Title: SCHEDULING AND CALENDAR SYSTEM

(54) Title: SCHEDULING AND CALENDAR SYSTEM

(57) Abstract: A scheduling and calendaring system includes a computer processing system maintaining a schedule and/or calendar for a plurality of users, capable of determining whether events in a first event schedule require a third-party, and if so populating the schedule and/or calendar of the third party with a second event schedule related to the first.
Published:

— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
SCHEDULING AND CALENDAR SYSTEM

TECHNICAL FIELD

The present invention relates to systems and methods for scheduling and calendaring events, including computerised apparatus and software for use with such systems.

BACKGROUND

Many industries use electronic scheduling and calendaring systems to assist in daily, weekly, monthly and/or yearly planning. The extent of use of the systems and the type of events that are entered into the system depend on the specific industry and specific user.

One of the most common electronic scheduling and calendaring systems currently in use is the calendar in Microsoft® Outlook®. Typically, a user receives notification of when an event is to occur or must be completed by and then enters an "appointment" into the system on the appropriate date and time. Where the user's computer is part of, for example, a local area network, by setting appropriate permissions, other people within the organisation may enter, modify and/or delete appointments for the user and view their calendar.

The applicant believes that improved functionality and flexibility can be achieved over existing scheduling and calendaring systems and it is an object of the present invention to provide a scheduling and calendaring system and method that offers improved functionality and flexibility, or at least provide the public with a useful choice.

DEFINITIONS

Event – an entry to be made into the calendar of a client
Events sequence – a series of events related in time
Key event – an event in a sequence of events relative to which the location in time of other events in that sequence of events is calculated
Profile – a summary of the characteristics of a client
Sub-profile – information defining and related to a sequence of events that a client requires scheduling and calendaring
Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of "including, but not limited to".

SUMMARY OF THE INVENTION

According to a first aspect, the invention broadly resides in a scheduling and calendaring system including a computer processing system including one or more communication means to communicate with one or more second computer processing systems and computer memory, wherein the computer processing system is programmed and/or is operable to:
- maintain a schedule and/or calendar for a plurality of users;
- enter a first event schedule for a first user; and
- determine whether an event in the first event schedule requires a third party and if so populate the schedule and/or calendar of a second user of said plurality of users representing said third party with a second event schedule related to the event schedule.

Preferably, said first event schedule comprises a plurality of events distributed over time with at least one of said events requiring input from or of a third party.

Preferably, said second event schedule comprises a plurality of events distributed over time.

Preferably, the first and/or second event schedules define one or more events that occur prior to or after a main event in said first and/or second event schedule.

Preferably, the computer processing system includes a server that is able to communicate with the one or more second computer processing systems via a wide area network. In one embodiment, the one or more second computer processing systems each comprise a personal computer.

Preferably, the computer processing system is programmed and/or is operable to perform the further step of using an electronic communication method to notify the third party that their schedule and/or calendar is being populated, optionally requesting confirmation from
the third party before populating the schedule and/or before finally populating the schedule and/or calendar.

Preferably, the computer processing system maintains in a computer memory calendars for the users and users can view each others calendar or a portion thereof with or without permission.

According to a second aspect of the present invention, there is provided a computerised method of scheduling and/or calendaring, the method comprising:

- maintaining a calendar for at least one user and populating the calendar with at least one event sequence comprising at least one event;
- where one or more of said at least one event requires involvement of a third party, populating the third party's schedule and/or calendar with events that indicate their involvement, optionally seeking confirmation from the third party through electronic means that their calendar should be populated.

According to a third aspect, the invention broadly resides in computer software suitable for causing a computer system to operate in accordance with the method described in the immediately preceding paragraph.

Further aspects of the present invention will become apparent from the following description, given by way of example only and with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: shows a block diagram of a computer network in which the present invention may be implemented.

Figure 2: shows a flow chart of the steps involved in defining an event sequence according to an aspect of the present invention.

Figure 3: shows a flow chart of the steps involved in creating a client profile, including creating sub-profiles according to an aspect of the present invention.

Figure 4: shows a more detailed flow diagram of an example process for creating a sub-profile for a client.

