发明名称
血管进入装置

摘要
一种血管进入装置，包括一针头，具有远端顶部和一近端安装部分，以及一扩张器，其具有一与一实心近端部相连的实心远端部和一介于二者之间的环形槽，扩张器具有一通路，从而扩张器绕针头同轴布置。针头具有至少一个接近其远端顶部设置的开口，从而当针头的远端进入血管时，血液进入环形槽以向操作人员显示进入操作已经完成。该装置选择性地包括一护套，其具有一远端顶部、一近端安装部、以及一足以同轴安装在扩张器上的腔管。
1. 一种血管进入系统，包括：
一针头，其具有远端顶部和一近端安装部；以及
一扩张器，其具有与一静心近端部相连的实心远端部和二者之间的一凹槽，所述扩张器具有一通路，从而所述扩张器绕所述针头同轴设置，
其中，所述针头具有至少一个靠近其远端顶部布置的开口，并且
其中，所述扩张器具有一基本上为环形的槽，以便当所述针头的所述
远端顶部刺穿血管时接收血液。
2. 如权利要求1所述的系统，其特征在于，所述扩张器是不连续的。
3. 如权利要求1所述的系统，其特征在于，所述扩张器是清洁的、
半透明或透明的。
4. 如权利要求1所述的系统，其特征在于，所述扩张器具有一通过
注射器抽取血液的侧向入口。
5. 如权利要求1所述的系统，其特征在于，所述针头和扩张器可在
同一在引导丝上推进一血管内。
6. 如权利要求5所述的系统，其特征在于，所述导丝防止所述针头
损害血管内的结构。
7. 如权利要求1所述的系统，其特征在于，所述针头具有一腔管，
并且一导丝的远端伸入所述针头腔管内。
8. 如权利要求1所述的系统，其特征在于，导丝移动进入病人血
管系统可能性得以排除。
9. 如权利要求1所述的系统，其特征在于，所述扩张器具有一或
多个排出空气的开口或气孔。
10. 如权利要求1所述的系统，其特征在于，所述扩张器具有一点
或多点多个孔材料。
11. 如权利要求1所述的系统，其特征在于，所述针头留在所述
12. 如权利要求 1 所述的系统，其特征在于，所述针头可收回到所述扩张器内，并被锁定于适当的位置以保护血管，并且当所述扩张器针头被取下时保护使用者。

13. 如权利要求 1 所述的系统，其特征在于，所述扩张器具有一向远端延伸的远端部。

14. 如权利要求 1 所述的系统，其特征在于，所述针头近端部具有显示所述远端顶部坡口方向的彩色编码、文字或其他标记。

15. 如权利要求 1 所述的系统，其特征在于，所述扩张器具有一向远端延伸的远端部，其具有远端以覆盖所述针头的远端顶部。

16. 如权利要求 1 所述的系统，其特征在于，所述针头被插入所述血管内之后，所述针头具有显示所述针头远端顶部坡口的方位或将其锁定在适当位置的功能。

17. 如权利要求 1 所述的系统，其特征在于，一具有内部扩张器的同轴扩张器系统可在所述针头上向远端延伸。

18. 一种血管进入系统包括：
一针头，其具有一远端顶部和一近端安装部；
一扩张器，其具有与一实心近端部相连的实心远端部和一位于二者之间的凹槽，所述扩张器具有一通路，从而所述扩张器绕所述针头同轴设置；以及
一护套，其具有一远端顶部、一近端安装部和一足以同轴装在所述扩张器上的腔管；

