
(57)【特許請求の範囲】
【請求項１】

【請求項２】

10

20

JP 3939336 B2 2007.7.4

　テスト対象装置（ＤＵＴ）をテストする半導体テストシステムであって、
　前記半導体テストシステムを管理するシステムコントローラと、
　それぞれが前記システムコントローラに連結され、それぞれのサイトコントローラを含
むテストサイトに関連付けられた少なくとも１つの前記ＤＵＴのテストをそれぞれ制御す
る複数のサイトコントローラと、
　それぞれが前記ＤＵＴに対して信号を与え、前記ＤＵＴが出力する信号を受け取って前
記ＤＵＴをテストする複数のハードウェアモジュールと
　を備え、
　前記システムコントローラとして機能するコンピュータは、
　前記複数のハードウェアモジュールのそれぞれに特有のパターンコンパイラを実行する
ことにより、前記複数のハードウェアモジュールのそれぞれに関連するパターンソースフ
ァイルをコンパイルして、当該ハードウェアモジュールに特有のフォーマットを有するパ
ターンデータを生成する
　半導体テストシステム。

　前記コンピュータは、前記複数のハードウェアモジュールのそれぞれに特有のパターン
コンパイラを実行することにより、前記複数のハードウェアモジュールについて生成した
複数の前記パターンデータを、オブジェクトメタファイルに格納する請求項１に記載の半

【請求項３】

【請求項４】

【請求項５】

【請求項６】

【請求項７】

【請求項８】

【請求項９】

【請求項１０】

10

20

30

40

50

(2) JP 3939336 B2 2007.7.4

導体テストシステム。

　前記コンピュータは、前記複数のハードウェアモジュールのそれぞれに特有のパターン
コンパイラを実行することにより、前記複数のパターンデータのそれぞれに対応付けて、
当該パターンデータが対応する前記ハードウェアモジュールを特定するヘッダ情報を更に
前記オブジェクトメタファイルに格納する請求項２に記載の半導体テストシステム。

　前記サイトコントローラは、前記ＤＵＴのテストに先立って、前記オブジェクトメタフ
ァイルから前記複数のハードウェアモジュールのそれぞれに特有の前記パターンデータを
読み出して、対応する前記ハードウェアモジュールにロードする請求項３に記載の半導体
テストシステム。

　前記サイトコントローラは、複数の前記パターンデータの順序をツリー構造により定義
したパターンリストファイルに基づいて、前記複数のパターンデータの実行シーケンスを
生成し、
　前記複数のハードウェアモジュールは、前記実行シーケンスに応じた順序で前記複数の
パターンデータによるテストを実行する請求項４に記載の半導体テストシステム。

　前記複数のサイトコントローラおよび前記複数のハードウェアモジュールを接続するモ
ジュール接続イネーブラを更に備え、
　前記コンピュータは、前記複数のサイトコントローラのそれぞれが接続された前記モジ
ュール接続イネーブラの入力ポートを記述したテストシステムコンフィギュレーションフ
ァイルと、前記複数のハードウェアモジュールのそれぞれが接続された前記モジュール接
続イネーブラの出力ポートを指定するスロット識別子を記述したモジュールコンフィギュ
レーションファイルとに基づいて、前記サイトコントローラを、当該サイトコントローラ
に対応するテストサイトに関連付けられた少なくとも１つの前記ハードウェアモジュール
に接続させるべく前記モジュール接続イネーブラの接続を構成する
　請求項３に記載の半導体テストシステム。

　前記コンピュータは、それぞれのテストサイトに対応する、複数の前記ＤＵＴのそれぞ
れと、当該ＤＵＴをテストする前記ハードウェアモジュールが接続された前記モジュール
接続イネーブラの出力ポートを指定するスロット識別子を記述したソケットファイルに基
づいて、それぞれのテストサイトに含まれる前記ハードウェアモジュールを判断する請求
項６に記載の半導体テストシステム。

　前記コンピュータは、前記モジュール接続イネーブラの構成を制御する一の前記サイト
コントローラに対して前記モジュール接続イネーブラの接続の構成を要求することにより
、当該一のサイトコントローラを介して前記モジュール接続イネーブラの接続を構成する
請求項６に記載の半導体テストシステム。

　前記モジュール接続イネーブラはスイッチマトリクスである請求項６に記載の半導体テ
ストシステム。

　テスト対象装置（ＤＵＴ）をテストする半導体テストシステム用のプログラムであって
、
　当該プログラムは、前記半導体テストシステムを、
　前記半導体テストシステムを管理するシステムコントローラと、
　それぞれが前記システムコントローラに連結され、それぞれのサイトコントローラを含
むテストサイトに関連付けられた少なくとも１つの前記ＤＵＴのテストをそれぞれ制御す
る複数のサイトコントローラと、

【請求項１１】

【請求項１２】

【発明の詳細な説明】
【技術分野】
【０００１】
　本出願は ,2003年 2月 14日に出願された出願第 60/447,839号「半導体集積回路用のテスト
プログラムを開発する方法および構造」、 2003年 2月 24日に出願された出願第 60/449,622
号「集積回路をテストする方法および装置」、 2003年 3月 31日に出願された米国出願第 10/
404,002号「テストエミュレータ、テストモジュールエミュレータおよびプログラムを記
憶している記録媒体」、 2003年 3月 31日に出願された米国出願第 10/403,817号「テスト装
置およびテスト方法」の恩恵を受けることを主張する。
【０００２】
　本発明は、集積回路（ IC）をテストすることに関し、特に、自動半導体テスト機器（ AT
E）用のテストプログラムを開発することに関する。
【背景技術】
【０００３】
　今日、テスタの製造者は、半導体テストシステム（テスタ）用のテストプログラムを開
発するのに、彼らの独自仕様の言語を用いている。例えば、アドバンテストコーポレーシ
ョンによって製造されたマシンは、テスト記述言語（ TDL）を使用しており、クレデンス
システムは、自身の波形生成言語（ WGL）を提供している。この専門化の度合いを克服す
るために、 ICおよびテスタ製造者は、 IEEE標準規格 1450、標準テストインタフェース言語
（ STIL）を開発することによって共通の領域を見つけ出そうとしている。しかしながら、
STILは、ピン、テストコマンド、タイミング等を定義するのに高度に特化した言語である
。また、それにもかかわらず STILを作動させるテストエンジニアは、いまだに、 STILを、
テスタが必要とする独自仕様の製造者特有の言語に変換する必要がある。したがって、 ST
ILは、それにもかわらず高度に専門化され、プログラマに一般的に知られていない中間言
語としてしか機能していない。
【０００４】
　したがって、テストプログラムを汎用的な言語で書くことができる方法を開発すること
が望まれている。また、この方法は、オープンアーキテクチャテストシステム用のテスト
プログラムを簡単に開発することができるようにしなければならない。
【発明の開示】
【発明が解決しようとする課題】

10

20

30

40

50

(3) JP 3939336 B2 2007.7.4

　それぞれが前記ＤＵＴに対して信号を与え、前記ＤＵＴが出力する信号を受け取って前
記ＤＵＴをテストする複数のハードウェアモジュールと
　して機能させ、
　前記システムコントローラとして機能するコンピュータにより、前記複数のハードウェ
アモジュールのそれぞれに特有のパターンコンパイラを実行させることにより、前記複数
のハードウェアモジュールのそれぞれに関連するパターンソースファイルをコンパイルさ
せて、当該ハードウェアモジュールに特有のフォーマットを有するパターンデータを生成
させる
　プログラム。

　前記コンピュータにより、前記複数のハードウェアモジュールのそれぞれに特有のパタ
ーンコンパイラを実行させることにより、前記複数のハードウェアモジュールについて生
成した複数の前記パターンデータを、オブジェクトメタファイルに格納させる請求項１０
に記載のプログラム。

　前記コンピュータにより、前記複数のハードウェアモジュールのそれぞれに特有のパタ
ーンコンパイラを実行させることにより、前記複数のパターンデータのそれぞれに対応付
けて、当該パターンデータが対応する前記ハードウェアモジュールを特定するヘッダ情報
を更に前記オブジェクトメタファイルに格納させる請求項１１に記載のプログラム。

【０００５】
　本発明の目的は、テストプログラムを汎用的な言語で書くことができる方法を提供する
ことである。本発明の他の目的は、上記方法で、オープンアーキテクチャテストシステム
用のテストプログラムを簡単に開発することができるようにすることである。
【課題を解決するための手段】
【０００６】
　本出願は、オブジェクト指向コンストラクト、例えば C++オブジェクトおよびクラスを
用いたテストプログラム開発を記載している。特に、この方法は、本発明の譲受人に譲受
された米国出願第 60/449,622号、 10/404,002号および 10/403,817号に記載されているテス
タのようなオープンアーキテクチャテスタ用のテストプログラムを開発するのに適してい
る。
【０００７】
　本発明の一実施形態は、自動テスト機器（ ATE）のような半導体テストシステム上でテ
スト対象装置、例えば ICをテストするために、テストシステムリソース、テストシステム
コンフィギュレーション、モジュールコンフィギュレーション、テストシーケンス、テス
トプラン、テスト条件、テストパターンおよびタイミング情報を汎用のオブジェクト指向
の、例えば C/C++のコンストラクトで記載することによってテストプログラムを開発する
方法を提供する。これらの記述を含むファイルは、そのファイルを用いるテストシステム
または関連する機器がアクセス可能であるメモリ、すなわちコンピュータで読み取り可能
である媒体に記憶されている。
【０００８】
　テストリソースを記述することは、 ICにテストを提供する少なくとも一つのテストモジ
ュールに関連しているリソースタイプを指定すること、リソースタイプに関連したパラメ
ータタイプを指定すること、ならびにそのパラメータタイプのパラメータを指定すること
を包含していてもよい。
【０００９】
　テストシステムコンフィギュレーションを記述することは、少なくとも一つのテストモ
ジュールであってそれぞれが ICに対してテストを適用するようなテストモジュールを制御
するサイトコントローラを指定することと、モジュール接続イネーブラの入力ポートを指
定することとを包含している。テストシステムは、その特定された入力ポートでサイトコ
ントローラをモジュール接続イネーブラにつないで、モジュール接続イネーブラはサイト
コントローラをテストモジュールにつなぐ。モジュール接続イネーブラは、スイッチマト
リクスとしてインプリメントされてもよい。
【００１０】
　モジュールコンフィギュレーションを記述することは、モジュールタイプを指定するモ
ジュール識別子を指定することと、そのモジュール識別子によって指定されたモジュール
タイプのテストモジュールを制御する実行可能なコードを指定することと、そのテストモ
ジュールに関連したリソースタイプを指定することとを包含している。実行可能なコード
は、ダイナミックリンクライブラリの形をとってもよい。
【００１１】
　モジュールコンフィギュレーションを記述することはさらに、モジュール接続イネーブ
ラの出力ポートを指定するスロット識別子をユーザが指定することを含んでいてもよく、
テストシステムは、その出力ポートでモジュール接続イネーブラにテストモジュールを繋
ぎ、モジュール接続イネーブラはテストモジュールを対応するサイトコントローラにつな
ぐ。またユーザは、テストモジュールの提供者を識別するためのベンダ識別子と、リソー
スタイプとともに使用可能である最大数のリソースユニットの識別子とを指定してもよい
。例えば、リソースタイプは、デジタルテスタピンおよびリソースユニットテスタチャネ
ルであってもよい。あるいは、テスタチャネルリソースユニットは、例えばアナログテス
タピン、 RFテスタピン、電源ピン、デジタイザピン、および任意波形発生ピンのようなリ
ソースタイプに対応してもよい。どのリソースユニットが無効であるに関連するインジケ

10

20

30

40

50

(4) JP 3939336 B2 2007.7.4

ータも提供されてもよい。無効であると示されたリソースユニットは、テストモジュール
の不良リソースユニットを表してもよい。
【００１２】
　テスト条件を記述することは、少なくとも一つのテスト条件グループを指定することと
、少なくとも一つの変数を含む仕様セットを指定することと、変数に結びつけられている
式を選択するセレクタを指定することとを包含していてもよい。テスト条件グループと仕
様セットのセレクタとの関連付けがテスト条件を定義する。
【００１３】
　テストシーケンスを記述することは、さまざまなテストが適用され得る順序（あるいは
フロー）を指定することを包含していてもよい。
【００１４】
　テストパターンを記述することは、電圧レベルおよび電流レベル、信号値変化、ならび
に対応する立ち上がり・立下り時間および関連するタイミングに関連して、テストパター
ンを指定することを包含していてもよい。
【００１５】
　また、本発明の一実施形態は、プリヘッダファイルの使用を含んでいてもよい。プリヘ
ッダファイルは、テスト対象（ entiry）に関連したクラスのためのヘッダファイルを生成
するようにコンパイルされる。プリヘッダは、テスト対象の少なくとも一つの属性を設定
するためのパラメータを指定するパラメータブロックと、コンパイラによってテスト対象
クラスのヘッダファイルに挿入されるソースコードを指定するテンプレートブロックとを
含んでいる。ヘッダファイルは、 C++ヘッダファイルであってもよい。例えば、テスト対
象はテストであってもよく、テスト対象クラスはテストクラスであってもよい。パラメー
タは、例えばパターンリストおよびテスト条件に関連してもよい。
【００１６】
　発明の一実施形態のパターンコンパイラは、少なくとも一つのモジュール特有パターン
コンパイラと、各モジュール特有コンパイラにパターンソースファイルの対応するモジュ
ール特有セクションとパターンソースファイルの共通セクションとの両方をコンパイルさ
せるオブジェクトファイルマネージャとを含んでいる。共通セクションは、モジュール特
有コンパイラの全てがアクセス可能である情報を含んでいる。コンパイラの出力は、少な
くとも一つのモジュール特有パターンデータセクションを含んでいる。モジュール特有パ
ターンローダは、実行のために、対応するテストモジュールに、対応するモジュール特有
パターンデータセクションからモジュール特有パターンデータをロードする。
【００１７】
　なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これ
らの特徴群のサブコンビネーションもまた、発明となりうる。
【発明を実施するための最良の形態】
【００１８】
　本発明は、同一の譲受人による米国出願第 60/449,622号、 10/404,002号および 10/403,8
17号に開示されたオープンアーキテクチャテストシステムについて概略を説明される。し
かしながら当業者は、本発明のテストプログラム開発システムおよび方法の実施形態は、
オープンアーキテクチャにだけではなく、同様に固定されたテスタアーキテクチャにも適
用可能であることを理解されたい。
【００１９】
オープンアーキテクチャのテストシステムの説明は、同一の譲受人による米国出願第 60/4
49,622号の恩恵を受けることを主張する、同時に出願された米国出願第 10/772,327号「集
積回路をテストするための方法および装置」において見られる。
【００２０】
　図１は、従来のテスタの一般化されたアーキテクチャを示しており、どのように信号が
生み出されてテスト対象装置（ DUT）に与えられるかを図示している。それぞれの DUT入力
ピンは、テストデータを与えるドライバ２に接続されており、各 DUT出力ピンはコンパレ

10

20

30

40

50

(5) JP 3939336 B2 2007.7.4

ータ 4に接続されている。多くの場合、各テスタピン（チャネル）が入力ピンまたは出力
ピンのどちらかとして動作することができるように、３つの状態を有するドライバ－コン
パレータを用いる。単一の DUT専用のテスタピンは、関連するタイミング生成器６、波長
生成器８、パターンメモリ１０、タイミングデータメモリ１２、波長メモリデータ１４、
およびデータレートを規定するブロック１６とともに動作するテストサイトを共同で構成
する。
【００２１】
　図２は、本発明の一実施形態によるシステムアーキテクチャ１００を示している。シス
テムコントローラ（ SysC）１０２は複数のサイトコントローラ（ SiteC）１０４に連結さ
れている。またシステムコントローラは、関連するファイルにアクセスするようにネット
ワークにもつながれている。モジュール接続イネーブラ１０６を通じて、各サイトコント
ローラは、テストサイト１１０にある一つ以上のモジュール１０８を制御するように連結
されている。モジュール接続イネーブラ１０６は、接続されたハードウェアモジュール１
０８の再構成を可能にし、また（パターンデータをロードする、応答データを集める、制
御を提供する等のための）データ転送用のバスとしても機能する。考えられるハードウェ
アのインプリメンテーションには、専用の接続、スイッチ接続、バス接続、リング接続、
およびスター接続が含まれる。モジュール接続イネーブラ１０６は、例えばスイッチマト
リクスによってインプリメントされてもよい。各テストサイト１１０は、 DUT１１２と関
連づけられており、これはロードボード１１４を通じて対応するサイトのモジュールに接
続されている。ある実施形態においては、単一のコントローラを複数の DUTサイトに接続
してもよい。
【００２２】
　システムコントローラ１０２は、総合的なシステムマネージャとして機能する。これは
、サイトコントローラの活動を統合し、システムレベルでの並列試験の計画を管理し、さ
らにハンドラ／プローブ制御を提供するとともにシステムレベルでのデータロギングおよ
びエラー処理サポートを提供する。動作設定に応じて、システムコントローラ１０２は、
サイトコントローラ１０４の動作とは別の CPU上に配置されてもよい。あるいは、システ
ムコントローラ１０２とサイトコントローラ１０４とで共通の CPUを共有してもよい。同
様に、各サイトコントローラ１０４を、自身の専用 CPU（中央演算処理装置）上に、ある
いは同じ CPU内の異なるプロセスまたはスレッドとして展開することもできる。
【００２３】
　個々のシステムのコンポーネントを集積されたモノリシックなシステムの論理コンポー
ネントとして見なすことができ、必ずしも分散システムの物理的な構成要素として見なさ
れなくてもよいという理解のもとに、システムアーキテクチャを、図２に示す分散システ
ムとして概念的に描くことができる。
【００２４】
　図３は、本発明の一実施形態によるソフトウェアアーキテクチャ２００を示している。
ソフトウェアアーキテクチャ２００は、関連するハードウェアシステムの要素１０２、１
０４、１０８と対応して、システムコントローラ２２０、少なくとも一つのサイトコント
ローラ２４０、および少なくとも一つのモジュール２６０のための要素を有している分散
オペレーティングシステムを表している。モジュール２６０に加えて、アーキテクチャ２
００は、ソフトウェアでのモジュールエミュレーションのための対応する要素２８０を含
んでいる。
【００２５】
　例示的な選択として、このプラットフォームの用の開発環境はマイクロソフトのウィン
ドウズに基づいていてもよい。このアーキテクチャの使用は、プログラムおよびサポート
の携帯性において副次的な利点（例えばフィールドサービスエンジニアは高度な診断を行
うためのテスタオペレーティングシステムを動作させるラップトップコンピュータを接続
することができるであろう）を有している。しかし、大規模なコンピュータ集約型の動作
（テストパターンのコンパイル等）については、関連するソフトウェアは、独立して動作

10

20

30

40

50

(6) JP 3939336 B2 2007.7.4

して分散されたプラットフォームを横断してのジョブスケジューリングを可能にすること
ができる独立した構成要素とされ得る。したがって、バッチジョブに関連するソフトウェ
アツールは、複数のプラットフォームタイプ上で動作することができる。
【００２６】
　例示的な選択として、 ANSI/ISO標準の C++をソフトウェア用のネイティブ言語とするこ
とができる。当然のことながら、サードパーティが自身の選択した代わりの言語をシステ
ムにまとめることを可能にする、（名目上の C++インタフェース上のレイヤを提供するた
めの）使用可能な複数の選択肢がある。
【００２７】
　図３は、名目上のソースによる組織化（あるいはサブシステムとしての集合的な展開）
にしたがって、テスタオペレーティングシステムインタフェース、ユーザコンポーネント
２９２（例えば、テスト目的のためにユーザによって供給される）、システムコンポーネ
ント２９４（例えば、基本的な接続性および通信のためのソフトウェアインフラとして提
供される）、モジュール開発コンポーネント２９６（例えば、モジュールディベロッパに
よって提供される）、および外部コンポーネント２９８（例えばモジュールディベロッパ
以外の外部ソースによって提供される）を含む要素を陰付きで示している。
【００２８】
　ソースベースの組織化の観点から、テスタオペレーティングシステム（ TOS）インタフ
ェース２９０は、システムコントローラ－サイトコントローラインタフェース２２２、フ
レームワーククラス２２４、サイトコントローラ－モジュールインタフェース２４５、フ
レームワーククラス２４６、所定のモジュールレベルインタフェース２４７、バックプレ
ーン通信ライブラリ２４９、シャーシスロット IF（インタフェース）２６２、ロードボー
ドハードウェア IF２６４、バックプレーンシミュレ－ション IF２８３、ロードボードシミ
ュレーション IF２８５、 DUTシミュレーション IF２８７、 DUTの Verilogモデル用の Verilog
 PLI（プログラミング言語インタフェース）２８８、および DUTの C/C++モデル用の C/C++
言語サポート２８９を含んでいる。
【００２９】
　ユーザコンポーネント２９２は、ユーザテストプラン２４２、ユーザテストクラス２４
３、ハードウェアロードボード２６５、 DUT２６６、 DUT Verilogモデル２９３および DUT
C/C++モデル２９１を含んでいる。
【００３０】
　システムコンポーネント２９４は、システムツール２２６、通信ライブラリ２３０、テ
ストクラス２４４、バックプレーンドライバ２５０、 HWバックプレーン２６１、シミュレ
ーションフレームワーク２８１、バックプレーンエミュレーション２８２およびロードボ
ードシミュレーション２８６を含んでいる。
【００３１】
　モデル開発コンポーネント２９６は、モジュールコマンドインプリメンテーション２４
８、モジュールハードウェア２６３およびモジュールエミュレーション２８４を含んでい
る。
【００３２】
　外部コンポーネント２９８は外部ツール２２５を含んでいる。
【００３３】
　システムコントローラ２２０は、サイトコントローラに対するインタフェース２２２、
フレームワーククラス２２４、システムツール２２６、外部ツール２２５および通信ライ
ブラリ２３０を含んでいる。システムコントローラソフトウェアは、ユーザに対する相互
作用の主要な点である。これは、発明のサイトコントローラへのゲートウェイと、同一譲
受人による米国出願第 60/449,622号に述べられているマルチサイト／ DUT環境におけるサ
イトコントローラの同期化とを提供する。ユーザアプリケーションおよびツールは、グラ
フィカルユーザインタフェース（ GUI）ベースかそれ以外のものであり、システムコント
ローラ上で動作する。また、システムコントローラは、テストプラン、テストパターンお

10

20

30

40

50

(7) JP 3939336 B2 2007.7.4

よびテストパラメータファイルを含むすべてのテストプラン関連の情報の収納庫としても
機能する。これらのファイルを記憶するメモリは、システムコントローラにローカルであ
ってもよく、あるいはオフライン、ネットワークを通じてシステムコントローラに接続さ
れていてもよい。テストパラメータファイルは、発明の一実施形態のオブジェクト指向環
境におけるテストクラス用のパラメータ化されたデータを含んでいる。
【００３４】
　サードパーティディベロッパは、標準的なシステムツール２２６に加えて（あるいはそ
の代わりとして）ツールを提供することができる。システムコントローラ２２０上の標準
インタフェース２２２は、ツールがテスタおよびテストオブジェクトにアクセスするため
に用いるインタフェースを有している。ツール（アプリケーション）２２５、２２６は、
テストおよびテスタオブジェクトの相互的なバッチ制御を可能にする。このツールは、（
例えば SECS/TSEM等の使用を通じて）自動化能力を提供するためのアプリケーションを含
んでいる。
【００３５】
　システムコントローラ２２０上にある通信ライブラリ２３０は、ユーザアプリケーショ
ンおよびテストプログラムに見えないような形でサイトコントローラ２４０と通信するメ
カニズムを提供する。
【００３６】
　インタフェース２２２は、システムコントローラ２２０と関連したメモリに常駐してお
り、システムコントローラ上で実行するフレームワークオブジェクトに対するオープンイ
ンタフェースを提供する。サイトコントローラベースのモジュールソフトウェアがパター
ンデータにアクセス、取得することを可能にするインタフェースが含まれる。また、アプ
リケーションおよびツールがテスタおよびテストオブジェクトにアクセスするために用い
るインタフェース、ならびに、スクリプトエンジンを通じてテスタおよびテストコンポー
ネントにアクセスして操作することができる能力を提供するスクリプトインタフェースも
含まれる。これにより、インタラクティブな、バッチおよびリモートアプリケーションの
ための共通のメカニズムがそれらの機能を行うことが可能となる。
【００３７】
　システムコントローラ２２０に関連しているフレームワーククラス２２４は、これらの
上述したオブジェクトと相互に作用するメカニズムを提供し、これは標準インタフェース
のリファレンスインプリメンテーションを提供する。例えば、発明のサイトコントローラ
２４０は機能テストオブジェクトを提供する。システムコントローラフレームワーククラ
スは、この機能テストオブジェクトのリモートシステムコントローラベースの代理として
、対応する機能テストプロキシを提供してもよい。したがって、標準的な機能テストイン
タフェースは、システムコントローラ２２０上のツールに役立てられる。フレームワーク
クラスは、ホストシステムコントローラに関連するオペレーティングシステムインタフェ
ースを実質的に提供する。これらはまた、サイトコントローラに対するゲートウェイを提
供するソフトウェア要素も構成し、マルチサイト／ DUT環境におけるサイトコントローラ
の同期を提供する。したがってこのレイヤは、コミュニケーションレイヤを直接扱う必要
なくサイトコントローラを操作し、それにアクセスするのに適している、発明の一実施形
態におけるオブジェクトモデルを提供する。
【００３８】
　サイトコントローラ２４０は、ユーザテストプラン２４２、ユーザテストクラス２４３
、標準テストクラス２４４、標準インタフェース２４５、サイトコントローラフレームワ
ーククラス２４６、モジュールハイレベルコマンドインタフェース（例えば所定のモジュ
ールレベルのインタフェース）２４７、モジュールコマンドインプリメンテーション２４
８、バックプレーン通信ライブラリ２４９、およびバックプレーンドライバ２５０のホス
トとなる。好ましくは、テストの機能の大半をサイトコントローラ１０４／２４０が扱い
、それによってテストサイト１１０の独立した動作が可能である。
【００３９】

