2015/042190

WO 2016/018787

3/12

{ [BUCHIDDY | Aousie
oir—" 205

mowmgﬁmm esds
pajgeum AgioQ

[uswebeusy
. Aoume

OL¥

m@w\\

:oﬁméémm eads
pajgeus Agiog

WESsNY

DUNCUNG b

Jmmouaa Shijed SNid
- reuia Agioq [ENSIC

Agiog
N%L\

Agiog

| 8poos(
. QMo Agiog

IB1BpUBY

DMD3< -
19090 -

-BULBYD

uopemnbByuo

Jayeadg

=

oipny peseg
-[BuUBYD

oIpnY pesey ﬂ [z3tedeicate iy
oipny 108iq0

iETelontoTy!
LY Agiod

v/!:w

~E0F

g

’ saxpudn
| puUNoLNg

WBalsig
ﬁm@ooma Shid SN
-~ 1Enig Agieg reutig

m Agioq

Nawg\x

JBp0DS(

Agiog
| aHenuL Agjeg

i2epuey

Iy

O &

|
|
|
.m

oy
welqo

uoneInByuoy

Joyeade

: o JBpo2a]
e F vin Agiog

PCT/US2015/042190

WO 2016/018787

4712

i

LHORBULICHUY UORBULIOIU
Japusy 19840 aiseg 108lgD

W HO0IE
UCHEUWLIOIL
L welao |
w LIONBULIOIU|
7 s1epdn %ooig
gred wsigo u
N t
w LCHTELUIO|
4 a1epdn
| Bieg 81080 w RIEDEIBI

w “ jusnidg Aw ﬂ,

L oipny 108lao |

wawubissy
wesboid

m‘ peoAe J
RIBPRIBIN

myomm:< HoBUD

V/{ 009

Lx sigyeadg o1 nding oipny puwisuslg
cig

!

LWBSRS oipny Inding w4 01 $adA | oipny U pue
LG Ui sedA} oipny uesmiad aouasii(l Asusie Jol isnipy

!

%o Buissenciy easedsey
mmmk\ U adA] oIpny YoBT $S8004d

!

\\\ OIPMY LA 40050 BUIssancid 1818 0 JusuBl |
80¢% pue adA] opny Bulenpu] BIEDRISN S1BIBUSD

!

oipny peseg-puleyD pue 198fgn
%%L\ uasmieg adA] oipny w afusyn 1p818Q

!

JBpoos(] & wweaasuy nduj ue
mum‘\ W sjusuodilo) oIpiY SAIRDSY

PCT/US2015/042190

WO 2016/018787

5/12

804

{Buoc seidwieg 9pcGL) ¢ swel

a1epdn a1epdn a1epdn

3019 A300g 3019
P QWYO; :
SUiBI A UCINOAT

kd

5
tnn@:q

L NS
i

804

{Buo seildwies 98GL) | swel

arepdn eyepdn

4301d ¥a0lg
i i P
™A QNYO j
SR UOINOAT |

ssuield Ul riepeIep 10 obeioig

: :

saepdy BIEPEISIN DOIBIDOSSY

sapdiueg INOd
{Bunuesd on) sotepdn Y seduweg

PCT/US2015/042190

WO 2016/018787

6/12

N,

{Buo
sejdwes Oyl
HUP $3800Y

{Buo
sopdwEes OF)
HUM S8800Y

{BuoT
saiduies op)
HU(] $S800Y

{Buo {Buo
sejdes op) seiduwies op)
U $S800Y WU SS890Y

A¥MMMARAAAANN NNV EMMANA NS

pAAANNNN VMMM ARAR AN N Yy

e

L owepdn
DL eoe d
P anvo

sXXNOONooNNXXXXWMEOBOOW

Pifoeepdn Yii ii0 empdn i
pliopoig Gib iie spog i
o anvoii o i QWvOo § §
P BB UOGNIOAT i BBl UORNIOAT

W M

SHUP SS800Y 08p0T SIRUISHY Ul elepeiep jo ebrioig

WO 2016/018787 PCT/US2015/042190

7712

) \

OCARI Receives Block of Audio Samples IQOQ
and Deserialized Mstadata Frames

!

