Title: A HULL APPENDAGE

Abstract: A vessel comprising: a hull having a stern, bow and design waterline, a hull appendage attached to the hull above the design waterline, adjacent the bow and configured to reduce the bow wave height and/or bow wave profile.
FIELD
The invention relates to a vessel and a hull appendage for a vessel.

BACKGROUND
When a ship moves through water, it experiences a force which opposes the movement of the ship through water. This force is called resistance. The main sources of this resistance are (i) water pressure acting perpendicular to the hull and (ii) viscosity of water causing friction which is tangential to the hull surface.

The pressure acting on the surface of the moving hull mainly depends upon the waves created by the ship, which leads to wave making resistance. For a ship, wave making resistance increases with increase in Froude Number. Rate of increase is higher at higher Froude Number.

Ships operating at relatively higher speed have higher Froude Number eg: container ships and passenger ships. A major cost component of operating a container ship is the fuel. Rising fuel price and legislated reduction of emission of carbon, SOx and NOx may make reduced energy consumption increasingly desirable.

With the development of advanced CFD tools, Naval Architects are able to optimize hull form for lower resistance. Bulbous bows were introduced many years back for ships with higher Froude Number. These approaches focus on the hull and appendages submerged in water.

Irrespective of optimization of hull form and use of bulbous bow, every moving ship will generate waves. Height of this wave increases significantly with increase in Froude Number. Lowering the effect of bow wave will be able to reduce the resistance and hence power consumption of the ship.

SUMMARY
In general terms the present invention proposes wing like appendages fitted on both sides of the bow of a ship. These wings are fitted above waterline. Optimum position and the angle of the wings with respect to the horizontal may depend on the hull form, draught and the Froude Number of the ship.

These appendages may reduce the height and/or profile of the bow wave and hence the overall resistance of the ship, which may lead to a reduction in fuel consumption. As the wave making
resistance is higher at higher Froude Number, there is higher fuel saving for ships operating at higher Froude Number. In particular the effect may be more pronounced in ships operating above 0.25 Froude Number, which corresponds to the speed of 19 knots for a 150 m long ship and 24.5 knots for a ship 250 m length. Depending upon the hull form and operating condition, the fuel saving may exceed 15%. The reduction may be higher for ships without a bulbous bow.

In a first specific expression of the invention there is provided a vessel according to claim 1.

In a second specific expression of the invention there is provided a hull appendage according to claim 7.

Embodiments may be implemented according to claims 2 to 6.

BRIEF DESCRIPTION OF DRAWINGS
One or more example embodiments of the invention will now be described, with reference to the following figures, in which:
Figures 1a and 1b are orthographic views of the ship and the wings for a ship without bulbous bow;
Figures 2a and 2b are orthographic views of the ship and the wings for a ship with bulbous bow;
Figure 3 is a perspective view of each wing;
Figures 4a to 4c are orthographic views of the wing showing the tilting angle; and
Figure 5 is a side view of the ship showing the reduction in bow wave.

DESCRIPTION

Figure 1 shows a vessel 100 having a hull 106, a bow 102, a design waterline 104 and a stern 108. A pair of wing like appendages 101 is fitted on both sides of the hull 106 above the waterline 104 and near the bow 102.

Figure 2 shows a vessel 200 having a bow 202, a submerged bulbous bow 203, a design waterline 204 and a stern 206. A pair of wings 201 is attached to the hull 206 above the waterline 204 and near the bow 202.

Figure 3 shows the wing 101,201 is more detail. It includes a lower surface 302, an upper surface 304 and a mounting 306. The lower surface 302 of the wing may be similar to the face of an aerofoil. The bow wave is forced up the bow hull surface as the vessel moves through the water until it encounters the lower surface 302. The lower surface 302 thereby reduces the height to which the bow wave can reach, and therefore reduces the energy required to move
the vessel through the water. In one aspect the bow wing 101 may represent a reduction in the integral of the bow wave projected over the hull surface, above the water line i.e. the bow wave profile. The mounting 306 height should be chosen so that under normal operating conditions the bow wave is guided by the lower surface 302, and that the bow wave does not flow over the upper surface 304.

