Title: ANGLED DUAL-POLARITY MASS SPECTROMETER

Abstract: An angled dual-polarity mass spectrometer includes a dual-polarity ion generator, a first mass analyzer, and a second mass analyzer. The dual-polarity ion generator includes an ion source to generate positive ions and negative ions from a sample, and electrodes to generate electric fields for guiding the negative ions into a beam of negative ions and guiding the positive ions into a beam of positive ions. The first mass analyzer can analyze the negative ions, and the second mass analyzer can analyze the positive ions. The central axes of the first and the second mass analyzers are at an angle between 0 to 179 degrees.
Related Application

[01] This application is a continuation-in-part of, and claims priority to, U.S. Serial No. 11/154,568, filed on October 5, 2006, and issued on January 19, 2010, as U.S. Patent No. 7,649,170, the contents of which are incorporated herein by reference.

Background of the Invention

[02] The description relates to angled dual-polarity mass spectrometers.

[03] Mass spectrometers can be used to determine the identities and quantities of components that make up a solid, gas, or liquid sample. A mass spectrometer may use the mass (m) to charge (z) ratios of ions to separate and analyze the ions. In one example, a time-of-flight mass spectrometer includes an acceleration region having electrodes that generate an electric field for accelerating either the positive ions (cations) or negative ions (anions) and direct them toward one end of a flight tube. Heavier ions travel at a slower speed while smaller ions travel at a higher speed in the flight tube. The ions are detected by a sensor at the other end of the flight tube. The m/z ratios can be derived based on the amount of time that it takes for the ions to travel the length of the flight tube.

[04] In general, both positively and negatively charged particles are produced from a sample during an ionization process. Single-polarity mass spectrometers can be configured to measure either positive or negative ions, but not both, at a given time. Such measurements may not be able to capture all of the information of the sample, and may lose some information on the types and quantities of ions. Dual-polarity mass spectrometers can measure both positive and negative ions at the same time. An example of a dual-
polarity mass spectrometer is an aerosol time-of-flight mass spectrometer that determines the size and chemical composition of aerosol particles by accelerating the particles through a nozzle and skimmers to produce a well-defined beam of particles. The particles are maintained electrically neutral until they reach an ionization location, upon which the neutral particles are irradiated by a laser and produce positively and negatively charged small molecules. The charged molecules are analyzed by a bipolar, time-of-flight mass spectrometer having two flight tubes, each for analyzing the positive and negative ions, respectively.

Summary

[05] The present invention relates to a dual-polarity mass spectrometer for simultaneous determination of the mass spectra of negative ions and positive ions generated from a sample. The sample can be positioned on a surface of an ion source electrode or propagated into an ion source region. The ion source electrode and extraction electrodes generate electric fields such that the positive and negative ions, after being generated from the sample, are extracted away from the ion source region and directed toward acceleration stages that accelerate the negative and positive ions toward a negative mass spectrometer and a positive ion mass spectrometer, respectively.

[06] The dual-polarity mass spectrometer can be used to analyze sample materials that include, for example, salts, alloys, semiconductor materials, materials that include, for example, salts, alloys, semiconductor materials, semiconductor chips, particles, chemicals, biomolecules, physiological fluids, biological tissues, skins, metals, and plasma. The sample materials can be biological tissues, skins, metals, and plasma. The sample materials can be stationary or mobile prior to being ionized. The dual-polarity mass spectrometer can analyze the surface properties of a sample material by extracting just the surface layers of the sample material to produce the positive and negative ions. The dual-polarity mass spectrometer can also analyze deeper portions of the sample material beneath the surface layers. The sample material used in the dual-polarity mass spectrometer may have dimensions of several millimeters, such as biological tissues, or even larger. The sample
material may also be atoms, molecules, small particles of micron size or nanoparticles.

In one aspect, in general, an angled dual-polarity mass spectrometer includes a dual-polarity ion generator, a first mass analyzer, and a second mass analyzer. The dual-polarity ion generator includes an ion source to generate positive ions and negative ions from a sample, and electrodes to generate electric fields for guiding the negative ions into a beam of negative ions and guiding the positive ions into a beam of positive ions. The first mass analyzer can analyze the negative ions, and the second mass analyzer can analyze the positive ions, the central axes of the first and the second mass analyzers being at an angle between 0 to 179 degrees.

Implementations of the mass spectrometer may include one or more of the following features. The first mass analyzer can include a first flight tube to receive the beam of negative ions, and a first ion detector to detect negative ions that travel in the first flight tube. The second mass analyzer can include a second flight tube to receive the beam of positive ions, the second flight tube being at an angle between 0 to 179 degrees relative to the first flight tube, and a second ion detector to detect positive ions that travel in the second flight tube. An axis of the second flight tube can be at an angle between 0 to 179 degrees relative to an axis of the first flight tube. In some examples, an axis of the second flight tube can be at an angle between 20-60 degrees relative to an axis of the first flight tube.

The first ion detector can include a scintillation detector, a microchannel plate detector, an electron multiplier, or an electric current detector. The electrodes can include a negative ion extraction electrode and a positive ion extraction electrode, the negative ion extraction electrode having a voltage that is higher than that of a sample plate on which the sample is placed, the positive ion extraction electrode having a voltage that is lower than that of the sample plate. The electrodes can include a negative ion acceleration electrode and a positive ion acceleration electrode, the negative acceleration electrode and a positive ion acceleration electrode, the negative
ion acceleration electrode having a voltage that is higher than that of the sample plate, the positive ion acceleration electrode having a voltage that is lower than that of the sample plate, each of the negative and positive ion acceleration electrodes including a grid having openings to allow ions to pass. Each of the negative and positive ion extraction electrodes can include a grid having openings to allow ions to pass. The electrodes can be configured to having openings to allow ions to pass. The electrodes can be configured to generate an electric field that causes the beam of negative ions to travel, on average, along a first central axis of the first mass analyzer and the beam of positive ions to travel, on average, along a second central axis of the second mass analyzer, the second average axis being at an angle in a range of 0 to 179 degrees relative to the first central axis. In some examples, the second axis can be at an angle between 20-60 degrees relative to the first axis.

The mass spectrometer can include a sample plate to support a plurality of samples, and one or more translational stages to change the position of the sample plate relative to the electrodes to allow the mass spectrometer to analyze each of the different samples. The mass spectrometer can include a sample plate to support the sample, and at least one translational stage to change the position of the sample plate relative to the electrodes to allow the mass spectrometer to analyze each of the different portions of the sample. The mass spectrometer can include a signal acquisition and processing system to generate signals that represent the data obtained from the mass spectrometer. Instrument control device to control positioning of the sample plate, analyses of mass spectra of the various regions of the sample, and recording of data of mass spectra of the various regions of the sample, and recording of data representing the mass spectra. The electrodes can be symmetrical with respect to a plane that passes the sample. The ion source can include at least one of a matrix-assisted laser desorption/ionization (MALDI) ion source, a surface-enhanced laser desorption ionization (SELDI) ion source, a laser ablation ion source, an electrospray ionization (ESI) ion source, an electron impact (EI) ion source, a secondary ion source, a fast atom bombardment (FAB) ion source, a laser-desorption post ionization source, or a chemical ionization (CI) ion source. The electrodes can include sets of electrodes to form a plurality of ion source. The electrodes can include sets of electrodes to form a plurality of...
ion trajectory adjustment stages to adjust the positive ion trajectory and negative ion trajectory.

[011] In another aspect, in general, an apparatus includes electrodes to change travel directions of positive ions and negative ions and accelerate the change travel directions of positive ions and negative ions and accelerate the positive and negative ions, the electrodes having surfaces connected to a plurality of voltages, the surfaces generating electric fields forming a first plurality of voltages, the surfaces generating electric fields forming a first trajectory adjustment stage, a first acceleration stage, a second trajectory adjustment stage, and a second acceleration stage. The electric field in the first trajectory adjustment stage changes the travel directions of the negative ions, the electric field in the second trajectory adjustment stage changes the travel directions of the positive ions, the electric field in the first acceleration stage accelerates the negative ions, and the electric field in the second acceleration stage accelerates the positive ions. A first average path represents an average of the paths traveled by the negative ions after passing the first acceleration stage, a second average path represents an average of the paths traveled by the positive ions, after passing the second acceleration stage, and the second average path is at an angle in a range between 0 to 479 degrees relative to the first average path.