10

20

30

40

50

(8) JP 3939336 B2 2007.7.4

　テストプラン２４２はユーザによって書かれる。このプランは、 C++のような標準的な
コンピュータ言語で直接記述されてもよいし、実行可能なテストプログラムへとコンパイ
ル可能である C++コードを生成するような、より高レベルのテストプログラミング言語で
記述されてもよい。図４を参照すると、テストプログラム４００は、テストおよび関連す
るパラメータを記述するテストプログラム開発者ソースファイル４０４を、 C++コードの
ようなオブジェクト指向コンストラクトに変換するためのトランスレータセクション４０
２を含むコードジェネレータとして部分的に機能する。コンパイラセクション４０６は、
コードを実行可能なもの、例えば DLLにコンパイル、リンクして、テスタシステムによっ
て実行され得るテストプログラムを生成する。テストシステムに対する TPLコードジェネ
レータ／トランスレータを適用することは新規ではあるが、コードジェネレータは当分野
で知られていることに留意されたい。また、コンパイラセクションも、標準的な C++コン
パイラとして当分野で知られているかもしれない。
【００４０】
　このテストプランは、フレームワーククラス２４６および／または、サイトコントロー
ラに関連する標準あるいはユーザによって供給されるテストクラス２４４を用いて、テス
トオブジェクトを作り出し、標準インタフェース２４５を用いてハードウェアを構成し、
テストプランのフローを定義する。また、テストプランの実行中に必要とされる追加的な
ロジックも提供する。テストプランは、いくつかの基本的なサービスをサポートし、デバ
ッグサービス（例えばブレークポイント）等のその下にあるオブジェクトのサービスに対
するインタフェースと、その下にあるフレームワークおよび標準クラスへのアクセスとを
提供する。
【００４１】
　テストプログラム４００へ入力されるソースコードは、テストプランにおいて用いられ
るオブジェクトを指定し、これらの間の関係を指定するテストプラン記述ファイルを含ん
でいる。このファイルは、 ITestPlanとして表される標準インタフェースのインプリメン
テーションの形でサイトコントローラ上で実行される C++コードに変換される。このコー
ドは、ウィンドウズダイナミックリンクライブラリ（ DLL）にパッケージ化されて、サイ
トコントローラ上にロードされ得る。テストプログラム DLLは、サイトコントローラソフ
トウェアが、それが含む TestPlanオブジェクトを生成して戻すために用いることができる
標準的な公知のエントリポイントを有するように生成される。サイトコントローラソフト
ウェアは、テストプログラム DLLをその処理空間にロードし、テストプランオブジェクト
のインスタンスを生成するためにエントリポイントの一つを用いる。一旦テストプランオ
ブジェクトが生成されたら、サイトコントローラソフトウェアはそのテストプランを実行
することができる。
【００４２】
　サイトコントローラに関連するフレームワーククラス２４６は、共通のテスト関連動作
をインプリメントするクラスおよび方法のセットである。サイトコントローラレベルフレ
ームワークは、例えば、電力供給およびピンエレクトロニクスの順番付け、レベルおよび
タイミング条件の設定、測定値取得、テストフロー制御のためのクラスを含んでいる。ま
たフレームワークは、ランタイムサービスおよびデバッギングの方法を提供してもよい。
フレームワークオブジェクトは、標準インタフェースをインプリメントすることを通じて
動作してもよい。例えば、テスタピンフレームワーククラスのインプリメンテーションは
、テストクラスがハードウェアモジュールピンと相互に作用するために用いるであろう汎
用のテスタピンインタフェースをインプリメントするように統一される。
【００４３】
　あるフレームワークオブジェクトは、モジュールと通信するためにモジュールレベルイ
ンタフェース２４７の助けを借りて動作するようにインプリメントされてもよい。サイト
コントローラフレームワーククラスは、実質的に、各サイトコントローラをサポートする
ローカルオペレーティングシステムとして機能する。
【００４４】

10

20

30

40

50

(9) JP 3939336 B2 2007.7.4

　一般的に、プログラムコードの９０％以上は装置テスト用のデータであり、残りの１０
％のコードがテスト方法を実現する。装置テストデータは DUT依存のデータ（例えば電力
供給条件、信号電圧条件、タイミング条件等）である。テストコードは、指定された装置
条件を ATEハードウェア上にロードする方法からなり、またユーザが指定した目的（デー
タロギング等）を実現するのに必要である方法からも構成される。発明の一実施形態のフ
レームワークは、ハードウェア依存性のテストと、ユーザが DUTテストプログラミングの
タスクを行うことを可能にするテスタオブジェクトモデルとを提供する。
【００４５】
　テストコードの再利用性を高めるために、このようなコードは、装置特有のデータ（例
えばピンの名前、刺激データ等）、あるいは装置テストに特有のデータ（例えば DCユニッ
トの条件、測定ピン、ターゲットピンの数、パターンファイルの名前、パターンプログラ
ムのアドレス）のいずれに対しても独立とされてもよい。もしテスト用のコードをこれら
のタイプのデータとともにコンパイルすれば、テストコードの再利用性は低下する。した
がって、発明の一実施形態によれば、いかなる装置特有のデータあるいは装置テストに特
有のデータも、コード実行期間中の入力として、外部からテストコードに役立てられても
よい。
【００４６】
　発明の一実施形態においては、標準テストインタフェースのインプリメンテーションで
あるテストクラスは、ここでた ITestと記載するが、特定のタイプのテストに関してテス
トデータとコードとの分離（したがってコードの再利用性）を実現する。このようなテス
トクラスは、装置特有および／あるいは装置テスト特有のデータにおいてのみ異なるよう
な別々のテストクラスの「テンプレート」とみなしてもよい。テストクラスはテストプラ
ンファイルにおいて指定される。各テストクラスは、典型的には、具体的なタイプの装置
テストあるいは装置テスト用のセットアップをインプリメントする。例えば、発明の一実
施形態は、 DUTに関するすべての機能テストの基本となるクラスとして、 ITestインタフェ
ースの具体的なインプリメンテーション、例えば FunctionalTestを提供する。それは、テ
スト条件の設定、パターンの実行および、失敗したストローブの存在に基づくテスト状況
の判定という基本的な機能を提供する。他のタイプのインプリメンテーションは、ここで
は ACParametricTestおよび DCParametricTestとして表記される ACおよび DCテストクラスを
含んでいてもよい。
【００４７】
　全てのテストタイプは、いくつかの仮想的な方法のデフォルトのインプリメンテーショ
ン（例えば、 init()、 preExec()および postExec()）を提供してもよい。これらの方法
は、デフォルトの動作を乗り越えてテスト特有のパラメータを設定するためのテストエン
ジニアのエントリポイントとなる。しかしながら、カスタムテストクラスもテストプラン
において用いることができる。
【００４８】
　テストクラスは、そのテストの特定の場合に関するオプションを指定するために用いら
れるパラメータを提供することによって、ユーザがクラスの動作を構成することを可能に
する。例えば、機能テストは、実行すべきパターンリストとテスト用のレベルおよびタイ
ミング条件とを指定するために、パラメータ PListおよび TestConditionと採用してもよい
。（テストプラン記述ファイルにおける異なる「テスト」ブロックの使用を通して）これ
らのパラメータについて異なる値を指定することにより、ユーザは機能テストの異なるイ
ンスタンスを作り出すことが可能である。図５は、どのようにして単一のテストクラスか
ら異なるテストインスタンスが導き出されるかを示している。これらのテストは、 C++コ
ードのようなオブジェクト指向コンストラクトで直接プログラムされてもよいし、テスト
プログラムコンパイラがテストプランファイルからのテストおよびパラメータの記述をと
りあげて、対応する C++コードを生成することを可能にするように設計されてもよい。生
成された C++コードはテストプログラムを生成すべくコンパイル、リンクされ得る。テン
プレートライブラリは、一般的なアルゴリズムおよびデータ構造の汎用ライブラリとして

10

20

30

40

50

(10) JP 3939336 B2 2007.7.4

採用されてもよい。このライブラリはテスタのユーザに見えてもよく、ユーザは、例えば
、ユーザ定義のテストクラスを作り出すようにテストクラスのインプリメンテーションを
変更してもよい。
【００４９】
　ユーザによって展開されるテストクラスに関して、システムの一実施形態は、このよう
なテストクラスを、全てのテストクラスが単一のテストインタフェース、例えば ITestか
ら得られるようなフレームワークに統合することをサポートし、その結果、そのフレーム
ワークはシステムテストクラスの標準的なセットと同じようなやり方でそれらを処理する
ことができる。ユーザは、追加のファシリティを生かすためには自分達のテストプログラ
ムにおいてカスタムコードを用いなければならないという理解のもとで、自分達のテスト
クラスに追加の機能を自由に追加することができる。
【００５０】
　各テストサイト１１０は、一つ以上の DUT１０６のテスト専用のものであり、テストモ
ジュール１１２の構成可能な集合体を通じて機能する。各テストモジュール１１２は特定
のテストタスクを行う対象物である。例えば、テストモジュール１１２は、 DUTの電源、
ピンカード、アナログカード等であり得る。モジュールによるこのアプローチは、高いフ
レキシビリティと構成可能性を提供する。
【００５１】
　モジュールコマンドインプリメンテーションクラス２４８は、モジュールハードウェア
ベンダによって提供されてもよく、ベンダによって選択されるコマンド実行方法に応じて
、ハードウェアモジュールに対するモジュールレベルインタフェースをインプリメントす
るか、あるいは標準インタフェースのモジュール特有のインプリメンテーションを提供す
る。これらのクラスの外部インタフェースは、所定のモジュールレベルインタフェース要
件およびバックプレーン通信ライブラリ要件によって規定される。またこのレイヤは、標
準的なセットのテストコマンドの拡張も提供し、それにより方法（機能）およびデータ要
素の追加が可能となる。
【００５２】
　バックプレーン通信ライブラリ２４９は、バックブレーンをまたいでの標準的な通信の
ためのインタフェースを提供し、それによってテストサイトに接続されたモジュールとの
通信に必要な機能を提供する。これにより、ベンダに特有のモジュールソフトウェアが対
応するハードウェアモジュールとの通信にバックプレーンドライバ２５０を用いることが
可能である。バックプレーン通信プロトコルはパケットベースのフォーマットである。
【００５３】
　テスタピンオブジェクトは、物理的なテスタチャネルを表しており、ここでは ITesterP
inで示されるテスタピンインタフェースから得られる。発明の一実施形態によるソフトウ
ェア開発キット（ SDK）は、 TesterPinと呼ばれることもある ITesterPinのデフォルトのイ
ンプリメンテーションを提供し、これは所定のモジュールレベルインタフェース IChannel
に関してインプリメントされる。ベンダは、 IChannelに関して彼らのモジュールの機能を
インプリメントすることができるのであれば TesterPinを自由に使うことができるが、そ
うでなければ、彼らのモジュールとどもに動作する ITesterPinのインプリメンテーション
を提供しなければならない。
【００５４】
　発明のテスタシステムによって提供される標準的なモジュールインタフェースは、ここ
では IModuleと表記するが、これは一般的には、ベンダのハードウェアモジュールを表し
ている。ベンダによって供給される、システム用のモジュール特有のソフトウェアは、ダ
イナミックリンクライブラリ（ DLL）のような実行可能な形態で提供されてもよい。ベン
ダからの各モジュールタイプ用のソフトウェアは、単一の DLLにカプセル化されていても
よい。このようなソフトウェアモジュールのそれぞれは、モジュールソフトウェア展開の
ための APIを備えている、モジュールインタフェースコマンド用のベンダに特有なインプ
リメンテーションを提供することを担っている。

10

20

30

40

50

(11) JP 3939336 B2 2007.7.4

【００５５】
　モジュールインタフェースコマンドには２つの局面がある。それらは、第一に、ユーザ
がシステムにおける特定のハードウェアモジュールと（間接的に）通信するためのインタ
フェースとして機能し、第二に、サードパーティディベロッパが彼ら自身のモジュールを
サイトコントローラレベルのフレームワークに統合するために活用することができるイン
タフェースを提供する。したがって、フレームワークによって提供されるモジュールイン
タフェースコマンドは、 2つのタイプに分けられる。
【００５６】
　一つ目は、最も疑う余地のないものであるが、フレームワークインタフェースを通じて
ユーザに対してあらわになる「コマンド」である。したがって、例えば、テスタピンイン
タフェース（ ITesterPin）は、レベルおよびタイミングの値を取得、設定するための方法
を提供し、一方で電源インタフェース（ IPowerSupply）は電力を上げたり下げたりする方
法を提供する。
【００５７】
　また、フレームワークは、モジュールとの通信に用いられることができる、所定のモジ
ュールレベルインタフェースの特別なカテゴリを提供する。これらは、ベンダのモジュー
ルとの通信のためにフレームワーククラスによって用いられるインタフェース（すなわち
、フレームワークインタフェースの「標準的な」インプリメンテーション）である。
【００５８】
　しかしながら、第二の局面、モジュールレベルインタフェースの使用は、任意のもので
ある。それをすることの利点は、ベンダは、モジュールレベルインタフェースをインプリ
メントすることによって彼らのハードウェアに対して送られる具体的なメッセージの内容
を注視しつつ、 ITesterPinおよび IPowerSupplyのようなクラスのインプリメンテーション
を活用し得るということである。しかし、もしこれらのインタフェースがベンダに不適切
であれば、それらはフレームワークインタフェースのそれらのカスタムインプリメンテー
ション（例えば ITesterPin、 IPowerSupply等のベンダインプリメンテーション）を提供す
ることを選択してもよい。そうすればこれらは、それらのハードウェアに対して適切であ
るカスタム機能を提供するであろう。
【００５９】
　このオープンアーキテクチャを背景に用いて、本発明のテストプログラム開発システム
を以下でさらに説明する。下記セクションＡはテストプログラムが用いられるテスト環境
を記述するルールを説明し、セクションＢはテストプログラム開発用の方法およびルール
を説明し、セクションＣは、テストプランを開発する方法およびルールと、どのようにし
てテストプログラムの主要構造を定義するかとを指定し、セクションＤはオープンアーキ
テクチャテストシステム上でどのようにテストプログラムを動作させるかを説明し、セク
ションＥはテストパターン用の方法およびルールを説明し、セクションＦはテストパター
ンのタイミングを説明し、セクションＧは全体的なテスト動作のルールを説明する。

Ａ．コンポーネント
【００６０】
　テスト環境は、テスタを持ち出して、それをテストのセットを動作させるように準備す
るために必要な条件を指定するファイルのセットを備えている。好ましくは、テスト環境
は以下のファイルを備えている。
１．テスタリソース定義：　オープンアーキテクチャテストシステムで利用可能であるテ
スタリソースのタイプ――およびこのようなりソースについてのサポートされるパラメー
タ――の指定のため
２．テスタコンフィギュレーション：　サイトコントローラ、サイトおよび対応するマッ
ピングの指定のため
３．モジュールコンフィギュレーション：　各サイトにおけるハードウェアモジュールの
指定のため

10

20

30

40

50

(12) JP 3939336 B2 2007.7.4

４．ピン記述：　信号ピン、電源等の DUTピンのネーミングのため、ならびにピングルー
プを記述するため
５．ソケット：　 DUTピン－テスタピンの割り当ての指定のため
６．ピンオプション：　ピンについての特別なオプション、またはモードの指定のため
７．パターンリスト：　テストパターンおよびそのシーケンスの指定のため
８．パターン：　テストベクトルの指定のため
【００６１】
　以上のうち、項目１～３は、 ICF（設定およびコンフィギュレーションファイル）によ
って CMD（コンフィギュレーションマネジメントデータベース）からの情報を用いて生成
され、既知の配置において利用可能とされ、項目４～８はユーザによって指定される。こ
のセクションは、上記項目１～６を説明し、項目７～８はセクション Eにおいてより詳細
に説明する。好ましくは、具体的な方法およびルールは、これらのコンポーネントのそれ
ぞれを開発するために用いられ、これらの方法およびルールは、このセクションにおいて
例とともに説明される。

Ａ１．　リソース定義
【００６２】
　各ハードウェアモジュールは、テストシステムが使用するための一つ以上のハードウェ
アリソース（短く、リソースとよぶ）を提供する。好ましくは、テスタのリソース定義は
、使用可能であるリソースタイプのリソース名のセットと、各特定のリソースタイプに関
連するパラメータ名およびタイプのセットとを宣言するために用いられる。例えば、リソ
ース名 dpinはデジタルテスタピンを指すために用いられる。これらのリソースは、 VIL（
低い入力電圧用）、 VIH（高い入力電圧用）、 VOL（低い出力電圧用）、 VOH（高い出力電
圧用）等のようなパラメータを有する。リソース定義ファイルは、拡張子「 .rsc」を有す
る。以下に、いくつかのテストリソースを含むリソース定義の例を示す。
#
File Resources.rsc
#
Version 0.1.2;
ResourceDefs
{
　　 # digital pins
　　 dpin
　　 {
　　　　 # Low and High voltages for input pins
　　　　 Voltage VIL, VIH;
　　　　 # Low and High voltages for output pins
　　　　 Voltage VOL, VOH;
　　 }
　　 # power supplies
　　 dps
　　 {
　　　　 #
　　　　 # PRE_WAIT specifies the time to wait after voltage
　　　　 #　　　　 reached its final value to start pattern
　　　　 #　　　　 generation. The actual time that the system
　　　　 #　　　　 will wait is a small system specified range:
　　　　 #　　　　 PRE_WAIT-delta ＜ = actual ＜ = PRE_WAIT+delta
　　　　 #
　　　　 # PRE_WAIT_MIN is a minimum amount to wait after voltage

10

20

30

40

50

(13) JP 3939336 B2 2007.7.4

　　　　 #　　　　 reached its final value to start pattern generation.
　　　　 #　　　　 It is a system specified range:
　　　　 #　　　　 PRE_WAIT_MIN ＜ = actual ＜ = PRE_WAIT_MIN+delta
　　　　 #
　　　　 # POST_WAIT specifies the time to wait after pattern
　　　　 #　　　　 generation ends to shut down the power. The actual
　　　　 # 　　　　 time that the system will wait is a small system
　　　　 # 　　　　 defined range:
　　　　 #　　　　 POST_WAIT-delta ＜ = actual ＜ = POST_WAIT+delta
　　　　 #
　　　　 # POST_WAIT_MIN specifies the time to wait after pattern
　　　　 #　　　　 generation ends to shut down the power. The actual
　　　　 # 　　　　 time that the system will wait is a small system
　　　　 # 　　　　 defined range:
　　　　 #　　　　 POST_WAIT_MIN ＜ = actual ＜ = POST_WAIT_MIN+delta
　　　　 #
　　　　 Time PRE_WAIT;
　　　　 Time PRE_WAIT_MIN;
　　　　 Time POST_WAIT;
　　　　 Time POST_WAIT_MIN;
　　　　 # The voltage.
　　　　 Voltage VCC;
　　 }
}

Ａ２．　テスタコンフィギュレーション
【００６３】
　テスタコンフィギュレーションは、好ましくは特定のシステムコンフィギュレーション
においてサイトコントローラとスイッチマトリクス入力ポートへのサイトコントローラの
接続とをリストするために用いられるルールのセットである。発明の一実施形態によるア
ーキテクチャにおいては、単一のサイトコントローラを単一のスイッチマトリクス入力ポ
ートに接続することができる。したがって、この文脈では、スイッチマトリクス接続は、
システムにおいてサイトコントローラのための暗黙の識別子として働く（他の構成も可能
である）。典型的なテスタコンフィギュレーションの例を以下に示す。
#
Tester Configuration, Sys.cfg
#
Version 1.2.5;
SysConfig
{
　　 #
　　 # The first field is the hostname of the Site Controller machine;
　　 # it can be specified as either a dotted-decimal IP address or a
　　 # domain-qualified hostname.
　　 #
　　 # The second field is the switch matrix input port number, which
　　 # implicitly serves as the identifier for the Site Controller
　　 # connected to it.
　　 #
　　 zeus.olympus.deities.org　　　　 2;

10

20

30

40

50

(14) JP 3939336 B2 2007.7.4

　　 127.0.0.2　　　　　　　　　　　　　　 4;
　　 127.0.0.0　　　　　　　　　　　　　　 1; # SITEC-1
　　 127.0.0.3　　　　　　　　　　　　　　 3;
}
【００６４】
　特定のテストフロアシステム用のシステムコンフィギュレーションは、システムプロフ
ァイルの一部であり、システムコンフィギュレーションファイル Sys.cfgとして利用可能
とされる。ある実施形態においてはポート１（上記例では 127.0.0.0）に接続されたサイ
トコントローラは、単独でスイッチマトリクスを構成するという特別な状態を享受しても
よい。この「特別な」サイトコントローラは、 SITEC-1と称される。また、サイトコント
ローラはインターネットネットワークによってシステムコントローラに接続され得るので
、この例におけるサイトコントローラのアドレスは IPアドレスであることに留意されたい
。逆に、システムコントローラは、パターンデータのようなファイルにアクセスするため
に外部のネットワークに接続されてもよい。

テスタコンフィギュレーションのための構造
【００６５】
　以下に、本発明の一実施形態によるシステムコンフィギュレーションファイルの構造を
示す。
　　 version-info system-config
version-info:
　　 Version version-identifer ;
system-config:
　　 SysConfig { site-controller-connection-list }
site-controller-connection-list:
　　 site-controller-connection
　　 site-controller-connection-list site-controller-connection
site-controller-connection:
　　 site-controller-hostname input-port ;
site-controller-hostname:
　　 ip-address
　　 domain-qualified-hostname
ip-address:
　　 octet . octet . octet . octet
domain-qualified-hostname:
　　 name
　　 domain-qualified-hostname . name

　上で定義されていないターミナル以外のものは以下の通り指定される：
【００６６】
　１． 　 version-identifier：セット [0-9a-zA-Z.]からの一つ以上の文字の列。バージ
ョン番号を表す。
　２． 　 octet： 0から 255までの負でない整数（１０進法で）
【００６７】
　３． 　 name：セット [a-zA-A_09]からの一つ以上の文字の列。数字では始まらない。ド
メイン限定のホストネームにおける名前セグメントを表している。
【００６８】
　４． 　 input-port： 10進法で、負でない整数。

10

20

30

40

50

(15) JP 3939336 B2 2007.7.4

Ａ３．　モジュールコンフィギュレーション
【００６９】
　モジュールコンフィギュレーションにより、テスタの物理的なコンフィギュレーション
、例えば SYSTEMシャーシにおける各モジュールの実際の配置およびタイプを指定すること
ができる。これは、テスタバスコンフィギュレーションの動的な性質によって必要とされ
、テスタバスアドレスの物理的なスロット配置へのマッピングを可能にする。この情報に
より、システム起動時間に起こるハードウェアディスカバリプロセスが SYSTEMコンフィギ
ュレーションを認証することができる。スイッチマトリクスの各出力ポートは物理的なス
ロットを規定し、好ましくはこれは単一のハードウェアモジュールが占有される。発明の
一実施形態による、ファイル Modules.cfgにおいて指定されるモジュールコンフィギュレ
ーションの一例を以下に示す。
#
Module Configuration File, Modules.cfg
#
Version 0.0.1;
ModuleConfig
{
　　 #
　　 # A configuration definition which provides information about
　　 # the module type that is attached to slots 1-12 and 32-48.
　　 # Note that a module might provide more than
　　 # a single type of resource.
　　 #
　　 Slot 1-12, 32-48　　　　　　　　　　 # Switch matrix output ports
　　　　　　　　　　　　　　　　　　　　 # which use the configuration
　　　　　　　　　　　　　　　　　　　　 # defined below.
　　 {
　　　　 VendorID　　 1;　　　　 　　 　　　　 # defined vendor code.
　　　　 ModuleID　　 1;　　　　　　 　　　　 # Vendor-defined id code.
　　　　 ModuleDriver mod1.dll; 　　 # Module software.
　　　　 #
　　　　 # Resource named dpin specifies channels
　　　　 # for digital data. The name dpin is not
　　　　 # a keyword. It is simply the name of a hardware
　　　　 # resource, and is obtained from the resource
　　　　 # definition file.
　　　　 #
　　　　 Resource dpin
　　　　 {
　　　　　　 MaxAvailable　　 32;　　　　　　 # Resource units 1 .. 32.
　　　　 }
　　　　 Resource analog
　　　　 {
　　　　　　 MaxAvailable　　 16;　　　　　　 # Resource units 1 .. 16.
　　　　　　 Disabled　　　　 1-8;　　　　 # Disabled resources 1 .. 8.
　　　　　　　　　　　　　　　　　　　　 # So, enabled ones are 9 .. 16.
　　　　 }
　　 }
　　 #
　　 # A configuration definition which provides information about

10

20

30

40

50

(16) JP 3939336 B2 2007.7.4

　　 # the module type that is attached to slots 16-30, 50, and 61-64.
　　 #
　　 Slot 16-30, 50, 61-64
　　 {
　　　　 Resource dpin
　　　　 {
　　　　　　 MaxAvailable　　 32;　　　　　　　　 # Max available resource units.
　　　　　　 Disabled　　　　 3, 30-32;　　　　 # Disabled resources.
　　　　 }
　　　　 ModuleDriver　　　　″ module two.dll″ ;
　　　　 VendorID　　　　　　 2;
　　　　 ModuleID　　　　　　 2;
　　 }
　　 #
　　 # A configuration definition, which provides information about
　　 # the module type that is attached to slots 65-66.
　　 #
　　 Slot 65-66
　　 {
　　　　 ModuleID　　　　　　 4;　　　　　　　　 # DPS module with 8 supplies.
　　　　 ModuleDriver　　　　 mod4.dll;
　　　　 VendorID　　　　　　 1;
　　　　 #
　　　　 # Resource type dps specifying resource units for a
　　　　 # Device Power Supply
　　　　 #
　　　　 Resource dps
　　　　 {
　　　　　　 MaxAvailable　　 4;
　　　　　　 Disabled　　　　 1;
　　　　 }
　　 }
}
【００７０】
　先に述べたように、ある実施形態においては、スロットは、スイッチマトリクスの出力
ポートのような、それを通じてハードウェアモジュールを接続することが可能であるコネ
クタのことを指す。各コンフィギュレーション定義は、一つ以上のスロットに取り付けら
れ得るモジュールについての情報を提供する。コンフィギュレーション定義において指定
されたベンダ ID（ VederID）は、ベンダに関連付けられた固有の IDである。モジュール ID
（ ModuleID）は、このベンダによって提供されるモジュールのタイプを指す。テスタコン
フィギュレーションにおいては同じモジュール IDの例がいくつかあり得る。モジュールド
ライバ（ ModuleDriver）はモジュールを使用可能にするためのベンダによって供給される
DLLを指す。最後に、リソース（ Resource）は、このモジュールによって使用可能にされ
るユニットを指しており、リソースタイプの名前を提供し、リソース名はリソース定義フ
ァイルから得られる。
【００７１】
　上記例は、モジュールコンフィギュレーションファイルにおける３つのコンフィギュレ
ーションブロックを述べている。あるインプリメンテーションにおいては、最初のコンフ
ィギュレーションブロック、スロット１～１２および３２～４８は、ベンダ１によって製
造されたモジュールによって使用可能にされる。このベンダは、モジュールタイプを指す

10

20

30

40

50

(17) JP 3939336 B2 2007.7.4

識別子が「１」であるモジュールと、そのモジュールを制御するモジュールドライバライ
ブラリとを提供する。このモジュールは、 2つのタイプのリソースユニットを提供する。
一つはリソース名「 dpin」で表され、好ましくは全部で 32個のリソースユニット（すなわ
ちチャネル）を有し、これら全てが利用可能である。もう一つはリソース名「 analog」で
表され、全部で 16個のリソースユニットを有しており、このうち 9から 16だけが利用可能
である。第二および第三のコンフィギュレーションブロックは、第一のコンフィギュレー
ションと同様にして指定される。
【００７２】
　チャネルが「無効である」と表されることを可能にするということは、別の点ではまだ
機能する不良リソースユニットまたはモジュールを示すことができるということであると
いうことに留意されたい。また、コンフィギュレーションブロックは一つ以上のスロット
識別子を有し得ることにも留意されたい。ブロックが一つよりも多いスロット識別子を有
するときには、識別されたスロットは複製されていると考えられる。
【００７３】
　モジュールコンフィギュレーションファイル .cfgは、システムプロファイルの一
部として ICM（設定コンフィギュレーションマネジメントシステム）によって（ユーザに
よって提供されるテストフロア特有の情報を用いて）作製され、既知の配置で利用可能と
される。 ICMは、テストシステムに対してローカルである、例えばシステムコントローラ
上、あるいはシステムコントローラが接続されているネットワーク上のどこかに存在して
いるユーティリティである。 ICMは、 CMD（コンフィギュレーションマネジメントデータベ
ース）を管理し、典型的にはハードウェア上でシステムコンフィギュレーションに対する
変化をアップデートした。 ICMは、ユーザがシステム、例えばサイトコントローラおよび
モジュールを構成することを可能にする。 CMDはコンフィギュレーションを記憶するデー
タベースである。実際のテスタコンフィギュレーション／動作に関して、 ICMは、例えば
モジュールコンフィギュレーションのようなコンフィギュレーションファイルと他のファ
イルとを生成し、それらと、特定のモジュール DLLのような関連するファイルとをテスタ
上にコピーする。