Figure 5: shows a flow chart of the process to link a user's calendar with a third party's calendar according to an aspect of the present invention.
Figure 6: shows a block diagram of some of the components of a software application in accordance with the present invention.

Figure 7: shows a flow chart of the process for alternative linking of events within calendars.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows a high level block diagram of a computer network, generally referenced by arrow 100, which is suitable for implementing the present invention. The computer network 100 includes a scheduling and calendaring system 101 including a web server 1 that communicates with clients 2 through a suitable client interface A, which may be formed within the internet, an intranet or other network environment. The clients 2 may be personal computers located at various physical locations. Developers may optionally access the web server 1 using a client 2, using a suitable protocol such as SOAP, RMI or a custom tunnelling protocol.

The web server 1 handles data exchange with the clients 2 and passes data representing information and requests to the server 3. The server 3, which is shown distinct from the web server 1 but is not necessarily so, manages the operation of the present invention, including acting as a database management server for a database 4. Alternatively, a separate database management server may be used, although it is anticipated that this should not be necessary for most implementations of the present invention.

The operations of the web server 1 and server 3 will now be generally described. Those skilled in the relevant arts will appreciate that the specific hardware, software and communication interfaces used to implement the operations of the web server 1 and server 3 will differ according to the specific hardware platform and software used, including the options using only a single server and including using a network of computational components.

Defining an Events Sequence

The scheduling and calendaring system 101 allows a sequence of events to be entered into an electronic calendar. Figure 2 shows a flow chart of the steps involved in defining an events sequence.
In step 200 a key event is selected. The key event will form part of a sequence of events and depend on the specific industry that the scheduling and calendaring system 101 is used for. The scheduling and calendaring system 101 may support multiple clients from multiple industries, with each industry having its own standard events sequences. Each client may optionally have personalised industry events and related event sequences. By way of example only, an event sequence for a sheep farmer is described herein. An industry related event for a sheep farmer is the date that rams are introduced to a flock of ewes (ram in date) for breeding.

In step 201 a sequence of events are defined that are related to the key event selected in step 200. The related sequence of events include in their definition the time at which they occur relative to the industry event. In the sheep farm example, lambing may be due to start one hundred and forty seven days after the ram in date and a ram health check may be due to be carried out fourteen days before the ram in date.

In step 202 a check of each event in the event sequence is made to determine if a third-party should be involved with the event. For example, for the event of a ram health check, the services of a vet are required. The ram health check is then tagged to indicate that a third-party (vet services) is required. The sequence is then defined and is stored in the database 4 (step 203).

Steps 200 to 203 may be suitably performed by an industry association, which sets best practice procedures for the industry. By having the event sequences stored in the database 4, updates to the sequences can be readily made and immediately accessed by clients 2. Steps 200 to 203 may also be completed by an individual client 2, with the sequence also being stored in the database 4, optionally only accessible and usable by that individual client 2 and such other clients 2 as are given permission to view or use the sequence of events. Depending on the particular application, some clients may not require permission to view or use the calendars of some or all other clients.

As a further example, an event sequence for a correspondence learning course is described herein. In this application, step 200 involves defining a key event such as the date that a student is due to start a course (course start date).

In step 201, a sequence of events related to the course start date is defined, and the date of each event in the sequence is calculated relative to the course start date. In the
correspondence learning course, one example of such an event may be an assignment (Assignment 1) due for submission 25 days after the course start date. In step 202 a check is made of each event in the event sequence to determine if a third-party calendar should be updated. Using the example of the assignment, the Assignment 1 event would be tagged to state that a third-party (the course tutor) calendar should also be updated with this event. The sequence is then defined and is stored in the database 4 (step 203).

Another example application of the present invention could be in property development. The key event in this example could be defining the date that a building permit was issued (building start date, step 200).