[012] Implementations of apparatus may include one or more of the following features. The second average path is at an angle between 20-60 degrees relative to the first average path.

[013] In another aspect, in general, a method of analyzing mass spectrum includes generating positive and negative ions from a sample positioned in an electric field; guiding, using a first portion of the electric field, the negative ions along a first path toward a first mass analyzer having a first flight tube, and the positive ions along a first path toward a second mass analyzer having a second flight tube that extends along a second axis, and the second mass analyzer having a second flight tube that extends along a second axis, and the second
axis is at an angle in a range between 0 to 179 degrees relative to the first axis; analyzing the negative ions using the first mass analyzer; and analyzing the positive ions using the second mass analyzer.

[014] Implementations of method may include one or more of the following features. Guiding the negative ions can include passing the negative ions through openings in a grid of a negative ion extraction electrode having a voltage higher than that of a sample plate that holds the sample, and guiding the positive ions can include passing the positive ions through openings in a grid of a positive ion extraction electrode having a voltage lower than that of the sample plate. Guiding the negative ions can include passing the negative ions through openings in a grid of a negative ion extraction electrode having a voltage higher than that of the sample material. Guiding the positive ions can include passing the positive ions through openings in a grid of a positive ion extraction electrode having a voltage lower than that of the sample plate. The method can include moving a sample plate supporting a plurality of samples and analyzing the mass spectrum of each of the different samples. The method can include moving a sample plate supporting the sample and analyzing the mass spectrum of each of different regions of the sample.

[015] In another aspect, in general, an apparatus includes an ion source electrode, a first extraction electrode, and a second extraction electrode. The ion source electrode includes a sample surface on which a sample material is positioned, the sample material providing positive ions and negative ions when excited by a laser beam or an energetic particle beam. The first extraction electrode is connected to a voltage higher than the sample surface to attract the negative ions from the sample surface, the first extraction electrode having an opening to allow the negative ions to pass. The second extraction electrode is connected to a voltage lower than the sample surface to attract the positive ions from the sample surface, the second extraction electrode having an opening to allow the positive ions to pass. The first and second extraction electrodes are positioned in a range of angles relative to the first axis so that the negative ions pass through the first extraction electrode but the positive ions do not pass through the second extraction electrode.
second extraction electrodes are positioned symmetrically about the ion
detector.
[016] Implementations of the method may include one or more of the
following features. The ion source electrode may include a first wall and a
second wall, the first wall having a first opening to allow the negative ions to
pass, the first wall being positioned between the sample surface and the first
extraction electrode, the second wall having a second opening to allow the
negative ions to pass, the second wall being positioned between the sample
surface and the second extraction electrode. The sample surface, the first
surface and the second extraction electrode. The sample surface, the first
wall, and the second wall may have the same voltage. The apparatus may
include a first mass analyzer to analyze the negative ions that pass the opening
of the first extraction electrode, and a second mass analyzer to analyze the
positive ions that pass the opening of the second extraction electrode. The
mass analyzer may include at least one of a time-of-flight mass
spectrometer, a quadrupole mass spectrometer, an ion trap mass spectrometer,
a Fourier-transform ion-cyclotron-resonance mass spectrometer, and a momentum analyzer. The first mass
analyzer may include a first detector that includes at least one of a scintillation
detector, a microchannel plate detector, an electron multiplier, and an electric
current detector. The first and second walls may be symmetrical with respect
to a plane that passes the sample material. The first and second electrodes may be symmetrical with respect to a plane that passes the sample
material. The apparatus may include a third mass analyzer to ionize and to analyze neutral particles emitted from the sample material.
[017] In another aspect, in general, an apparatus includes electrodes to
change travel directions of positive ions and negative ions and accelerate the
positive and negative ions. The electrodes having surfaces connected to the
plurality of voltages, the surfaces generating electric fields forming a first
plurality of voltages, the surfaces generating electric fields forming a first
trajectory adjustment stage, a first acceleration stage, a second trajectory adjustment stage, and a second acceleration stage. The electric field in the first trajectory adjustment stage changes the travel directions of the negative ions and causes the negative ions to travel toward the first acceleration stage. The electric field in the first acceleration stage accelerates the negative ions. The electric field in the second trajectory adjustment stage changes the travel directions of the positive ions and causes the positive ions to travel toward the second acceleration stage. The electric field in the second acceleration stage accelerates the positive ions.

Implementations of the method may include one or more of the following features. The apparatus may include an ion source to generate the positive and negative ions, the ion source including at least one of a laser ablation ion source, a matrix-assisted laser desorption/ionization (MALDI) ion source, a surface-enhanced laser desorption ionization (SELDI) ion source, an electrospray ionization (ESI) ion source, an electron impact (EI) ion source, a secondary ion source, a fast atom bombardment (FAB) ion source, and a chemical ionization (CI) ion source.

In another aspect, in general, a dual-polarity time-of-flight mass spectrometer includes a dual-polarity ion generator to generate positive ions and negative ions, a first flight tube to receive the beam of negative ions, a first ion detector to detect negative ions that travel in the first flight tube, a second flight tube to receive the beam of positive ions, a second ion detector to detect positive ions that travel in the second flight tube. The dual-detector to detect positive ions that travel in the second flight tube. The dual-polarity ion generator includes an ion source to generate the positive ions and negative ions from a sample surface, and electrodes to generate electric fields for focusing and guiding the negative ions into a beam of negative ions, the electric fields also focusing and guiding the positive ions into a beam of positive ions.

Implementations of the method may include one or more of the following features. Guiding the negative ions toward the first mass analyzer following features.
may include passing the negative ions through a first opening defined by a
first wall, and guiding the positive ions toward the second mass analyzer may
include passing the positive ions through a second opening defined by a
second wall. The method may include connecting the sample surface, the first
wall, and the second wall to a same voltage. The method may include
analyzing neutral molecules emitted from the material. The method may
include positioning the first and second extraction electrodes symmetrically
with respect to a plane that passes the sample material.

The sample surface may be positioned at a location subject to the
influence of the first and third electric fields. The average acceleration energy
of the negative ions in the first acceleration stage may be higher than the
average acceleration energy of the negative ions in the first trajectory
adjustment stage.

Advantages of the apparatuses and methods include one or more of the
following. The mass spectrometer can be used to determine the mass spectra
of samples placed on a sample plate that can accommodate several sample
materials. The mass spectrometer can analyze different regions of a sample
and generate an image of distribution of ions in the sample. Both positive and
negative ions generated from the ion source region are analyzed
simultaneously without the time-delay for polarity-switching, so the mass
spectrometer can accurately measure both positive and negative ions in real-time.
Owing to this characteristic, the sample composition of both charge
polarities at many sampling positions can be determined unambiguously in
polari ties at many sampling positions can be determined unambiguously in
many experiment events. Mass and structural information of materials can be
obtained by comparing the spectral features of the positive and negative ions.
Thus, the method can reveal valuable correlation between constituent
molecules, such as in the analysis of biological tissues. The mass
spectrometer can be used to investigate complicated sample mixtures. The
mass spectrometer can be used to investigate the ionization properties of
molecules in sample materials, as well as ionization mechanisms. The
apparatus and method can be used in the analysis of condensed-phase samples on a surface. For example, biological tissue samples can be placed on a sample surface, and the negative ions and the positive ions generated from the sample surface, and the negative ions and the positive ions generated from the samples can be analyzed simultaneously. The apparatus can also analyze neutral compositions produced in the ionization reaction by providing a post-ionization module in the propagation path of the neutral molecules. In addition, the apparatus and method can be used in the analyses of components of surfaces of materials. For example, the components of a biological tissue or impurities on a selected spot of a semiconductor chip can be analyzed by monitoring both positive and negative ions simultaneously.

Description of Drawings

[023] FIGS. 1 and 2 are schematic diagrams of a dual-polarity mass spectrometer.

[024] FIG. 3 is a schematic diagram of a dual-polarity ion generator.