モジュールコンフィギュレーションの構造
【００７４】
　好ましい実施形態によるモジュールコンフィギュレーションの構造を以下に示す。
file-contents:
　　 version-info module-config-def
version-info:
　　 Version version-identifier ;
module-config-def:
　　 ModuleConfig { slot-entry-list }
slot-entry-list:
　　 slot-entry
　　 slot-entry-list slot-entry
slot-entry:
　　 Slot positive-integer-list { slot-info }
slot-info:
　　 required-config-list
required-config-list:
　　 required-config
　　 required-config-list required-config
required-config:
　　 VendorID id-code ;
　　 ModuleID id-code ;

10

20

30

40

50

(18) JP 3939336 B2 2007.7.4

Module

　　 ModuleDriver file-name ;
　　 Resource resource-name { max-spec disabled-speco p t }
max-spec:
　　 MaxAvailable positive-integer ;
disabled-spec:
　　 Disabled positive-integer-list ;
positive-integer-list:
　　 positive-integer-list-entry
　　 positive-integer-list , positive-integer-list-entry
positive-integer-list-entry:
　　 positive-integer
　　 positive-integer-number-range
positive-integer-number-range:
　　 positive-integer - pos-integer
【００７５】
　上で定義されていない非ターミナルを以下に述べる。
【００７６】
　１． 　 version-identifie：セット [0-9a-zA-Z]からの一つ以上の文字の列。最初の文
字はセット [0-9]からのものでなければならない。
【００７７】
　２．　 positive-integer：セット [0-9]からの一つ以上の文字の列。０で始まらない。
【００７８】
　３．　 id-code：セット [a-zA-A_0-9]からの一つ以上の文字の列。
【００７９】
　４．　 resource-name：セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、最初の
文字はセット [a-zA-Z]からのものでなければならない。コメントがサポートされる。コメ
ントは「 #」の文字で始まり、行末まで伸びている。

Ａ４．　ピン記述
【００８０】
　 DUTピン記述は、ピン記述ファイルを用いて記述される。ユーザは、ピン記述ファイル
における DUTピンの記述を提供し、これは「 .pin」の拡張子を有している。このプレイン
テキストファイルは、少なくとも以下のものを含んでいる： DUTピン名のリスト、および
名前を付けられたピングループの初期の定義。後者は定義された DUTピン名を使用する（
それらを、例えばプログラム的に後で改変、追加等することができるので「初期」である
）。
【００８１】
　このデータの指定をテストプランの記述とは別にすることによって、 DUTピン定義の一
般的な再利用が可能であり、パターンコントローラがピン名（ベクトル指定において用い
られるピン名への言及を説明するのに必要とされる）を、プロセスを具体的なテストプラ
ンに結び付けることなく、プロセスピン記述ファイルから得ることが可能である。
【００８２】
　ピン記述ファイルの一例を以下に示す。

#
Pin description file, myDUT.pin.
#
Note that this implicitly imports the resource
configuration file,Resources.rsc.
#

10

20

30

40

50

(19) JP 3939336 B2 2007.7.4

Version 1.1.3a;
PinDescription
{
　　 Resource dpin
　　 {
　　　　 A0;
　　　　 A1;
　　　　 A2;
　　　　 A3;
　　　　 A4;
　　　　 # This syntax expands to the names ″ ABUS[1]″ and ″ ABUS[2]″
　　　　 ABUS[1:2];
　　　　 A5;
　　　　 BBUS[1:8];
　　　　 DIR;
　　　　 CLK;
　　　　 Group Grp1
　　　　 {
　　　　　　 DIR, CLK, A0, A1, A2, A3, A4, BBUS[1:4]
　　　　 }
　　　　 Group Grp2
　　　　 {
　　　　　　 A5,
　　　　　　 #
　　　　　　 # The following line will expand to
　　　　　　 #″ DIR, A1, A2, A4, A5, BBUS[2] ″ :
　　　　　　 #
　　　　　　 Grp1 - CLK - A0 - A3 - BBUS[1] - BBUS[3:4] + A5,
　　　　　　 BBUS[5:8]
　　　　 }
　　 }
　　 Resource dps
　　 {
　　　　 vcc1;
　　　　 vcc2;
　　　　 vcc3;
　　　　 Group PSG
　　　　 {
　　　　　　 vcc1, vcc2
　　　　 }
　　 }
}
【００８３】
　 DUTピンおよびピングループの定義は、コンパイラがピンおよびピングループの定義を
レベル等の許されるパラメータ設定に相関させることを可能にするように、リソースタイ
プブロック内にカプセル化されることに留意されたい。
【００８４】
　ピン記述について、以下の点に留意しなければならない。
【００８５】
　１．　ピングループとピンとは、同一のネームスペースを共有しており、グローバルな

10

20

30

40

50

(20) JP 3939336 B2 2007.7.4

（例えばテストプラン）範囲を有している。これらの名前がグローバルな範囲を有するこ
とによる効果の一つは、ピンおよびピングループは、異なるリソースブロック内で宣言さ
れる場合であっても、重複する名前を使うことがないということである。
【００８６】
　２．　少なくとも一つのリソース定義がピン記述ファイルにおいて必要である。
【００８７】
　３．　少なくとも一つのピン名が各リソースにおいて定義されなければならない。
【００８８】
　４．　ピン名およびグループ名はリソース境界内で固有のものであることが要求される
。
【００８９】
　５．　同一のピン名またはグループ名が、 2つ以上のリソースについて定義され得る。
しかし、同一のリソース内での重複は無視される。
【００９０】
　６．　グループ定義に現れる全てのピン名およびグループ名は、そのリソース内で既に
定義されたものでなければならない。
【００９１】
　７．　もしあれば、グループ定義は、少なくとも一つのピン名あるいはグループ名を有
していなければならない（すなわち、グループ定義は空であってはならない）。
【００９２】
　８．　ピングループ定義は、前に定義されたピングループへの言及を含むことができる
。
【００９３】
　９．　ピングループ定義は、前に定義されたピンおよび／またはピングループの加算お
よび減算のような演算セットを含むことができる。

ピン記述の構造
【００９４】
　本発明の好ましい実施形態による、ピン記述のための構造を以下に示す。
pin-description-file:
　　 version-info pin-description
version-info:
　　 Version version-identifer ;
pin-description:
　　 PinDescription { resource-pins-def-list }
resource-pins-def-list:
　　 resource-pins-def
　　 resource-pins-def-list resource-pins-def
resource-pins-def:
　　 Resource resource-name { pin-or-pin-group-def-list }
pin-or-pin-group-def-list:
　　 pin-or-pin-group-def
　　 pin-or-pin-group-def-list pin-or-pin-group-def
pindef-or-pin-groupdef:
　　 pin-def ;
　　 pin-group-def
pin-def:
　　 pin-name
　　 pin-name [index : index]
pin-group-def:

10

20

30

40

50

(21) JP 3939336 B2 2007.7.4

　　 Group pin-group-name { pin-group-def-item-list }
pin-group-def-item-list:
　　 pin-def
　　 pin-group-def-item-list , pin-def

【００９５】
　上で定義されていない非ターミナルは、以下のように指定される。
【００９６】
　１．　 version-identifier：セット [0-9a-zA-Z]からの一つ以上の文字の列であり、バ
ージョン番号を表す。
【００９７】
　２． 　 resource-name：セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、数字で
始まらない。 dpinあるいは dpsのようなリソース名を表す。
【００９８】
　３． 　 pin-name：セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、数字では始
まらない。ピン A0の名前を表す。
【００９９】
　４． 　 pin-group-name：セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、数字
では始まらない。ピングループ ABUSの名前を表す。
【０１００】
　５． 　 index：関連するピンのグループの下方の限界あるいは上方の限界を表す。

Ａ５．　ソケット
【０１０１】
　ソケットは、 DUTピン名と物理的なテスタピン（チャネル）割り当てとの間のマッピン
グを指定する（物理的なテスタチャネル番号はモジュールコンフィギュレーションファイ
ルで定義される）。異なるソケットは、異なる DUTパッケージおよび異なるロードボード
コンフィギュレーション等をサポートするのに用いられ得ることに留意されたい。マルチ
DUTシステムについては、 DUT／チャネル割り当てに関するソケット定義は、基本となるソ
ケットの複数サイトへの「複製」をサポートすることができる。しかしながら、異なるソ
ケット（すなわち、同じ論理ピンについての異なる物理的なマッピング）は、モジュール
パーティションを尊重しなければならない。したがって、テスタチャネルに対する DUTピ
ンの割り当てを提供することに加えて、ソケットは、サイトをパーティションで区切るこ
とも実質的に定義する。ソケットファイルはしたがって、いくつかの個別のサイトソケッ
トについての定義を含み得る。以下に、３つの DUTサイトを定義する一例のソケットファ
イルを示す。

Version 1.1.3
SocketDef
{
　　 DUTType Pentium3
　　 {
　　　　 PinDescription dutP3.pin; # The pin description file for Pentium3
　　　　 DUT 2 # Uses the full-specification syntax
　　　　 {
　　　　　　 SiteController 1; # Switch Matrix input port
　　　　　　 Resource dpin
　　　　　　 {
　　　　　　　　 #
　　　　　　　　 # The CLK pin is assigned to resource dpin,

10

20

30

40

50

(22) JP 3939336 B2 2007.7.4

　　　　　　　　 # slot 2, resource unit (channel) 13.
　　　　　　　　 #
　　　　　　　　 CLK　　　　 2.13;
　　　　　　　　 #
　　　　　　　　 # The DIR pin is assigned to resource dpin,
　　　　　　　　 # slot 5, resource unit 15.
　　　　　　　　 DIR　　　　 5.15;
　　　　　　　　 #
　　　　　　　　 # The following statement will be expanded to
　　　　　　　　 #　　　　 BBUS[7]　　 5.4
　　　　　　　　 #　　　　 BBUS[6]　　 5.5
　　　　　　　　 #　　　　 BBUS[5]　　 5.6
　　　　　　　　 #
　　　　　　　　 # So for example, the pin sequence BBUS[7], BBUS[6],
　　　　　　　　 # BBUS[5] is assigned to the same slot 5, and to
　　　　　　　　 # resource units 4, 5 and 6 respectively.
　　　　　　　　 #
　　　　　　　　 BBUS[7:5]　　　　 5.[4:6];
　　　　　　　　 BBUS[1:4]　　　　 7.[21:18];
　　　　　　　　 BBUS[8]　　　　 9.16;
　　　　　　 }
　　　　　　 Resource dps
　　　　　　 {
　　　　　　　　 #
　　　　　　　　 # The V1 pin is assigned to resource dps,
　　　　　　　　 # slot 1, resource unit (channel) 1.
　　　　　　　　 #
　　　　　　　　 VCC1　　 1.1;
　　　　　　　　 #
　　　　　　　　 # The VCC2 pin is assigned to resource dps,
　　　　　　　　 # slot 1, resource unit (channel) 2.
　　　　　　　　 #
　　　　　　　　 VCC2　　 1.2;
　　　　　　 }
　　　　 } # End DUT 2
　　　　 DUT 1 # This is ″ cloned″ from DUT 2 above
　　　　 {
　　　　　　 SiteController 1; # Same Site Controller as for DUT 2
　　　　　　 Resource dpin
　　　　　　 {
　　　　　　　　 SlotOffset 1;　　　　 # Offset value for slots
　　　　　　 }
　　　　　　 Resource dps
　　　　　　 {
　　　　　　　　 SlotOffset 10;　　 # Offset value for slots
　　　　　　 }
　　　　　　 #
　　　　　　 # The offset syntax above indicates that the slot/resource
　　　　　　 # unit assignments are ″ cloned″ from the first DUT defined
　　　　　　 # for this DUTType, i.e., DUT 2, with the slots offset by

10

20

30

40

50

(23) JP 3939336 B2 2007.7.4

　　　　　　 # the SlotOffset values.
　　　　　　 #
　　　　　　 # Looking at the definition of dpin resource units for
　　　　　　 # DUT 2, CLK is bound to slot 2. Hence, for the present
　　　　　　 # DUT, CLK is bound to slot 2 + 1 = 3.
　　　　　　 #
　　　　　　 # Some of the new bindings in effect due to the offset
　　　　　　 # assignments are shown in the table below:
　　　　　　 #
　　　　　　 # ---
　　　　　　 #　　　　 Pin　　　　　　 Resource　　　　 RUnit　　 Slot
　　　　　　 # ---
　　　　　　 #　　　　 CLK　　　　　　 dpin　　　　　　 13　　　　 2 + 1 = 3
　　　　　　 #　　　　 DIR　　　　　　 dpin　　　　　　 15　　　　 5 + 1 = 6
　　　　　　 #　　　　 BBUS[8]　　 dpin　　　　　　 16　　　　 9 + 1 = 10
　　　　　　 #　　　　 VCC1　　　　 dps　　　　　　　　 1　　　　 1 + 10 = 11
　　　　　　 #　　　　 VCC2　　　　 dps　　　　　　　　 2　　　　 1 + 10 = 11
　　　　　　 #
　　　　 } # End DUT 1
　　 } # End DUTType Pentium3
　　 DUTType 74LS245
　　 {
　　　　 PinDescription dutLS.pin;
　　　　 DUT 3 disabled # This DUT site is disabled, and will be ignored
　　　　 {
　　　　　　 ...
　　　　 }
　　 } # End DUTType 74LS245
} # End SocketDef
【０１０２】
　ソケットファイルについては以下の点に留意すべきである。
【０１０３】
　１．　ソケットファイルは、モジュールコンフィギュレーションファイルと、与えられ
た DUTタイプについてのユーザピン記述ファイルとの両方からの情報を用いる（上記例の
ピン記述の指定を参照）。モジュールコンフィギュレーション情報は、ソケットファイル
コンパイラに暗黙のうちに役立てられる。ソケットファイルコンパイラは、パターンコン
パイラによって用いられる DUTピンに対するテスタピンのマッピングを設定するためにソ
ケット DUT名対テスタチャネルマッピングとモジュールコンフィギュレーションファイル
およびピン記述ファイルとを読み出し、解析するパターンコンパイラのサブパートである
。
【０１０４】
　２． 　 DUTタイプごとに少なくとも一つの DUT定義が必要とされ、それは SlotOffsetシ
ンタックス（ syntax）ではなく、全指定シンタックスを用いなければならない。もし２つ
以上の DUTサイト定義が同一の DUTタイプについて提供されるのなら、最初のものが完全指
定シンタックスを用いていなければならない。
【０１０５】
　３．　その後の DUTサイト定義（同一の DUTタイプについての）のそれぞれは、完全指定
シンタックスか SlotOffsetシンタックスを用いてもよいが、両方を用いてはならない。こ
れにより、個々のサイトが（例えば動作不能のチャネルのせいで）標準的なパターンから
はずれることが可能である。

10

20

30

40

50

(24) JP 3939336 B2 2007.7.4

【０１０６】
　４． 　 SlotOffsetシンタックスから得られる結合は　　、その DUTタイプについて定義
された第一のサイト（完全指定シンタックスを用いている）に関連して定義される。
【０１０７】
　５． 　 DUTサイトは、実際の物理的な順番で宣言される必要はない。これにより、第一
の（物理的な）サイトがパターンから外れる場合が可能である。
【０１０８】
　６． 　 DUTサイトの IDは、ソケット全体にわたって（すなわちそこで定義される全ての
DUTタイプにわたって）固有のものであることが要求される。
【０１０９】
　７．　少なくとも一つの定義が DUTサイト定義ごとに必要とされる。
【０１１０】
　８．　サイト定義は、テストコンフィギュレーションが単一サイト／単一 DUTか、単一
サイト／マルチ DUTかを判断するために、モジュールコンフィギュレーションと関連して
用いられなければならない。
【０１１１】
　９．　全ての場合において、ソケットファイルは、ピン記述ファイルとモジュールコン
フィギュレーションファイルとに一致した DUTチャネルマッピングのセットを指定しなけ
ればならない。
【０１１２】
　１０．いくつかの場合において、ソケット定義が、一つ以上の DUTチャネルがテスタか
ら切断されていることを（例えば割り当てられる物理的なチャネルを特別な ID「 0.0」を
有するものとすることによって）指定することを可能にすることが望ましい。この場合、
これらの DUTチャネルは、テストプログラムの関連で用いられ、参照される。このような
チャネル上での動作は、システム警告という結果をもたらす（エラーではない）。ロード
時には、切断されたチャネルについてのパターンデータは捨てられる。

ソケットの構造
【０１１３】
　本発明の好ましい実施形態によるモジュールコンフィギュレーションの構造を以下に示
す。

socket-file:
　　 version-info socket-def

version-info:
　　 Version version-identifer ;

socket-def:
　　 SocketDef { device-specific-socket-def-list }

device-specific-socket-def-list:
　　 device-specific-socket-def
　　 device-specific-socket-def-list device-specific-socket-def

device-specific-socket-def:
　　 DUTType DUT-type-name { pin-description-file dut-info-list }

pin-description-file:
　　 PinDesc pin-description-file-name ;

10

20

30

40

50

(25) JP 3939336 B2 2007.7.4

dut-info-list:
　　 dut-info
　　 dut-info-list dut-info

dut-info:
　　 DUT dut-id { site-controller-input-port resource-info-list }

site-controller-input-port:
　　 SiteController switch-matrix-input-port-number ;

resource-info-list:
　　 resource-info
　　 resource-info-list resource-info

resource-info:
　　 Resource resource-name { resource-item-unit-assignment-list }

resource-item-unit-assignment-list:
　　 resource-item-unit-assignment
　　 resource-item-unit-assignment-list resource-item-unit-assignment

resource-item-unit-assignment:
　　 resource-item-name slot-number . resource-unit ;
　　 resource-item-name [resource-item-index] slot-number . resource-unit-index
 ;
　　 resource-item-name [resource-item-index-range]　　 ¥
　　　　 slot-number . [resource-unit-index-range] ;

　　 resource-item-index-range:
　　　　 resource-item-index : resource-item-index

　　 resource-unit-index-range:
　　　　 resource-unit-index : resource-unit-index
【０１１４】
　上で定義されていない非ターミナルは以下の通り指定される。
【０１１５】
　１．　 version-identifier：セット [0-9a-zA-Z]からの一つ以上の文字の列であり、バ
ージョン番号を表す。
【０１１６】
　２． 　 DUT-type-name：セット [0-9a-zA-Z]からの一つ以上の文字の列であり、最初の
文字はセット [0-9]からのものではない。これは、例えばペンティアム３のような DUTのタ
イプを表す。
【０１１７】
　３． 　 pin-description-file-name：ファイルの単なる名前であり、そのディレクトリ
名は含まないが、全ての拡張子を含んでいる。ファイル名は、ホストオペレーティングシ
ステムによって認識されるシンタックスを有しており、引用符で挟まれていれば空白や他
の文字も許される。
【０１１８】
　４． 　 switch-matrix-input-port-number：十進法の負でない整数であり、サイトコン

10

20

30

40

50

(26) JP 3939336 B2 2007.7.4

トローラに接続された入力ポートのポート番号を表す。
【０１１９】
　５． 　 dut-id： DUTのインスタンスを識別する十進法の負でない整数である。
【０１２０】
　６． 　 resource-name：セット [0-9a-zA-Z]からの一つ以上の文字の列であり、最初の
文字は数字であってはならない。リソースファイルにおいて定義されるリソース名を表す
。
【０１２１】
　７． 　 resource-item-name：セット [0-9a-zA-Z]からの一つ以上の文字の列であり、最
初の文字は数字であってはならない。ピン、あるいはピングループといったリソースユニ
ットの名前を表す。
【０１２２】
　８． 　 resource-item-index：リソースアイテムのグループの特定のメンバを表す十進
法の負でない整数である。リソースアイテムインデックス範囲に関しては、これはリソー
スアイテムグループの連続的な列の下方の境界あるいは上方の境界を表す。
【０１２３】
　９． 　 resource-unit-index：リソースユニット（チャネル）のグループの特定のメン
バを表す十進法の負でない整数である。リソースユニットインデックス範囲に関しては、
これはリソースユニットグループの連続的な列の下方の境界あるいは上方の境界を表す。

Ａ６．　ピン
【０１２４】
　論理ピン名対物理チャネルのマッピング（ソケットによって提供される）に加えて、テ
スタリソースを指定するためにいくつかの属性を用いることができることに留意されたい
。例えば、チャネルの特定のハードウェアコンフィギュレーションを定義するためにオプ
ションを用いてもよい。これはテスト特有、ベンダ特有、および／あるいはテストシステ
ムに特有のものであってもよい。これらは、ピンモードオプションを用いて記述され、ピ
ンモードオプションファイルを介して利用可能とされる。
【０１２５】
　ピンモードオプションの定義は、テスタチャネルについて特定のオプションまたはモー
ドのコンフィギュレーションをサポートするであろう。これは、例えば、チャネル多重化
を選択し、構成するために用いられることもできる。ピンモードオプションのみをテスト
プラン初期化フローの一部として用いることが好ましい。なぜなら、重要なチャネルコン
フィギュレーションを必要とし得るからである。ピンモードオプションシンタックスは、
ベンダ定義のオプションをサポートする。一例を以下に示す。

PinModeOptions
{
　　 clock　　　　 IN　　　　 double;
　　 a0　　　　　　 OUT　　　　 single;
　　 ...
};

テスト環境コンフィギュレーション
【０１２６】
　先に指摘したように、リソース定義ファイル（ Resource.rsc）、システムコンフィギュ
レーションファイル（ Sys.cfg）およびモジュールコンフィギュレーションファイル（ Mod
ules.cfg）は好ましくは、「既知の」位置で利用可能とされる。この「既知の」位置は、
システム環境変数 Tester_ACTIVE_CONFIGSの値によって指定されるディレクトリである。

10

20

30

40

50

(27) JP 3939336 B2 2007.7.4

例えば、もし Tester_ACTIVE_CONFIGの値がディレクトリ F:?Tester_SYS?configs?であれば
、システムは以下のファイルが存在するであろうと予測することができる。

F:¥Tester_SYS¥configs¥Resources.rsc
F:¥Tester_SYS¥configs¥Sys.cfg
F:¥Tester_SYS¥configs¥Modules.cfg
【０１２７】
　インストールの間、ホストコンピュータ上にあるインストール・コンフィギュレーショ
ン管理システム（ ICM）は好ましくは、 Tester_ACTIVE_CONFIGSの値を設定する。 ICMは上
記ファイルの一つの新しいバージョンを生成するたびに、 Tester_ACTIVE_CONFIGSが指す
位置に新しいバージョンを置く。上記３つのファイルに加えて、シミュレーションコンフ
ィギュレーションファイルといった他のシステムコンフィギュレーションファイルもまた
Tester_ACTIVE_CONFIGSが指す位置に置かれる。

Ｂ．　テストプログラム開発のためのルール
【０１２８】
　テスタシステムの２つの主なエンドユーザ指向のコンポーネントのうちの一つは、テス
ト環境である。もう一つのコンポーネントは、テスタがエンドユーザ（すなわちテストエ
ンジニアおよびテストクラスディベロッパ）に供するプログラミング機構である。
【０１２９】
　プログラミング環境の主要なコンポーネントはテストプランである。テストプランは、
テストクラス（これらは Testで表されるテストインタフェースの異なるインプリメンテー
ションである）を用いており、これらは特定のタイプのテストのためのテストデータおよ
びコードの分離を実現する。
【０１３０】
　プランは、 C++テストプログラムとして直接書かれてもよいし、テストプログラムジェ
ネレータ（トランスレータ４０２）によって C++コードのようなオブジェクト指向のコー
ドを作成するように処理されるテストプラン記述ファイルで記述されてもよい。作製され
た C++コードは、実行可能なテストプログラムにコンパイル可能である。レベル、タイミ
ング等のようなテストクラスインスタンスに関連することが要求されるデータは、テスト
プラン記述ファイルにおいてユーザによって指定される。
【０１３１】
　テストプログラムは、装置上でテストを動作させるための詳細を指定するユーザ作成の
ファイルのセットを含んでいる。発明の一実施形態は、ユーザがこれらのファイルを C++
コンストラクトを用いて書くことを許容するルールのセットを含んでいる。
【０１３２】
　発明のこの実施形態による要件の一つは、オープンアーキテクチャテストシステムのモ
ジュール方式に従うことである。モジュール式の開発は、ユーザがテストの異なる局面を
扱う個々のコンポーネントを記載することを許容し、そして、完全なテストプログラムを
生み出すためにこれらのコンポーネントがさまざまなやり方で混合され、適合されること
を許容する。本発明の好ましい実施形態によるテストプログラムは、以下のファイルのセ
ットを備えている。
files *.usrv for user variables and constants;
files *.spec for specification sets;
files *.lvl for levels;
files *.tim for timings;
files *.tcg for test condition groups;
files *.bdefs for bin definitions;
files *.ph for a pre-header, files for custom functions and test classes.
files *.ctyp for custom types;

10

20

30

40

50

(28) JP 3939336 B2 2007.7.4

files *.cvar for custom variables; and
files *.tpl for test plans.
【０１３３】
　上記ファイルの拡張子は、ファイルのカテゴリー化をスムーズにする、推奨される取り
決めである。単一のテストプログラムは、好ましくは、単一のテストプランファイルとそ
れがインポートするファイルとを備えている。「インポート」とは、インポータ（インポ
ートを指定するファイル）によって直接参照されるか、インポータによって直接参照され
る何か他のファイルによってインポートされるデータを有する他のファイルのことをいう
。テストプランファイルは、グローバル、フローならびに、その中の他のこのようなオブ
ジェクトを定義することができ、あるいは他のファイルからのこの情報をインポートする
ことができる。これらのルールは、上記コンポーネントのいずれかが、自身の個々のファ
イルにあるか、あるいはテストプランファイルに直接インラインされるかを可能にする。
なお、テストプランは、 C言語の main()関数と概念的に似ている。

テストプログラムの特徴

ユーザ変数および定数
仕様セット
レベル
タイミング
テスト条件
ビン定義
プリヘッダ
カスタムタイプ
カスタム変数
テストプラン
【０１３４】
　テストプログラム識別子は、好ましくは、大文字または小文字のアルファベットの文字
で始まり、その後にアルファベット、数字あるいはアンダースコア（＿）といった文字を
いくつでも有することができる。以下に示される記述において提供されるものは、いくつ
かのキーワードを有している。これらのキーワードは、例えば Versionのような太字を用
いてこの文書ではコードで視覚的に識別される。キーワードは取っておかれ、好ましくは
識別子としては用いられない。 {, }, (,),のような特別な記号がいくつかあり、以下に
示す他のものもある。

テストオブジェクトの詳細
【０１３５】
　テスト記述ファイルのインポートは、インポートするファイルが、インポートされるフ
ァイルによって利用可能とされているオブジェクトの名前を参照することを可能にする。
これにより、インポートするファイルは、インポートされるファイルによって名付けられ
たオブジェクトを参照することができる。ピン記述ファイル xxx.pinをインポートするソ
ケットファイル aaa.socを考えることにする。 xxx.pinをインポートする別の bbb.socファ
イルがあるかもしれない。しかし、これらのインポートはいずれも、 xxx.pinで述べられ
るオブジェクトを発生させない。これらは単に、既に存在していると仮定されるオブジェ
クトを参照するにすぎない。
【０１３６】
　ここで疑問が生じる。このようなオブジェクトはいつ発生するのか？テストプランファ
イルが根本的に異なるのはここである。 Cとの相似において、それは main()ルーチンを中
に有しているファイルである。テストプランファイルにおける「インポート」命令文は、
これらのオブジェクトを詳述する。すなわち、これらのオブジェクトを出現させる。以下

10

20

30

40

50

(29) JP 3939336 B2 2007.7.4

に示すテストプラン mickey.tplは、 xxx.pinおよび aaa.socにおけるオブジェクトを詳述さ
せる。

File for Mickey's TestPlan
Version 3.4.5;