A sequence of events for construction of a building is then generated (step 201) from this key event, from scraping the site through to marketing the property for sale. Each event in the sequence is then checked for third-party involvement (step 202), which might include builders, plumbers, and electricians among others who should be updated. In this example, delays in one event in the sequence may trigger delays in subsequent events. In this circumstance, linked events are "bumped" i.e. correspondingly delayed in accordance with the delayed start to the instigating event. This accommodates the situation arising where a third-party contractor fails to begin on time, causing delays in the start of other contractors work. Finally, the sequence is defined and stored in the database 4 (step 203).

As a final example, a key event for a vineyard operator could be the day that vines begin flowering (flowering date). Due to regional and varietal differences, flowering is due to start on one of a number of days around the date of 1 October each year in the southern hemisphere. Different sequences can be established for different regions, and for different varieties based on established best practice models within the industry. Events within the event sequence are checked to determine if a third party calendar should be updated (step 202), such as a harvesting contractor for the harvesting event, and the sequence is then defined and stored in the database 4 (step 203).

Creating a Client Profile and Sub-profiles

Figure 3 shows a flow chart of the steps involved in creating a client profile, including creating sub-profiles.
At step 300 the process starts by the client 2 accessing the web server 1 using browser software 2a. The client 2 either enters login information if they are already registered (steps 301-303) or enters information in order to create a new profile (steps 304, 305 and 306) and then logs in (step 303). The information to create a new profile may include the industry that the client works in, their contact details including their physical location and an email address and may include an option to select one or more third-parties as preferred service or product providers from a list of such providers that can service the client 2 (for example due to being the same region as the client 2), the details of the providers being stored in the database 4. Other information may be entered into the main profile, dependent on the specific implementation and on the industry of the client. For example, where the scheduling and calendaring system 101 provides e-commerce functionality or interfaces with an e-commerce system, then details relating to charging and payment of funds may be entered into the main profile.

In step 307, the client 2 is asked whether a new sub-profile is to be created. If not, then the client 2 can navigate through the rest of the system, using whatever other information or functionality may be provided by the scheduling and calendaring system 101 (step 308). If the answer is yes, which may for example be indicated by the user selecting an icon on a graphical user interface, then in steps 309 and 310 the user is queried for information that is required to identify an event sequence and the location in time of the event sequence. For most industries, it is expected that the minimum information required will be the identification of an event, usually the key event and when that is to occur.

For the sheep farming example, the farmer enters the ram in date (the key event date). The physical location or region may also be important in selecting third parties and may be important for selecting the appropriate events sequence from the database 4, for example due to climate differences in different regions.

Once an event sequence has been identified it is then used to populate the calendar of the user 2 (step 311). The calendar may be located on the server 3 and accessible by the client 2, or may be stored locally on the client 2 and able to be queried by the server 3 as required, the server 3 optionally maintaining a duplicate copy of the client's calendar, or at least the events in the calendar that have been entered by the scheduling and calendaring system 101.
Using the correspondence learning course as a further example, the student creates a master profile (steps 304 – 306, if required), then creates a sub-profile for a particular learning course (steps 309 and 310). Within the sub profile, the student nominates a course start date, the key event in this example. Once the course start date is entered, the calendar will be populated with an event sequence (step 311). The student can create sub-profiles for different courses, each time specifying the course start date within the sub-profile.

Similarly, in the property development example, the property developer would create a sub-profile for each new building project (steps 304 – 306), and enter the key event of the building start date for each sub-profile. Further information such as the style or size of the building may be required, and the calendar will be updated with an appropriate event sequence for the building that is being planned (steps 309 and 310). The developer can create additional sub-profiles for each new building project, each time specifying the key event date within the sub-profile for the project.

In the vineyard example, the vineyard operator would create a sub-profile for each variety being grown, each having independent key dates (the flowering date). Once the key date for each sub-profile is entered, the calendar will be populated with an event sequence (step 311) specific to the grape variety being grown.

Within this model it is possible for any combination of events sequences to be used in conjunction with each other, by creating separate sub-profiles. It is therefore possible to have a sheep farm event sequence populate the same calendar as a vineyard operator event sequence. The property development module could be added, and the user could also be undertaking learning by correspondence - all through a single sign-on process together with one master calendar system in place.