[025] FIG. 4 is a cross-sectional diagram of the dual-polarity ion generator.

[026] FIG. 5 is a graph showing electric potential fields.

[027] FIG. 6 is a cross-sectional diagram of a dual-polarity ion generator.

[028] FIG. 7 is a circuit diagram of a high voltage decoupler.

[029] FIGS. 8A and 8B show mass spectra.

[030] FIG. 9 is a graph showing mass spectra.

[031] FIG. 10 is a schematic diagram of a mass spectrometer that can analyze cations, anions, and neutral particles.

[032] FIG. 11A is a perspective view of an example angled dual-polarity time-of-flight (ADTOF) mass spectrometer.

[033] FIG. 11B shows a sample delivery chamber.

[034] FIG. 11B shows a sample delivery chamber.
[034] FIG. 11C is a side view of the ADTOF mass spectrometer.

[035] FIG. 12 is a diagram of a sample delivery system.

[036] FIG. 13 is a diagram of a sample plate assembly.

[037] FIG. 14 is a diagram of extraction electrodes and acceleration electrodes.

[038] FIGS. 15 and 16 are diagrams of electrodes and ion trajectories.

[039] FIG. 17 shows a two-dimensional potential map of the mass spectrometer.

[040] FIG. 18 is a diagram of an example ADTOF mass spectrometer.

[041] FIG. 19 is a diagram of an example of ADTOF mass spectrometer with two flight tubes parallel to each other.

Description

System Overview

[042] Referring to FIG. 1, a dual-polarity time-of-flight (DTOF) mass spectrometer (MS) 100 can simultaneously determine the mass spectra of negative ions 106 and positive ions 110. The negative and positive ions can be generated from a sample material positioned on a surface 150 of a source electrode of a dual-polarity ion generator 102 using, for example, the matrix-assisted laser desorption/ionization (MALDI) method. Once the negative and positive ions have been produced, the negative and positive ions will be extracted simultaneously toward a negative mass spectrometer 104 and a positive ion mass spectrometer 108, respectively.

The negative mass spectrometer 104 includes a flight tube 116 and a negative ion detector 120 that detects negative ions 106 traveling through the flight tube 116. The positive mass spectrometer 108 includes a flight tube 118.

- 11 -
and a positive ion detector 122 that detects positive ions 110 traveling through
the flight tube 118. The negative and positive mass analyzers 104 and 108 are
positioned on opposite sides of the ion generator 102, respectively, and
symmetrical with respect to the ion generator 102. Output signals 106 and
110 from the detectors 120 and 122, respectively, are sent to a signal acquisition
device 192, e.g., a digital storage oscilloscope or a computer, to record the mass spectra of the negative and positive ions.
material can be accommodated in the ion source electrode described below. Thus, the mass spectrometer 100 can be used to examine the surface properties of, e.g., a semiconductor chip or a piece of biological tissue.

[0047] The ion generator 102 includes an ion source electrode 130 and extraction electrodes 126a, 126b, 128a, and 128b. The source electrode 130 includes a sample surface 150 (see FIGS. 3 and 4) on which the sample 146 is placed. The source electrode 130 and extraction electrodes 126a, 126b, 128a, and 128b are configured to generate electric fields having distributions for guiding and accelerating the negative and positive ions in opposite directions, and directing the negative and positive ions toward the flight tubes 116 and 118, respectively.

[0048] In some examples, the extraction electrodes 126a and 126b are positioned on opposite sides of the ion source electrode 130, and are symmetrical with respect to the ion source electrode 130. Similarly, the extraction electrodes 128a and 128b are positioned on opposite sides of the ion source electrode 130 and are symmetrical with respect to the ion source electrode 130.

[0049] There are five electric fields generated by the source electrode 130 and extraction electrodes 126a, 126b, 128a, and 128b. A first electric field is located in the open region 300 surrounded on three sides by the sample surface 150 and the inner surfaces of the walls 160 and 162. A second electric field is located between the source electrode 130 and the extraction electrode 126a. A third electric field is located between the source electrode 130 and 126a. A third electric field is located between the source electrode 130 and the extraction electrode 126b. A fourth electric field is located between the extraction electrodes 126a and 128a. A fifth electric field is located between the extraction electrodes 126b and 128b. The second and third electric fields are symmetrical with respect to the ion source electrode 130, except that the polarities of the second and third electric fields are opposite. Similarly, the fourth and fifth electric fields are symmetrical with respect to the ion source electrode 130, except that the
polarities of the fourth and fifth electric fields with respect to the source electrode 130 are opposite.

In this description, a Cartesian coordinate system having x-, y-, and z-axes is used to describe the orientations of the components of the mass spectrometer 100. The origin of the axes is at the center of the sample surface 150 (see FIG. 4) where the sample material 146 is located. The z-axis is normal to the sample surface 150. The axes of the flight tubes 116 and 118 are parallel to the x-axis. Negative ions 106 and positive ions 110 propagate parallel to the x-axis. Negative ions 106 and positive ions 110 propagate along -x and +x directions in the flight tubes 116 and 118, respectively.

In some examples, the extraction electrode 126a has a voltage higher than the ion source electrode 130 to generate an electric field that forms a first acceleration stage 166a to accelerate negative ions 106 toward the x-direction. The extraction electrode 126a has a voltage slightly lower than the extraction electrode 126b to generate an electric field that focuses the negative ions 106 and adjusts the trajectory of the ions 106 so that the ions 106 travel along paths parallel to the x-axis of the flight tube 116.

The extraction electrode 126b has a voltage lower than the ion source electrode 130 to generate an electric field that forms a first acceleration stage 166b to accelerate positive ions 110 toward the +x direction. The extraction electrode 126b has a voltage slightly higher than the extraction electrode 126a to generate an electric field that focuses the positive ions 110 and adjusts the trajectory of the positive ions 110 so that the ions 110 travel along paths parallel to the x-axis of the flight tube 118.

In some examples, the voltages applied to the extraction electrodes 126a and 128a and the voltages applied to the extraction electrodes 126b and 128b are symmetrical with respect to the voltage of the ion source electrode 130, except that they have opposite polarities with respect to the voltage of the ion source electrode 130. This means that, for example, the voltage of the extraction electrode 126a is higher than the ion source electrode 130, the voltage of the extraction electrode 128a is higher than the ion source electrode 130, and so on.
130 by an amount that is the same as the amount that the voltage of the extraction electrode 126b is lower than the ion source electrode 130.

[054] The negative ion detector 120 can be, e.g., a microchannel plate detector. Similarly, the positive ion detector 122 can be, e.g., a microchannel plate detector. The negative and positive mass analyzers 104 and 108 are positioned on opposite sides of the ion generator 102. The negative and positive mass analyzers 104 and 108 are positioned on opposite sides of the ion generator 102. The negative and positive mass analyzers 104 and 108 are, e.g., symmetrical with respect to positive mass analyzers 104 and 108 can be, e.g., symmetrical with respect to the ion generator 102. The ion generator 102 is housed in a source chamber 160, the ion generator 102 is housed in a source chamber (not shown), e.g., a six-way cube chamber having openings for coupling to the flight tubes 116 and 118.

[055] The output signal 290 of the positive ion detector 122 is measured by a first channel of the data acquisition device 192. The output signal 290 of the negative ion detector 120 is measured by a second channel of the data acquisition device 192. As will be described later, the circuit 194 includes voltage isolation circuitry to prevent the high voltages applied to the negative ion detector 120 from damaging the data acquisition device 192.

[056] Referring to FIG. 3, the ion source electrode 130 includes an open region 300 defined by the sample surface 150 and walls 160 and 162. The laser beam 124 passes through the ion source electrode 130 to irradiate the sample material. The laser beam 124 passes the open regions 300 to irradiate the sample material 146 positioned on the sample surface 150. The wall 160 has a rectangular slot 146 positioned on the sample surface 150. The wall 160 has a rectangular slot (opening) 154a (blocked from view in FIG. 3) to allow negative ions 106 to pass and travel toward the extraction electrode 126a. The wall 162 has a rectangular slot (opening) 154b to allow positive ions 110 to pass and travel toward the extraction electrode 126b. The sample surface 150, the wall 160, and the wall 162 are electrically connected and all have the same electric potential. 162 are electrically connected and all have the same electric potential.