#
These import statements will actually cause the
objects to come into existence:
#
Import xxx.pin;　　 # Elaborates pin and pin-group objects
Import aaa.soc;　　 # Elaborates site socket map objects
Other imports as necessary
...
Flow Flow1
{
　　 ...
}
【０１３７】
　テストプランにおける xxx.pinのインポートは、 xxx.pinにおいて宣言されている全ての
ピンおよびピングループオブジェクトを詳述させる。これを次のように説明する。「ファ
イル xxx.pinは詳述される。」テストプランは詳述される必要がある全てのファイルを直
接インポートする必要はない。もし以下の 2つの命令文が真であれば、ファイル xはファイ
ル yによってインポートされる。
　１． yは xの名前を挙げるインポート命令文を有している、あるいは
【０１３８】
　２、 xは zによってインポートされ、 yは zの名前を挙げるインポート命令文を有している
。
【０１３９】
　テストプログラムがコンパイルされるときには、それは、テストプランによってインポ
ート ファイルにおける全てのオブジェクトを詳述する。テストプランによってイン
ポートされるファイルのセットは、ファイルが詳述される順番を作り出すように、位相的
にソートされる。テストプランによってインポートされるファイルは、テストプランのイ
ンポートクロージャ（ closure）と呼ばれる。もしあるテストプランのインポートクロー
ジャを位相的にソートすることができなければ、インポートサイクルがあるはずである。
このような状況はエラーであり、コンパイラによって拒絶される。

ユーザ変数および定数
【０１４０】
　グローバルな変数および定数が、ユーザ変数および定数を用いて定義される。定数は、
その値がコンパイル時間に結び付けられているようなオブジェクトであり、変化すること
はない。例えば、最大の整数値は一定である。一方、変数に結び付けられている式は、 AP
Iを介してランタイムで変化し得る。

整数
符号なし整数

ボルト（ V）での電圧
1秒あたりのボルト（ VPS）での電圧スルー

10

20

30

40

50

(30) JP 3939336 B2 2007.7.4

される

倍（ Double）
文字列（ String）

アンペア（ A）での電流
ワット（ W）での電力
秒（ S）での時間
メートル（ M）での長さ
ヘルツ（ H）での周波数
オーム（ Ohm）での抵抗値
ファラド（ F）での容量値
【０１４１】
　整数、符号なし整数、倍および文字列のタイプはベーシックタイプと呼ばれる。ベーシ
ックタイプは測定単位をもたない。ベーシックタイプではないエレメンタリタイプは で
あり、関連する測定単位と尺度（スケール）とを有する。スケーリングの記号は、一般的
な工学のスケーリングの記号である。
【０１４２】
10-12についてはｐ（ピコ）で、 pF（ピコファラド）のようである。
【０１４３】
10-9についてはｎ（ナノ）で、 ns（ナノ秒）のようである。
【０１４４】
10-6についてはμ（マイクロ）で、μ S（マイクロ秒）のようである。
【０１４５】
10-3についてはｍ（ミリ）で、 mV（ミリボルト）のようである。
【０１４６】
10+3についてはｋ（キロ）で、 kOhm（キロオーム）のようである。
【０１４７】
10+6については M（メガ）で、 MHz（メガヘルツ）のようである。
【０１４８】
10+9については G（ギガ）で、 GHz（ギガヘルツ）のようである。
【０１４９】
　ユーザ変数および定数を有する別個のファイルは、拡張子「 .usrv」を有する。いくつ
かのグローバルな定数を有するファイルの一例を以下に示す。いくつかの変数を有するフ
ァイルは、後で示す。

--
File limits.usrv
--

Version 1.0.0;

#
This UserVars collection declaration declares a set of
globally available variables and constants.
#
UserVars
{
　　 # Some constant Integer globals used in various places.
　　 Const Integer　　　　 MaxInteger = 2147483647;
　　 Const Integer　　　　 MinInteger = -2147483648;

　　 # Smallest value such that 1.0 + Epsilon != 1.0
　　 Const Double　　 Epsilon = 2.2204460492503131e-016;

10

20

30

40

50

(31) JP 3939336 B2 2007.7.4

倍

　　 # Some important constants related to Double
　　 Const Double MaxDouble = 1.7976931348623158e+308;
　　 Const Double MinDouble = - MaxDouble;
　　 Const Double ZeroPlus = 2.2250738585072014e-308;
　　 Const Double ZeroMinus = - ZeroPlus;
　　
}
【０１５０】
　　上で宣言されたユーザ変数のセットは、「＝」の左の変数の定義と考えられる。その
結果、変数または定数の定義が一度出現することが好ましく、それは初期化されなければ
ならない。
【０１５１】
　先に述べたように、定数は一度定義されたら変わるべきではない。定数に結び付けられ
ている式は、先に定義された定数とリテラル（ literal）な値とを含み得る。一方、変数
は APIを介して変えることができる。変数に結び付けられた式は、先に定義された変数、
定数およびリテラルな値を含み得る。
【０１５２】
　各変数は、ランタイムで維持される式オブジェクトに結び付けられている。これは、ラ
ンタイムでの変数に関連している式を変更し、全ての変数を再評価する可能性を提供する
。式オブジェクトは、変数または定数の定義の右辺の分解された形である。ある実施形態
において、ランタイムでの定数を変更することについては何の機構も提供されない。定数
の値は、好ましくは、コンパイル時間において固定されている。
【０１５３】
　グローバルを有するこのようなファイルはいくつでも、テストプランのインポートクロ
ージャ中に存在することができる。上記グローバルのファイルが数字の制限のセットであ
るとき、工学測定単位と、いくつかのランダムなユーザ変数を用いた工学のグローバルの
セットがこれである。

File myvars.usrv

Version 0.1;

#
This declares a UserVars collection of some engineering
globals.
#
UserVars MyVars
{
　　 # Engineering quantities.
　　 Const Voltage VInLow = 0.0;　　　　　　 # 0 Volts
　　 Const Voltage VInHigh = 5.0;　　　　　　 # 5 Volts
　　 Const Voltage VOutLow = 400.0 mV;　　　　 # 400 milliVolts
　　 Const Voltage VOutHigh = 5.1;　　　　　　 # 5.1 Volts
　　 Const Time DeltaT = 2.0E-9;　　　　　　 # 2 nanoseconds
　　 Const Time ClkTick = 1.0ns;　　　　　　 # 1 nanosecond
　　 Const Resistance R10 = 10.0 kOhms;　　 # 10 kilo Ohms

　　 # Some variables are declared below.

10

20

30

40

50

(32) JP 3939336 B2 2007.7.4

　　 Current ILow = 1.0 mA; 　　　　　　　　　　 # 1 milliAmp
　　 Current IHigh = 2.0 mA;　　　　　　　　　　 # 2 milliAmp
　　 Power PLow = ILow * VInLow;　　　　　　 # Low power value
　　 Power PHigh = IHigh * VInHigh;　　　　 # High power value

　　 #
　　 # An array of low values for all A bus pins.
　　 # The vil for A0 will be in ABusVil[0], for A1
　　 # in ABusVil[1], and so on.
　　 #
　　 Voltage ABusVil[8] = {1.0, 1.2, Others = 1.5};
}
【０１５４】
　好ましくはコンパイラは、単位とタイプとが合っているかをチェックする。電圧×電流
が電力となるので、上記 PLowと PHighについての式をコンパイルする。しかし、以下のよ
うな命令文は典型的にはコンパイルしない。

#
Does not compile because a Current and a Voltage cannot be added
to yield a Power.
#
Power Pxxx = IHigh + VInHigh;
【０１５５】
　コンパイラは以下の特定の自動型変換を許容する。

Power Pxxx = 2;　　 # Set the power to 2.0 watts
Integer Y = 3.6;　　 # Y gets assigned 3
Power Pyyy = Y;　　 # Pyyy gets assigned 3.0 watts
Double Z = Pyyy;　　 # Pyyy gets converted to a unitless Double
【０１５６】
　ダブル、符号なし整数および整数への明示的な変換もまた許容される。

Power Pxxx = 3.5;

Explicit type conversion is allowed, but not required.
X becomes 3.5
Double X = Double(Pxxx);　　　　 # X becomes 3.5
Integer Y = Integer(Pxxx);　　　　 # Y becomes 3
【０１５７】
　無関係のタイプ間の変換も、中間のベーシックタイプへと変換することによって、可能
である。

Power Pxxx = 3.5;

Explicit type conversion is required.
Length L = Double(Pxxx);　　 # L becomes 3.5 meters
Voltage V = Integer(Pxxx);　　 # V becomes 3.0 Volts.
【０１５８】
　テストプランオブジェクトは、名前と関連する式、値およびタイプを含む集合体である
UserVar）クラスを提供する。ユーザ変数は、デフォルトユーザ変数コレクション（ Defau

10

20

30

40

50

(33) JP 3939336 B2 2007.7.4

lt User Variables Collection）、あるいは名前付きユーザ変数コレクション（ Named Us
er Variables Collection）に入ることができる。上記例でのユーザ変数（ UserVars）の
宣言は、特定の名前は有してはいないが、デフォルトのコレクションに入る。しかしなが
ら、以下のように、コレクションを明示的に名付けることもできる。

Declare X and Y in the MyVars UserVars collection.
UserVars MyVars
{
　　 Integer X = 2.0;
　　 #
　　 # Refers to the above X, and to the globally
　　 # available MaxInteger from the default
　　 # UserVars collection.
　　 #
　　 Integer Y = MaxInteger - X;
}
Declare X, Y1 and Y2 in the YourVars UserVars collection.
UserVars YourVars
{
　　 Integer X = 3.0;
　　 # Refers to the X from MyVars.
　　 Integer Y1 = MaxInteger - MyVars.X;
　　 # Refers to the X declared above.
　　 Integer Y2 = MaxInteger - X;
}
More variables being added to the MyVars collection
UserVars MyVars
{
　　 #
　　 # Refers to X and Y from the earlier declaration
　　 # of MyVars.
　　 #
　　 Integer Z = X + Y;
}
【０１５９】
　 UserVarsのコレクション内の名前の解決は以下のように進行する。
【０１６０】
　もし名前が限定されていれば――すなわち、名前がドットで区切られた２つのセグメン
トを有していれば――変数は、ドットの前のセグメントが示される名前つきのユーザ変数
コレクションからもたらされる。つまり、上の MyVars.Xは、 MyVarsコレクションにおける
Xを指している。「 _UserVars」という名前は、デフォルトユーザ変数コレクションを明示
的に示すために用いられ得る。
【０１６１】
　もし名前が限定されておらず、現コレクション内に同じ名前の定数あるいは変数があれ
ば、その名前はその定数あるいは変数になる。
【０１６２】
　そうでなければ、その名前は、デフォルトユーザ変数コレクション内の定数あるいは変
数となる。
【０１６３】
　ユーザ変数コレクションにおける定義のブロックの評価は、最初の定義から最後のもの

10

20

30

40

50

(34) JP 3939336 B2 2007.7.4

まで順に起こるものと考えることができる。これは、各変数が用いられる間に定義されて
いることを必要とするであろう。
【０１６４】
　さらに、ユーザ変数コレクションのための定義のブロックがいくつかあり、これらのそ
れぞれがいくつかの変数を定義していることもある。これらの定義ブロックの全ては、テ
ストプランにおける宣言順に評価されるものと考えることができ、各ブロックの変数もま
た宣言順でチェックされる。
【０１６５】
　最後に、いくつかのユーザ変数コレクションがあり、これらのそれぞれがいくつかの定
義ブロックに対して変数を定義していることがある。ここでも変数の全ては宣言順に初期
化されるものと考えることができる。したがって、上記例では、評価順は、 MyVars.X、 My
Vars.Y、 YourVars.X、 YourVars.Y1、 YourVars.Y2、 Myvars.Zである。
【０１６６】
　ユーザ変数コレクションが他のコレクションからの変数を用いるときには、それは、好
ましくは変数の生のデータだけを用いる。コレクションの間には、何の依存度（ dependen
cy）に関する情報も維持されていない。したがって、再評価に基づく依存度（ dependency
）は、単一のコレクションに限定することができる。
【０１６７】
　各ユーザ変数のコレクションは、 C++UserVarsクラスのインスタンスを参照する。 C++Us
erVarsクラスのデフォルトオブジェクトは、「 _UserVars」と名付けられる。名付けられ
ていない UserVars宣言における変数は、デフォルトのユーザ変数コレクションからのもの
であり、このデフォルトオブジェクトに追加される。名前付きユーザ変数コレクションに
おける変数は、その名前を有する C++UserVarsクラスのオブジェクトに追加される。上記
例では、「 Myvars」 C++オブジェクトは、結局は変数 X、 Yおよび Zを有する。

ユーザ変数のための C++
【０１６８】
　ユーザ変数は、名前の文字列、 const/varのブール代数、列挙された値としてのタイプ
、および拡張子ツリーとしての式（ expression）を有するｎタプルのコレクションとして
インプリメントされる。名前の式は、コール（ call）によって設定することができる。

　　　　 enum ElemenaryType {UnsignedIntegerT, IntegerT,
　　　　　　　　　　　　　　　　 DoubleT, VoltageT, ...};
　　　　 Status setExpression(const String& name,
　　　　　　　　　　　　　　　　 const bool isConst,
　　　　　　　　　　　　　　　　 const elementaryType,
　　　　　　　　　　　　　　　　 const Expression& expression);
【０１６９】
　タイプの式は、割り当ての右辺に対応するテキストの解析された形であるタイプである
。 UserVarsのグローバルに利用可能なインスタンスがある。例えば、 limits.usrvにおけ
るユーザ変数のセット（ページ参照）は、以下に示すコールのセットによってインプリメ
ントされる。

_UserVars.setExpression("MaxInteger", true, IntegerT,
　　　　　　　　　　　　　　 Expression(2147483647));
_UserVars.setExpression("MinInteger", true, IntegerT,
　　　　　　　　　　　　　　 Expression(-2147483648));
_UserVars.setExpression("Epsilon", true, DoubleT,
　　　　　　　　　　　　　　 Expression(2.2204460492503131e-016));
_UserVars.setExpression("MaxDouble", true, DoubleT,

10

20

30

40

50

(35) JP 3939336 B2 2007.7.4

　　　　　　　　　　　　　　 Expression(1.7976931348623158e+308));
_UserVars.setExpression("MinDouble", true, DoubleT,
　　　　　　　　　　　　　　 Expression("- MaxDouble"));
_UserVars.setExpression("ZeroPlus", true, DoubleT,
　　　　　　　　　　　　　　 Expression(2.2250738585072014e-308));
_UserVars.setExpression("ZeroMinus", true, DoubleT,
　　　　　　　　　　　　　　 Expression("- ZeroPlus"));
【０１７０】
　 myvars.usrvにおいて宣言される変数について実行されるであろう C++命令文は以下の通
りである。

myVars.setExpression("VInLow", true, VoltageT,
　　　　　　　　　　　　 Expression(0.0));
myVars.setExpression("VInHigh", true, VoltageT,
　　　　　　　　　　　　 Expression(5.0));
myVars.setExpression("DeltaT", true, TimeT,
　　　　　　　　　　　　 Expression(2.0E-9));
myVars.setExpression("ClkTick", true, TimeT,
　　　　　　　　　　　　 Expression(1.0E-9));
myVars.setExpression("R10", true, ResistanceT,
　　　　　　　　　　　　 Expression(10.0E+3));
myVars.setExpression("ILow", false, CurrentT,
　　　　　　　　　　　　 Expression(1.0E-3));
myVars.setExpression("IHigh", false, CurrentT,
　　　　　　　　　　　　 Expression(2.0E-3));
myVars.setExpression("PLow", false, PowerT,
　　　　　　　　 　　　　 Expression("ILow * VInLow"));
myVars.setExpression("PHigh", false, PowerT,
　　　　　　　　 　　　　 Expression("IHigh * VInHigh"));
myVars.setExpression("ABusVil[0]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.0));
myVars.setExpression("ABusVil[1]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.2));
myVars.setExpression("ABusVil[2]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.5));
myVars.setExpression("ABusVil[3]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.5));
myVars.setExpression("ABusVil[4]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.5));
myVars.setExpression("ABusVil[5]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.5));
myVars.setExpression("ABusVil[6]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.5));
myVars.setExpression("ABusVil[7]", false, VoltageT,
　　　　　　　　　　　　 Expression(1.5));
【０１７１】
　上記コードにおいて、式クラスは、好ましくは、式の解析された形をあらわすコンスト
ラクタ（ constructor）を有する。式は、リテラルな文字列をとって分解するコンストラ
クタと、リテラルな文字列としてだけ用いるためにリテラルな文字列を取り込む別のコン
ストラクタとを含むいくつかのコンストラクタを有している。これらは、読みやすさのた

10

20

30

40

50

(36) JP 3939336 B2 2007.7.4

めに上で指定していない追加のパラメータによって区別される。
【０１７２】
　デフォルトのユーザ変数コレクションにおけるユーザ変数は、 UserVarsクラスの _Uuser
Varsオブジェクトによって管理される。名前付きユーザ変数コレクション Xxxにおけるユ
ーザ変数は、 Xxxの名前がついた UserVarsオブジェクトによって管理される。

UserVarsのためのランタイム API
【０１７３】
　名前および式を含む C++UserVarsクラスは、これらの値をランタイムで評価し、改変す
るために、アプリケーションプログラミングインタフェース（ API）をエクスポートする
。また、 UserVarsに関連している式の改変は、いつ UserVarsが再評価されるか、および評
価の影響はどのようなものであるかという問題をも扱う。
【０１７４】
　変化の結果としての UserVarsの再評価がいつトリガされるべきであるかという問題を最
初に考える。もしそれが式に対して変更がなされたときに直ちにトリガされれば、ユーザ
は、再評価のトリガよりも前に一連の関連する変更を行うことができないであろう。した
がって、再評価は、ユーザによる明示的なコールによってトリガされる。
【０１７５】
　再評価の影響を次に考える。好ましい実施形態によると利用可能である再評価は三種類
ある。
【０１７６】
　 UserVarsコレクションの再評価は、単一の UserVarsコレクションに限定された再評価で
ある。この処理のセマンティクス（ semantics）は、このコレクションの全ての変数をも
う一度再評価することである。
【０１７７】
　 UserVarsターゲットの再評価は、単一の名前に結び付けられた式に対する変化に限定さ
れた再評価である。これは、ユーザが単一の名前の式を変更することを可能にし、この特
定の変更のみを考慮に入れた、コレクションの再評価を起こす。
【０１７８】
　 UserVarsグローバル再評価は、全ての UserVarsコレクションの再評価である。これは基
本的には、宣言の順番で UserVarsコレクションの全ての再評価のトリガとなり、極めてコ
ストがかかる。
【０１７９】
　上記再評価の全ては、 UserVarsを再評価した後に、レベル、タイミング等の従属オブジ
ェクトを再評価する。従属オブジェクトは、それが再評価を必要とすることを表している
「汚い（ dirty）」ビットを有している。 UserVarsコレクションがプログラム的に変更さ
れるといつでも、それは、全ての従属オブジェクト上で汚いビットを設定する。これが、
従属オブジェクトの再評価のトリガとなる。
【０１８０】
　まとめると、名前つきの UserVarsコレクションは、再評価の影響の問題を含むことを助
ける。再評価は通常は単一のコレクションに限定される。 UserVarsを用いる単純な方法は
、デフォルト UserVarsコレクションを用いることだけであり得る。その方法、変更するこ
との波状の効果が全ての UserVarsに起こる。この波状の効果は、いくつかの名前付き User
Varsコレクションを有することによって制限される。
【０１８１】
　複数のコレクションは、互いから変数を参照することができるが、変数に結びつけられ
た値は、使用の時間に結び付けられている。 UserVarsコレクション間には従属関係（ depe
ndency）は何も維持されていない。
　各エレメンタリタイプ Xxx（符号なし整数、電流、電圧等）について、値を得る方法は
、

10

20

30

40

50

(37) JP 3939336 B2 2007.7.4

　　 Status getXxxValue(Const String& name, Xxx& value) const;
【０１８２】
である。
【０１８３】
　値を直接設定する方法はなく、それは、式を設定するようにコールを通じて行われ、 re
evaluateCollection()へのコールが後に続くことに留意されたい。
【０１８４】
　式を取得、設定する方法である。 setExpression()のコールは、これまでに定義されて
いなかった新しい変数を定義するためにも用いられる。

　　 enum elementaryType
　　 {
　　　　 UnsignedIntegerT, IntegerT, DoubleT, VoltageT, ...
　　 };
　　 Status getExpression(const String& name,
　　　　　　　　　　　　　　 Expression& expression) const;
　　 Status setExpression(const String& name,
　　　　　　　　　　　　　　 const bool isConst,
　　　　　　　　　　　　　　 const elementaryType,
　　　　　　　　　　　　　　 const Expression& expression);
【０１８５】
　 setExpression()コールは、式が循環的な従属関係をもたらすのであれば、失敗する。
例えば、以下の 2つのコールが行われると、二番目のコールは、循環的な従属関係という
不具合で失敗する。
　　 setExpression("X", true, IntegerT, Expression("Y+1"));
　　 setExpression("Y", true, IntegerT, Expression("X+1"))
【０１８６】
これは、名前に結び付けられた値は、等式（ equation）であって、割当（ assignment）で
はないからである。変数の値が変わると、直接的、間接的に従属する名前の全てを再評価
するように方法が提供される。上記ペアのような等式は、許容されない循環的な従属関係
という結果に終わる。
【０１８７】
　この APIは、典型的には、頼まれもしない再評価はサポートしないことを留意されたい
。 setExpression()へのコールは、自動的に変数、およびそれに依存する全てのほかの変
数の再評価を引き起こすのではない。全ての変数に結び付けられた値は、 reevaluateColl
ection()へのコール（以下）が起こるまでは、変化しないままである。
　特定の名前が定数であるかどうかを判断する方法は、
　　 Status getIsConst(const String& name, bool& isConst);
であり、タイプを取得する方法は、

　　 enum ElementaryType
　　 {
　　　　 UnsignedIntegerT, IntegerT, DoubleT, VoltageT, ...
　　 };
　　 Status getType(const String& name,
　　　　　　　　　　 ElementaryType& elementaryType) const;

　 UserVarsコレクションの再評価方法は

static Status reevaluateAllCollections();

10

20

30

40

50

(38) JP 3939336 B2 2007.7.4

【０１８８】
である。
【０１８９】
　クラスは、全ての変数に関連している等式、ならびに従属関係を維持する。この方法が
呼び出されると、変数の全ては再評価されるであろう。
　 UserVarsターゲットの再評価方法は、

Status reevaluateTargeted(const String& var);
【０１９０】
　クラスは、全ての変数に関連する式、ならびにそれらの従属関係を維持する。この方法
が呼び出されると、名前つきの変数、およびそれに依存するものの全てが再評価される。
　 UserVarsグローバル再評価方法は、

static Status reevaluateAllCollections();
【０１９１】
　クラスは、全ての変数に関連する式、ならびにそれらの従属関係を維持する。この方法
が呼び出されると、 reevaluateCollection()が全ての UserVarsコレクション上に指定され
ていない順序で呼び出される。
　特定の名前が定義されているかどうかを判断する方法は、

Status getIsDefined(const String& name, bool& isDefined) const;
【０１９２】
である。
　現在定義されているユーザ変数の全てを判断する方法は、

Status getNames(StringList& names) const;
【０１９３】
である。
　現在定義されている変数を削除する方法は、

Status deleteName(const String& name);
【０１９４】
である。
　任意の変数または定数に依存する変数および定数のリストを取得する方法は、

Status getDependents(const String& name, StringList& dependents);
【０１９５】
である。

仕様セット
【０１９６】
　仕様（ Specification）セットは、セレクタ（ Selector）に基づく値をとる変数のコレ
クションを供給するために用いられる。例えば、ミニー、ミッキー、グーフィーおよびデ
イジーというセレクタを用いる以下の仕様セットを考える。

File Aaa.spec

Version 1.0;

10

20

30

40

50

(39) JP 3939336 B2 2007.7.4

Import Limits.usrv;

SpecificationSet Aaa(Minnie, Mickey, Goofy, Daisy)
{
　　 Double xxx = 1.0, 2.0, 3.0, 4.0;
　　 Integer yyy = 10, 20, 30, 40;
　　 Integer zzz = MaxInteger - xxx,
　　　　　　　　　　 MaxInteger - xxx - 1,
　　　　　　　　　　 MaxInteger - xxx - 2,
　　　　　　　　　　 MaxInteger - xxx;

　　 # The following declaration associates a single
　　 # value, which will be chosen regardless of the
　　 # selector. It is equivalent to:
　　 #　　 Integer www = yyy + zzz, yyy + zzz, yyy + zzz, yyy + zzz
　　 Integer www = yyy + zzz;
}
【０１９７】
　セレクタグーフィーを有する上記仕様セットは、以下の関連付けを行う。

xxx = 3.0;
yyy = 30;
zzz = MaxInteger - xxx - 2;
www = yyy + zzz;
【０１９８】
　仕様セット上でのセレクタの設定の処理は、後で、テストを説明するときに述べる。
【０１９９】
　構文的には、仕様セットは、変数の定義（上記例では xxx、 yyy、 zzzおよび www）のリス
トと同様に、セレクタ（上記例ではミニー、ミッキー、グーフィーおよびデイジー）のリ
ストである。変数の定義は、セレクタのリストであるか、単一の式を備えているかのどち
らかである式のリストを含む。
【０２００】
　概念的には、仕様セットは、式のマトリクスであると考えることができ、その列がセレ
クタ、その行が変数、エントリが式である。特定のセレクタ（列）は、各変数（行）を特
定の式（エントリ）に結びつける。もしリストが単一の式を有していれば、それはセレク
タがある回数だけ反復される式を有する行を表している。
【０２０１】
　仕様セットは、 2つの別個の状況において登場する。それらは、「 .spec」ファイルにお
いて別々に宣言され得、いずれかの場合においてそれらは上記のように登場する。これら
は名前つきの使用セット（ named specification set）である。そうでなければ、ローカ
ルな仕様セットをテスト条件グループ内で宣言することができる。このような宣言におい
て、仕様セットは、名前を与えられない。それは、ローカルな仕様セットであり、それを
取り巻くテスト条件グループにとってのみ重要性を有する。
【０２０２】
　名前つき仕様セットは、名前つきユーザ変数コレクションの模倣とされてもよい。上記
仕様セットは、 Aaaという名前の UserVarsコレクションとして模倣され得、これは xxx[ミ
ニー]、 xxx[ミッキー]、 xxx[グーフィー]、 xxx[デイジー]、 yyy[ミニー]等と続く式を有
する。特定のセレクタ（ミッキ－としよう）がテストの状況において選ばれると、 xxx、 y
yyおよび zzzの値が変数名および仕様セット名から得られる。

10

20

30

40

50

(40) JP 3939336 B2 2007.7.4

【０２０３】
　テスト状況グループは、多くても一つの仕様セットを有することができ、これはローカ
ルな仕様セットか、名前つき仕様セットへの参照であるかである。ローカルな仕様セット
は、テスト条件グループの状況においてのみ現れ、明示的に指定された名前はもたない。
このような仕様セットは、取り囲むテスト条件グループの名前によって定義される暗黙の
名前を有する。いくつかの仕様セットおよびいくつかの UserVarsコレクションが目に見え
るような点でテスト状況グループにおいて名前を解決するために、以下のルールが適用さ
れる。
【０２０４】
　１．名前が限定されていれば、それは名前つきユーザ変数コレクションで解決されなけ
ればならない。
【０２０５】
　２．名前が限定されていなければ、その名前は、テスト条件グループにおいて宣言され
ていればローカルな仕様セットであり、テスト条件グループで参照されていれば名前つき
仕様セットである。
【０２０６】
　３．名前が先のルールで解決されなければ、それはデフォルトユーザ変数コレクション
に決定される。
【０２０７】
　これらのルールを示すために、テスト条件グループ（後述する）を用いている以下の例
を考える。

Version 1.2.3;
Import limits.usrv;　　 # Picks up the limits UserVars file above.
Import aaa.spec; 　　 # Picks up the Specification Set AAA above.