In step 312 the client 2 may view the profiles of a set of third-parties that may be involved in any one of the events in the selected events sequence. The client 2 can then select one of the third-parties (step 313), who have their own profile in the scheduling and calendaring system 101. The scheduling and calendaring system 101 then generates an event sequence for the third-party (step 314). This event sequence may be a single event, particularly if the third-party does not need to prepare prior to the event or take action after the event, or may be a series of events, the timing of which is calculated relative to the event in the event schedule of the user that triggered the entering of an
event sequence in the third-party's calendar. Optionally, where the user has entered a single preferred third-party for a particular type of event the selection and entry into the third-party calendar may occur automatically. Also, as described later herein, the scheduling and calendaring system 101 may populate the third party's calendar with the generated event sequence. For some events more than one event sequence may be generated for one or more third-parties.

Where the scheduling and calendaring system 101 is populating a third-party's calendar a notification may be sent to that third party. In a preferred embodiment, the notification advises the identity of the owner of the event that has caused the population of their calendar and summarise the events sequence. The third-party may be given the opportunity to accept, decline and/or make variations to the event sequence.

Populating a Calendar

Figure 4 shows a more detailed flow diagram of an example process for creating a sub-profile for a client.

The flow diagram starts at the "Yes" exit option for step 310 shown in Figure 3, indicating that the information required to identify an event sequence and the location in time of the event sequence has been entered. At step 350 the scheduling and calendaring system 101 populates the user's calendar with the selected events sequence. In step 351 the user is asked to check the events sequence and can indicate either that all the dates are wrong, in which case the events sequence is cleared (step 352) and the process returns to step 307 (see Figure 3), that some event dates are wrong, in which case the process proceeds to step 353; or that all the event dates are correct, in which case the process proceeds to step 354.

In step 354 the user alters the dates of events that require correction. Optionally, the selection of an alternative date may be performed automatically and the user may be asked to either confirm that the alternate date is acceptable or enter a further alternative. In step 353 the user has the option of setting whether or not particular events send the user a notification (see step 356).

The scheduling and calendaring system 101 then checks if any events in the newly entered event sequence require notification on that day, which may include notifications of
any events that should have occurred in the past, optionally with an alert (step 355). If there are events to be notified, then this is performed in step 356, for example by a message on-screen, an email or by some other electronic communication. The checking for event notifications should be performed regularly, for example daily, whether or not a new event sequence is entered, as indicated by step 357.

Linking to Third-Party Calendars

Figure 5 shows a flow chart of an example series of steps that the scheduling and calendaring system 101 undertakes to link a user’s calendar with a third party’s calendar. The process starts at step 501 with a check as to whether a client has successfully logged in and then checks if a sub-profile has been created (step 502). In step 503 the user then selects a third-party category for use with the sub-profile, optionally from a predefined list of categories for that sub-profile. The category may be, for example, Vet Services and may be automatically selected by the scheduling and calendaring system for some event sequences. After a check that the category is not empty (step 504), the scheduling and calendaring system 101 then displays any third-parties that are available in the selected category, taking into account any preferences that the user may have entered and optionally the physical location of the client, and the client selects a third-party. In the sheep farming example, the farmer might select the Vet services category (step 503), then the individual Vet for use with the sub-profile.

Once a third-party has been selected, in step 505 their identification is added to the sub-profile and recorded in memory so that linking of calendars and synchronising of events can occur. Step 506 is a check that a successful link has been made and may include a counter so that after a predetermined number of attempts an error message is returned.

In step 507 the third party is notified of the linking and the client’s details are entered in a contact list of the third-party. Also, the third-party’s calendar is populated with the event sequence that was generated in step 314 (see Figure 3). The notification is preferably by electronic messaging, suitably email, although many alternatives exist and each individual may select one or more means of notification.

In some cases the events sequence populated into a user’s calendar or the calendar of a third party may create a conflict of events. The scheduling and calendaring system 101
may automatically resolve this by shifting the location in time of particular events. Each event may have a parameter that indicates the extent to which it can be shifted in time, if at all. A notification may be automatically sent to all affected parties when an event is shifted and some subsequent action may be automatically taken, provided that some protection for avoiding continuous loops is present.