The mountings 306 are to be fitted close to the bow at a location to maximise the reduction in the overall bow wave height. Typically for most vessels the bow wave occurs in the first 15% of the waterline length. The wings are fitted above design waterline. The port and starboard wings are symmetric and may be fitted at an angle perpendicular to the hull surface.

The wings are tilted at angle 400 greater than or equal to 0° (The angle is positive when the wing is turned anticlockwise when viewed from starboard) with the even keel waterline as shown in Figure 4.

Optimum size, position and the angle made with the even keel waterline may depend upon the type of ship, weather conditions, amplitude and width of the wave, operating draught, hull form of the ship and the Froude Number at which the ship operates. For example they may be determined empirically using a towing tank experiment or simulated using Computational Fluid Dynamics (CFD).

As shown in Figure 5 the wings 101 are to be fitted in such a way that the wave does not go over the wings. The shape of the wing towards the leading edge should be such that it does not cause the wave to break. The wing will be gradually lowered towards the trailing edge to maximise hydrodynamic efficiency.

Reducing the bow wave 500 height, helps to suppress the bow wave (compared to the original 502), resulting in a reduced wave profile at the bow end of the ship. This leads to reduction in resultant force in the direction of the stern due to pressure. In addition, a hydrodynamic lift acts on the lower surface of the wings, which causes reduction in wetted surface area of the ship resulting in a further reduction in resistance. As the wings are fitted at the bow, in some cases increased trim will lead to increased length on waterline and hence reduce the effective Froude Number, which further reduces resistance. Effectively the bow wings may lead to a reduction in the bow wave profile.

The optimised location, size and other parameters of the wing, as mentioned above, may be determined empirically using a towing tank experiment. In order to do this a model must be
designed to be geometrically the same as the real ship. Then the Froude number of the real ship and the model must match i.e. this determines the water velocity in the tank.

For example

\[
F_n = \frac{V}{\sqrt{Lg}} = \frac{12.51}{\sqrt{237.7 \times 9.81}} = 0.259
\]

Where

\(F_n \) = Froude Number of the ship
\(L \) = Length on Water Line, \(m = 237.7 \) m
\(g \) = acceleration due to gravity = 9.81 m/s\(^2\)
\(V_s \) = Speed of the ship, m/s = 12.51 m/s

Therefore \(V_m \) (speed of the model) can be calculated depending on the length on the model, for a matched \(F_n \) of 0.259.

This allows the model to be used in testing various different configurations of the wing/appendage. To determine which configuration is best, it is necessary to compare the resistance and power of each configuration. To do this the towing tank includes a load cell to monitor the total resistance on the model (\(R_{Tm} \)). This can be used for example:

\(C_{Tm} \) = Coefficient of total resistance (model) = \(f(R_{Tm}) \), thus is calculated from the measured \(R_{Tm} \)
\(C_{Tm} = C_{Fm} + C_{Rm} \)
\(C_{Fm} \) = frictional resistance coefficient (model)
\(C_{Rm} \) = residual resistance coefficient (model)
\(C_{Rs} = C_{Rm} \)
\(C_{Fs} \) = Frictional resistance coefficient (ship) is calculated according to the actual ship
\(C_{Ts} = C_{Fs} + C_{Rm} \)
\(C_{Ts} \) = Coefficient of total resistance (ship) = 2.73\times10^{-3}

This allows the total resistance of the ship (\(R_s \)) to be calculated

\[
R_T = \frac{1}{2} C_T \rho S \frac{V^2}{2} = \frac{1}{2} \times 2.73 \times 10^{-3} \times 1025 \times 9943.4 \times 12.51^2 = 2177.1 \text{ kN}
\]

and this in turn allows

\(P_E = R_T V = 2177.1 \times 12.51 = 27235.52 \text{ kW} \)
\(P_E \) = Effective Power of the ship, W
\(\rho \) = Density of water in which the ship is moving, kg/m\(^3\) = 1025 kg/m\(^3\)
\(S \) = Wetted surface area of the ship, m\(^2\) = 9943.4 m\(^2\)