其中，所述针头具有至少一个接近其远端顶部布置的开口，并且其中，所述护套和扩张器形成一基本上为环形的槽，以便在所述针头的远端顶部刺穿血管时接收血液。

19. 如权利要求 18 所述的系统，其特征在于，所述护套是清洁的、半透明或透明的。

20. 如权利要求 18 所述的系统，其特征在于，所述扩张器是不连续的。
21. 如权利要求 18 所述的系统，其特征在于，所述扩张器是透明或半透明的。

22. 如权利要求 18 所述的系统，其特征在于，所述护套或扩张器具有一通过注射器抽取血液的侧向入口。

23. 如权利要求 18 所述的系统，其特征在于，所述针头、扩张器和护套在一导丝上一起推进一血管内。

24. 如权利要求 18 所述的系统，其特征在于，所述导丝防止所述针头损坏血管内的结构。

25. 如权利要求 18 所述的系统，其特征在于，所述扩张器或护套具有一或多个排出空气的开口或气孔。

26. 如权利要求 18 所述的系统，其特征在于，所述护套具有一点或多点或多孔材料。

27. 如权利要求 18 所述的系统，其特征在于，所述针头留在所述导丝上以保护使用者。

28. 如权利要求 18 所述的系统，其特征在于，所述针头可拉入扩张器内并锁定于适当的位置，以便当扩张器/针头或扩张器/针头和护套推进时保护血管。

29. 如权利要求 18 所述的系统，其特征在于，当所述导丝留在适当的位置时，所述针头可被拉入扩张器内并锁定于适当的位置以保护使用者。

30. 如权利要求 18 所述的系统，其特征在于，所述扩张器具有向远端延伸的远端部，其具有远端以盖住所述针头的远端顶部。

31. 如权利要求 18 所述的系统，其特征在于，所述针头插入血管之后，所述系统具有显示所述针头远端顶部坡口的方位或将其锁定在适当的位置的功能。

32. 一种预先装配的血管进入装置，所述装置包括：
 一空心针头，其具有一尖锐的远端顶部并限定有一接近所述远端顶部的侧孔；
 一导丝，其预先装入所述针头内；
一扩张器，其同轴安装于所述针头上，从而在所述扩张器与针头之间的限定出一第一环形空间，所述第一环形空间与所述空心针头孔通过所述侧孔连通；以及

一护套，其同轴安装于所述扩张器上，从而在所述护套与扩张器、或所述护套与针头之间的限定出一第二环形空间；

其特征在于，至少所述扩张器和护套之一为清楚、半透明或透明的，从而至少所述环形空间之一中只要有血液便可通过所述扩张器和/或护套被目测到，以确定所述针头在血管内的正确放置。

33. 如权利要求32所述的装置，其特征在于，所述扩张器和护套一同可滑动地置于所述针头上。

34. 如权利要求32或33所述的装置，其特征在于，所述针头、扩张器和护套一同可滑动地在所述导丝上移动位置。

35. 如权利要求32或33所述的装置，其特征在于，所述扩张器可滑动地在所述针头上移动至某一位置，在此位置盖住所述针头的尖锐远端顶部，从而对其进行保护。

36. 如权利要求32或33所述的装置，其特征在于，所述扩张器是清楚、半透明或透明的，从而所述第一环形空间中只要有血液便可被目测到，以确定所述针头在血管内的正确放置。

37. 如权利要求32或33所述的装置，其特征在于，所述护套是清楚、半透明或透明的，所述第二环形空间与所述第一环形空间连通，从而所述第二环形空间中只要有血液便可被目测到，以确定所述针头在血管内的正确放置。

38. 如权利要求32或33所述的装置，其特征在于，所述扩张器包括一非连续结构，其具有一通过至少一个纵向构件与一实心近端部连接的实心远端部，从而在所述护套与针头之间的限定出所述第二环形空间，并且所述第二环形空间通过所述针头侧孔与所述空心针头孔连通，从而所述第二环形空间中只要有血液便可通过所述护套被目测到，以确定所述针头在血管内的正确放置。

39. 如权利要求32或33所述的装置，其特征在于，所述扩张器
包括一连续管结构，从而在所述护套与扩张器之间限定出所述第二环形空间，并且从而所述第二环形空间中只要有血液便可通过所述扩张器和护套被目测到，以确定所述针头在血管内的正确放置。