The process exits at step 315, where the client can navigate through the rest of the scheduling and calendaring system 101.

Again using the correspondence learning course as an example, the student would first select a third-party category such as Course Tutors (step 503), and from within the Course Tutors category the user would select an individual Tutor. In this example the process can also force the selection of individual tutors required to be linked as third parties. This would remove the optional nature for a user of selecting a third-party calendar to synchronise with. Further parties calendars also be updated on an optional or non-optional basis. This is used whereby an interested party, such as an employer or another similar interested party, may have their calendar updated with events on an observer-only basis. An example of this is where an employer is paying for the education of staff members and wishes to be kept informed as to the progress of individuals using the system. Once a third-party has been selected, the user confirms that synchronisation will take place. If optional linking does not exist for the user, this step will not be required. If the user at some stage decides they will no longer synchronise with the third-party, the user can simply disconnect the link. Again, if optional linking does not exist for the user, this step will not be required. Once the link to the third-party has been established, any event within an event sequence that requires this third-party to be notified will in turn populate the third parties calendar, and optional notifications will be sent to the third-party informing them of this action.

Using the property developer as a further example, the user with first select a third-party category such as electricians (step 503), and from within this category the user would select an individual electrician to link to the sub-profile. Once a third-party has been selected, the user confirms that synchronisation will take place, and the electrician’s calendar is populated (with notification of the update being sent optionally). Calendars of additional parties such as investors may also be populated by the event, but may not contain as much detail.
Similarly, the vineyard operator may select from a third-party category such as harvesting contractors (step 503) the individual contractor they wish to link to a sub-profile. Once selected, the user confirms that synchronisation will take place, and the contractor's calendar is populated by the event. Additional calendars of parties simultaneously updated in this example could include the winery manager and a specialist consultant to enable coordination with winemaking activities post harvesting. Unique events within the vineyard operator's calendar may also need to be reported to fourth and fifth parties for the purpose of monitoring spray activities and adherence to regulations. Like the other examples, if the user at some stage decides they will no longer synchronise with the third-party, they need only disconnect the link.

Alternative Linking of Events within Calendars

Other than events that are generated within an event sequence, regular calendar events can be linked between the calendars of users and third parties. Additionally these events can be initiated from the third-party calendar and synchronised with the appropriate linked user's calendar. Figure 7 shows a flowchart for alternative linking of events within calendars. In step 702, a user can create a new event in their calendar. When creating the event they have the option of "pushing" the event to the linked user. If they confirm this option, they can choose one or more third-parties to be updated with the event (step 706), and the user's calendar is updated simultaneously with those of the selected third-parties in step 708. In a preferred embodiment, an email is sent to the third-party advising them of the new event posted in their calendars (step 709).

Once again using the sheep farm example, a Vet may create an event in their calendar that entails performing an optional health check on hoggets (step 702). The Vet selects the user who is to be notified (step 706), and the user's calendar is updated with the event (step 708). Once the event is linked, any changes made to the event will update all linked calendars.

In the correspondence learning example, the course tutor may wish to create an event in their calendar that details an additional course requirement for a particular student or group of students, and have it populate the calendar of those students. The tutor creates the event (step 702) and selects the student(s) (step 706), and their calendar is updated accordingly (step 708). Any changes to the event are synchronised between all linked calendars.
Using the property development example, a Valuer, who is a preferred supplier, may initiate an event to come and conduct a valuation of the project for mortgage purposes. The Valuer creates the event (step 702) and "pushes" the event to the project developer's calendar by selecting them (as well as any other third parties) as the third-party in step 706, updating their calendar (step 708) together with those of any additional parties who are acting as observers.

Similarly, the winery manager who is a preferred partner of a vineyard operator may initiate an event to visit the vineyard to determine the condition of grapes prior to harvesting. The winery manager creates the event in step 702 and "pushes" the event to the vineyard operator's calendar together with other interested parties and observers in step 706.