[057] The ion source electrode 130 and the extraction electrodes 126a and 128a form two acceleration stages 169a and 168a for the negative ions and the ion source electrode 130 and the extraction electrodes 126b and 128b form a stage 169b, 168b for the negative ions.
two acceleration stages 166b and 168b for the positive ions. The ion source electrode 130 and the extraction electrodes 126a, 128a, 126b, and 128b can be, e.g., stainless steel electric plates that are spaced equally apart from one another. The surface of the steel electric plates can be parallel to one another. The surface of the steel electric plates can be parallel to one another.

FIG. 4 is a cross sectional diagram of the ion generator 102 and the flight tubes 116 and 118. The regions inside the flight tubes 116 and 118 are flight tubes 116 and 118. The regions inside the flight tubes 116 and 118 are mostly field-free drift regions. The extraction electrodes generate electric potentials that guide the ions along trajectories parallel to the axes of the flight potentials that guide the ions along trajectories parallel to the axes of the flight tubes 116 and 118, to ensure that the ions reach the ion detectors 120 and 122 after traveling through the length of the flight tubes.

A feature of the ion generator 102 is that the desorbed ions are emitted from the sample surface 150 in a generally upwards direction. The ions are then guided by the electric fields produced by the electrode 130 and the extraction electrodes 126a, 126b, 128a, and 128b. Negative ions are focused and directed towards a direction parallel to the axis of the flight tube 116. Positive ions are focused and directed towards a direction parallel to the axis of the flight tube 118.

Another feature of the ion generator 102 is the use of rectangular slots 154a and 154b near the sample surface 150. The rectangular slots 154a and 154b are defined by surfaces 160 and 162, respectively, of the ion source electrode 130. Using a rectangular opening is better than using a circular opening. Using a rectangular opening is better than using a circular opening or a wide-open structure (without the upper portion of the surfaces opening or a wide-open structure (without the upper portion of the surfaces 160 and 162) because a rectangular opening generates a field-gradient that is less distorted along the y-axis. The electric field generated by the ion source electrode 130 and the extraction electrodes 126a and 126b has a better shape than that can guide the positive and negative ions along trajectories toward the flight tubes 118 and 116, respectively.

Having openings that are elongated in the y direction, where the openings are positioned near the sample material 146, can result in an electric field that can guide the positive and negative ions along trajectories toward the flight tubes 118 and 116, respectively.
field that is substantially constant along the y axis in the vicinity of the sample material. This helps in focusing the ions and directing the ions toward the flight tubes 116 and 118.

When the ions are desorbed from the sample 146, a large portion of the ions may initially travel along the +z direction, then gradually turn toward the x axis (negative ions toward -x direction and positive ions toward +x direction). Using positive ions 110 as an example, when the ions 110 are emitted from the sample surface 150, the ions 110 may initially travel in the +z-direction and then be slightly pulled back in the -z direction by the electric field gradient. After the positive ions 110 pass the rectangular slot 154b, the positive ions 110 travel through the first and second acceleration regions 166b and 168b and enter the field-free flight tube 118.

The arrangement of the rectangular slot 154b and the circular openings 156b and 158b provides adequate transmission efficiency, meaning that a large portion of the positive ions 110 can reach the flight tube 118 without hitting the walls of the ion source electrode 1130 and the extraction electrodes 126b and 128b. The voltage of the second extraction electrode 128b is higher relative to the flight tube 118 and the first extraction electrode 126b. This configuration produces an ion-focusing effect near the opening 158b and can increase the transmission efficiency of the positive ions 110 by, e.g., about a factor of two.

The arrangements of the extraction electrodes 126a and 128a, and holes 156a and 158a, mirror those of the extraction electrodes 126b and 128b, holes 156b and 158b, respectively, with respect to the ion source electrode 130.

FIG. 5 shows a mesh plot of the electric potential in and near the ion source electrode 130. In this example, because the walls 160 and 162 have the same electric potential, the region 174 above the sample surface 150 has a substantially constant electric potential. Due to influence from the extraction substantially constant electric potential. Due to influence from the extraction
electrode 126a, which has a higher voltage than the ion source electrode 130, electrode 126a, which has a higher voltage than the ion source electrode 130, the electric potential near the rectangular slot 154a is higher than the region 174.

[066] The ion source electrode 130 and the extraction electrodes 126a and 126b generate an electric field having a particular distribution that adjusts the trajectories of the negative and positive ions after the ions are emitted from the sample surface 150. The electric field forms a trajectory adjustment stage for each of the negative and positive ions 106, 110. For example, the negative ions 106, 110 initially travel along generally +z direction when emitted from the sample surface 150. The electric field distribution adjusts the trajectory of the negative ions 106 and guides the negative ions 106 from the generally +z direction to a generally -x direction toward the rectangular slot 154a. Similarly, the electric field distribution adjusts the trajectory of the positive ions 110 and guides the positive ions 110 from the generally +z direction to a generally +x direction toward the rectangular slot 154b.

[067] When the negative and positive ions 106 and 110 travel from the sample surface 150 to the rectangular slots 154a and 154b, respectively, the acceleration of the negative and positive ions 106, 110 is small compared to acceleration in the acceleration stages 166a and 168a. Therefore, negative ions 106 having substantially the same mass-to-charge ratios will have substantially the same speeds when passing the rectangular slot 154a, have substantially the same acceleration in the first and second acceleration regions 166a and 168a, and have substantially the same speeds when entering the flight tube 118. Similarly, the positive ions 110 having substantially the same mass-to-charge ratios will enter the flight tube 118 with substantially the same speeds.
Referring to FIG. 6, the ion source electrode 130 can also include separate components, such as a center plate 170 and two adjacent plates 172a and 172b. The center plate 170 has a sample surface 150 on which a sample material 152 is placed. The plates 172a and 172b have rectangular slots 154a and 154b, respectively, similar to those shown in FIG. 4. The center plate 170 and 154b, respectively, is placed above the plates 172a and 172b are electrically connected and have the same electric potential.

Experimental Setup and Measurement Results

The following describes an example of the dual-polarity time-of-flight mass spectrometer 100 that was used to conduct the experiments. The ion source electrode 130 and extraction electrodes 126a, 126b, 128a, and 128b each has a width \(10 \text{ mm} \times 100 \text{ mm}\), and are equally spaced apart by 63 mm from each other. The sample electrode 130 has a thickness of 66 mm. The extraction electrodes 126a, 126b, 128a, and 128b each has a thickness of 3 mm. Each of the rectangular slots 154a and 154b has a dimension of 26 mm \(\times 3 \text{ mm} \), and is located at 18 mm away from the front side of the sample plate. Each of the circular openings 156a, 156b, 158a, and 158b has a diameter of 5 mm. The centers of the openings 156a and 156b are spaced 1.5 mm away from the x-axis in the +z direction, and the centers of the openings 158a and 158b are spaced 2.5 mm away from the x-axis in the +z direction.

The flight tubes 116 and 118 each has an inner diameter of 32 mm and a length of 1123 mm, and are electrically isolated from the extraction electrodes 128b and 128a, respectively. The pressure in the source chamber electrodes 128b and 128a, respectively. The pressure in the source chamber was maintained below 3 \(\times 10^{-7} \text{ mbar} \) during measurement. Both of the flight tube was maintained below 3 \(\times 10^{-7} \text{ mbar} \) during measurement. Both of the flight tubes 116, 118 have center axes that are parallel to the x-axis and aligned 2.5 mm offset from the x-axis in the +z direction, and they are differentially pumped to below 5 \(\times 10^{-7} \text{ mbar} \). The microchannel plate detectors 120 and 122 are located about 25 mm away from the flight tubes 116 and 118, respectively, without additional differential-pumping stages.
The voltages are applied continuously to the source electrode 130 and the extraction electrodes 126a, 126b, 128a, and 128b. A reference voltage of +5.9 kV is applied to the ion source electrode 130. The voltages applied to the extraction electrodes and the ion detectors are symmetrical with respect to the reference voltage except for having opposite polarities. The voltages applied to the first set of extraction electrodes 126a and 126b are +2.5 kV and +3.8 kV, respectively. The voltage potential of the second set of extraction +9.3 kV, respectively. The voltage potential of the second set of extraction electrodes 128a and 128b are +3.8 kV and +8 kV, respectively. The voltages applied to the flight tubes 118 and 116 are 0 V and +11.8 kV, respectively. The voltages applied to the flight tubes 118 and 116 are 0 V and +11.8 kV, respectively.