40. 如权利要求 32 或 33 所述的装置，其特征在于，所述护套包括一侧面端口。

41. 如权利要求 32 或 33 所述的装置，其特征在于，所述空心针头的尖锐远端顶部从所述扩张器向远端伸出。

42. 如权利要求 41 所述的装置，其特征在于，所述空心针头的尖锐远端顶部从所述扩张器向远端伸出以致到达病人的中心血管。

43. 如权利要求 32 或 33 所述的装置，其特征在于，所述空心针头是刚性的，从而在所述装置插入所述血管内的过程中支承所述扩张器和护套。
血管进入装置

相关申请的引用
本申请基于尚未批准的美国临时专利申请提出，序列号为 No. 60 / 343,814，申请日为 2002 年 12 月 26 日。

技术领域
本发明涉及血管进入技术，更具体而言，本发明涉及一种使用起来比现有技术的装置更为简单、安全并且快捷的血管进入装置。

背景技术
一种用于将导管或血管护套插入血管内的优选非外科方法涉及使用 Seldinger 技术，包括一插入病人血管中的进入针头。一导丝通过所述针头插入并进入血管。将该针头取下，然后将一扩张器与护套联合装置在导丝上插入。然后将扩张器与护套联合装置通过组织插入血管内一小段距离，此后取下扩张器并且将其丢弃。然后将导管通过护套插入血管内至一预定位。

目前已公知许多种血管进入装置。作为例子引用作为参考的可参见美国专利 4,581,019、4,629,450、4,772,264、4,978,334、5,158,544、5,424,410、5,312,355、5,512,052、5,728,132、5,885,217、5,919,160、6,120,494、6,179,823 以及 6,210,366，其中描述了各种用于进入血管的装置。但是，这些装置中没有一种具有医生所中意的使用起来简单且安全的性能，因此需要提供一种使用更为简单且更为安全的血管进入装置，尤其是一种可清楚显示血管已被刺穿的装置。

发明目的
本发明的目的之一在于提供血管进入装置。
本发明的另一目的在于提供一种更为简单、安全且快捷的血管进入装置。

本发明的另一目的在于提供一种血管进入装置，其排除了在进入血管过程中导丝偶然错入血管系统的可能性。

本发明的另一目的在于提供一种将导管或其他医疗器械以更为简单、安全且快捷的方式导入的方法，其中，血管进入装置中所出现的病人血液指示医师针头已进入所要求的血管中。

本发明的上述和其它目的将在下面的论述中变得更为清楚。

发明内容

本发明的扩张器或护套与扩张器安装于针头上，该针头具有一接近针头远端顶部的侧孔。针头插入之前，其所处的位置使得针头的远端远离扩张器的远端。针头插入血管之后，针头开口允许血液流入扩张器中或针头与扩张器之间的环形空间内，以显示针头的远端已刺穿血管。另外或作为备选方案，血液流入由护套形成的环形空间内以显示血管已经被刺穿。此外，血液可能流向一任选的侧面端口以提供进入完成的另一显示。

一旦完成血管进入，也就是说，一旦针头的远端顶部刺穿血管并且血液通过针头内的侧孔流入上述环形空间之一中，以及视情况而定流入一侧面端口内，一导丝穿过针头，然后包括针头、扩张器和护套的整个装置，可在导丝上推进血管内。在所要求的时刻，护套、针头和扩张器可在导丝上推进。当护套到位时，内部扩张器、针头和导丝可一同取下。这样，导丝保护着针头顶部，并且其内具有导丝的针头则为了更加安全的因素可被弯曲，以防导丝被取出并且随后使得针头顶部暴露出来。备选地，可将导丝留在原地以放置导管。

在本发明的一具体实施方案中，扩张器具有一可向远端推进的远端部件，或者针头的远端顶部可被收回，从而扩张器远端部件的远端顶部可在针头的远端顶部向远端延伸。当针头、扩张器，或针头、扩张器、护套优选在导丝上推进血管或从血管中退回时，扩张器远端部
件保护着血管壁。此外，当针头、扩张器或针头、扩张器、护套被拉出时，保健工受到了保护。

在本发明的另一具体实施方案中，设有一具有一内部扩张器和一外部扩张器的同轴扩张器系统。内部扩张器可独立地向远端推进至针头的远端顶部。当针头、扩张器，或针头、扩张器、护套优选在导丝上推进血管中或从血管中退出时，内部扩张器则盖住针头顶部，而内部扩张器远端部件则保护着血管壁。此外，当针头，或针头、扩张器和/或护套被拉出时，保健工受到了保护。

在本发明的另一具体实施方案中，针头可相对于扩张器或扩张器和护套转动，从而以针头远端顶部的坡口朝上的状态被插入血管内的针头顶部可转动 180°，以致于针头远端顶部的坡口朝下。当针头远端顶部处于此位置时，针头远端顶部移动而引起血管损伤的可能性较小。针头部件的近端部分可具有显示针头顶部水平面相对位置的彩色编码，文字或其他标记。此外，针头部件的近端部分也可具有切口、枢轴、凹痕或其他结构，用以显示相对位置和/或将其针头部件相对于扩张器或扩张器与护套控制在适当位置。