Deserialized Audio Block Update Data f@@fﬁ
from Object Audio Metadata Payloads

'

N fQQfS
Cache Audio Data and Block Updates

!

Select Size for Processing Block of Audio Samples f 908

!

Prepare Meiadata for Processing Block f 910

:

Call OAR with Selected Processing Block f 912

PCT/US2015/042190

WO 2016/018787

8/12

max obi

is

AN

OARI_MAX_UPDATES

800L
/

aNYO

speoiAed
OWvYO

o dn OAZ

NQQT\\

Awﬁwmﬁgm 185484 W OAZ XV 1dVO0

mmmhl\,

i

A

T

SUIBD WId
NOd PREPY AlMeN

NOd J2r0 PiRH

=P
s

\Mumm...wmooﬁ....ubnE....xw& ﬁ%ﬂm

o1 dn 1elg0

\

3215 o0y INdING Xew + 9218 oolg indul xeus

¥

NQQT\\

Xr;mm?ﬁ

WO 2016/018787 PCT/US2015/042190

9/12

0611 sidwes 18 gepdn T H

ZL01 siduieg 1e spepdn -

1512 Samples

480 Samples

{paddoig a1epdn) ogp siduies 1e siepdn o

07y siduieg 12 81epdn §—ie

008 sjduies 18 818DAN — @i

¢
L&
S
&
<
w
©
)
o

@
L
o
e
G
&
o
N

Available Block Sizes
Example Update Timeline

sapng u siduieg ciey —-

PCT/US2015/042190

WO 2016/018787

10712

{}ssaocid uen

{}ssa00id ueo

7/

{(}ssaooud ueo

{}ssaocid ueo

(Yssanoid ues

{(}ssaooud ueo

rmmmw

{ } (Jone seidwesppe ueo

e R

Cozs ol
nding xew

\zozi

azis o0l Indur xew

> // ¥OZ1

V//AQQN“ S

(yssaooud ueo

O 7%
o /7%

{}ssaocid uen

PCT/US2015/042190

e/ (ssec0udeo

7/ (15500010 e

5a aepdn Mo
@ @ w\...v Aues {}ssaooid ueo

11712

3718 %00l INdIne Ul

® © 0, § (}ssa00.d 110

{Yone saidiuesppe Ueo

WO 2016/018787

3

8zis ¥ooiy ndur xew

mmﬁiﬁoﬁ?
nding xXew v//asamh S

¥

b

PCT/US2015/042190

WO 2016/018787

12712

.

‘sendde ooiq BlepRISll

DUl 184Ul onjeA 1esi30e a1dues eo
B} WIoH ABmE SHOOIY

adiues-Zo 10 JIBGUINU a4 S8gLiIDsaep
play I0308I 38@SIIC AD0TY 8yl

fcg ol

{g)n

IOIDeI 38SII0 YOOTY

pue ‘epod 38s3J0 oTdurrs €O
‘aes31lc ofdurs eo

BU] JO UOHBLIGUICD &

Ag uanb st prey 1es330 s1dwes eo
BY1 IO enjea sy '1oous

SOYE] SNIBA 19SHO YOOI BIRDEISIU 8U)
sioum aidies SUl DU SLUBI D8RO0
BUY IO UEIS B usamipg sojdes