The circuits of the detectors 120 and 122 are different because the positive ion detector 122 is operated at a lower voltage range, while the negative ion detector 120 is operated at a higher voltage range. The microchannel plate detector 122 has entrance side 140, exit side 142, and anode 144 that are connected to voltages -2200 V, -200 V, and 0 V, respectively. By comparison, the microchannel plate detector 120 has entrance side 134, exit side 136, and anode 138 that are connected to voltages +14 kV, +16 kV, and +16.2 kV, respectively.

Because of the high bias voltages used in the negative ion detector 120, the microchannel plate assembly was isolated and positioned 67 mm away from the vacuum chamber (of the flight tube) by using an 8-inch acryl flange. The frame of the detector assembly was biased at +14 kV to reduce noise. The plane of the detector assembly was biased at +14 kV to reduce the voltage differences around the electrodes, thereby preventing the negative ion detector 120 from high voltage breakdown during operation.

For the data acquisition device 192, a 500 MHz digital storage oscilloscope was used. Because the oscilloscope 192 accepts signals of a few volts, a DC decoupling circuit was used to isolate the high bias voltages of the microchannel plate detector 120 from the oscilloscope 192.

Referring to FIG. 7, a circuit 194 was used to terminate the signal from the microchannel plate detector 120. The circuit 194 includes a DC signal from the microchannel plate detector 120. The circuit 194 includes a DC.
decoupling circuit 180 for decoupling the microchannel plate detector 120
from the digital storage oscilloscope 192. The decoupling circuit 180 has a
node 182 that receives signals from the microchannel plate detector 120, a
node 184 that connects to the digital storage oscilloscope 192, and a node 186
that connects to +16.2 kV. The decoupling circuit 180 isolates the digital
storage oscilloscope 192 from the +16.2 kV bias signal from the negative ion
storage oscilloscope 192 from the +16.2 kV bias signal from the negative ion
detector 120.

The decoupling circuit 180 includes two capacitors 188 and 190 that
have high voltage ratings. For example, the capacitors 188 and 190 can be
high voltage ceramic capacitors having capacitances 2 nF and 10 nF,
respectively, each having a voltage rating of 40 kV. The circuit 180 is enclosed in a
glass housing that is electrically isolated from the ambient environment. Most
of the conducting wires at the high-voltage side of the capacitors are
jacketed with silicone jacketed with ground shielding to prevent short circuiting the circuit 180.

The signal 290 from the microchannel plate detector 120 passes the
dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.

A pulsed frequency-triplet Nd:YAG laser (355 nm) is used as the laser
source 114. The power of the laser beam 124 is attenuated to about 2-10 μJ,
depending on the sample 146 to be examined. The laser beam 124 passes a
detector 122 is

dc decoupling circuit 180 and is terminated by a resistor 310. The signal 290
is measured by a first channel of the digital storage oscilloscope 192. By
comparison, the signal 292 from the microchannel plate detector 122 is
directly terminated by another resistor and measured by a second channel of
the digital storage oscilloscope 192.
equine skeletal muscle myoglobin (M.W. = 16951.5 Da), and a calibration protein mixture that includes angiotensin I (M.W. = 1296.7 Da), ACTH adrenocorticotropic hormone (ACTH) clip 1-17 (M.W. = 2093.1 Da), ACTH clip 18-39 (M.W. = 2065.2 Da), ACTH clip 7-38 (M.W. = 3657.9 Da), and insulin (M.W. = 5730.6 Da). Here, "M.W." refers to molecular weight.

The experiments measured proteins and protein mixtures of various molecular weights. FIG. 8A is a graph that shows the cation/anion spectra of 50 pmole insulin B chain with THAP as the matrix. The spectra were obtained based on about 200 laser events.

FIG. 8B is a graph that shows the cation/anion spectra of myoglobin with CHCA as the matrix. The spectra were obtained based on about 1000 laser events.

FIG. 9 is a graph showing a mass spectrum of positive and negative ions generated from a protein calibration mixture. The mixture was prepared using 20 pmole of angiotensin I, 20 pmole of ACTH clip 1-17, 15 pmole of ACTH clip 18-39, 30 pmole of ACTH clip 7-38, and 35 pmole of insulin. All of the proteins, either positively or negatively charged, were identified unambiguously in the graph.

FIG. 10 is a cross sectional diagram of an example of a mass spectrometer 270 that can analyze positive ions, negative ions, and neutral particles simultaneously. The mass spectrometer 270 can be used to study various types of positive and negative ions and neutral particles generated in MALDI and investigate the energetics of proteins as well as their interactions in protein complexes in electrically neutral systems.
the ion source electrode 130. When neutral particles emitted from the sample material reach a location (marked by "X" in FIG. 10), the neutral particles are ionized by a laser beam 282 (e.g., a 248 nm excimer laser) or an electron beam. The electrodes 274 and 276, and an additional electrode 278 have voltages that generate an electric field gradient that accelerates the ionized particles toward a flight tube 271 of the third mass analyzer 272.

Angled DPTOF Mass Spectrometer

[086] Referring to FIG. 11, an angled dual-polarity time-of-flight (ADTOF) mass spectrometer (MS) 400 can be used to determine the mass spectra of samples placed on a sample plate that can accommodate an array of sample materials. The mass spectrometer 400 allows the use of large sample plates to reduce the time for exchanging samples. The mass spectrometer 400, similar to the mass spectrometer 100, can simultaneously determine the mass spectra of negative ions 106 and positive ions 110. The negative and positive ions can be generated from a sample material positioned on a surface of a sample plate 418 of a dual-polarity ion generator 102 using, for example, the matrix-assisted laser desorption/ionization (MALDI) method, laser desorption ionization, laser ablation, surface-assisted laser desorption/ionization, laser desorption-post ionization, fast atom/ion bombardment, and secondary ion mass spectrometry methods, desorption electrospray ionization, etc. Once the mass spectrometer 452 and a positive ion mass spectrometer 454 are enclosed in a vacuum housing 456a. The positive mass spectrometer 454 includes a flight tube 402b and a positive ion detector 406b that detects positive ions 110 traveling through the flight tube 402b. The flight tube 402a and ion detector 406a are enclosed in a vacuum housing 456a. The positive mass spectrometer 454 includes a flight tube 402b and a positive ion detector 406b...
that detects positive ions 110 traveling through the flight tube 402b. The flight tube
402b and ion detector 406b are enclosed inside a vacuum housing 456b. The
flight tube 402b and ion detector 406b are collectively referenced as 402b. The
ion detectors 406a and 406b are collectively referenced as 406. The axes of
ion detectors 406a and 406b are collectively referenced as 406. The axes of
the negative and positive mass analyzers 452 and 454 are oriented at an angle
the negative and positive mass analyzers 452 and 454 are oriented at an angle
relative to each other, and the angle can be, e.g., between 0 to 179 degrees, or
relative to each other, and the angle can be, e.g., between 0 to 179 degrees, or
in some examples about 30 degrees. Output signals 290 and 292 of the
in some examples about 30 degrees. Output signals 290 and 292 of the
detectors 406a and 406b, respectively, are sent to a signal acquisition device
detectors 406a and 406b, respectively, are sent to a signal acquisition device
192 (e.g., a digital storage oscilloscope or a computer), to record the mass
192 (e.g., a digital storage oscilloscope or a computer), to record the mass
spectra of the negative and positive ions.

[088] FIG. 12A is a perspective view of an example ADTOF mass
spectrometer 400 includes flight tubes 402a (enclosed in vacuum housing
456a) and 402b (enclosed in vacuum housing 456b) that are oriented an
angle relative to each other, where Θ is less than 180 degrees. For example,
Θ can be in a range from 0 to 179 degrees, or in some implementations
between 20-60 degrees.