本发明的血管进入装置具有多种用途，包括在扩张布置、经皮冠状动脉成形术（PTCA）等需要血管护套时，或在需要剥离护套例如用于插入 PICC 线、起搏器导丝等时，用于进入各种血管。此外，本发明可用于进入透渗析移植体和瘘管，这些都是表面结构，有时需要快速进入，尤其是在去除血凝块的作业过程中。其他的用途是可用于布置中心线（锁骨下动脉的或内部颈静脉的）。本发明的大针或小针可与血管护套一起用于实现进入血管的操作，通过该护套可安全放置三倍的腔管或任何其他导管，而不是使用大针（现有技术中为 18 G），继之将一扩张器在一导丝上推进，并且将其调换用于放置三倍的腔管导管或血管护套。

本发明具有许多优点，第一个优点便是效率提高。本发明减少了操作步骤的次数并且简化了进入的过程，替代了现有技术中更换导丝和护套的多级进入方法。另一优点在于其安全性能高。进入血管后，
导丝可留在其中以保护针头顶部。针体、扩张器和导丝可待护套到位后一起取下。如果在同一过程中无另外的进入操作，可将针体弯曲使得安全性更高。与现有技术相反，血管得以进入之后，未加保护的血液用针体从导丝上取下。备选地，可将导丝留在适当的位置以通过护套和扩张器的前端部件提供进一步的进入，以保护针体的远端顶部并最终保护使用者。另一优点在于污染减少。通过将实现血管进入的导丝和护套的数目减少最少，非故意污染的机会得以减少。进一步的优点在于，在非医院或野战条件下，使用本发明将减少由于非无菌环境而造成传染的可能性。依然是进一步的优点在于，系统的刚性更大。由于针体的因素而提供的更大的刚性使得系统无需成倍增加扩张器数量便可改进系统，并且使得病人的损伤减少。

另一优点与现有技术在导丝更换过程中，从针体、扩张器以及线周围发生的出血过程有关。这种出血过程加大了血液在外科现场和操作员的手套上的散布程度，从而一旦出现针体不慎卡住，增加了传染的机率。本发明的装置可减小传染的危险性，因为血液将流入护套中而不是象现有技术一样流入外科现场。

本发明的一个实施方案的另一个和进一步的优点在于无需在导丝上进行交换。本装置可被构造成在进入过程中排除导丝不慎错放至血管系统内的可能性的形式。在现有技术中，针体被替换为扩张器然后被替换为护套，众所周知这是很复杂的，操作员在那些替换过程中不能抓住导丝，并且导丝与扩张器或导管一起不慎被推进病人的血管系统中。然后必须将导丝或者通过手术取下，或者经由皮肤剔除。

最后，本发明的效益将会很高。本发明的系统可消除用于获得进入血管的附加导丝和同轴扩张器的需要。

附图说明
图 1 和 2 为本发明一实施方案的各示意图；
图 3 和 4 为本发明另一实施方案的各示意图；
图 5 为本发明再一实施方案的局部剖视图；
图 5a 为沿线 5a - 5a 的剖面图；
图 6 为本发明另一实施方案的局部剖视图；
图 7 为本发明再一实施方案的局部剖视图；
图 8 为本发明一实施方案的局部剖视图，其中，扩张器的远端部向远端延伸；
图 9a 至 9c 为使用图 8 中所示的本发明的实施方案的示意图；
图 10a 和 10b 为本发明一具有同轴扩张器系统的实施方案的示意图；
图 11 为图 10a 和 10b 系统的近端部的剖面示意图。

具体实施方式

通过附图可更好地理解本发明。在图 1 和 2 中，针头部 102 包括一针头 104 和一具有一转锁部件 108 的近端部 106，而扩张器部 112 包括一扩张器 114 和一注节 116。在本发明的一优选实施方案中，针头 104 具有一或多个开口 120。扩张器 114 优选为清楚、半透明或透明的，从而当血液流入针头 104 并且通过开口 120 或者（1）流入针头 104 与扩张器 114 之间的环形空间 122 内；或者（2）流入或者流过扩张器 114 内的空间（未示出）时，医生可看见血液。这样可向医生显示针头 104 的远端 124 已刺穿血管（未示出）。