10 JSQUINU U SS1EDIPUL SNIBA 13S0
siduwies erepeIew oipne 10alfgo sy

fre ‘ol

AL AL I

‘apoo 188130 atdues vo
‘a@s3130 oTdwes vo

sBuosq vonssnb u peojfed

BUI YoM O] SLUBH USHNOAS

aut jo Buuwibsag oy wioyy sejdwies
U J9SHO 8L SUIBILIOD pisY Sy

[1-uoTyexnp swexi ‘¢l

{11 G sgeeA

dwelsouts

‘sedde peoiled uomaiuey
UORRoAS Indul 8Ly Yotym

01 Jayng ndu sy w oidiues 184y eyl
O} BAIBIBI 19SU0 BUY] $SSIBDIpUL 1BLY
soepol JDispusd oipne 198lgo sy
oy eyeweded indi ue S Py SIuL

[1-82z71s ¥oo1qg andur zew ‘o]

W paubisun

uoindiiosag

wesnsug v sbuey piea

Buipooug

piold

b A18VL

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/042190

A. CLASSIFICATION OF SUBJECT MATTER

INV. G10L19/008 HO453/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

G1OL HO4S

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Retrieved from the Internet:
URL:none
[retrieved on 2015-08-05]

X "ISO/IEC JTC 1/SC 29 N ISO/IEC CD 23008-3
Information technology - High efficiency
coding and media delivery in heterogeneous
environments - Part 3: 3D audio",

i April 2014 (2014-04-04), XP055206371,

Sections 4, 5.2.2.1, 5.3.2, 6.4.1, 9.3

1-17,
34-36

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 December 2015

Date of mailing of the international search report

15/12/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bensa, Julien

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/042190
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X SIMONE FUG ET AL: "Object Interaction Use 1-17
Cases and Technology",
108. MPEG MEETING; 31-3-2014 - 4-4-2014;
VALENCIA; (MOTION PICTURE EXPERT GROUP OR
ISO/IEC JTC1/SC29/WG11),,
no. m33224, 27 March 2014 (2014-03-27),
XP030061676,
the whole document
X MAX NEUENDORF ET AL: "Corrections to 1,7,12
MPEG-H 3D Audio",
109. MPEG MEETING; 7-7-2014 - 11-7-2014;
SAPPORO; (MOTION PICTURE EXPERT GROUP OR
ISO/IEC JTC1/SC29/WG11),,
no. m34264, 2 July 2014 (2014-07-02),
XP030062637,
the whole document
A "Dolby Atmos Next-Generation Audio for 1-17
Cinema",
1 April 2012 (2012-04-01), XP055067682,
Retrieved from the Internet:
URL:http://www.dolby.com/uploadedFiles/Ass
ets/US/Doc/Professional/Dolby-Atmos-Next-G
eneration-Audio-for-Cinema.pdf
[retrieved on 2013-06-21]
the whole document
A US 2014/133683 Al (ROBINSON CHARLES Q [US] 1-17
ET AL) 15 May 2014 (2014-05-15)
the whole document
A WO 20147099285 Al (DOLBY LAB LICENSING 18-33,37
CORP [US]) 26 June 2014 (2014-06-26)
paragraphs [0057] - [0060], [0106]
claim 1
figures 2A-2C

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2015/042190
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

-

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

m No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2015/ 042190

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-17, 34-36

Selecting the correct processing chain for the incoming
audio, without needing to communicate externally to other
processors,

2. claims: 18-33, 37

Ensuring that object audio is rendered with the Teast amount
of processing power and high accuracy.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/042190
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014133683 Al 15-05-2014 AR 086775 Al 22-01-2014
CA 2837893 Al 10-01-2013
CN 103650539 A 19-03-2014
EP 2727383 A2 07-05-2014
JP 2014522155 A 28-08-2014
KR 20140017682 A 11-02-2014
KR 20150013913 A 05-02-2015
RU 2013158054 A 10-08-2015
TW 201325269 A 16-06-2013
US 2014133683 Al 15-05-2014
WO 2013006338 A2 10-01-2013
WO 2014099285 Al 26-06-2014 CN 104885151 A 02-09-2015
EP 2936485 Al 28-10-2015
US 2015332680 Al 19-11-2015
WO 2014099285 Al 26-06-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report
	Page 52 - wo-search-report
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