TestConditionGroup TCG1
{
　　 SpecificationSet(Min, Max, Typ)
　　 {
　　　　 vcc = 4.9, 5.1, 5.0;
　　 }

　　 # Rule 1: Resolution in a named user variables collection.
　　 # A reference to MyVars.VInLow refers to VInLow from MyVars.

　　 # Rule 2: Resolution in a local specification set.
　　 # A reference to "vcc" here will resolve in the context
　　 # of the local specification set above.

　　 # Rule 3: Resolution in default user variables collection.
　　 # A reference to "MaxInteger" here will resolve to limits.usrv.

　　 # Error: Resolution of xxx
　　 # A reference to xxx does not resolve because it is neither in
　　 # the local specification set, nor in limits.usrv.

　　 # Error: Resolution of Aaa.xxx
　　 # Looks for a named UserVars collection named Aaa. The named
　　 # specification set does not qualify.

10

20

30

40

50

(41) JP 3939336 B2 2007.7.4

}

TestConditionGroup TCG2
{
　　 SpecificationSet Aaa;　　 # References the imported specification set

　　 # Rule 1: Resolution in a named user variables collection.
　　 # A reference to MyVars.VInLow refers to VInLow from MyVars.

　　 # Rule 2: Resolution in a named specification set.
　　 # A reference to "xxx" here will resolve in the context
　　 # of the local specification set Aaa above.

　　 # Rule 3: Resolution in default user variables collection.
　　 # A reference to "MaxInteger" here will resolve to limits.usrv.

　　 # Error: Resolution of vcc
　　 # A reference to vcc does not resolve because it is neither in
　　 # the named specification set Aaa, nor in limits.usrv.

　　 # Error: Resolution of Aaa.xxx
　　 # Looks for a named UserVars collection named Aaa. The named
　　 # specification set does not qualify.
}
【０２０８】
　仕様セットにおける名前の解決（上のルール）は、そのセットのセレクタが名前の解決
が必要とされるときに有効とされていることを要する。これは、テスト条件グループは、
セレクタを指定することによってテストにおいて参照されるという事実によって強制され
る。

仕様セットのための C++
【０２０９】
　上記ルールを用いて、仕様セットを C++SpecificationSetクラスによってインプリメン
トすることができる。 SpecificationSetクラスは、セレクタ用の余分な文字列（ String）
パラメータをのぞいては、 UserVarsクラスと本質的に同じ APIを有している。したがって
、この APIは詳細には説明しない。
【０２１０】
　全ての名前つきの仕様セットは、好ましくは、その名前の C++オブジェクトに関連付け
られている。テスト条件グループの状況では、ローカルな仕様セットは、そのテスト条件
グループに固有の名前を有する。それが定義されているテスト条件グループの状況外でロ
ーカルな仕様セットの変数を参照することは不正である。

レベル
【０２１１】
　ピンおよびピングループのパラメータを指定するためにレベル（ Level）を用いる。そ
れは以下の形態の宣言のコレクションである。

<pin-or-pin-group-name>
{

10

20

30

40

50

(42) JP 3939336 B2 2007.7.4

　　 <pin-param-1> = xxx;
　　 <pin-param-2> = yyy;
　　 ...
}
【０２１２】
　このような宣言は、名前つきのピンまたはピングループのさまざまなパラメータの設定
を指定する。例えば、このような命令文は、以下の例に示すように、 InputPinsグループ
における全てのピンのための VIL値を設定するために用いられ得る。

File pentiumlevels.lvl

Version 1.0;

Import pentium3resources.rsc;
Import pentium3pins.pin;

Levels Pentium3Levels
{
　　 #
　　 # Specifies pin-parameters for various pins and
　　 # pin groups using globals and values from
　　 # the specification set.
　　 #
　　 # The order of specification is significant.
　　 # Pin parameters will be set in order from
　　 # first to last in this Levels section, and
　　 # from first to last for each pin or pin-group
　　 # subsection.
　　 #
　　 # From the imported pin description file pentium3pins.pin,
　　 # the InPins group is in the "dpin" resource. From the
　　 # imported resource definition file pentium3resources.rsc,
　　 # the "dps" resource has parameters named VIL and VIH.
　　 #
　　 InPins { VIL = v_il; VIH = v_ih + 1.0; }

　　
　　 # The following statement requires a delay of 10 uS after
　　 # the call to set the InPins levels. Actual delay will be
　　 # a small system defined range around 10.0E-6:
　　 #　　　　 10.0E-6 - delta ＜ = actual ＜ = 10.0E-6 + delta
　　 Delay 10.0E-6;

　　 #
　　 # For the OutPins, the levels for the parameters
　　 # VOL and VOH are specified.
　　 #
　　 OutPins { VOL = v_ol / 2.0; VOH = v_oh; }

10

20

30

40

50

(43) JP 3939336 B2 2007.7.4

　　 # The clock pin will have special values.
　　 Clock { VOL = 0.0; VOH = v_ih / 2.0; }
　　
　　 # A Delay of 10 uS after the call to set Clock levels.
　　 # This is a minimum delay, that is guaranteed to be for
　　 # at least 10.0 uS, though it may be a little more:
　　 #　　　　 10.0E-6 ＜ = actual ＜ = 10.0E-6 + delta
　　 MinDelay 10.0 uS;

　　 #
　　 # The PowerPins group is in the "dps" resource. Pins of this
　　 # pin group have special parameters:
　　 #　　 PRE_WAIT specifies the time to wait after voltage
　　 #　　　　 reached its final value to start pattern
　　 #　　　　 generation. Actual wait time will be a small
　　 #　　　　 system defined range around PRE_WAIT (see)
　　 #　　 POST_WAIT specifies the time to wait after pattern
　　 #　　　　 generation ends to shut down the power. Actual
　　 #　　　　 wait time will be a small system defined range
　　 #　　　　 around PRE_WAIT (see).
　　 #
　　 PowerPins
　　 {
　　　　 PRE_WAIT = 10.0 ms;
　　　　 POST_WAIT = 10.0 ms;

　　　　 # VCC reaches its final value of 2.0 V from its
　　　　 # present value in a ramp with a Voltage Slew Rate
　　　　 # of ± .01 Volts per Second.
　　　　 VCC = Slew(0.01, 2.0 V);
　　 }
}

Levels Pentium4Levels
{
　　 # ...
}
【０２１３】
　上でわかるように、各レベルブロックは、好ましくは、多くのレベルアイテムから構成
され、それらのそれぞれは、ピンまたはピングループのためのパラメータを指定する。各
レベルアイテムは、リソースパラメータの数を指定することができる。これらのレベルの
値を設定するためのランタイムセマンティクス（ semantics）は、以下の通りである。
【０２１４】
　レベルブロックのレベルアイテムは、宣言順に処理される。 2つ以上のレベルアイテム
で起こるピンはいずれも、複数回処理される。単一のパラメータについて値の複数の仕様
が仕様順に保持され、適用されなければならない。
【０２１５】
　レベルアイテムにおけるリソースパラメータは、それらが指定される順番で処理される

10

20

30

40

50

(44) JP 3939336 B2 2007.7.4

。
【０２１６】
　 Delay命令文は、次のレベルグループの設定に先立って、レベル設定の処理をほぼ指示
された期間の間休止させる。実際の待機時間は、小さなシステムでは、指定された遅延の
付近の定義された範囲である。したがって遅延がｔ秒であれば、実際の遅延は以下を満足
する。
　　 t - Δ t ＜ =　実際の待機　＜ = t + Δ t
【０２１７】
　 Delayの命令文は、 Levelsの仕様をいくつものサブシーケンスに分割し、それらのそれ
ぞれは、処理のための別々のテスト条件メモリ設定を必要とする。
【０２１８】
　 MinDelay命令文は、レベルの次のグループの設定に先立って、レベル設定の処理を少な
くとも指定された期間休止させる。実際に待機時間は、小さなシステムにおいては、 M指
定された最小の遅延の最小値を有する定義された範囲である。したがって、最小の遅延を
ｔ秒とすると、実際の遅延は以下を満足する。
　　 t ＜ =　実際の待機　＜ = t + Δ t
【０２１９】
　 MinDelay命令文は、 Levels仕様をいくつものサブシーケンスに分割し、それらのそれぞ
れは、処理のための別々のテスト条件メモリ設定を必要とする。
【０２２０】
　それぞれのピン名またはピングループ名は、ピン記述ファイル（接尾辞 .pin）におい
て正確に一つのリソースにおいて指定され、したがって、リソースファイル（接尾辞 .rs
c）において指定される実行可能なリソースパラメータのあるセットを有している。名前
つきの全てのパラメータは、このセットの実行可能なリソースパラメータの間からのもの
でなければならず、それらの値を設定するのに用いられる式と同じエレメンタリタイプの
ものでなければならない。リソースパラメータの名前およびタイプについての情報は、リ
ソースファイルからもたらされる。
【０２２１】
　リソースファイル Resource.rscは、暗黙のうちにインポートされ、 dpinおよび dpsのよ
うな標準的なリソースのパラメータの名前およびタイプをテスタに与える。
【０２２２】
　リソースパラメータは、 UserVarsを用いることのできる割り当てられた式、および名前
つきの仕様セットあるいは現在見えているローカルな仕様セットからの値である。
【０２２３】
　 Dpsピンは、特別なパラメータ PRE_WAITおよび POST_WAITを有する。 PRE_WAITパラメータ
は、電力ピンがその到達先の電圧に達した時間からパターン生成がスタートすることがで
きる時間までに過ぎる必要がある時間を指定する。 POST_WAITパラメータは、パターン生
成が停止した時間から電源ピン遮断される時間までに過ぎる必要がある時間を指定する。
【０２２４】
　また、 Dpsピンは、どのようにして電圧パラメータがその最終値に到達するかも指定す
る。それらは、他のピンパラメータのように、それを単に等式によって指定する。その場
合、ハードウェアがそれを許すときに最終値に到達する。また、それらは、スルー（ Slew
）命令文を用いてもそれを指定する。スルー命令文は、電源電圧がその初期値から指定さ
れた絶対電圧スルーレートを有する傾斜で最終値に到達することを指定する。

レベルのための C++
【０２２５】
　上記ルールを用いて、以下の動作をサポートする C++レベルオブジェクトを書くことが
できる。

10

20

30

40

50

(45) JP 3939336 B2 2007.7.4

　　 Status setParameter(const String& pinOrPinGroupName,
　　　　　　　　　　　　　　 const String& parameterName,
　　　　　　　　　　　　　　 ElementaryType elementaryType,
　　　　　　　　　　　　　　 const Expression& Expression);
【０２２６】
という動作がある。
【０２２７】
　この動作は、式をピンまたはピングループのパラメータに結びつける。例えば、 dpin.I
nPins VIH値は、以下によって設定される。

　　 setParameter(″ InPins″ , ″ VIH″ , VoltageT,
　　　　　　　　　　 Expression(″ v_ih + 1.0″);
【０２２８】
　この動作は、レベルオブジェクトにおける全ての宣言について何回か呼び出される。

Status assignLevels(const String& selector);
which will go through and issue all the pre-determined module level interfaces
to assign all the levels of parameters in specification order, as described earl
ier. The selector parameter is used to resolve names in the expressions accordi
ng to the rules specified earlier.
【０２２９】
という動作がある。
【０２３０】
　これは、先に述べたように仕様順でパラメータのレベルの全てを割り当てるために、所
定のモジュールレベルインタフェースの全てを通り抜け、発行する。セレクタパラメータ
は、先に指定されたルールに従って、式において名前を解決するために用いられる。

テスト条件グループ
【０２３１】
　テスト条件グループサブ言語は、仕様、タイミングおよびレベルの記述を一緒にパッケ
ージ化する。タイミングオブジェクトはしばしばパラメータを用いて指定される。さまざ
まなパルスの立ち上がり・立ち下がりエッジを指定するために、タイミングにおいてパラ
メータを用いることができる。同じように、さまざまな電圧レベルの最大、最小および典
型的な値を指定することによってレベルをパラメータ化することができる。テスト条件グ
ループ（ TCG）オブジェクトは、これらの仕様に基づいて、タイミングおよびレベルの指
定とインスタンス化とを一括して扱う。
【０２３２】
　 TestConditionGroupの宣言は、オプションである SpecificationSetを含んでいる。 Spec
ificationSetの宣言は、インラインされた（かつ名前がつけられていない）ローカルな Sp
ecificationSetであってもよく、あるいは、どこかで宣言された名前つきの Specificatio
nSetへの参照であってもよい。 TCGの宣言におけるオプション的な SpecificationSetの宣
言の後には、少なくとも一つのレベルまたはタイミングの宣言が続く。それは、どのよう
な順番でもレベルおよびタイミングの両方を有することができる。しかしながら、２つ以
上のレベルおよびタイミングの宣言を有することは認められていない。これらの制限事項
は、構文的に強化される。
【０２３３】
　 TCGにおける仕様セットの宣言は、名前をもたない点以外は、別に宣言された仕様セッ
トと同一である。その名前は、暗黙のうちには取り囲む TCGの名前である。タイミングの
宣言は、指定されたタイミングファイルからのタイミングオブジェクトの単一の宣言を包
含している。テスト条件グループを有するファイルの一例がこれである。

10

20

30

40

50

(46) JP 3939336 B2 2007.7.4

File myTestConditionGroups.tcg

Version 0.1;

Import pentiumlevels.lvl;
Import edges.spec;
Import timing1.tim;
Import timing2.tim;

TestConditionGroup TCG1
{
　　 # This Local SpecificationSet uses user-defined selectors
　　 # "min", "max" and "typ". Any number of selectors with any
　　 # user defined names is allowed.
　　 #
　　 # The specification set specifies a table giving values for
　　 # variables that can be used in expressions to initialize
　　 # timings and levels. The specification set below defines
　　 # values for variables as per the following table:
　　 # min max typ
　　 #　　 v_cc 2.9 3.1 3.0
　　 #　　 v_ih vInHigh + 0.0　　 vInHigh + 0.2 vInHigh + 0.1
　　 #　　 v_il vInLow + 0.0 vInLow + 0.2 vInLow + 0.1
　　 # ...
　　 # A reference such as "vInHigh" must be previously defined
　　 # in a block of UserVars.
　　 #
　　 # Thus, if the "max" selector was selected in a functional
　　 # test, then the "max" column of values would be bound to
　　 # the variables, setting v_cc to 3.1, v_ih to vInHigh+2.0
　　 # and so on.
　　 #
　　 # Note that this is a local specification set, and has no
　　 # name.
　　 SpecificationSet(min, max, typ)
　　 {
　　　　 # Minimum, Maximum and Typical specifications for
　　　　 # voltages.
　　　　 Voltage v_cc = 2.9, 3.1, 3.0;
　　　　 Voltage v_ih = vInHigh + 0.0,
　　　　　　 　　　　　　 vInHigh + 0.2,
　　　　　　 　　　　　　 vInHigh + 0.1;
　　　　 Voltage v_il = vInLow + 0.0,
　　　　　　　　　　　　 vInLow + 0.2,
　　　　　　　　　　　　 vInLow + 0.1;

　　　　 # Minimum, Maximum and Typical specifications for

10

20

30

40

50

(47) JP 3939336 B2 2007.7.4

　　　　 # leading and trailing timing edges. The base
　　　　 # value of 1.0E-6 uS corresponds to 1 picosecond,
　　　　 # and is given as an example of using scientific
　　　　 # notation for numbers along with units.
　　　　 Time t_le = 1.0E-6 uS,
　　　　　　　　　　 1.0E-6 uS + 4.0 * DeltaT,
　　　　　　　　　　 1.0E-6 uS + 2.0 * DeltaT;
　　　　 Time t_te = 30ns,
　　　　　　　　　　 30ns + 4.0 * DeltaT,
　　　　　　　　　　 30ns + 2.0 * DeltaT;
　　 }

　　 # Refers to the Pentium3Levels imported earlier. It
　　 # is one of possibly many levels objects that have been
　　 # imported from the above file.
　　 Levels Pentium3Levels;

　　 # Refers to file timing1.tim containing the single
　　 # timing Timing1. The filename should be quoted if
　　 # it has whitespace characters in it.
　　 Timings Timing1;
}

Another test condition group
TestConditionGroup TCG2
{
　　 # ClockAndDataEdgesSpecs is a specification set which
　　 # is available in the edges.specs file. Assume it has
　　 # the following declaration:
　　 #　　 SpecificationSet ClockAndDataEdgesSpecs(min, max, typ)
　　 #　　 {
　　 #　　　　 Time clock_le = 10.00 uS, 10.02 uS, 10.01 uS;
　　 #　　　　 Time clock_te = 20.00 uS, 20.02 uS, 20.01 uS;
　　 #　　　　 Time data_le = 10.0 uS, 10.2 uS, 10.1 uS;
　　 #　　　　 Time data_te = 30.0 uS, 30.2 uS, 30.1 uS;
　　 #　　 }
　　 # A SpecificationSet reference to this named set is below:
　　 SpecificationSet ClockAndDataEdgesSpecs;

　　 # An inlined levels declaration. Since the associated
　　 # specification set (above) does not have variables such
　　 # as VInLow, VInHigh, VOutLow and VOutHigh, they must
　　 # resolve in the default UserVars collection.
　　 Levels
　　 {
　　　　 InPins { VIL = VInLow; VIH = VInHigh + 1.0; }
　　　　 OutPins { VOL = VOutLow / 2.0; VOH = VOutHigh; }
　　 }

　　 # This Timing is from the file "timing2.tim". The timings

10

20

30

40

50

(48) JP 3939336 B2 2007.7.4

　　 # will need the leading and trailing edge timings for clock
　　 # and data as specified in the above specification set.
　　 Timings Timing2;
}
【０２３４】
　上記例においては、テスト条件グループ TCG１は、「 min」、「 typ」および「 max」とい
う名前の３つのセレクタを有する仕様セットを記述している。異なったセレクタがいくつ
あってもよい。仕様セットのボディの中には、変数 v_il、 v_ih、 t_leおよび t_teが、セレ
クタに対応する、値の３倍で初期化されている。したがって上記例では、セレクタ「 min
」を有する TCGIのインスタンスは、変数 v_ilを第一の数値（ vInputLow+0.0）に結びつけ
る。これは、仕様セット用のセレクタがユーザ定義のものであり、どのような数のセレク
タも許されるということの繰り返しを行う。ただ一つの要件は、以下の通りである。
【０２３５】
　仕様セット用のセレクタは、固有の識別子でなければならない。
【０２３６】
　仕様セットで指定されるそれぞれの値は、セレクタのセットと 同じ数の要素の
値のアレイに関連付けられる。ｉ番目のセレクタを取り出すことによって、各値は、関連
する値のベクトルのうちのｉ番目の値に結び付けられる。
【０２３７】
　 TCGにおける仕様セットの後に、レベル宣言あるいはタイミング宣言あるいはその両方
があり得る。レベル宣言はさまざまなピンパラメータについてレベルを設定するために用
いられる。仕様セットにおいて特定された変数はこれらのレベルを設定するために用いら
れ、 TCGを初期化するために用いられるセレクタに基づいて、ピンパラメータについて異
なる実際の値を動的に結びつけることを許容する。
【０２３８】
　これを例示するために、セレクタ「 min」を有効にするテストを考える。ページに示さ
れた仕様セット Pentium3Levelsを参照すると、 InPinsグループのピンに関するピンパラメ
ータ「 VIH」は、宣言によって式 (v_ih + 1.0)に初期化される。

　　 InPins { VIL = v_il; VIH = v_ih + 1.0; }
【０２３９】
　これは、セレクタ「 min」が有効にされると、 (VinHigh + 0.0 + 1.0)を解く。同様にタ
イミングオブジェクトを、仕様セット変数の選択された値に基づいて初期化することがで
きる。タイミング宣言とレベル宣言との両方を有する必要はない。以下の例で示すように
、いずれかが単独で存在することもできるし、両方がどんな順番で存在することもできる
。

File LevelsOnlyAndTimingsOnly.tcg

Version 0.1;

A Levels-only Test Condition Group.
TestConditionGroup LevelsOnlyTCG
{
　　 SpecificationSet(Min, Max, Typ)
　　 {
　　　　 Voltage v_il = 0.0, 0.2, 0.1;
　　　　 Voltage v_ih = 3.9, 4.1, 4.0;

10

20

30

40

50

(49) JP 3939336 B2 2007.7.4

きっちり

　　 }

　　 # An inlined levels declaration. Since the associated
　　 # specification set (above) does not have variables such
　　 # as VInLow, VInHigh, VOutLow and VOutHigh, they must
　　 # resolve in the default UserVars collection.
　　 Levels
　　 {
　　　　 InPins { VIL = v_il; VIH = v_ih + 1.0; }
　　　　 OutPins { VOL = v_il / 2.0; VOH = v_ih; }
　　 }
}

A Timings-only Test Condition Group
TestConditionGroup TimingsOnlyTCG
{
　　 SpecificationSet(Min, Max, Typ)
　　 {
　　　　 Time t_le = 0.9E-3, 1.1E-3, 1.0E-3;
　　 }

　　 Timings Timing2;
}
【０２４０】
　しかしながら、 TCGにおいては２つ以上のタイミングおよび２つ以上のレベルがあって
はならないことに留意されたい。したがって、まとめると、タイミングまたはレベルの少
なくとも一つがなければならず、それぞれは多くても一つでなければならない。

テスト条件
【０２４１】
　テスト条件（ TestCondition）オブジェクトは、 TCGを具体的なセレクタに結びつける。
上で示すように TCGが一旦宣言されると、以下に示すようにテスト条件（ TestCOndition）
オブジェクトを宣言することができる。

TestCondition TCMin
{
　　 TestConditionGroup = TCG1;
　　 Selector = min;
}

TestCondition TCTyp
{
　　 TestConditionGroup = TCG1;
　　 Selector = typ;
}

TestCondition TCMax
{
　　 TestConditionGroup = TCG1;

10

20

30

40

50

(50) JP 3939336 B2 2007.7.4

　　 Selector = max;
}
【０２４２】
テスト条件は以下のテーブルで宣言される。
#
Declare a FunctionalTest "MyFunctionalTest" that refers to three
Test Condition Group instances.
#
Test FunctionalTest MyFunctionalTest
{
　　 # Specify the Pattern List
　　 PList = pat1Alist;
　　 # Any number of TestConditions can be specified:
　　 TestCondition = TCMin;
　　 TestCondition = TCMax;
　　 TestCondition = TCTyp;
}

TCG（テスト条件グループ）における名前の解決
【０２４３】
　テスト条件グループにおける名前の解決は先に論じた。 、これらのルールを反復
し、以下にもう一度示す。
【０２４４】
　１．もし名前が限定されていれば（ページ参照）、それは名前つきユーザ変数コレクシ
ョンにおいて解決されなければならない。
【０２４５】
　２．もし名前が限定されていなければ、その名前は、テスト条件グループで宣言されて
いればローカルな仕様セットで解決され、それがテスト条件グループで参照されていれば
名前つき仕様セットで解決される。
【０２４６】
　３．もし名前が上記ルールで解決されなければ、デフォルトユーザ変数コレクションで
解決される。

TCGランタイム
【０２４７】
　テスト条件グループは、以下のランタイムセマンティクスを有する。
【０２４８】
　テスト（機能テスト（ FunctionalTest）等）は、インスタンス化されたテスト条件（ Te
stCondition）を用いて、その仕様セット（ SpecificationSet）からの特定のセレクタを
有する TCGを参照する。このセレクタは、仕様セット（ SpecificationSet）中の各変数を
、選ばれたセレクタに関連する値に結びつける。そしてこの変数の値への結びつけは、レ
ベルおよびタイミングを決定するのに用いられる。
【０２４９】
　テスト条件グループ（ TestConditionGroup）におけるパラメータレベルは、好ましくは
、レベルブロックにおいて提示される順番で、順次設定される。したがって、 Pentium3Le
velsブロックにおいては、パラメータレベルが設定される順番は次のようになる（表記の
仕方：＜リソース名＞．＜リソースパラメータ＞）。

InputPins.VIL
InputPins.VIH

10

20

30

40

50

(51) JP 3939336 B2 2007.7.4

しかし

OutputPins.VIL
OutputPins.VIH
Clock.VOL
Clock.VOH
【０２５０】
　このシーケンス順は、テストライターが電源の明示的な電力シーケンスを制御すること
を可能にする。さらに、もしレベルアイテムが、ピンについての同じピンパラメータの名
前を挙げながら二度登場すれば、そのピンパラメータは二度設定される。これはプログラ
ム的にも起こることができる。
　もしパラメータがスルー（ Slew）命令文

VCC = Slew(0.01, 2.0 V);
【０２５１】
によって設定されれば、それは、 VCCが現在の値から、 1秒あたり± 0.01の電圧スルーレー
トを有する傾斜で最終値 2.0ボルトに達するということを意味する。
【０２５２】
　また、仕様セット変数は、 TCGにおけるタイミングオブジェクトにも渡される。そして
タイミングオブジェクトは、選択された変数に基づいて初期化される。このようなメカニ
ズムは、例えば、波形の立ち上がり・立ち下がりエッジを指定することによって、タイミ
ングオブジェクトをカスタマイズするために用いられることができる。

TCGのための C++
【０２５３】
　上記ルールを用いて、テスト条件グループを C++TestConditionGroupクラスにおいて宣
言することができ、次のようにそれを初期化することができる。
　 TestConditionGroupメンバ関数

Status setSpecificationSet(SpecificationSet *pSpecificationSet);
【０２５４】
に対してコールが行われる。これは、 TestConditionGroupについて仕様セットを設定する
ものである。これは、ローカル仕様セットか、名前つきの仕様セットか、あるいはヌル（
何もなければ）であり得る。
　 TestConditionGroupメンバ関数

Status setLevels(Levels *pLevels);
【０２５５】
に対してコールが行われる。これは、 TestConditionGroupについてレベルオブジェトを設
定するものである。これは、ローカルに宣言されたレベルオブジェクトか、外部で宣言さ
れたレベルオブジェクト化、あるいはヌル（何もなければ）であり得る。
　 TestConditionGroupメンバ関数

Status setTimings(Timings *pTimings);
【０２５６】
に対してコールが行われる。これは、 TestConditionGroupについてタイミングオブジェク
トを設定するものであり、外部で宣言されたタイミングオブジェクトか、ヌル（何もなけ
れば）であり得る。

ビン（ Bin）定義
【０２５７】
　ビン（ Bin）定義クラスは、ビン（ bin）、多くの DUTをテストした結果を要約するカウ

10

20

30

40

50

(52) JP 3939336 B2 2007.7.4

ンタのコレクションを定義する。ある DUTのテスト中に、その DUTは、例えば特定のテスト
の結果を示すために、いずれかのビンに設定される。テストが進行するにつれて、その DU
Tは他のビンに設定されてもよい。 DUTが最終的に設定されるビンは、そのテストの最後で
このように設定される最後のものである。この最終のビンについてのカウンタは、この DU
Tのテストの最後にインクリメントされる。ビン定義を有する別個の は、接尾辞
「 .bdefs」を有していなければならない。
【０２５８】
　ビン定義は好ましくは、階層的である。例えば、最外層のレベルでは、合格および不合
格と名付けられた２つのビンを有する PassFailBinであり得る。そして、いくつかの HardB
insが存在し得、この中には合格ビンへマップされるものも、不合格ビンへマップされる
ものもある。 HardBinは PassFailBinのリファインメントであると考えることができる。最
後に、多くの数の SoftBin、 HardBinsのリファインメントが存在し得、これらの多くは同
じハードビンへマップされる。ビンの階層を示す例を以下に示す。