[089] FIG. 12B is a side view of the ADTOF mass spectrometer 400. In this
example, negative ions 106 travel in the flight tube 402a and positive ions 110
tavel in the flight tube 402b. The vacuum housings 456a and 456b are
connected to isolation chambers 404a and 404b (collectively referenced as
connected to isolation chambers 404a and 404b (collectively referenced as
404), respectively, which are connected to detectors 406a and 406b,
404), respectively, which are connected to detectors 406a and 406b,
respectively. The isolation chamber 404 can be made of ceramic and serves
respectively. The isolation chamber 404 can be made of ceramic and serves
the purpose of isolating the high voltage of ion detectors from the system
the purpose of isolating the high voltage of ion detectors from the system
ground voltage. The detectors 406a and 406b detect the negative ions 106 and
ground voltage. The detectors 406a and 406b detect the negative ions 106 and
positive ions 110, respectively. The detectors can be, e.g., microchannel
positive ions 110, respectively. The detectors can be, e.g., microchannel
plates, charge detectors, current detectors, or secondary ion detectors, etc.
plates, charge detectors, current detectors, or secondary ion detectors, etc.

[090] The ADTOF mass spectrometer 400 includes a sample delivery
chamber 408 that accommodates the sample material and provides the positive
and negative ions to the flight tubes 402b during experiments. FIG. 12C is a
to the flight tubes 402b during experiments. FIG. 12C is a
perspective view of sample delivery chamber 408. The sample material can be
perspective view of sample delivery chamber 408. The sample material can be
delivered into the center of the chamber 408 through an vacuum interface system 470. The laser beam or energetic particle beam can enter the sample delivery chamber 408 through a vacuum port 409. Additional vacuum ports are provided for electric wiring, sample imaging, and vacuum pumping. In some examples, a laser beam excites the sample from the surface, in which the laser beam travels along a path that is normal to the plane of the sample plate. The laser beam axis can be the principal axis of the ADTOF MS such that the laser beam axis can be the principal axis of the ADTOF MS such that flight tubes 402a and 402b are installed symmetrically around the laser beam axis.

Referring to FIG. 13, in some implementations, inside the sample delivery system 408, there is a base plate 410. The sample delivery system 408 includes a sample plate assembly 416 and an electrode assembly 412 for extracting ions from the sample plate assembly 416. The electrode assembly 412 is supported by posts 414 at a distance above the sample plate assembly 416. The electrode assembly 412 includes a support plate 418, negative ion electrodes 420, and positive ion electrodes 422. The sample plate assembly 416 can be adjusted in the X and Y directions using translational stages 424a and 424b, respectively.

The translational stages 424a and 424b can change the position of the sample plate assembly 416 relative to the electrode assembly 412. When the sample plate assembly 416 supports multiple sample materials, the mass spectrometer 400 can analyze one sample material at a time and analyze multiple sample materials, the mass spectrometer 400 can analyze one sample material at a time and analyze different samples at different periods of time. The sample plate assembly 416 can support, e.g., a slice of biological tissue. By controlling the translational stages 424a and 424b to change the position of the sample plate assembly 416 relative to the electrodes, the mass spectrometer 400 can analyze different regions of the slice of biological tissue, generating images of distributions of biomolecules (e.g., proteins, peptides) in biological tissue samples.

For example, the mass spectrometer 400 can generate an image having dots each indicating the abundance of a specific biological marker. This image dots each indicating the abundance of a specific biological marker. This
allows researchers to spatially determine, e.g., the expression of specific proteins in healthy versus diseased tissue. A slice of biological tissue can be logically divided into an array of small areas. With the laser beam position fixed, each small area of the tissue can be moved to where the laser beam is located, allowing the mass spectrometer 400 to examine and record the mass spectrum of ions excited by the laser beam in each small area. Note that the spectrum of ions excited by the laser beam differs slightly with the position of the electrode 428, 430, 436, and 438, the electrodes 428, 430, 436, and 438 are flat plates, the
electrodes 428 and 430 are parallel to each other, and the electrodes 436 and 438 are parallel to each other. The electrodes can also have other configurations, such as non-planar shapes, and the electrode pairs 428 and 430 (or 436 and 438) do not necessarily have to be parallel to each other.

Referring to FIG. 16, negative ions and positive ions are attracted by the negative ion extraction electrode 428 and the positive ion extraction electrode 426, respectively. The negative and positive ions that are extracted from the sample 426 travel along or near paths 444 and 446, through flight tubes 402a and 402b, respectively. The ions extracted from the sample 426 may emit from the sample 426 at different angles and deviate slightly from the flight tube 402. For example, the trajectory line 448 shows the travel path of positive ions that are emitted from the sample 426 in a different condition from the conditions of the positive ions that travel along path 446.

In some implementations, the negative ion acceleration electrode 430 has a voltage that is higher than that of the negative ion extraction electrode 428, which has a voltage higher than that of the sample plate 418. This causes negative ions to be extracted from the sample 426 and accelerated toward the flight tube 402a. The positive ion acceleration electrode 438 has a voltage that is lower than that of the voltage of the positive ion extraction electrode 436, which has a voltage that is lower than that of the sample plate 418. This causes positive ions to be extracted from the sample 426 and accelerated toward the flight tube 402b. The voltage difference (e.g., 17.5 kV) between the negative ion extraction electrode 428 and acceleration electrode 430 is the voltage difference between the positive ion extraction electrode 426 and acceleration electrode 438. The voltage difference (e.g., 2.5 kV) between the negative ion extraction electrode 428 and sample plate 418 is the same as the voltage difference between the positive ion extraction electrode 426 and sample plate 418. The voltage difference (e.g., 17.5 kV) between the negative ion extraction electrode 428 and acceleration electrode 430 is greater.
than the voltage difference (e.g., 2.5 kV) between the negative ion extraction electrode and the sample plate. The voltages of electrodes 428, 430, 436, and 438 may be adjusted independently to optimize the instrument performance.

[098] In this example, the sample plate 418, negative ion extraction electrode 428, negative ion acceleration electrode 430, positive ion extraction electrode 428, negative ion acceleration electrode 430, positive ion extraction electrode 436, and positive ion acceleration electrode 438 have voltages of 8 kV, 10.5 kV, -28 kV, and -12 kV, respectively, relative to ground. In this example, the flight tubes 402a and 402b can be electrically coupled to the electrodes 430 and 438, respectively. For example, the base plate 410 and vacuum housing 456a, 456b (see FIGS. 12A and 12B) of the mass spectrometer 400 can be connected to electric ground. The ions traveling in the flight tubes can have energy ranging from a few hundred electron volts to several million electron volts. The sample plate 418 and the electrodes can also have other voltage potentials.

[099] The region between the sample plate 418 and the negative ion extraction electrode 428 can be a first trajectory adjustment stage, and the region between the negative ion extraction electrode 428 and the negative ion acceleration electrode 430 can be a first acceleration stage. The region between the sample plate 418 and the positive ion extraction electrode 436 can be a second trajectory adjustment stage, and the region between the positive ion extraction electrode 436 and the positive ion acceleration electrode 438 can be a second acceleration stage. The region between the positive ion extraction electrode 436 and the positive ion acceleration electrode 438 can be a second acceleration stage.

[100] Referring to FIG. 17, in one example, the distance between the surface of the sample plate 418 and the negative ion extraction electrode 428 (or the positive ion extraction electrode 436) is approximately 9 mm. The distance between the negative ion extraction electrode 428 and the negative ion acceleration electrode 430, or between the positive ion extraction electrode 438 and the positive ion acceleration electrode 438, is approximately 9 mm.
In some implementations, the electrodes 430 and 438, as well as the electrodes 428 and 436, are symmetrical with respect to a plane 450 (which is perpendicular to the plane of the figure). The axes of the flight tubes 402a and 402b lie on a plane P (which is parallel to the plane of the figure), and in some implementations the electrodes 428 and 436, as well as the electrodes 428 and 430, are also symmetrical with respect to the plane P. The sample to be analyzed can be positioned along an intersection of the plane 450 and plane P, and analyzed can be positioned along an intersection of the plane 450 and plane P. For ions that are extracted from the sample 426, the negative ions travel along or near a path 444 in the drift region of the flight tube 402a, and the positive ions travel along or near a path 446 in the drift region of the flight tube 402b. The average paths 444 and 446 are at an angle in a range of about 0 to 179 degrees (in some examples, about 30 degrees) relative to each other. Note that the paths of individual negative or positive ions may be different from the average path of the negative or positive ions, respectively.