The power for each configuration is thus compared to determine the lowest effective power required.
The upper 304 and lower 303 surface can be roll formed from same material as the hull of the ship, for example sheet steel, into the required aerofoil profile. This can then be welded to a frame including the mounting 306. The mounting 306 can in turn be welded to the hull or fitted with a mechanism to allow its position and the angle with the waterline to be adjusted for optimum performance. The mechanism may be controlled by the main ship navigation system, or a separate controller according to an algorithm. The algorithm may adjust or retract the wing 101 for different loading conditions, wind speed, wind direction, wave height, wave direction, list and/or vessel speed. The mechanism may take the form of hydraulic or electrical actuators.

Wings can be retrofitted to ships with no modification to the shape of the hull. It may only require modification of the forward structures. Additional side stringers and vertical stiffeners can be fitted along with fore peak bulkhead, side shell, frames, side longitudinal and other structures. Alternatively the wing may take the form of an integrated appendage or wave guide during ship building.

The wings can be fitted to container ships, passenger ship, naval ships, for example.

Whilst exemplary embodiments of the invention have been described in detail, many variations are possible within the scope of the invention as claimed as will be clear to a skilled reader.
CLAIMS

1. A vessel comprising:
 a hull having a stern, bow and design waterline,
 a hull appendage attached to the hull above the design waterline, adjacent the bow
 and configured to reduce the bow wave height and/or bow wave profile.

2. The vessel in claim 1 wherein the hull appendage has a lower surface in a wing or
 aerofoil shape.

3. The vessel in claim 2 wherein the hull appendage is attached within, and/or extends
 across a substantial portion of, the first 15% the design waterline from the bow.

4. The vessel in claim 3 wherein the size of the hull appendage is determined by type of
 ship, operating draught, hull form of the ship and/or the Froude Number.

5. The vessel in claim 4 wherein the location of the hull appendage is fixed or
 controllable, and determined by type of vessel, operating draught, hull form, the Froude
 Number, wind direction, wave amplitude, wave width, wave direction, list and/or vessel
 speed.

6. The vessel in claim 5 wherein the angle of the hull appendage is determined by type
 of vessel, operating draught, hull form, the Froude Number, wind amplitude, wind direction,
 wave amplitude, wave width, wave direction, list and/or vessel speed.

7. A hull appendage comprising
 a wing or aerofoil lower surface, and
 a mounting configured to attach to a vessel hull above a design waterline and
 adjacent a bow.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
B63B 1/32(2006.01)i, B63B 1/40(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
B63B 1/32; B63B 1/18; B63B 1/16; B63B 1/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: vessel, hull, appendage, wave, bow, wing, and aerofoil

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2004-136780 A (NATIONAL MARITIME RESEARCH INSTITUTE) 13 May 2004 See abstract and figures 1-2.</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>US 2011-0030607 A1 (MANNERFELT et al.) 10 February 2011 See paragraph [0028] and figure 1.</td>
<td>2-7</td>
</tr>
<tr>
<td>A</td>
<td>JP 06-321172 A (MITSUBISHI HEAVY IND. LTD.) 22 November 1994 See paragraphs [0015]-[0016] and figures 1-2.</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>US 556654 A (PETROMANOLAKIS, EMANUEL E.) 22 October 1996 See column 3, lines 24-28, column 4, lines 40-43, and figures 12-14.</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
28 August 2013 (28.08.2013)

Date of mailing of the international search report
28 August 2013 (28.08.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
CHOI Hyun Goo
Telephone No. +82-42-481-8288
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 8453591 B2</td>
<td>04/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0585698 B1</td>
<td>25/06/1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 06-122390 A</td>
<td>06/05/1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-0139040 B1</td>
<td>01/06/1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5425325 A</td>
<td>20/06/1995</td>
</tr>
<tr>
<td>JP 04-238788A</td>
<td>26/08/1992</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 5566634 A</td>
<td>22/10/1996</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>