File pentiumbins.bdefs

Version 1.2.3;

BinDefs
{
 # The HardBins are an outermost level of
 # bins. They are not a refinement of any other
 # bins.
 BinGroup HardBins
 {
 "3GHzPass":　　　　 "DUTs passing 3GHz";
 "2.8GHzPass":　　 "DUTs passing 2.8GHz";
 "3GHzFail":　　　　 "DUTs failing 3GHz";
 "2.8GHzFail":　　 "DUTs failing 2.8GHz";
 LeakageFail:　　 "DUTs failing leakage";
 }

 # The SoftBins are a next level of refinement.
 # SoftBins are a refinement of HardBins.
 BinGroup SoftBins : HardBins
 {
 "3GHzAllPass":
　　　　　　 "Good DUTs at 3GHz",　　 "3GHzPass";
 "3GHzCacheFail":
　　　　　　 "Cache Fails at 3GHz", "3GHzFail";
 "3GHzSBFTFail":
　　　　　　 "SBFT Fails at 3GHz",　　 "3GHzFail";
 "3GHzLeakage":
　　　　　　 "Leakages at 3GHz",　　　　 LeakageFail;
 "2.8GHzAllPass":
　　　　　　 "Good DUTs at 2.8GHz",　　 "2.8GHzPass";
 "2.8GHzCacheFail":
　　　　　　 "Cache Fails at 2.8GHz","2.8GHzFail";

10

20

30

40

50

(53) JP 3939336 B2 2007.7.4

ファイル

 "2.8GHzSBFTFail":
　　　　　　 "SBFT Fails at 2.8GHz",　　 "2.8GHzFail";
 "2.8GHzLeakage":
　　　　　　 "Leakages at 2.8GHz",　　 LeakageFail;
 }
}
【０２５９】
　上記例では、大半の基本ビンは、 BinGroup HardBinsである。 BinGroup Xは、何か他の B
inGroupが Xのリファインメントであれば、基本ビンのグループであると考えることができ
る。したがって、 BinGroup HardBinsは、 BinGroup SoftBinsが HardBinsのリファインメン
トであるので、基本ビンのグループである。 SoftBinsのビンをリーフ（ leaf）ビンと呼ぶ
。 BinGroup Yは、他の BinGroupが Yのリファインメントでなければリーフビンのグループ
であると考えることができる。
【０２６０】
　単一の BinGroup Zを有する BinDefsブロックの悪化した場合は、 Zを大半の基本ビンのグ
ループであるとともにリーフビンのグループとする。 BinGroupの名前は、範囲においては
グローバルである。何個の BinDefsブロックがあってもよいが、宣言された BinGroupは異
なっていなければならない。一つの BinDefsブロックからの BinGroupは、他の BinDefsブロ
ックの BinGroupのリファインメントであることが可能である。したがって、上記例では、
SoftBinsは、 HardBinsからの別個の BinDefsブロック中に存在し得る。しかしながら、読
みやすさのために定義される全ての BinGroupを単一の BinDefsブロックにもたせることが
強く推奨される。
【０２６１】
　ここで、上記階層を、他の BinGroupを追加することによって、何個の DUTが合格、不合
格であったかをカウントするように拡張することができる。

File pentiumbins.bdefs

Version 1.2.3;

BinDefs
{
 # The PassFailBins are an outermost level of
 # bins. They are not a refinement of any other
 # bins.
 BinGroup PassFailBins
 {
 Pass: "Count of passing DUTS.";
 Fail: "Count of failing DUTS.";
 }

 # The HardBins are a next level of refinement.
 # HardBins are a refinement of the PassFailBins,
 # as indicated by "HardBins : PassFailBins".
 BinGroup HardBins : PassFailBins
 {
 "3GHzPass":　　　　 "DUTs passing 3GHz",　　 Pass;
 "2.8GHzPass":　　 "DUTs passing 2.8GHz",　　 Pass;

10

20

30

40

50

(54) JP 3939336 B2 2007.7.4

 "3GHzFail":　　　　 "DUTs failing 3GHz",　　 Fail;
 "2.8GHzFail":　　 "DUTs failing 2.8GHz",　　 Fail;
 LeakageFail:　　 "DUTs failing leakage",　　 Fail;
 }

 # The SoftBins are a next level of refinement.
 # SoftBins are a refinement of HardBins.
 BinGroup SoftBins : HardBins
 {
 "3GHzAllPass":
　　　　　　 "Good DUTs at 3GHz",　　 "3GHzPass";
 "3GHzCacheFail":
　　　　　　 "Cache Fails at 3GHz", "3GHzFail";
 "3GHzSBFTFail":
　　　　　　 "SBFT Fails at 3GHz",　　 "3GHzFail";
 "3GHzLeakage":
　　　　　　 "Leakages at 3GHz",　　　　 LeakageFail;
 "2.8GHzAllPass":
　　　　　　 "Good DUTs at 2.8GHz",　　 "2.8GHzPass";
 "2.8GHzCacheFail":
　　　　　　 "Cache Fails at 2.8GHz","2.8GHzFail";
 "2.8GHzSBFTFail":
　　　　　　 "SBFT Fails at 2.8GHz",　　 "2.8GHzFail";
 "2.8GHzLeakage":
　　　　　　 "Leakages at 2.8GHz",　　 LeakageFail;
 }
}
【０２６２】
　このとき、大半の基本ビンは BinGroup PassFailBinsである。これらは典型的には、ど
のビンのリファインメントでもない。 BinGroup HardBinsは PassFailBinsのリファインメ
ントであり、基本ビンでもある。 SoftBinsは HardBinsのリファインメントであり、リーフ
ビンのグループである。上記例は、階層中に３つの BinGroupのみを有していた。以下は、
より複雑な階層である。

BinDefs
{
　　 # A group of most base bins
 BinGroup A { ... }

　　 # A group of base bins that is a refinement of A
 BinGroup Ax : A { ... }

　　 # A group of leaf bins that is a refinement of Ax
 BinGroup Axx : Ax { ... }

　　 # A group of base bins that is a refinement of A
 BinGroup Ay : A { ...}

　　 # A group of leaf bins that is a refinement of Ay
 BinGroup Ayy : Ay { ... }

10

20

30

40

50

(55) JP 3939336 B2 2007.7.4

　　 # A group of most base bins
 BinGroup B { ... }

　　 # A group of leaf bins that is a refinement of B
 BinGroup Bx : B { ... }
}
【０２６３】
　この例では、 Axと Ayとが Aのリファインメントであり、 Axxが Axのリファインメントであ
り、 Ayyは Ayのリファインメントである。またこの例は、 BinGroup Bおよび Bxを与え、 Bx
は Bのリファインメントである。 PassFailBins、 HardBinsおよび SoftBinsと名づけられた B
inGroupを有する上記 BinDefsの宣言は、このセクションにおいて引き続いて述べられる例
として用いられる。
　 BinGroupにおける各ビンは、
　１．　識別子あるいはリテラルな文字列である名前と、
　２．　このビンが要約しているものが何であるかを述べる記述と、
　３．　このビンがリファインメント BinGroupの中のものであれば、それがリファインメ
ントである、基本ビンとしても知られるビンの名前と
【０２６４】
を有している。
【０２６５】
　 PassFailBinsにおける２個のビンは、「 Pass」および「 Fail」と名付けられている。 Ha
rdBinsにおける５個のビンは、「 3GhzPass」、「 2.8GhzPass」、「 3GhzFail」、「 2.8Ghz
Fail」「 LeakageFail」と名付けられている。ビン名はリテラルな文字列であっても識別
子であってもよい .ビン名は BinGroup内で固有のものでなければならないが、 BinGroup間
で重複してもよい。しかし BinGroup名は、範囲においてはグローバルであり、テストプラ
ンにわたって固有のものでなければならない。
【０２６６】
　５個の HardBinsのうち、ビン「 3GhzPass」および「 2.8GhzPass」は、ともに PassFailBi
nsの「 Pass」ビンへマップされる。 HardBinsの残りは、 PassFailBinsの「 Fail」ビンにマ
ップされる。
【０２６７】
　最後に、８個の SoftBinsがある。 SBFT（ソフトビン機能テスト）および Cacheに関して 3
GHzでの２つの不合格は、「 3GhzFail」の HardBinへマップされる。同様に、 STFTおよび Ca
cheに関して 2.8GHzでの 2つの不合格は、「 2.8GhzFail」 HardBinへマップされる。漏れに
よる不合格はともに、それらが起こる速度に関わらず、同じ「 LeakageFail」 HardBinへマ
ップされる。例えば、最も粗いテスト（最外レベルでの）は、 DUTがテストに合格するか
、不合格であるかである。リファインメントは、例えば、 DUTが特定の周波数、例えば 3GH
z等でテストに合格するか、不合格であるかである。
【０２６８】
　ビンは、下で述べるように、 TestPlan FlowItemにおいて DUTに割り当てられる。 TestPl
an FlowItemは、テストを実行することから特定の結果を出すことの結果として起こるア
クションおよび変化をテストプランが記述している結果節を有している。 SetBin命令文が
起こり得るのはこの時点である。

A FlowItem Result clause. It is described later.
Result 0
{
　　 # Action to be taken on getting a 0 back from
　　 # executing a test.

10

20

30

40

50

(56) JP 3939336 B2 2007.7.4

　　 # Set the bin to SoftBin."3GHZPass" expressing that the
　　 # DUT was excellent.
　　 SetBin SoftBins."3GHzPass";
}
【０２６９】
　多くの SetBin命令文が DUTについてのテストを動作させている間に実行され得る。テス
トが最終的に完了すると、ランタイムはその DUTについて、ならびに全てのそのリファイ
ンメントについて設定される最終ビンについてのカウンタをインクリメントする。テスト
中に実行される以下の SetBin命令文を有した DUTを考える。

SetBin SoftBins."3GHzSBFTFail";
SetBin SoftBins."2.8GHzAllPass";
【０２７０】
　この DUTは、 3Ghz Cacheテストおよび漏れ（ Leakage）テストに合格したが、 SBFTテスト
には不合格であり、したがって、「 3GHzSBFTFail」ビンに割り当てられる。そして 2.8GHz
でテストされ、全てのテストに合格した。この最終的な割り当ては、以下のビンのカウン
タをインクリメントすることになる。
　１．　　 SoftBins「 2.8GhzAllPass」
　２．　　 HardBins「 2.8GhzPass」のリファインメントであるもの
　３．　　 PassFailBins「 Pass」のリファインメントであるもの
【０２７１】
　テストが完了すると、ランタイムは DUTの最終的なビン割り当てのカウンタをインクリ
メントし、それがリファインメントであるような全てのほかのビンについてもインクリメ
ントする。
【０２７２】
　 SetBin命令文は、リーフビン上においてのみ許される。基本ビンを設定することは不正
である。上記カウンタをインクリメントするセマンティクスは、
　１．　もしそのビンがリーフビンであれば、それは、 DUTのテストの最後にこのビンに
ついて SetBins命令文が実行された回数である
　２．　もしそのビンが基本ビンであれば、それは、そのビンがリファインメントである
ようなビンのカウンタの合計である
【０２７３】
ということを確実にする。
【０２７４】
　したがって、上記例では、 SoftBinsのみが SetBin命令文において許容される。 HardBins
「 LeakageFail」についてのカウンタは、 SoftBins「 3GhzLeakageFial」および SoftBins「
2.8GhzLeakageFail」についてのカウンタの合計である。ビン定義に関するいくつかのル
ールは以下の通りである。
【０２７５】
　１．　 BinDefinitions宣言は、いくつかの BinGroup宣言からなる。
【０２７６】
　２．　各 BinGroup宣言は、名前、それがリファインメントであるオプション的な BinGro
up名を有しており、それにビン宣言のブロックが続く。
【０２７７】
　３．　ビン宣言は、名前と、その後に続く宣言とを備えており、オプション的にその後
に、このビンがリファインメントであるところの基本ビンの名前が続く。
【０２７８】
　４．　ビン名は、リテラルな文字列であってもよいし、識別子であってもよい。空の文
字列は有効なビン名ではありえない。ビン名は、 BinGroup宣言における名前の間では固有

10

20

30

40

50

(57) JP 3939336 B2 2007.7.4

のものでなければならないが、同じ名前は他の BinGroup宣言で用いられ得る。
【０２７９】
　５．　もし BinGroup宣言 Xxxが他の BinGroup宣言 Yyyのリファインメントであれば、 Xxx
におけるビン宣言の全ては、 Yyyからの基本ビンの名前を宣言しなければならない。した
がって、 SoftBinsは HardBinsのリファインメントであると宣言されているので、 SoftBins
におけるビン宣言のそれぞれは、 HardBinsのビンのリファインメントである。
【０２８０】
　６． PassFailBinsのような、他の BinGroup宣言のリファインメントではないという Bin
Group宣言は、好ましくは、基本ビンを宣言していないビン宣言を有する。
【０２８１】
　ビン Bbbは、 Bbbがリファインメントであるようなビンの完全なセットであるベース（ ba
se）のセットを有する。それは正式には次のように定義される。
【０２８２】
　１．　 Aaaが Bbbの基本ビンであれば、 Aaaは Bbbのベースのセット中にある。
【０２８３】
　２． 　 Aaaのどのベースも、 Bbbのベースのセット中にもある。
【０２８４】
　 BinGroup名は TestPlanにおいてはグローバルである。
【０２８５】
　ビン名は、 BinGroupにローカルなものである。
【０２８６】
　 SetBin命令文は、リーフビンについてのみ許される。

ビン定義のための C++
【０２８７】
　上記ルールを用いて、オブジェクトタイプ BinGroupを BinDefs宣言における BinGroup宣
言のそれぞれについて構築することができる。クラス BinGroupは、サブクラス LeafBinGro
upを有する。これらの２つのクラスの動作は、 BinGroup::incrementBinが C++で保護動作
であるのに対して、 LeafBinGroup::incrementBinは C++パブリック動作であること以外は
同じである。
【０２８８】
　以下は、他のどの BinGroupのリファインメントではない BinGroupあるいは LeafBinGroup
を構築するデフォルトコンストラクタである。
　コンストラクタ：

 BinGroup(BinGroup& baseBinGroup);
 LeafBinGroup(BinGroup& baseBinGroup);
that builds a BinGroup that is a refinement of the given baseBinGroup.　
【０２８９】
これは任意の baseBinGroupのリファインメントである BinGroupを構築する。

 　　 Status addBin(const String& binName,
 　　 const String& description,
 　　 const String& baseBinName);
【０２９０】
という方法は、ビンおよびその記述を定義するためのものである。もしそれが最も基本の
ビンであれば、 baseBinNameパラメータは空の文字列でなければならない。
　ビンカウンタをインクリメントするための方法は

 　　 Status resetBin(const String& binName);

10

20

30

40

50

(58) JP 3939336 B2 2007.7.4

【０２９１】
である。この動作は、このビンについて、ならびにこのビンのベースである全てのビンに
ついてのカウンタをインクリメントする。この動作はクラス BinGroupにおいては保護され
ており、クラス LeafBinGroupにおいてはパブリックである。
　ビンカウンタをリセットする方法は、

 　　 Status incrementBin(const String& binName);
【０２９２】
である。この動作は、このビン、ならびにこのビンのベースであるすべてのビンについて
のカウンタをリセットする。
　ビンについての情報を取得する方法は、

 Status getBinDescription(const String& binName,
 String& description);
 Status getBaseBin(const String& binName,
 BinGroup* pBaseBinGroup,
 String& baseBinName);
 Status getBinValue(const String& binName,
 unsigned int& value);
【０２９３】
である。
【０２９４】
　現在定義されている全てのビン名を取得するためには、反復子が与えられる。
【０２９５】
　 TestPlanの状態は、いくつかの BinGroupメンバを含み、それぞれは各 BinGroup宣言につ
いてのものである。上記 BinDefinitionsについての C++は次のようになる。

// TestPlan constructor
TestPlan::TestPlan()
: m_PassFailBins(), // Default Constructor
 m_HardBins(&m_PassFailBins),
 m_SoftBins(&m_HardBins)
{}

// Bin initializations
m_PassFailBins.addBin("Pass", "Count of passing DUTS.","");
m_PassFailBins.addBin("Fail", "Count of failing DUTS.","");
m_HardBins.addBin("3GHzPass", "Duts passing 3GHz", "Pass");
...
【０２９６】
　 TestPlanについての状態は、未定義の BinGroup（ NULL）と m_currentBin未定義ビン名（
空の文字列）とに初期化される m_pCurrentBinGroupを含んでいる。 SetBin命令文が実行さ
れる都度、 m_pCurrentBinGroupは、コールによって示されている名前付きの BinGroupへと
変わり、 m_CurrentBinはそのグループにおける名前付きのビンに変わる。

// Translation of: SetBin SoftBins."3GHzAllPass";
pTestPlan→ setBin("SoftBins", "3GHzAllPass");
【０２９７】
テストプランが実行されると以下の呼び出しがなされる。
m_pCurrentBinGroup→ incrementBin(m_currentBin);

10

20

30

40

50

(59) JP 3939336 B2 2007.7.4

【０２９８】
これによって、このビンおよびその全てのベースビンは、それらのカウンタをインクリメ
ントさせる。
【０２９９】
　 BinGroupカウンタは、テストプランが詳述されるときにリセットされるが、テストが動
作されるたびに再度初期化されるわけではない。カウンタは、 BinGroup::resetBinへの明
示的なコールによってリセットすることができる。

Ｃ．　テストプラン
【０３００】
　テストプランは、テストプログラムの主要な構造であると考えることができる。テスト
プランはファイルをインポートすることができるとともに、同様のコンストラクトインラ
インを定義することができる。したがって、ファイルにいくつかのグローバルの任意の定
義をインポートするとともに、追加のグローバルのインラインを宣言することができる。

Ｃ１．　テストプランフローおよびフローアイテム
【０３０１】
　テストプランの重要な要素の一つはフローである。フローは、有限状態マシンをカプセ
ル化する。これは、 IFlowableオブジェクトを動作させ、それから他の FlowItemへと移行
するいくつかの FlowItemを備えている。 IFlowableを動作させることには、 IFlowableイン
タフェースをインプリメントするオブジェクトを動作させることが含まれる。 IFlowable
インタフェースをインプリメントする典型的なオブジェクトは、テストおよびフローであ
る。
【０３０２】
　したがって、フローはテストおよび他のフローを動作させ、そして他の FlowItemへと移
行する FlowItemを有している。また、これは、ユーザがカスタマイズしたルーチンを、 IF
lowableを動作させることからのさまざまなリターン結果上に呼び出す機会を提供する。
したがって、典型的にはフローは以下の形態を有する。

#
FlowTest1 implements a finite state machine for the
Min, Typ and Max flavors of MyFunctionalTest1. On
success it tests Test1Min, Test1Typ, Test1Max
and then returns to its caller with 0 as a successful
status. On failure, it returns 1 as a failing status.
#
Assume that the tests MyFunctionalTest1Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure).
#　　　　　　　　　　 Result 0　　　　 Result 1　　　　 Result 2
#　　 Test1Min　　　　 Test1Typ　　　　 return 1　　　　 return 1
#　　 Test1Typ　　　　 Test1Max　　　　 return 1　　　　 return 1
#　　 Test1Max　　　　 return 0　　　　 return 1　　　　 return 1
#
Flow FlowTest1
{
　　 FlowItem FlowTest1_Min MyFunctionalTest1Min
　　 {
　　　　 Result 0
　　　　 {

10

20

30

40

50

(60) JP 3939336 B2 2007.7.4

　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 GoTo FlowTest1_Typ;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 Return 1;
　　　　 }

　　　　 # This result block will be executed if
　　　　 # MyFunctionalTest1Min returns any of
　　　　 # 2, 5, 6, 7, -6, -5 or -4
　　　　 Result 2, 5:7, -6:-4
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 Return 1;
　　　　 }
　　 }
　　
　　 FlowItem FlowTest1_Typ { ... }
　　 FlowItem FlowTest1_Max { ... }
}
【０３０３】
　フロー FlowTest1の動作は次の通りである。
【０３０４】
　１．　 FlowItem FlowTest1_Minを実行することで始まる。
【０３０５】
　２． 　 FlowTest1_Minは機能テスト MyFunctionalTestMinを動作させる。このテストの
詳細は、完全なテストプランを以下で提示するときに、与えられる。
【０３０６】
　３．　このテストを動作させることで９個の結果、０、１、２、５、６、７、－６、－
５または－ 4が期待される。最初の２つの結果節がそれぞれ０と１とを扱い、３つ目は結
果値の残りの全てを扱う。
【０３０７】
　４．　もし結果「０」（合格）が出現すれば、 FlowTest1_Minはカウンタ PassCounterを
インクリメントする。そして新しい FlowItem FlowTest1_Typに移行する。
【０３０８】
　５．　もし結果「１」または結果「２」が出現すれば、 FlowTest1_Minはカウンタ FailC
ounterをインクリメントし、フローから戻る。
【０３０９】
　６． 　 FlowTest1_Typは同じように動作し、続けて FlowTest1_Maxを呼び出す。
【０３１０】
　７． 　 FlowTest1_Maxが同じように動作し、続けて、正常な結果（「０」）で FlowTest
1から戻る。
【０３１１】
　したがって、 FlowTest1は、正常な動作で、 Test1の最小、典型および最大バージョンを

10

20

30

40

50

(61) JP 3939336 B2 2007.7.4

通じて装置を動作させ、そして戻る。 FlowTest2は同じようにして動作する。
【０３１２】
　上述したフローは、基本的には、状態および遷移を有する有限状態マシンを記述してい
る。 FlowItemは基本的には状態であり、以下のことを行う。
【０３１３】
　１． 　 IFlowable（これは先に定義されたフロー、あるいはテスト、あるいは上記ルー
ルで C++でインプリメントされ得るユーザ定義のフローであり得る）を実行する。
【０３１４】
　２． 　 IFlowableの実行は数字の結果を返す。この結果に基づいて、あるアクションが
起こり（いくつかのカウンタを更新し）、そして２つのことのうちの一方が起こる。
【０３１５】
　　　ａ．フローは数字の結果で呼び出し元に答える。
【０３１６】
　　　ｂ．フローは、他の状態（ FlowItem）に遷移することで続行する。
【０３１７】
　したがって、 FlowItemは以下のコンポーネントを有する。
【０３１８】
FlowItemは名前を有する。
【０３１９】
FlowItemは実行されるべき IFlowableを有する。
【０３２０】
FlowItemは数あるいは結果節を有する。
【０３２１】
FlowItemの各結果節は、アクションを提供し、遷移で終了し、一つ以上の結果値に関連付
けられている。
【０３２２】
　これらのアイテムは、構文的には FlowItemにおいて以下の通りとなる。

FlowItem <name> <IFlowable to be executed>
{
　　 Result <one or more result values>
　　 {
　　　　 <actions for these result values>
　　　　 <transition for these result values>
　　 }
　　
　　 Result <one or more other result values>
　　 {
　　　　 ...
　　 }
　　 ...
}
【０３２３】
　実行されるべき IFlowableは、テスト、あるいはユーザ定義の IFlowable、あるいはフロ
ーであり得る。結果についてのアクションは、次のいずれかである。
【０３２４】
　 GUIツールによって用いられる文字列の重要な構成要素を属性結果に設定するプロパテ
ィアクション。これは上記 FlowTest１の例において見られ、

Property PassFail = ″ Pass″ ;

10

20

30

40

50

(62) JP 3939336 B2 2007.7.4

【０３２５】
　プロパティは基本的には、結果節と関連付けられた、名前付きの文字列あるいは整数の
重要な構成要素である。これらは何個あってもよく、好ましくは、ユーザがこの結果に関
連付けられた情報を表示するのに用いる GUIのようなツールによって用いられる。それら
は、テストの実際の結果、あるいはテストのフローには何の影響も及ぼさない。
【０３２６】
　いくつかのカウンタをインクリメントするカウンタアクション。これは上記例において

IncrementCounters PassCount;
【０３２７】
で見られる。
【０３２８】
　任意のあるいはユーザルーチンを呼び出すルーチンコールアクション。これは後で説明
する。
【０３２９】
　最後に、 FlowItemは、他の FlowItemへの移動制御のための GoTo命令文、あるいは呼び出
し元（呼び出しフロー、あるいはテストプランを開始するシステムルーチン）への移動制
御のための Returm命令文であり得る遷移（ Transition）を有する。

予め定義されたフロー
【０３３０】
　フローオブジェクトの典型的な使用は、テストのシーケンスを定義することである。こ
のシーケンスはその後、テストプランサーバ（ TPS）において起こるイベント、すなわち
実行テストプランイベント（ Execute Test Plan event）の結果として実行される。各サ
イトコントローラ上のテストプランサーバは、ユーザのテストプランを実行する。しかし
ながら、フローオブジェクトは、他のイベントにも応答して実行される。括弧内の名前は
、フローをこれらのイベントに割り当てる際に用いられる名前である。
【０３３１】
　１．　システムロードフロー（ SysLoadFlow）。このフローは、テストプランが一つ以
上のサイトコントローラ上にロードされるときにシステムコントローラ上で実行される。
これは、どのサイトコントローラ上でのテストプランの実際のロードよりも前に実行され
る。このフローによって、テストプランディベロッパは、システムコントローラに由来す
べきであるアクションを定義することが可能である。このようなアクションは、パターン
ファイル、較正アクションなどのブロードキャストロードを含む。
【０３３２】
　２．　サイトロードフロー（ SiteLoadFlow）。このフローは、テストプランがサイト上
にロードされ、初期化された後にサイトコントローラ上で実行される。これにより、サイ
ト特有の初期化が起こすことができる。
【０３３３】
　３．　ロット開始／終了フロー（ LotStartFlow/LotEndFlow）。これらのフローは、テ
ストプランサーバが新しいロットの開始を知らされたときにサイトコントローラ上で実行
される。これは典型的には、データログストリームにロット特有の情報を用いて注釈をつ
けるために製造環境で用いられる。
【０３３４】
　４．　 DUT変更フロー（ DutChangeFlow）。このフローは、 DUT情報が変化するとサイト
コントローラ上で実行される。また、これは典型的にはデータログストリームを更新する
ために製造環境で用いられる。
【０３３５】
　５．　テストプラン開始／終了フロー（ TestPlanStartFLow/TestPlanEndFlow）。これ
らのフローは、テストプランサーバが現在のテストフローの実行を始めるように指示され

10

20

30

40

50

(63) JP 3939336 B2 2007.7.4

たとき、およびそのフローが実行を終えたときにサイトコントローラ上で実行される。
【０３３６】
　６．　テスト開始／終了フロー（ TestStartFlow/TestEndFlow）。これらのフローは、
テストフローが新しいテストを動作させ始めたとき、およびそのテストが実行終了したと
きにサイトコントローラ上で実行される。
【０３３７】
　７．　テストフロー（ TestFlow）。このフローは、テストプランサーバが「 Execute 　
　 Test Plan」メッセージを受け取ったときに実行される主要なフローオブジェクトであ
る。
【０３３８】
　もしユーザが、 TestFlowあるいは他の予め定義されたフローの一つではないユーザテス
トプランにおいてフローを定義すれば、それを実行させる好ましい方法は、それをこれら
の予め定義されたフローの一つの遷移状態に含めることである。

テストプラン例
【０３３９】
　以下の例では、フローは、フローによってインプリメントされる有限状態マシンを記述
するコメントに沿って与えられる。有限状態マシンは、遷移マトリクスとして与えられる
。マトリクスの行は FlowItemに対応し、列は結果に対応する。マトリクスの行のエントリ
は、戻された結果が列で指定された値であるときにその行の FlowItemからの遷移先の Flow
Itemを示す。
【０３４０】
　 3つのフロー FlowTest1、 FlowTest2および FlowMainを有するテストプランを以下に示す
。 FlowTest1は、上述したように動作する。これは、「 min」、「 typ」および「 max」のコ
ンフィギュレーションのそれぞれにおいて MyFunctionalTest1と名付けられたテストを動
作させる。同様に、 FlowTest2は、これらのコンフィギュレーションのそれぞれにおいて M
yFunctionalTest2を動作させる。最後に、 FlowMainは FlowTest1と FlowTest2とを動作させ
る。有限状態マシンの遷移マトリクスは、これらのフローのそれぞれの開始時のコメント
において提供される。

File mySimpleTestPlan.tpl

Version 0.1;

Import xxx.pin;　　　　 # Pins

Constants and variables giving limiting values.
Import limits.usrv;

Import test condition groups
Import myTestConditionGroups.tcg;

Import some bin definitions.
Import bins.bdefs;

#--
Start of the test plan
#--

10

20

30

40

50

(64) JP 3939336 B2 2007.7.4

TestPlan Sample;

This block defines Pattern Lists file-qualified names and
Pattern List variables that are used in Test declarations.
Pattern list variables are deferred till customization is
examined.
PListDefs
{
　　 # File qualified pattern list names
　　 pl1A.plist:pat1Alist,
　　 pl2A.plist:pat2AList
}

The socket for the tests in this test plan (this is not imported,
but resolved at activation time):
SocketDef = mytest.soc;

Declare some user variables inline
UserVars
{
　　 # String name for current test
　　 String CurrentTest = "MyTest";
}

TestCondition TC1Min
{
　　 TestConditionGroup = TCG1;
　　 Selector = min;
}

TestCondition TC1Typ
{
　　 TestConditionGroup = TCG1;
　　 Selector = typ;
}

TestCondition TC1Max
{
　　 TestConditionGroup = TCG1;
　　 Selector = max;
}

Likewise for TC2Min, TC2Typ, TC2Max ...