如图 2 所示可看出，扩张器套节 116 可松开地与针头近端部 106 接合。在该图中，扩张器套节 116 包括一锥形凹槽，其接受形成针头近端部 106 的一部分的部件。针头近端部 106 包括一环形部，其具有与套节 116 上的相应螺纹接合的螺纹。可实现与针头和扩张器部的近端部以可松开方式接合的相同目的的其他布置的螺纹、卡爪、或者按扣或作用力配合结构也属于本发明的范围。

套节 116 可选择性地具有一多孔出口 128。针头近端部 106 可选择性地具有一多孔出口塞 130，该出口塞与通道 132 相配，所述通道与针头 104 的腔管 134、凹槽、和具有腔管 136 的针头近端部 106 流体连通。
针头近端部 106 可具有彩色编码、文字、或例如一枢轴或切口的其他标记，以向操作员显示远端顶部 124 的坡口与扩张器 114 的相对位置。同时，扩张器 114 与针头 104 之间可通过力学方式进行配合，从而操作员将通过感觉或声音来检测针头何时已被转动以改变顶部坡口的位置。

在图 3 和 4 所示的本发明的实施方中，针头部 142 包括针头 144 和一具有一转锁部件 148 的近端部 146，扩张器部 150 包括一扩张器 152 和一套节 154，而护套部 160 包括一护套 162 和一近端部 164。在本发明的一优选实施方案中，针头 144 具有一或多个开口 149。扩张器 152 与护套 162 优选为清楚、半透明或透明的，从而当血液流入针头 144 后通过开口 149，（1）流入针头 144 与扩张器 152 之间的环形空间 170 中；（2）流入或通过扩张器 152 内的空间（未示出）；或（3）通过开口 172 流入扩张器 152 与护套 162 之间的环形空间 174 中时，医生可看见血液。同上，这样可向医生显示针头 144 的远端 176 已刺穿血管（未示出）。优选地，护套近端部 164 具有一端口 178，从而血液可自通过注射器（未示出）抽取。护套可包含近端部 164 内的一止血阀（未示出），以防血液流出护套的近端部。

近端部 106、116、146 和 154 分别可选择性地具有鲁尔连接部件。例如，近端部 108 可具有一凸 luer 锁 129，而近端部 116 可具有一凹 luer 连接器 131。近端部 146 和 154 可分别具有类似的部件。

如图 4 所示，部件 142、150 和 160 可互相插入。近端部 146、154、164 可扭动或滑动配合在一起，例如利用 luer 连接器、螺纹、压力或按钮配合、卡爪/沟槽配置、或其组合。此处，图 2 中所示的结构尤为合适。

在如图 5 的局部剖面图所示的本发明的另一实施方案中，针头 180 具有一开口或侧孔 182。与针头 180 同轴布置的扩张器 184 具有一基本上中空的远端部 186 和一基本上实心的近端部 188，各端部 186 和 188 通过刚性或基本为刚性的纵向构件 190 连接，以形成一间断或非连续结构。端部 186 和 188 之间未由部件 190 占据的空间形成环形或
基本为环形的空间 194，血液可从开口 182 流入其内。护套 196 为透明或半透明的，从而医生可观察到空间 194 中的血液。

优选地，扩张器 184 具有一或多个例如在护套 196 内的小开口、气孔或多孔材料 200，以允许空气或气体在血液进入时离开环形空间 194。开口本身，或多孔材料中的开口足够小，从而空气可逸出而血液可留住。合适的多孔材料包括多孔聚合物例如气孔尺寸为 2.5 微米的自封式白色多孔的 HDPE。

导丝 204 的远端 202 优选被预先装入，即，优选位于针头 180 的腔管 206 内。这样，血液将流入针头 180 并且通过开口 182 流出，而不是在近端流出腔管 206。一旦医生看到环形空间 194 中的血液，导丝 204 可通过腔管 206 向远端推进血管（未示出）内。针头 180、扩张器纵向构件 190 与护套 196 之间的另一种关系可在图 5a 所示的横断面图中看出。