FIG. 18 shows a two-dimensional (2D) potential map of the mass spectrometer 400 in the regions in the vicinity of the electrodes and the flight tubes. The negative ions 106 are extracted from the sample 426 due to the potential difference between the negative ion extraction electrode 428 and the sample plate 418. The electric field between the sample plate 418 and the negative ion extraction electrode 428 forms a first trajectory adjustment stage that adjusts the travel direction of the negative ions to be substantially aligned with the flight tube 402a. The electric field between the sample plate 418 and the flight tube 402a forms a second trajectory adjustment stage that adjusts the travel direction of the positive ions to be substantially aligned with the flight tube 402b.

After the negative ions pass the grid 432, the negative ions are accelerated toward the flight tube 402a due to the potential difference between the negative ion acceleration electrode 430 and the negative ion extraction electrode 428. Similarly, after the positive ions pass the grid 440, the positive ions are accelerated toward the flight tube 402b due to the potential difference...
between the positive ion acceleration electrode 438 and the positive ion extraction electrode 436.

[0104] In some implementations, the potential inside the flight tube 402a is maintained substantially the same as that of the negative ion acceleration electrode 430, and the potential inside the flight tube 402b is maintained substantially the same as that of the positive ion acceleration electrode 438. This way, the ions are not accelerated inside the flight tubes 402, and the amount of time that an ion travels the length of the flight tube 402 will be proportional to the ion's kinetic energy. The region inside the flight tubes 402 where the ions are not accelerated are field-free drift regions.

[0105] Some neutral particles can travel upward and can be post-ionized by a second laser or another energetic particle beam. The post-ionized molecules can either be analyzed by mass spectrometers 452 and 454, or by another mass analyzer installed in the space between the mass spectrometers 452 and 454.

Alternative Examples

[0107] Instead of using time-of-flight mass analyzers, each of the mass analyzers 104, 108, 272, 452 and 454 can use, e.g., a quadrupole mass analyzer, an ion trap mass analyzer, a magnet sector mass analyzer, a Fourier-transform ion-cyclotron-resonance mass spectrometer, or a momentum analyzer. The dimensions of the various components of the mass spectrometers 100 and 400 are not limited to those described above. The type of laser source 114 can be different from what is described above. Instead of
using microchannel plates, each of the detectors 120, 122, 406a and 406b can include, e.g., a scintillation detector, an electron multiplier, an image current detector, or an electric current detector. The angle between the axes of the negative and positive mass analyzers 452 and 454 can be any value between 0 to 179 degrees, such as from about 20 to 140 degrees, or in some examples, to 179 degrees, such as from about 20 to 140 degrees, or in some examples, from about 20 to 100 degrees. The suitable angle between the axes of mass from about 40 to 100 degrees. The suitable angle between the axes of mass analyzers 452 and 454 depends on the voltages of the electrodes, the distances between the electrodes, and the initial kinetic energies of the negative ions between the electrodes, and the initial kinetic energies of the negative ions 106 and positive ions 110. In some implementations, increasing the voltage of the 106 and positive ions 110. In some implementations, increasing the voltage of the negative ion extraction electrode 428 from 10.5 kV to 12 kV and decreasing the negative ion extraction electrode 428 from 10.5 kV to 12 kV and decreasing the voltage of the positive ion extraction electrode 436 from 5.5 kV to 4 kV may cause the best angle between negative and positive mass analyzers 452 and 454 to become about 35 degrees. In other implementations, a larger distance between the sample plate 418 and extraction electrodes 428 and 436 may cause the best angle between negative and positive mass analyzers 452 and 454 to decrease.

[0108] In FIG. 2, the sample to be analyzed does not necessarily have to be mixed in a matrix. For example, laser ablation (in which the sample molecules are excited directly by a laser without use of matrix molecules), focused electron-beam ionization, fast atom bombardment, can be used to generate the positive and negative ions. Instead of using a laser 114 to energize the sample material 146, the sample material 146 can be energized by using, e.g., electron beams, ion beams, or fast atom beams that include charged particles. The charged particles can be generated by energized charged particles. The charged particles can be generated by electric current or laser and focused by an electric field. The fast atom beam can be generated by supersonic expansion.

[0109] Also, instead of using a MALDI source as in FIG. 2, for example, a surface-enhanced laser desorption ionization (SELDI) ion source, an electrospray ionization (ESI) ion source, an electron impact (EI) ion source, a secondary ion source or a chemical ionization (CI) ion source can also be, a secondary ion source, or a chemical ionization (CI) ion source can also be
used. For ESI, EI, and Cl ion sources, the sample probe of the sample
electrode 130 can be modified to become a hollow tube, or the probe can be
removed to leave the tunnel empty. The ions of these ion sources (ESI, EI,
and Cl) are generated outside of the sample electrode 130 and guided along
the hollow tube (or tunnel) of the sample electrode 130. Once the ions exit
the hollow tube (or tunnel) of the sample electrode 130. Once the ions exit
through the end of the hollow tube (or tunnel), the ions are guided and
directed toward the rectangular slots 154a and 154b, and accelerated toward
the flight tubes 118 and 116, respectively.

[0110] The voltages applied to the ion source electrode 130 and the extraction
[0110] The voltages applied to the ion source electrode 130 and the extraction
electrodes 126a, 126b, 128a, and 128b can be different from those described
electrodes 126a, 126b, 128a, and 128b can be different from those described
above. In FIG. 4, the voltage applied to the extraction electrode 128b does not
above. In FIG. 4, the voltage applied to the extraction electrode 128b does not
necessarily have to be higher than the voltage applied to the extraction
electrode 128a. Similarly, the voltage applied to the extraction electrode 128b
does not necessarily have to be lower than the voltage applied to the
extraction electrode 126a.

[0111] In FIG. 15, the voltages applied to the electrodes 428, 430, 436, and
438 can be different from those described above. The flight tube 402a can
have a voltage that is different from that of the electrode 430, and the flight
tube 402b can have a voltage that is different from that of the electrode 438.
The electrode assembly 412 can have additional electrodes to finely adjust the
electrode assembly 412 can have additional electrodes to finely adjust the
ion trajectory or to guide the ions toward the spectrometers 452 and 454
ion trajectory or to guide the ions toward the spectrometers 452 and 454
efficiently. For example, the electrode assembly 412 can have sets of
efficiently. For example, the electrode assembly 412 can have sets of
electrodes that form a plurality of ion trajectory adjustment stages to adjust
electrodes that form a plurality of ion trajectory adjustment stages to adjust
the positive ion trajectory and the negative ion trajectory.
the positive ion trajectory and the negative ion trajectory.

[0112] Different configurations of the ion source electrodes 130 may be used
[0112] Different configurations of the ion source electrodes 130 may be used
for different types of ion sources. For each type of ion source, the geometry
for different types of ion sources. For each type of ion source, the geometry
and dimensions of the ion source electrode 130, as well as the voltage(s)
and dimensions of the ion source electrode 130, as well as the voltage(s)
applied to the ion source electrode 130 are adjusted so as to generate an
electric field distribution that directs the positive and negative ions 106 and
106 toward the positive and negative ion mass spectrometers, respectively.
before the ions enter the acceleration regions. The positive and negative ions do not necessarily have to travel in a direction parallel to the x-axis when entering the acceleration regions, and can be tilted at a slight angle with respect to the x-axis.

0113] The geometry of the ion source electrode 130 and the extraction electrodes 126a, 126b, 128a, and 128b can be different from those described above. In FIG. 6, the different components of the electrode 130 do not necessarily have to be at the same electric potential as long as the electric field distribution causes the positive ions to be focused and guided through the rectangular slot 154a and the negative ions to be focused and guided through the rectangular slot 154b.