#
Declare a FunctionalTest. ″ FunctionalTest″ refers to a C++
test class that runs the test, and returns a 0, 1 or 2 as
a Result. The Test Condition Group TCG1 is selected with

10

20

30

40

50

(65) JP 3939336 B2 2007.7.4

the "min" selector by referring to the TC1Min TestCondition.
#
Test FunctionalTest MyFunctionalTest1Min
{
　　 PListParam = pat1AList;
　　 TestConditionParam = TC1Min;
}

Another FunctionalTest selecting TCG1 with "typ"
Test FunctionalTest MyFunctionalTest1Typ
{
　　 PListParam = pat1AList;
　　 TestConditionParam = TC1Typ;
}

Another FunctionalTest selecting TCG1 with "max"
Test FunctionalTest MyFunctionalTest1Max
{
　　 PListParam = pat1AList;
　　 TestConditionParam = TC1Max;
}

Now select TCG2 with "min"
Test FunctionalTest MyFunctionalTest2Min
{
　　 PListParam = pat2AList;
　　 TestConditionParam = TC2Min;
}

Likewise for TCG2 with "typ" and TCG2 with "max"
Test FunctionalTest MyFunctionalTest2Typ
{
　　 PListParam = pat1AList;
　　 TestConditionParam = TC2Typ;
}

Test FunctionalTest MyFunctionalTest2Max
{
　　 PListParam = pat1AList;
　　 TestConditionParam = TC2Max;
}

#
At this time the following Test objects have been defined
#　　　　 MyFunctionalTest1Min
#　　　　 MyFunctionalTest1Typ
#　　　　 MyFunctionalTest1Max
#　　　　 MyFunctionalTest2Min
#　　　　 MyFunctionalTest2Typ
#　　　　 MyFunctionalTest2Max

10

20

30

40

50

(66) JP 3939336 B2 2007.7.4

#
#
Counters are variables that are incremented during the
execution of a test. They are UnsignedIntegers that are
initialized to zero.
#
Counters {PassCount, FailCount}

#
Flows can now be presented. A Flow is an object that
essentially represents a finite state machine which
can execute "Flowables", and transition to other flowables based
on the Result returned from executing a Flowable. A Flow can also
call another flow.
#
A Flow consists of a number of FlowItems and transitions
between them. FlowItems have names which are unique in
the enclosing Flow, execute a "Flowable" object, and then
transition to another FlowItem in the same enclosing Flow.

Flowable objects include Tests and other Flows. When
a Flowable object executes, it returns a numeric Result
which is used by the FlowItem to transition to another
FlowItem. As a result of this, both Tests and Flows
terminate by returning a numeric Result value.
#
FlowTest1 implements a finite state machine for the
Min, Typ and Max flavors of MyFunctionalTest1. On
success it tests Test1Min, Test1Typ, Test1Max
and then returns to its caller with 0 as a successful
Result. On failure, it returns 1 as a failing Result.
#
Assume that the tests MyFunctionalTest1Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the
finite state machine implemented by FlowTest1 is:

#　　　　　　　　　　　　 Result 0　　　　　　 Result 1　　 Result 2

#　　 FlowTest1_Min　　　　 FlowTest1_Typ　　　　 return 1　　 return 1
#　　 FlowTest1_Typ　　　　 FlowTest1_Max　　　　 return 1　　 return 1
#　　 FlowTest1_Max　　　　 return 0　　　　　　 return 1　　 return 1
#
where the IFlowables run by each FlowItem are:
#　　　　 FlowItem　　　　　　 IFlowable that is run
#　　　　 FlowTest1_Min　　　　 MyFunctionalTest1Min
#　　　　 FlowTest1_Typ　　　　 MyFunctionalTest1Typ
#　　　　 FlowTest1_Max　　　　 MyFunctionalTest1Max
#
Flow FlowTest1

10

20

30

40

50

(67) JP 3939336 B2 2007.7.4

{
　　 FlowItem FlowTest1_Min MyFunctionalTest1Min
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 GoTo FlowTest1_Typ;
　　　　 }
　　　　 Result 1,2
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 Return 1;
　　　　 }
　　 }

　　 FlowItem FlowTest1_Typ MyFunctionalTest1Typ
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 GoTo FlowTest1_Max;
　　　　 }

　　　　 Result 1,2
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 Return 1;
　　　　 }
　　 }

　　 # Likewise for FlowTest1_Max
　　 FlowItem FlowTest1_Max MyFunctionalTest1Max
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 Return 0;
　　　　 }

　　　　 Result 1,2
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 Return 1;
　　　　 }

10

20

30

40

50

(68) JP 3939336 B2 2007.7.4

　　 }
}

#
FlowTest2 is similar to FlowTest1. It implements a
finite state machine for the Min, Typ and Max flavors
of MyFunctionalTest2. On success it tests Test2Min,
Test2Typ, Test2Max and then returns to its caller with
0 as a successful Result. On failure, it returns 1 as
a failing Result.
#
Assume that the tests MyFunctionalTest2Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the
finite state machine implemented by FlowTest2 is:

#　　　　　　　　　　　　 Result 0　　　　　　 Result 1　　 Result 2

#　　 FlowTest2_Min　　　　 FlowTest2_Typ　　　　 return 1　　 return 1
#　　 FlowTest2_Typ　　　　 FlowTest2_Max　　　　 return 1　　 return 1
#　　 FlowTest2_Max　　　　 return 0　　　　　　 return 1　　 return 1
#
Where the IFlowables run by each FlowItem are:
#　　　　 FlowItem　　　　　　 IFlowable that is run
#　　　　 FlowTest2_Min　　　　 MyFunctionalTest2Min
#　　　　 FlowTest2_Typ　　　　 MyFunctionalTest2Typ
#　　　　 FlowTest2_Max　　　　 MyFunctionalTest2Max
#
Flow FlowTest2
{
　　 # ...
}

#
Now the FlowMain, the main test flow, can be presented. It
implements a finite state machine that calls FlowTest1
and FlowTest2 as below:

#　　　　　　　　　　 Result 0　　　　 Result 1

#　　 FlowMain_1　　 FlowMain_2　　 return 1
#　　 FlowMain_2　　 return 0　　　　 return 1
#
Where the IFlowables run by each FlowItem are:
#　　　　 FlowItem　　　　 IFlowable that is run
#　　　　 FlowMain_1　　　　 FlowTest1
#　　　　 FlowMain_2　　　　 FlowTest2
Flow FlowMain

10

20

30

40

50

(69) JP 3939336 B2 2007.7.4

{
　　 # The first declared flow is the initial flow to be
　　 # executed. It goes to FlowMain_2 on success, and
　　 # returns 1 on failure.
　　 FlowItem FlowMain_1 FlowTest1
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 GoTo FlowMain_2;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 # Sorry ... FlowTest1 failed
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;

　　　　　　 # Add to the right soft bin
　　　　　　 SetBin SoftBins."3GHzSBFTFail";

　　　　　　 Return 1;
　　　　 }
　　 }
　　 FlowItem FlowMain_2 FlowTest2
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 # All passed!
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;

　　　　　　 # Add to the right soft bin
　　　　　　 SetBin SoftBins."3GHzAllPass";

　　　　　　 Return 0;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 # FlowTest1 passed, but FlowTest2 failed
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　
　　　　　　 # Add to the right soft bin
　　　　　　 SetBin SoftBins."3GHzCacheFail";

　　　　　　 Return 1;
　　　　 }

10

20

30

40

50

(70) JP 3939336 B2 2007.7.4

　　 }
}

TestFlow = FlowMain;
【０３４１】
　上記テストプランは、好ましい順番では以下のように構成される。
【０３４２】
　１．　第一に、バージョン番号が与えられる。この番号は、コンパイラのバージョンと
互換性を確保するために用いられる。
【０３４３】
　２．　そして、いくつものインポートが宣言される。これらは、テストプランで用いら
れる名前を解決するために必要とされる宣言を有するさまざまなファイルである。
【０３４４】
　３．　次に、テストプラン名が宣言され、その後に、テストプランのインライン宣言が
くる。
【０３４５】
　４．　次に PListDefsのセットが宣言される。これらは、名前つきのファイルからの Glo
balPListsの名前を挙げる全限定の（ full-qualified）名前を含む。またこれらは、パタ
ーンリスト変数も含んでいる。パターンリスト変数は、実行時にカスタムフローアブル（
custom flowable）において初期化することができる変数である。それらは、実際のパタ
ーンリストへの連結テストをランタイムまで遅らせる手段を提供する。
【０３４６】
　５．　次に、 UserVarsのセットが宣言される。これらは文字列を含む。
【０３４７】
　６．　合格したテスト、不合格のテストの数を決定するために、いくつかのカウンタが
宣言される。カウンタは、ゼロに初期化され、 IncrementCounter命令文でインクリメント
される変数にすぎない。これらは、現在設定されているビンのみが DUTのテストの終了時
にインクリメントされるというセマンティクスを持っている先に述べたビンとは異なって
いる。
【０３４８】
　７．　次に、一連のテスト条件が宣言される。これらのそれぞれは、テスト条件グルー
プおよびセレクタを指定する。この例においては、テスト条件グループは、 mytestcondit
ionsgroups.tcgからもたらされる。しかしこれらは、テストプランにおけるインラインで
あることもできる。
【０３４９】
　８．　次に、一連のフローアブル（ Flowables）あるいはテストが宣言される。それぞ
れは、パターンリストとテスト条件とを選択する既知のテスト FunctionalTestである。し
たがって例えば、 MyFunctionalTest1Maxはテスト条件 TC1Maxとパターンリストとを選択す
る。
【０３５０】
　９．　これに続いて、３つのフロー FlowTest1、 FlowTest2および FlowMainが宣言される
。フローはフローアブル（ Flowables）を動作させる。フローアブルは、テスト（ MyFunct
ionalTest1Max等）および他のフロー（ FlowTest1および FlowTest2等）を含む。 FlowTest1
および FlowTest2のそれぞれは、それぞれ Test1および Test2の最小、典型、最大のバージ
ョンを通じて動作する。フロー FlowMainは先に宣言されたフロー FlowTest1を呼び出し、
それから FlowTest2を呼び出す。
【０３５１】
　１０．最後に、 TestFlowイベントが FlowMainフローに割り当てられる。したがって、フ
ロー FlowMainは、ユーザがこのプランの実行を選んだときにこのテストプランによって実
行されるフローである。

10

20

30

40

50

(71) JP 3939336 B2 2007.7.4

フローのための C++
【０３５２】
　上記ルールを用いて、フロー自体をのぞく要素の大半について C++インプリメンテーシ
ョンを行うことができる。

FlowItemのための C++
【０３５３】
　 FlowItemを表すための C++は、以下のインタフェースを有していてもよい。

Status setFlowable(IFlowable* pIFlowable);
【０３５４】
という動作は、この FlowItemについて実行される IFlowbleを設定する。
【０３５５】
　一旦、 FlowItemがこの IFlowableを実行するのに必要とされるコールのセットから戻る
と、結果値に応じて、カウンタのリストをインクリメントする必要がある。このために、
FlowItemはインクリメントされるべきカウンタのベクトルをもつ必要がある。これは、次
のコールによって初期化される。

Status setCounterRefs(unsigned int result,
　　　　　　　　　　　　　　 CounterRefList counterRefs);
【０３５６】
これを呼び出すことがカウンタへの参照のベクトルを FlowItemに設定し、その結果、一旦
IFlowableが実行を完了するとカウンタをインクリメントすることができる。例えば、命
令文
　　 IncrementCountes A, B, C;
【０３５７】
は好ましくは、以下のようにして、上記コールを用いる。

　　 // Somewhere earlier
　　 CounterRefList counters;
　　 ...
　　 // Code for Result clause
　　 // Result 2, 3 {...}
　　 // of flowObject.
　　 counters.reset();
　　 counters.add(&A);
　　 counters.add(&B);
　　 counters.add(&C);
　　 flowObject.setCounterRefs(2, counters);
　　 flowObject.setCounterRefs(3, counters);
【０３５８】
　カウンタと名付けられたテンポラリ CounterRefListオブジェクトが用いられる。初めに
counters.reset()が呼び出され、カウンタリストを構成するいくつもの counters.add()コ
ールが続く。そして、これがカウンタアドレスのベクトルを構成するために用いられ、結
果値２および３に関して更新される。
【０３５９】
　そして FlowItemは、特定の結果で別の FlowItemへと移行する必要があり得る。

IncrementCounters A, B, C;

10

20

30

40

50

(72) JP 3939336 B2 2007.7.4

【０３６０】
ある結果節が多くの結果値を扱う場合には、当然のことながら、何回かののこのようなコ
ールがなされる必要がある。
【０３６１】
　 FlowItemは、結果を戻す必要があり得る。これは、

Status setTransition(unsigned int result, FlowItem* pFlowItem);
【０３６２】
によって行われる。
【０３６３】
　例えば、前の例における FlowItem FirstFlowItemについて、上記は、「 Result」の値「
２」と「 ReturnResult」の値「１」とで呼び出される。
　最後に、 FlowItemは、
　　 Status execute(unsigned int& result, FlowItem*pNextFlowItem);
【０３６４】
を実行するための動作を必要とする。
【０３６５】
　この動作は、 IFlowableを実行し、その後示されているカウンタを更新し、その後結果
を戻す、あるいは次の FlowItemへのポインタを戻す。もしこのポインタが NULLであれば、
結果は戻された値となる。
【０３６６】
　 FlowItemFlowMain_1について生成されるコードは以下の通りである。

FlowItem FlowMain_1;
FlowItem FlowMain_2;

CounterRefList counters;

FlowMain_1.setFlowable(FlowTest1);

// Result 0
counters.reset();
counters.add(&PassCount);
FlowMain_1.setCounterRefs(0, counters);
FlowMain_1.setTransition(0, &FlowMain_2);

// Result 1
counters.reset();
counters.add(&FailCount);
FlowMain_1.setCounterRefs(1, counters);

// The following call from ITestPlan will set the
// current bin group and bin name.
pTestPlan→ setBin("SoftBins", "3GHzSBFTFail");
FlowMain_1.setReturnResult(1, 1);
【０３６７】
　上で生成されたコードは、 IFlowable「 FlowTest1」を動作させるために FlowMain_1をセ
ットアップし、それから各結果に関してカウンタの適切なリストをインクリメントするよ
うにそれをセットアップし、最後に必要なアクションを起こす。結果「０」の場合に必要
なアクションは、 FlowMain_1への移行であり、結果「１」の場合には戻ることである。

10

20

30

40

50

(73) JP 3939336 B2 2007.7.4

Ｃ２．　 TestPlanにおけるカウンタサポート
【０３６８】
　カウンタは、ゼロに初期化され、テスト動作中のいろいろな時点で IncrementCounter命
令文によってインクリメントすることができる変数である。これらは、テスト終了時にの
みインクリメントされるビンとは異なる。さらに、ビンは階層的であるのに対して、カウ
ンタは単純な変数である。したがって、カウンタは、ビンよりも単純で、より限定された
ファシリティ（ facility）である。
【０３６９】
　符号なしの整数である名前つきのカウンタのセットを保持する Counterクラスのメンバ
を介して、 TestPlanにおいてカウンタをサポートすることができる。オブジェクトは、 Co
unters宣言を介してこのクラスで定義される。カウンタは、テスト開始時に自動的にリセ
ットされず、したがって、 TestPlanが多くの DUTのテストに関してカウントを集めること
を可能にする。カウンタの値をリセット、インクリメント、および問い合わせる方法が提
供される。これは、テストを動作させた結果としてのカウントを判断するための、代替物
のビンニングを可能にする。
【０３７０】
　好ましくは、 TestPlanは、メンバ変数 m_modifiedCoutnersを含み、これは DUT上でテス
トを動作させることによって変更されるカウンタのセットである。このセットは、テスト
開始時には空のセットに初期化される。 IncrementCountersのコールがなされるそれぞれ
のところで、名前つきのカウンタを m_modifiedCountersメンバに追加するためにコードが
生成される。したがって、このメンバは、 DUT上でのテストの実行中に変更されたカウン
タの全てを集める。

フローオブジェクトのための C++
【０３７１】
　一旦全ての FlowItemが生成されると、フローオブジェクトを、以下に示すように、 C++
オブジェクトとして生成することができる。

　 FlowItemを追加するための動作は

Status addFlowItem(FlowItem* pFlowItem, bool isInitalFlowItem);
【０３７２】
であり、これは示されている FlowItemをフローに追加する。ブール代数は、これがフロー
の最初の FlowItemであれば真に設定される。
　フローを実行する動作は

Status executeFlow(unsigned int& result);
【０３７３】
である。
【０３７４】
　これは、好ましくは、フローが戻るときに、フローを実行した結果を返す。これのアク
ションは、最初の FlowItemでフローを実行することを開始することである。それは、現在
の FlowItemが実行すべき次の FlowItemを返す限り、 FlowItemを実行しつづける。現在の Fl
owItemが結果を返すと、この動作はその結果でもって終了する。
【０３７５】
　したがって、フローについて生成された C++コードは、 FlowItemをそのフローに追加す
るために addFlowItem()への何回も繰り返されるコールを有する。 executeFlow()の動作は
、テストプランにおけるこのフローが実行のために選択されると起こる。

10

20

30

40

50

(74) JP 3939336 B2 2007.7.4

Ｃ３．　テストクラス
【０３７６】
　一般的に、プログラムコードの大半は装置テスト用のデータであり、残りはテストプロ
グラムのコードであり、これがテスト方法を実現する。このデータは DUT依存のデータ（
例えば電力供給条件、信号電圧条件、タイミング条件等）である。テストコードは、指定
された装置条件を ATEハードウェア上にロードする方法からなり、またユーザが指定した
目的（データロギング等）を実現するのに必要である方法からも構成される。
【０３７７】
　上で説明したように、テストコードの再利用性を高めるために、このようなコードは、
装置特有のデータ（例えばピンの名前、刺激データ等）、あるいは装置テストに特有のデ
ータ（例えば DCユニットの条件、測定ピン、ターゲットピンの数、パターンファイルの名
前、パターンプログラムのアドレス）のいずれに対しても独立とされなければならない。
もしテスト用のコードをこれらのタイプのデータとともにコンパイルすれば、テストコー
ドの再利用性は低下する。したがって、いかなる装置特有のデータあるいは装置テストに
特有のデータも、コード実行期間中の入力として、外部からテストコードに役立てられな
ければならない。
【０３７８】
　オープンアーキテクチャテストシステムにおいては、 ITestインタフェースのインプリ
メンテーションであるテストクラスは、特定のタイプのテストに関してテストデータとコ
ードとの分離（したがってコードの再利用性）を実現する。このようなテストクラスは、
装置特有および／あるいは装置テスト特有のデータに基づいてのみ異なるような、それの
別々のインスタンスの「テンプレート」とみなしてもよい。テストクラスはテストプラン
ファイルにおいて指定される。各テストクラスは、典型的には、具体的なタイプの装置テ
ストあるいは装置テスト用のセットアップをインプリメントする。例えば、機能テスト、
ACパラメータのテスト、 DCパラメータのテストが好ましくは別々のテストクラスによって
インプリメントされる。しかしながら、カスタムテストクラスもテストプランにおいて用
いられてもよい。
【０３７９】
　テストクラスは、そのテストの特定のインスタンスについてのオプションを指定するの
に用いられるパラメータを提供することによって、ユーザがクラスの振る舞いを構築する
ことを可能にする。例えば、機能テストは、実行すべきパターンリストとテスト用のレベ
ルおよびタイミング条件とを指定するために、パラメータ PListおよび TestConditionをと
ってもよい。（テストプラン記述ファイルにおける異なる「テスト」ブロックの使用を通
して）これらのパラメータについて異なる値を指定することにより、ユーザは機能テスト
の異なるインスタンスを作り出すことが可能である。図５は、どのようにして単一のテス
トクラス５０４から異なるテストインスタンス５０２が導き出されるかを示す。
【０３８０】
　これらのクラスは、コンパイラ４００がテストおよびそのパラメータの記述をテストプ
ランファイルから取り出し、正しい C++コードを生成することが可能であるように設計さ
れなければならない。 C++コードはテストプログラムを生成するようにコンパイルされ、
リンクされ得る。テストクラスのインスタンスは、装置テストの複雑な実行シーケンスを
作り出すためにテストフローを記述しているオブジェクトに加えられてもよい。

Ｃ４．　 ITestおよび IFlowableからのずれ
【０３８１】
　上述したように、テストクラスは ITestから導かれる。上記ルールを用いて、これらを I
Testインタフェースをインプリメントする C++クラスでインプリメントすることができる
。 ITestインタフェースについて指定された方法に加えて、これらのクラスは、装置テス
トの具体的なテストを行うのに必要なテスト特有のインテリジェンスおよびロジックを提
供する。またテストクラスは、 IFlowableインタフェースもインプリメントする。これの

10

20

30

40

50

(75) JP 3939336 B2 2007.7.4

結果、テストクラスインスタンスは、テストを動作させるための FlowItemにおいて用いる
ことができる。

カスタム化
【０３８２】
　カスタム化メカニズムは、ユーザが C関数を呼び出して、 ITestインタフェースおよび IF
lowableインタフェースをインプリメントする彼ら自身のクラスを開発することを可能に
するように提供される。

【０３８３】
　テストクラスのオブジェクトを、その方法およびシグネチャ（ signature）に関して質
問することができれば、適切なパラメータが生成されたソースコードに含まれるように利
用可能であることを検証することができる。このような特徴は、変換段階においてエラー
をチェックし、検証するのに非常に有用である。テストエンジニアがパラメータの名前を
間違えたり、あるいはこれらのパラメータの引数の個数（あるいはタイプもあり得る）を
間違えると、変換段階はそれを捕えて、 C++コンパイラからのコンパイルタイムエラーメ
ッセージを待つ代わりに、意味のあるエラーメッセージを変換時に提供する。これはテス
トエンジニアにとってはより有用である。
【０３８４】
　イントロスペクションは、オブジェクトにその内部を見てその属性および方法に関する
情報を戻すように依頼する能力を指す。 Javaのようないくつかの言語は、この能力を言語
の一部として提供している。 Visual Basicのような他の言語は、このような要件をそれと
ともに用いられることが意図されるオブジェクトに課す。 C++はこの特徴については何も
規定しない。
【０３８５】
　またこの方法は、デフォルトパラメータ値を提供すること、ならびにオプション的なパ
ラメータを示すことにもよく役立つ。加えて、この能力が全てのテストクラスのインプリ
メンテーションの一部として提供されれば、 GUIアプリケーションは、エンジニアがこれ
らのクラスを有効に利用することを助けるように、ダイアログおよび他のユーザインタフ
ェース要素を動的に構築するのにこの情報も用いることができる。
【０３８６】
　これらの複雑さは、発明の一実施形態においては、完全なイントロスペクションの代わ
りに、テストクラスディベロッパがクラスをパラメータ化するのに必要であるものとして
指定したテストクラスのパブリックな方法／属性を、単一のテキストベースのソースファ
イル（テストクラスごとに）において、テストクラスディベロッパが完全に指定すること
を可能にする方法を提供するメカニズムを通じて相殺される。
【０３８７】
　単一のソースが好まれる。あるものは、あるファイル内にテストクラスのパラメータ化
されたインタフェースの記述を、別の独立した（ヘッダ）ファイル内に C++インタフェー
スの記述を持ちたくないであろうし、両方のソースを同期させつづける必要に苦しむであ
ろう。このため、「テキストベースの」記述がテストクラスのためのプリヘッダファイル
に埋め込まれ、これが限定されたイントロスペクションのために、ならびにテストクラス
のための C++ヘッダを生成するために、コンパイラによって用いられる。生成された C++ヘ
ッダファイルは、テストクラス C++コードを最終的にコンパイルするために用いられるフ
ァイルである。

プリヘッダ
【０３８８】
　 C++におけるヘッダの使用がよく知られている。しかし、 C++は解析することも読むこと

10

20

30

40

50

(76) JP 3939336 B2 2007.7.4

イントロスペクション（ introspection）能力

も難しいので、発明の一実施形態は、 C++の出力をコンパイラが生成することを可能にす
るシンタックス（ syntax）を規定する。この C++出力をテストクラスディベロッパがヘッ
ダとして用いることができる。この実施形態によると、テストクラスディベロッパはプリ
ヘッダを書き、これがコンパイラ４００によってヘッダファイルとして出力され、対応す
るテストクラスあるいは他のテスト対象を目に見えるようにする。
【０３８９】
　次の例は、本発明の好ましい実施形態による、テストクラスのためのプリヘッダファイ
ルの概念を示すものである。テスト FuncTest1とともにソースファイルからの以下の抜粋
を考える。

...
TestCondition TC1
{
　　 TestConditionGroup = TCG1;　　 # Previously defined TCG for Levels
　　 Selector = min;
}

TestCondition TC2
{
　　 TestConditionGroup = TCG2;　　 # Previously defined TCG for Timing
　　 Selector = min;
}
...
Test FunctionalTest FuncTest1
{
　　 PListParam = patList1;　　　　　　 # Previously defined pattern list
　　 TestConditionParam = TC1;
　　 TestConditionParam = TC2;
}
【０３９０】
　コンパイラは、上記 FuncTest1の宣言が正当なものであるかを判断するために、 Functio
nalTestが何を引き起こすかを知る必要がある。コンパイラへの FunctionalTestの知識に
おける構築ではなく、 FunctionalTestが何を引き起こすかの定義が Pre-Headerにおいて記
述される。
【０３９１】
　 FunctionalTestが Test1および Test2を有し、 PListであるメンバならびに TestCondition
のアレイを有するする C++クラスであると仮定する。コンパイラは、 FuncTest1の上記宣言
が正当であると認識するために、 FunctionalTestのメンバのタイプについて知る必要があ
る。
【０３９２】
　さらに、 FuncTest1についての C++オブジェクト宣言を生成するために、クラス Function
alTestについての C++ヘッダを構築する必要がある。これは、コンパイラが FunctionalTes
tクラスのベースクラス、そのメンバの名前および他のこのような情報についても知るこ
とを要求する。
【０３９３】
　発明の一実施形態のプリヘッダサブ言語は、コンパイラに、それが宣言の正当性を認識
するため、および C++ヘッダおよび宣言に対応するオブジェクト宣言を生成するための両
方に必要である情報を提供する。
【０３９４】
　 FunctionalTestは、（パラメータ化に関する限り）単純なタイプであり、したがって、

10

20

30

40

50

(77) JP 3939336 B2 2007.7.4

パラメータ化について極めて単純な記述を用いるであろうということに留意されたい。し
たがって、上記パラメータ化をサポートするプリヘッダ FunctionalTest.phを以下のよう
に書くことができるであろう（ベーステストクラス Test1および Test2についてプリヘッダ
が利用可能であると仮定する）。

 Version 1.0;
 #
 # Parameterization specification pre-header for FunctionalTest
 #
 Import Test1.ph;　　　　　　　　　　 # For base class Test1
 Import Test2.ph;　　　　　　　　　　 # For base class Test2
 TestClass = FunctionalTest;　　 # The name of this test class
 PublicBases = Test1, Test2;　　 # List of public base classes
 # The parameters list or "parameter block":
 Parameters
 {
 　　 # The following declaration specifies that a FunctionalTest has
 　　 # 　　 - a parameter of type PList
 　　 #　　 - [represented by C++ type Tester::PatternTree]
 　　 #　　 - stored in a member named m_pPatList
 　　 #　　 - a function to set it named setPatternTree.
 　　 #　　 - a parameter description for the GUI to use as a tool tip
 　　 PList PListParam
 　　 {
 　　　　 Cardinality = 1;
 　　　　 Attribute = m_pPatList;
 　　　　 SetFunction = setPatternTree;
 　　　　 Description = "The PList parameter for a FunctionalTest";
 　　 }
 　　 #
 　　 # The following declaration specifies that a FunctionalTest has
 　　 #　　 - 1 or more parameters of type TestCondition
 　　 #　　 - [represented by C++ type Tester::TestCondition]
 　　 #　　 - stored in a member named m_testCondnsArray
 　　 #　　 - a function to set it named addTestCondition.
 　　 #　　 - a parameter description for the GUI to use as a tool tip
 　　 # The [implement] clause causes the translation phase of to
 　　 # generate a default implementation of this function.
 　　 #
 　　 TestCondition TestConditionParam
 　　 {
 　　　　 Cardinality = 1-n;
 　　　　 Attribute = m_testCondnsArray;
 　　　　 SetFunction = addTestCondition [Implement];
 　　　　 Description = "The TestCondition parameter for a FunctionalTest";
 　　 }
 }
 #
 # The section below is part of the Pre-Header which is an escape
 # into C++ code. This will be referred to as a "template block."