An example of an event which the vineyard operator may create in step 702 is a new event such as spraying of grapes, which has been triggered by an environmental incident e.g. rain. Said event is required to be reported to a fourth party together with details relating to type of spray used and withholding periods, and is done so by simultaneously writing the event to a database which in turn updates the fourth party's calendar with the event (step 708).

Example Software Architecture

Figure 6 shows a more detailed block diagram of some of the components of the web server 1 and server 3 that are used for scheduling and calendaring activities. Components used for other activities, including developer access are not shown. The specific implementation shown in Figure 2 uses Enterprise JavaBeans (EJB) technology and the web server 1 is a Java Specification Request (JSR) 168 compatible portal server system. Those skilled in the relevant arts will appreciate that other server side architectures may be used, although Java has a number of features that make it advantageous for the specific implementation of a scheduling and calendaring system in accordance with the present invention.

Clients 2 access the web server 1 using web browser software 2a located on or accessible from their respective machines. The web server 1 includes a servlet container 10 that forms the web services portal for the web server 1. As the server 1 uses JSR 168,
a number of integration components between the web services portal and the scheduling and calendaring application software are used. A portal collation servlet 11 provides direct access to the portal and provides the interface for web services with the clients 2.

The event population servlet 12 sets the event, which may include the parameters of the industry type and event type. The parameters are passed on to the event population enterprise java beans (EJB) process 13. The event population EJB process 13 contains business logic that controls populating a calendar with an event sequence for each sub profile. The business logic may use a key event as the base date for calculating the dates of each event and may use parameters associated with each event that specify whether the event can be automatically moved in time, whether a prompt should be sent to the user before moving an event and whether a third-party event sequence requires generation. The event population EJB process 13 receives administrative data, for example the industry type, event type and event sequence from the event administration servlet 14.

The calendar servlet 15 contains the calendar information, defining the calendar times, days, weeks, months and years in which events may be located. For industry wide events, a master calendar may be managed by calendar servlet 15 for that industry, which populates events in all clients calendars that have set up a profile indicating that they belong to that industry. Commonly used event sequences may also be maintained by the calendar servlet as part of a sub profile calendar. The calendar EJB process 16 contains the business logic to create new events within a master calendar and/or a sub profile calendar.

The profile servlet 17 enables the creation and maintenance of a master profile for each client and the sub-profiles associated with the master profile. Typically the master profile contains the geographical location of the client, which is used to match with 3rd parties. The business logic used to set up the master and sub profiles is contained in a profile EJB process 18.

An administration servlet 19 acts as a database management server for a database 20. The database 20 stores the data and instructions for the servlet and processes of the scheduling and calendaring system 101. Communication with the database is through a database abstraction layer 21, which may, for example include the Hybernate process provided in Java.
A messaging EJB process 22 manages the sending of notifications to clients who have set up a master profile, as required and as described herein above.

Where in the foregoing description reference has been made to specific components or integers of the invention having known equivalents then such equivalents are herein incorporated as if individually set forth.

Although this invention has been described by way of example and with reference to possible embodiments thereof, it is to be understood that modifications or improvements may be made thereto without departing from the scope of the invention as defined in the appended claims.
CLAIMS

1. A scheduling and calendaring system including a computer processing system including one or more communication means to communicate with one or more second computer processing systems and computer memory, wherein the computer processing system is programmed and/or is operable to:
 - maintain a schedule and/or calendar for a plurality of users;
 - enter a first event schedule for a first user; and
 - determine whether an event in the first event schedule requires a third party and if so populate the schedule and/or calendar of a second user of said plurality of users representing said third party with a second event schedule related to the event schedule.

2. A scheduling and calendaring system as claimed in claim 1, wherein said first event schedule comprises a plurality of events distributed over time with at least one of said events requiring input from of a third party.

3. A scheduling and calendaring system as claimed in claim 1 or claim 2, wherein said second event schedule comprises a plurality of events distributed over time.

4. A scheduling and calendaring system as claimed in any one of claims 1 to 3, wherein the first and/or second event schedules define one or more events that occur prior to or after a main event in said first and/or second event schedule.

5. A scheduling and calendaring system as claimed in any one of claims 1 to 4, wherein the computer processing system includes a server that is able to communicate with the one or more second computer processing systems via a wide area network.