0114] The positive and negative ion mass spectrometers can further include reflectrons to improve the mass spectral qualities. A reflectron, also known as an ion mirror, is a type of time-of-flight mass spectrometer that uses a static electric field to reverse the direction of travel of the ions entering it.

0115] It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the appended claims. Other embodiments are within the scope of the following claims.
What is claimed is:

1. An angled dual-polarity mass spectrometer comprising:
 a dual-polarity ion generator comprising
 an ion source to generate positive ions and negative ions from a sample,
 and
 electrodes to generate electric fields for guiding the negative ions into a
 beam of negative ions and guiding the positive ions into a beam of positive ions;
 a first mass analyzer to analyze the negative ions;
 a second mass analyzer to analyze the positive ions, the central axes of the first
 and the second mass analyzers being at an angle between 0 to 179 degrees.

2. The mass spectrometer of claim 1 in which the first mass analyzer comprises:
 a first flight tube to receive the beam of negative ions, and
 a first ion detector to detect negative ions that travel in the first flight tube;
 and the second mass analyzer comprises:
 a second flight tube to receive the beam of positive ions, the second flight
 tube being at an angle between 0 to 179 degrees relative to the first flight tube, and
 a second ion detector to detect positive ions that travel in the second flight
 tube.

3. The mass spectrometer of claim 2 in which an axis of the second flight tube is at
 an angle between 0 to 179 degrees relative to an axis of the first flight tube.

4. The mass spectrometer of claim 2 in which an axis of the second flight tube is at
 an angle from 20 to 60 degrees relative to an axis of the first flight tube.

5. The mass spectrometer of claim 2 in which the first ion detector comprises at least
 one of a scintillation detector, a microchannel plate detector, an electron multiplier, or an
electric current detector.
6. The mass spectrometer of claim 1 in which the electrodes comprise a negative ion extraction electrode and a positive ion extraction electrode, the negative ion extraction electrode having a voltage that is higher than that of a sample plate on which the sample is placed, the positive ion extraction electrode having a voltage that is lower than that of the sample plate.

7. The mass spectrometer of claim 6 in which the electrodes comprise a negative ion acceleration electrode and a positive ion acceleration electrode, the negative ion acceleration electrode having a voltage that is higher than that of the sample plate, the positive ion acceleration electrode having a voltage that is lower than that of the sample plate.

8. The mass spectrometer of claim 6 in which each of the negative and positive ion acceleration electrodes comprising a grid having openings to allow ions to pass.

9. The mass spectrometer of claim 6 in which each of the negative and positive ion extraction electrodes comprises a grid having openings to allow ions to pass.

10. The mass spectrometer of claim 1 in which the electrodes are configured to generate an electric field that causes the beam of negative ions to travel, on average, along a first central axis of the first mass analyzer and the beam of positive ions to travel, on average, along a first central axis of the second mass analyzer, the second average axis being at an angle in a range of 0 to 179 degrees relative to the first central axis.

11. The mass spectrometer of claim 10 in which the second axis is at an angle in a range between 20 to 60 degrees relative to the first axis.
12. The mass spectrometer of claim 1, comprising:
 a sample plate to support a plurality of samples, and
 one or more translational stages to change the position of the sample plate relative
to the electrodes to allow the mass spectrometer to analyze each of the different samples.

13. The mass spectrometer of claim 1, comprising:
 a sample plate to support the sample, and
 at least one translational stage to change the position of the sample plate relative
to the electrodes to allow the mass spectrometer to analyze each of different portions of
 the sample.

14. The mass spectrometer of claim 13, comprising a signal acquisition and
 instrument control device to control positioning of the sample plate, analyses of mass
 spectra of the various regions of the sample, and recording of data representing the mass
 spectra.

15. The mass spectrometer of claim 1 in which the electrodes are symmetrical with
 respect to a plane that passes the sample.

16. The mass spectrometer of claim 1 in which the ion source comprises at least one
 of a matrix-assisted laser desorption/ionization (MALDI) ion source, a surface-enhanced
 laser desorption ionization (SELDI) ion source, a laser ablation ion source, an
 electrospray ionization (ESI) ion source, an electron impact (EI) ion source, a secondary
 electrospray ionization (ESI) ion source, an electron impact (EI) ion source, a secondary
 ion source, a fast atom bombardment (FAB) ion source, a laser-desorption post ionization
 source, a fast atom bombardment (FAB) ion source, a laser-desorption post ionization
 source, or a chemical ionization (CI) ion source.

17. The mass spectrometer of claim 1, in which electrodes comprise sets of electrodes
 to form a plurality of ion trajectory adjustment stages to adjust the positive ion trajectory
 and negative ion trajectory, trajectory adjustment stages to adjust the positive ion trajectory
 and negative ion trajectory.
18. An apparatus comprising:
electrodes to change travel directions of positive ions and negative ions and accelerate the positive and negative ions. The electrodes having surfaces connected to a plurality of voltages, the surfaces generating electric fields forming a first trajectory adjustment stage, a first acceleration stage, a second trajectory adjustment stage, and a second acceleration stage;
wherein the electric field in the first trajectory adjustment stage changes the travel directions of the negative ions and causes the negative ions to travel toward the first acceleration stage, the electric field in the first acceleration stage accelerates the negative ions, the electric field in the second trajectory adjustment stage changes the travel directions of the positive ions and causes the positive ions to travel toward the second acceleration stage, and the electric field in the second acceleration stage accelerates the positive ions;
wherein a first average path represents an average of the paths traveled by the negative ions after passing the first acceleration stage, a second average path represents an average of the paths traveled by the positive ions after passing the second acceleration stage, and the second average path is at an angle in a range between 0 to 179 degrees relative to the first average path.

19. The apparatus of claim 18 in which the second average path is at an angle in a range between 20 to 60 degrees relative to the first average path.
20. A method of analyzing mass spectrum, the method comprising:

generating positive and negative ions from a sample positioned in an electric field;

guiding, using a first portion of the electric field, the negative ions along a first path toward a first mass analyzer having a first flight tube that extends along a first axis;

path toward a first mass analyzer having a first flight tube that extends along a first axis;

path toward a first mass analyzer having a first flight tube that extends along a first axis;

and

analyzing the negative ions using the first mass analyzer;

analyzing the positive ions using the second mass analyzer.

21. The method of claim 20 in which guiding the negative ions comprises passing the negative ions through openings in a grid of a negative ion extraction electrode having a voltage higher than that of a sample plate that holds the sample, and

guiding the positive ions comprises passing the positive ions through openings in a grid of a positive ion extraction electrode having a voltage lower than the sample plate.

22. The method of claim 21 in which guiding the negative ions comprises passing the negative ions through openings in a grid of a negative ion acceleration electrode having a voltage higher than that of the negative ion extraction electrode, and

guiding the positive ions comprises passing the positive ions through openings in a grid of a positive ion acceleration electrode having a voltage lower than that of the positive ion extraction electrode.

23. The method of claim 20, comprising moving a sample plate supporting a plurality of samples and analyzing the mass spectrum of each of the different samples.

24. The method of claim 20, comprising moving a sample plate supporting the sample and analyzing the mass spectrum of each of different regions of the sample.
Angled dual-polarity TOF MS

Ion Energy: 20 keV

Fig. 16
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2011/021595

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - H01J 49/40 (2011.01)
USPC - 250/287

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - H01J 49/40, 49/54 (2011.01)
USPC - 250/287, 281, 294

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
USPTO EAST System (US-PGPUB; USPAT; USOCR; EPO; IPO; DERWENT), MicroPatent

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6,888,130 B1 (GONIN) 03 May 2005 (03.05.2005) entire document</td>
<td>1-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- **A** - document defining the general state of the art which is not considered to be of particular relevance
- **E** - earlier application or patent but published on or after the international filing date
- **L** - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason as specified
- **O** - document referring to an oral disclosure, use, exhibition or other means
- **P** - document published prior to the international filing date but later than the priority date claimed
- **T** - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **&** - document member of the same patent family

Date of the actual completion of the international search: 06 March 2011
Date of mailing of the international search report: 16 MAR 2011

Authorized officer: Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774