本发明的扩张器部的个别设计在图 6 和 7 中进一步详细地示出。在图 6 中，所示扩张器 210 具有锥形部件。远端扩张部 212 为双锥体设计形式，其具有一由一个锥形部件 216 的顶部延伸至另一个锥形部件 218 的顶部的通路 214。至少两个稳定纵向构件 220 由远端部 212 延伸至近端部 222，优选包括一单个锥形部件 224，其具有一通路 226 和一近端扭动或锁定部 228。

图 7 中所示的本发明的实施方案包括一扩张器 - 针头联合装置，其中图 6 中所描述的扩张器装置也包括一延伸穿过通路 214 至通路 226 并从其中穿过的针头 232。针头 232 具有一设有扭动或锁定装置的近端部 234。

在图 8 所示的本发明一实施方案的局部示意图中，扩张器 240 绕针头 242 周围布置。扩张器 240 具有一远端部 244，其朝针头 242 的远端顶尖 246 向远端延伸。优选地，细长的内部扩张器同轴位于较大的外部扩张器之内。内部细长的部件可在针头上推进以保护针头顶尖。如图 9a 至 9c 所示，针头 252 位于血管 256 内的刺穿开口 254 内。导丝 258 由针头 252 向远端伸入血管 256 的腔管 260 内。绕针头 252 周
围设置的扩张器 262 具有一远端部 264。如图 9b 所示，扩张器远端部 264 可在针头 252 上推进，从而扩张器远端部 264 的远端顶部 268 向针头 252 的远端顶部 270 的远端延伸。然后，如图 9c 所示，当针头 252 和扩张器 262 在导丝 258 上向远端推进时，针头的远端顶部 270 受到扩张器远端部 264 的保护。

如图 10a 和 10b 中所示的本发明的实施方案包括一同轴扩张器系统，其包括内部扩张器 276 和外部扩张器 278。扩张器 276 和 278 绕针头 280 周围布置，并且内部扩张器 276 的远端 282 最初略微远离外部扩张器 278 的远端 284。内部扩张器 276 的近端（未示出）向远端推进以使得内部扩张器远端 282 盖住针头 280 的远端 288。优选地，扩张器 276 和 278 相互作用或受到控制，从而它们保持在彼此之间的相对位置，而当针头、扩张器，或针头、扩张器：护套联合装置推进血管（未示出）或从其退出时，针头 280 最好在导丝（未示出）上。

图 10a 和 10b 中所示的同轴扩张器系统需要一种激活系统，其使得一个扩张器相对于另一个扩张器移动。优选地，内部扩张器应向远端推进以盖住针头的远端，而外部扩张器则保持不变或保持在适当的位置。优选地，扩张器系统应设置成：外部扩张器基本上相对保持在适当的位置，而内部扩张器则沿远端方向移动、拉动或滑动。在图 11 所示的实施方案中，近端内部扩张器部 292 和外部扩张器部 294 绕近端针头部 290 周围设置。锥形针头（套节）接口 296 具有至少一个环形突出部分或环 298，其容纳于锥形外部扩张器近端套节 304 中的环形槽 302 内。内部扩张器套节 306 具有与针头 290 上或附着于针头 290 或针头接口 296 上的独立针头部件上的相应螺纹 310 接合的螺纹 308。内部扩张器套节 306 具有一突出部分或侧翼 312，其在凹槽 316 内移动并由此引导，该凹槽防止内部扩张器 292 相对于外部扩张器 294 转动。对本领域技术人员而言，其他公知或可识别的机械配置应当是允许的，并落在本发明的范围内，只要它们允许内部扩张器的远端部在针头的远端部上推进，而内部扩张器相对于外部扩张器不转动。

在这里，本发明由传统的、生理学上容许的材料组成。举例来说，
针头由硬质聚合物或金属，例如不锈钢、镍钛金属互化物等构成。其他部件一般可由适宜的聚合材料，例如聚乙烯、聚丙烯、含氟聚合物和共聚物例如全氟代（乙烯-丙烯）共聚物、聚氨酯聚合物或共聚物构成。

上述具体实施方案按本发明的实施例方式说明。但是，应当理解，在不背离本发明的精神或所附权利要求书的范围的情况下，可使用本领域技术人员公知或此处公开的其他有利实施方案。