6. A scheduling and calendaring system as claimed in any one of claims 1 to 5, wherein the one or more second computer processing systems each comprise a personal computer.

7. A scheduling and calendaring system as claimed in any one of claims 1 to 6, wherein the computer processing system is programmed and/or is operable to perform the further step of using an electronic communication method to notify the
third party that their schedule and/or calendar is being populated, optionally requesting confirmation from the third party before populating the schedule and/or before finally populating the schedule and/or calendar.

8. A scheduling and calendaring system as claimed in any one of claims 1 to 7, wherein the computer processing system maintains in a computer memory calendars for the users and users can view each others calendar or a portion thereof with or without permission.

9. A computerised method of scheduling and/or calendaring, the method comprising:
 - maintaining a calendar for at least one user and populating the calendar with at least one event sequence comprising at least one event;
 - where one or more of said at least one event requires involvement of a third party, populating the third party's schedule and/or calendar with events that indicate their involvement, optionally seeking confirmation from the third party through electronic means from that their calendar should be populated.

10. Computer software suitable for causing a computer system to operate in accordance with the method of claim 9.

11. A scheduling and calendar system substantially as herein described with reference to the accompanying figures 1 and 6.

12. A computerised method of scheduling and/or calendaring as herein described with reference to the accompanying figures 2 to 5.

13. Computer software substantially as herein described with reference to the accompanying figure 6.
FIGURE 1

Client 2

Client 2

Client 2

Client 2

Web Server 1

Server 3

Database 4

100

A

101
Start

Define a key event 200

Define an event sequence 201

Check each event for 3rd party input 202

Sequence defined 203

FIGURE 2
Start

Populate the user's calendar

Check that the dates are correct

Are the dates correct?

Some events are wrong

User can alter dates per event

User has opportunity to alter events so that they don't inform user.

Notification today?

Send out notifications

Wait until tomorrow

To step 307

All of the dates are wrong

FIGURE 4
Start

Logged in Successfully?

Yes

Created Sub-profile?

No

User can navigate through the rest of the system

Yes

User selects a 3rd party Category

3rd Party Available within category?

No

Yes

Add selected 3rd party to sub-profile for linking and synchronizing of Events.

Linked?

No

Yes

Notify 3rd party. Add Profile details to 3rd party contact list and synchronize events.

FIGURE 5
Log in to System

Create New Event

Event to be pushed to 3rd Party?

NO

Detail Event Information

Post to Users Calendar

User can navigate through rest of system

YES

Select Third Party

Daily Event Information

Simultaneously update Users calendar and selected 3rd party calendars

Generate email to 3rd parties advising new event posted in their calendars

FIGURE 7
INTERNATIONAL SEARCH REPORT

International application No.
PCT/NZ2006/000127

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl.

G06F 15/16 (2006.01) G06Q 10/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

USPTO – schedul+, appoint+, meeting+, update+, event+, calendar+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 960 406 A (RASANSKY et al) 28 September 1999 See whole document</td>
<td>1-13</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 122 672 A2 (PALM INC) 2 February 2001 See whole document</td>
<td>1-13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 September 2006

Date of mailing of the international search report

27 SEP 2006

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au
Facsimile No. (02) 6283 3929

Authorized officer

J.W. THOMSON
Telephone No: (02) 6283 2214

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5960406</td>
<td>EP 1049983 WO 9938079</td>
</tr>
<tr>
<td>US 6064977</td>
<td></td>
</tr>
<tr>
<td>EP 1122672</td>
<td>CA 2333803</td>
</tr>
<tr>
<td>WO 2002097572</td>
<td></td>
</tr>
<tr>
<td>US 6380959</td>
<td>CA 2266635 EP 1008031</td>
</tr>
<tr>
<td>WO 9813753</td>
<td>US 6278456</td>
</tr>
<tr>
<td>US 6658427</td>
<td>US 2002188607</td>
</tr>
<tr>
<td>US 6781920</td>
<td>US 2003103415</td>
</tr>
<tr>
<td>US 6798753</td>
<td></td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.