10

20

30

40

50

(78) JP 3939336 B2 2007.7.4

 #
 # Everything in this section will be reproduced verbatim in the
 # generated header file, except for "$Class", "$Inc",
 # "$ParamAryTypes", "$ParamAttrs", "$ParamFns" and "$ParamImpls".
 #
 # Note that no comments beginning with the '#' character are supported
 # within the following section.
 #
 CPlusPlusBegin
 $Inc
 namespace
 {
 class $Class
 {
 // Array types for parameters storage:
 $ParamAryTypes
 public:
 　　 virtual void preExec();
 　　 virtual void exec();
 　　 virtual void postExec();
 　　 $ParamFns
 　　 ...
 private:
 　　 double m_someVar;
 　　 $ParamAttrs
 　　 ...
 };
 ...
 $ParamImpls
 } // End namespace
 CPlusPlusEnd

パラメータ化されたテストクラスのための C++
【０３９５】
　コンパイラがプリヘッダファイルを処理する際に、コンパイラは、 $Inc、 $Class、 $Par
amAryTypesおよび他のもののようなコンパイラ変数の値を構築する。このことによって、
コンパイラはその後に、上記 C++コードを逐語的に生成し、指示された場所でコンパイラ
変数 $Inc、 $Class等の値において展開することによって以下の C++ヘッダを作り出すこと
を可能にする。 FunctionalTest.phに関してコンパイラは、 FunctionalTestクラスのため
に以下の C++ヘッダファイル FunctionalTest.hを作り出す。

1 #line 7 ″ ./FunctionalTest.ph″
 #include <ITest.h>
 #line 5 ″ ./FunctionalTest.ph″
 #include <Test1.h>
 #line 6 ″ ./FunctionalTest.ph″
 #include <Test2.h>
 #line 55 ″ ./FunctionalTest.ph″
 #include <vector>
 #line 55 ″ ./FunctionalTest.ph″

10

20

30

40

50

(79) JP 3939336 B2 2007.7.4

 #include <Levels.h>
 #line 55 ″ ./FunctionalTest.ph″
 #include <TestCondnGrp.h>
 ...
 #line 56 ″ ./FunctionalTest.ph″
 namespace
 {
 #line 7 ″ ./FunctionalTest.ph″
 class FunctionalTest :　　 public ITest,
 #line 8 ″ ./FunctionalTest.ph″
 　　　　　　　　　　　　　　 public Test1,
 #line 8 ″ ./FunctionalTest.ph″
 　　　　　　　　　　　　　　 public Test2
 #line 59 ″ ./FunctionalTest.ph″
 {
 // Array types for parameters storage:
 #line 61 ″ ./FunctionalTest.ph″
 public:
 #line 37 ″ ./FunctionalTest.ph″
 　　 typedef std::vector<Tester::TestCondition *> TestConditionPtrsAry_t;
 #line 62 ″ ./FunctionalTest.ph″
 public:
 　　 virtual void preExec();
 　　 virtual void exec();
 　　 virtual void postExec();
 public:
 #line 7 ″ ./FunctionalTest.ph″
 　　 void setName(OFCString &name); # Automatic for all tests
 #line 22 ″ ./FunctionalTest.ph″
 　　 void setPatternTree(PatternTree *);
 #line 23 ″ ./FunctionalTest.ph″
 　　 String getPListParamDescription() const;
 #line 39 ″ ./FunctionalTest.ph″
 　　 void addTestCondition(TestCondition *);
 #line 40 ″ ./FunctionalTest.ph″
 　　 void getTestConditionParamDescription() const;
 #line 67 ″ ./FunctionalTest.ph″
 　　 ...
 private:
 　　 double m_someVar;
 #line 70 ″ ./FunctionalTest.ph″
 private:
 #line 7 ″ ./FunctionalTest.ph″
 　　 OFCString m_name; # Automatic for all tests
 #line 21 ″ ./FunctionalTest.ph″
 　　 Tester::PatternTree *m_pPatList;
 #line 38 ″ ./FunctionalTest.ph″
 　　 TestConditionPtrsAry_t m_testCondnsArray;
 #line 71 ″ ./FunctionalTest.ph″
 　　 ...

10

20

30

40

50

(80) JP 3939336 B2 2007.7.4

 };
 ...
 #line 7 ″ ./FunctionalTest.ph″
 inline void
 #line 7 ″ ./FunctionalTest.ph″
 FunctionalTest::setName(OFCString &name)
 #line 74 ″ ./FunctionalTest.h″
 {
 　　 m_name = name;
 　　 return;
 }
 #line 39 ″ ./FunctionalTest.ph″
 inline void
 #line 39 ″ ./FunctionalTest.ph″
 FunctionalTest::addTestCondition(TestCondition *arg)
 #line 74 ″ ./FunctionalTest.ph″
 {
 　　 m_testCondnsArray.push_back(arg);
 　　 return;
 }
 #line 23 ″ ./FunctionalTest.ph″
 inline void
 Tester::String FunctionalTest::getPListParamDescription()
 {
 return "The PList parameter for a FunctionalTest";
 }
 #line 40 ″ ./FunctionalTest.ph″
 inline void
 Tester::String FunctionalTest::getTestConditionParamDescription()
 {
 return "The TestCondition parameter for a FunctionalTest";
 }
 #line 75 ″ ./FunctionalTest.ph″
 } // End namespace
【０３９６】
　先に述べたように、このプリヘッダは、コンパイラが FunctionalTest宣言の妥当性をチ
ェックすること、それのためのコードを生成すること、およびそれによって必要とされる
であろう C++ヘッダを生成することを可能にする。
【０３９７】
　一例として、先に与えられた FunctionalTest宣言を考える。便宜のために以下に再掲す
る。

Test FunctionalTest FuncTest1
{
　　 PListParam = patList1;　　　　　　 # Previously defined pattern list
　　 TestConditionParam = TC1;
　　 TestConditionParam = TC2;
}
【０３９８】
　これのためにコンパイラによって生成される C++ヘッダが上に示される。コンパイラは

10

20

30

40

50

(81) JP 3939336 B2 2007.7.4

、上記 FunctionalTestコンストラクトのために以下のコードを生成する。

FunctionalTest FuncTest1;
FuncTest1.setName(″ FuncTest1″);
FuncTest1.setPatternTree(&patList1);
FuncTest1.addTestCondition(&TC1);
FuncTest1.addTestCondition(&TC2);
【０３９９】
　記述関数のために生成された名前にも注目されたい。 Xxxと名付けられたそれぞれのパ
ラメータは、メンバ関数

Status getXxxDescription() const;
【０４００】
に関連付けられており、 GUIが用いることができるツールチップ（ tool tip）についての
記述を有する文字列を返す。

他のプリヘッダの特徴
【０４０１】
　プリヘッダは、追加のタイプとして、他のユーザ定義の列挙をサポートする。これによ
り、 GUIが、特定のパラメータの値を設定するために用いることのできる可能な選択肢の
ドロップダウンリストを提供することが可能である。さらに、プリヘッダは、テーブルと
考えることができる数多くのパラメータを関連付けるための特徴を提供する。例えば、名
前用の文字列のアレイの関連しているセットとしての「プロパティ」のアレイ、ならびに
値のための整数のアレイをインプリメントすることは便利であるかもしれない。この特徴
をインプリメントする一つの簡単な方法は、カスタムタイプ（後述する）のアレイを用い
ることである。しかしながら、それは、ユーザに対して、使うためのカスタムタイププリ
ヘッダを書くことを要求する。これらの特徴は両方とも、以下の例に示されている。

File FooBarTest.ph
#
Parameterization specification pre-header for
custom test class FoobarTest

Version 1.0;

Import Test1.ph;　　　　　　　　　　 # For base class Test1
TestClass = FoobarTest;　　 # The name of this test class
PublicBases = Test1;　　 # List of public base classes

The parameters list:
Parameters
{
　　 # An enumerated type
　　 Enum WishyWashy = Yes, Perhaps, Possibly, Maybe, MaybeNot, No;

　　 # Define a WishyWashy parameter.
　　 WishyWashy WW

10

20

30

40

50

(82) JP 3939336 B2 2007.7.4

　　 {
　　　　 Cardinality = 1;
　　　　 Attribute = m_ww;
　　　　 SetFunction = setWw;
　　　　 Description = "The WW parameter for a Foobar Test";
　　 }

　　 # This class has an array of name-number pairs that is
　　 # interpreted in the class.
　　 ParamGroup
　　 {
　　　　 Cardinality = 0-n;
　　　　
　　　　 # The Name field in this array is:
　　　　 #　　 - of type String
　　　　 #　　 - [represented by C++ type Tester::String]
　　　　 #　　 - stored in a member named m_NameArray
　　　　 #　　 - a function to set it named addName.
　　　　 #　　 - a parameter description for the GUI to use as a tool tip
　　　　 String Name
　　　　 {
　　　　　　 Attribute = m_NameArray;
　　　　　　 SetFunction = addName;
　　　　　　 Description = "A Name with a Value";
　　　　 }

　　　　 # The Number field in this array is:
　　　　 #　　 - of type Integer
　　　　 #　　 - [represented by C++ type int]
　　　　 #　　 - stored in a member named m_NumberArray
　　　　 #　　 - a function to set it named addNumber.
　　　　 #　　 - a parameter description for the GUI to use as a tool tip
　　　　 Integer Number
　　　　 {
　　　　　　 Attribute = m_NumberArray;
　　　　　　 SetFunction = addNumber;
　　　　　　 Description = "The value of the Name";
　　　　 }
　　 }
　　
　　 # The following declaration specifies that a FunctionalTest has
　　 # 　　 - a parameter of type PList
　　 #　　 - [represented by C++ type Tester::PatternTree]
　　 #　　 - stored in a member named m_pPatList
　　 #　　 - a function to set it named setPatternTree.
　　 #　　 - a parameter description for the GUI to use as a tool tip
　　 PList PListParam
　　 {
　　　　 Cardinality = 1;
　　　　 Attribute = m_pPatList;

10

20

30

40

50

(83) JP 3939336 B2 2007.7.4

　　　　 SetFunction = setPatternTree;
　　　　 Description = "The PList parameter for a FunctionalTest";
　　 }
　　
　　 #
　　 # The following declaration specifies that a FunctionalTest has
　　 #　　 - 1 or more parameters of type TestCondition
　　 #　　 - [represented by C++ type Tester::TestCondition]
　　 #　　 - stored in a member named m_testCondnsArray
　　 #　　 - a function to set it named addTestCondition.
　　 # The [implement] clause causes the translation phase of to
　　 # generate a default implementation of this function.
　　 #
　　 TestCondition TestConditionParam
　　 {
　　　　 Cardinality = 1-n;
　　　　 Attribute = m_testCondnsArray;
　　　　 SetFunction = addTestCondition [Implement];
　　　　 Description = "The TestCondition parameter for a FunctionalTest";
　　 }
}

 CPlusPlusBegin
 $Inc
 namespace
 {
 class $Class
 {
 // Array types for parameters storage:
 $ParamAryTypes
 public:
　　 virtual void preExec();
　　 virtual void exec();
　　 virtual void postExec();
　　 $ParamFns
 　　 // ...
 private:
　　 double m_someVar;
　　 $ParamAttrs
　　 // ...
 };
 // ...
 $ParamImpls
 } // End namespace
 CPlusPlusEnd
【０４０２】
　カスタムタイプの名前と数のペアは宣言された可能性があり、そのカスタムタイプの単
一のパラメータは、パラメータの上記 ParamGroupと同じ効果を持つように用いられた可能
性があることに留意しなければならない。上で提示した手法は、カスタムタイプを宣言す
る必要を避ける便利さである。

10

20

30

40

50

(84) JP 3939336 B2 2007.7.4

Ｃ５．　カスタム関数宣言
【０４０３】
　これは、フローの移行が起こるときにユーザがカスタム関数を呼び出すことを可能にす
る。カスタム関数は、プリヘッダを通して以下のように宣言される。

File MyFunctions.ph
#
Parameterization specification pre-header for MyFunctions

Version 1.0;

Functions = MyFunctions;　　 # The name of this group of functions

Declare the following C++ function in the
MyFunctions namespace to determine the minimum
of two values.
#　　 // Return the minimum of x, y
#　　 double MyRoutines::Min
#　　　　　　　　 (ITestPlan* pITestPlan,int& x, int& y);
Integer Min(Integer x, Integer y);

Declare the following C++ function in the
UserRoutines namespace to return the average of
an array.
#　　 // Return the average of the array
#　　 double MyRoutines::Avg
#　　　　　　　　 (ITestPlan* pITestPlan, double* a, const int a_size);
The C++ function will be called with a and a'Length
Double Avg(Double a[]);

Declare the following C++ function in the
UserRoutines namespace to print the dut id
and a message
#　　 // Return the average of the array
#　　 double MyRoutines::Print
#　　　　　　　　 (ITestPlan* pITestPlan, String* msg, unsigned int& dutId);
The C++ function will be called with a and a'Length
Void Print(String msg, UnsignedInteger dutId);

【０４０４】
　典型的には、 C++セクションは、コンパイラが上記宣言を標準的なやり方で拡張する際
に、これらの宣言を与えられる必要がある。当然のことながら、ユーザはこれらの関数の
C++インプリメンテーションを担う。上記関数の全てがおそらく暗黙のうちの第一のパラ
メータとして ITestPlanポインタをとるということに留意されたい。このポインタは、関
数の書き手に TestPlanにおける steteSへのアクセスを与える。例えば、関数の書き手は、
現在のフロー、そのフローにおける現在の FlowItem、現在の結果節、 UserVarsの値、およ
び他のこのような情報にアクセスするのに ITestPlanインタフェースを用いることができ

10

20

30

40

50

(85) JP 3939336 B2 2007.7.4

る。あるテスタ定義の関数はファイル Functions.phにおいて使用されるために利用可能で
ある。

Version 1.2.3;

#
File Functions.ph
#
Functions = Functions;　　 # The name of this group of functions

Declare the following C++ function in the
Functions namespace

Returns the ID of the current DUT being tested by the
caller.
UnsignedInteger GetDUTID();

カスタム関数宣言のための C++
【０４０５】
　上記 MyFunctionsについてコンパイラによって生成される C++コードは、 MyFunctions名
前空間においていくつかの関数を単に宣言するためである。

namespace MyFunctions
{
　　 double Min(ITestPlan* pITestPlan, int& x, int& y);
　　 double Avg(ITestPlan* pITestPlan, double* a, const int a_size);
　　 void Print(ITestPlan* pITestPlan, char* Msg, unsigned int dutID);
}
【０４０６】
　これらの関数は、フローから呼び出し可能である。

Ｃ６．　カスタムフローアブル
【０４０７】
　プリヘッダを用いて C++IFlowableインタフェースをインプリメントするプリヘッダを生
成することも可能である。これは、 FlowItemで動作させることができるカスタムフローア
ブルをユーザが定義することを可能にする。

File MyFlowable.ph
#
Parameterization specification pre-header for MyFlowable

Version 1.2.4;

FlowableClass = MyFlowable;　　　　 # The name of this custom class

The parameters list:
Parameters
{

10

20

30

40

50

(86) JP 3939336 B2 2007.7.4

　　 # The following declaration specifies that a MyFlowable has
　　 # 　　 - 1 optional parameter Int1 of type Integer
　　 #　　 - [represented by C++ type int]
　　 #　　 - stored in a member named m_int1Val
　　 #　　 - a function to set it named setInt1Val.
　　 Integer Int1
　　 {
　　　　 Cardinality = 0-1;
　　　　 Attribute = m_int1Val;
　　　　 SetFunction = setInt1Val;
　　 }

　　 # The following declaration specifies that a MyFlowable has
　　 # 　　 - 1 mandatory parameter Int2 of type Integer
　　 #　　 - [represented by C++ type int]
　　 #　　 - stored in a member named m_int2Val
　　 #　　 - a function to set it named setInt2Val.
　　 Integer Int2
　　 {
　　　　 Cardinality = 1;
　　　　 Attribute = m_int2Val;
　　　　 SetFunction = setInt2Val;
　　 }
　　 # The following declaration specifies that a MyFlowable has
　　 #　　 - one or more parameters of type String
　　 #　　 - [represented by C++ type Tester::String]
　　 #　　 - stored in a member named m_stringArrVal
　　 #　　 - a function to set it named addStringVal.
　　 String StringItem
　　 {
　　　　 Cardinality = 1-n;
　　　　 Attribute = m_stringArrVal;
　　　　 SetFunction = addStringVal;
　　 }

　　 # The following declaration specifies that a MyFlowable has
　　 #　　 - A single PList parameter
　　 #　　 - [represented by the C++ type Tester::PList]
　　 #　　 - stored in a member named m_plist
　　 #　　 - a function to set it named setPListParam
　　 PList PListParam
　　 {
　　　　 Cardinality = 1;
　　　　 Attribute = m_plist;
　　　　 SetFunction = setPListParam;
　　 }
}

#
The section below is part of the Pre-Header which is an escape

10

20

30

40

50

(87) JP 3939336 B2 2007.7.4

into C++ code.
#
Everything in this section will be reproduced verbatim in the
generated header file, except for "$Class", "$Inc",
"$ParamAryTypes", "$ParamAttrs", "$ParamFns" and "$ParamImpls".
#
Note that no comments beginning with the '#' character are supported
within the following section.
#
CPlusPlusBegin
$Inc
namespace
{
class $Class
{
// Array types for parameters storage:
$ParamAryTypes
public:
　　 virtual void preExec();
　　 virtual void exec();
　　 virtual void postExec();
　　 $ParamFns
　　 // ...
private:
　　 double m_someVar;
　　 $ParamAttrs
　　 // ...
};
// ...
$ParamImpls
} // End namespace
CPlusPlusEnd
【０４０８】
　 IFlowableインタフェースをインプリメントするいくつかのクラスがある。これらは、
　１．　テストプランを現在のテスタコンフィギュレーション内で実行することができる
かどうかをチェックする、プログラムローディングのためのフロー、
　２．　具体的なパターンおよびパターンリストをロードする、パターンローディングの
ためのフロー、
　３．　ハードウェアおよびソフトウェアを既知の状態にし、グローバル変数をロードし
、他の初期化および検証機能を行う、初期化のためのフロー、ならびに
　４．　テストフローに一般的に有用である他のもの
【０４０９】
を含む。

Ｃ７．　カスタムタイプ
【０４１０】
　先のテストクラスのパラメータ化についての議論は、テストクラスのパラメータが既知
のタイプのもの、すなわち PListsおよび TestConditionsエレメンタリタイプおよびである
ことを可能にするのみであった。ユーザの柔軟性のために、タイプ拡張性を提供すること
は重要であり、それによってタイプ（コンピュータにとって未知の先天的なものである）

10

20

30

40

50

(88) JP 3939336 B2 2007.7.4

を作り出し、用いることができる。カスタムタイプ（ CT）は Custom Typesにおいて定義さ
れる。これらを、 C言語のストラクト（プレインオールドデータタイプ、つまり PODとも呼
ばれ、 C++における同名のものとは全く異なる）に対応するタイプを定義するために、な
らびに、ファンクションシグネチャについての C言語 typedefsに対応するタイプについて
用いることができる。ユーザタイプを有する別個のファイルは拡張子「 .ctyp」を有する
。本発明の好ましい実施形態による、ユーザタイプ宣言の例がこれである。

File MyCustomTypes.ctyp

Version 1.0.0;

CustomTypes
{
　　 # A structured Plain-Old-Data type
　　 Pod Foo
　　 {
　　　　 String　　　　 S1;　　　　 # String is a standard type
　　　　 Integer　　 I1;　　　　 # ... and so is Integer
　　　　 String　　　　 S2;
　　 }

　　 # Another structured type using Foo
　　 Pod Bar
　　 {
　　　　 Foo　　　　　　 Foo1;
　　　　 String　　　　 S1;
　　　　 Foo　　　　　　 Foo2;
　　 }

　　 #
　　 # A pointer to a function.
　　 #　　　　 Return type:　　 Integer
　　 #　　　　 Parameters:　　 Integer, Integer
　　 #
　　 Routine BinaryOp(Integer, Integer) Returns Integer;

　　 #
　　 # Another pointer to a function.
　　 #　　　　 Return type:　　 Void
　　 #　　　　 Parameter:　　 Integer
　　 #
　　 Routine UnaryOp(Integer) Returns Void;

　　 #
　　 # A pointer to a function that takes
　　 # no parameters and does not return a value.
　　 #
　　 Routine NullaryOp() Returns Void;

10

20

30

40

50

(89) JP 3939336 B2 2007.7.4

}

カスタムタイプのための C++
【０４１１】
　上で提示した CustomTypes宣言は、コンパイラによって以下の C++コードに変換される。

namespace CustomTypes
{
　　 struct Foo
　　 {
　　　　 Tester::String　　　　 S1;
　　　　 int　　　　　　　　　　 I1;
　　　　 Tester::String　　　　 S2
　　 };
　　 struct Bar
　　 {
　　　　 Foo　　　　　　　　　　 Foo1;
　　　　 Tester::String　　　　 S1;
　　　　 Foo　　　　　　　　　　 Foo2;
　　 };
　　 typedef int (*BinaryOp) (int&, int&);
　　 typedef void (*UnaryOp)(int);
　　 typedef void (*NullaryOp)();
}
【０４１２】
　これらのタイプのオブジェクトは、次に示すようにパラメータとしてのテストクラスへ
と渡され得る。

テストクラスパラメータとしてのカスタムタイプの使用
【０４１３】
　ユーザがテストの拡張を有する場合を考える。このテストの拡張は、パターンリストお
よびテスト条件に加えて、他のクラスオブジェクトならびに、カスタムタイプを含むファ
イル（すなわち .ctypファイル）内で定義される任意の（すなわちユーザ定義の）オブジ
ェクトで初期化される必要がある。例えば、ユーザがファイル MyTestCTs.ctypで定義され
る CTを用いることを望んでいるとする。

File MyTesetCTs.ctyp
Version 1.0;

CustomTypes
{
　　 Pod Foo
　　 {
　　　　 String name;
　　　　 PList　　 patternList;
　　 }

　　 Pod Bar
　　 {
　　　　 Foo　　　　 someFoo;

10

20

30

40

50

(90) JP 3939336 B2 2007.7.4

　　　　 Double　　 dVal;
　　 }

　　 Routine BinaryOp(Integer, Integer) return Integer;
}
【０４１４】
　ユーザが上記タイプを用いるためにする必要があるのは、ユーザのテストクラスプリヘ
ッダに上記ファイルをインポートすることだけである。コンパイラはそのように定義され
た CTを解釈するので、 Fooおよび Barの定義は、それがテストクラスプリヘッダを処理して
いるときに、それに役立つ。また、コンパイラは、それぞれ上記タイプ Fooおよびタイプ B
arに対応する２つの C言語のストラクト、ストラクト Fooおよびストラクト Barを定義する
。それらの定義は、ファイル myTestCts.hに置かれる。 myTestCts.cttへの Import命令文は
、ファイル myTestCts.hを生成されたテストクラス C++ヘッダに #include-dさせる。以下の
例は、このプロセスを示すものである。まず、テストプランにおけるテストの定義を考え
る（パターンリストおよびテスト条件の定義は明瞭にするために省略されている）。

...
Import MyFunctions.ph;
Import MyCustomTypes.ctyp;
...
The CustomVars block defines variables of the Custom
types defined earlier.
CustomVars
{
　　 ...
　　 Bar bar1 =
　　 {
　　　　 { ″ This is a Foo″ , somePatList },　　　　 # someFoo
　　　　 3.14159　　　　　　　　　　　　　　　　　　 # dVal
　　 }
　　 #
　　 # A function object that is a binary operator.
　　 # The name on the right hand side of the assignment
　　 # is a routine declared in MyFunctions, for which,
　　 # of course, the user has to provide an implementation.
　　 #
　　 BinaryOp bop1 = MyFunctions.Min;
}
...
Test MyFancyTest MyTest1
{
　　 ...
　　 BarParam = bar1;
　　 BinaryOpParam = bop1;
}
...
【０４１５】
　上記例では、 CustomVarsブロックがテストプランに含まれる。カスタム化された変数を
有する別個のファイルは、拡張子「 .cvar」を有する。ユーザは、上記パラメータ化をサ
ポートする MyFancyTestのプリヘッダを以下のように書く（パターンリストおよびテスト

10

20

30

40

50

(91) JP 3939336 B2 2007.7.4

条件についてのパラメータ化の宣言は明瞭にするために省略されている）。

File MyFancyTest.ph
#
Parameterization specification pre-header for MyFancyTest

Version 1.0.2;

Import MyCustomTypes.ctyp;　　　　 # For CTs used in MyFancyTest
Import FunctionalTest.ph;　　　　 # For base class FunctionalTest
TestClass = MyFancyTest;　　　　 # The name of this test class
PublicBases = FunctionalTest;　　 # List of public base classes

The parameters list:
Parameters
{
　　 # The following declaration specifies that a MyFancyTest has
　　 # 　　 - an optional array of parameters of custom type Bar
　　 #　　 - [represented by C++ type CustomTypes::Bar]
　　 #　　 - stored in a member named m_barsArray
　　 #　　 - a function to set it named addBarParam.
　　 # An implementation will be generated for addBarParam.
　　 Bar BarParam
　　 {
　　　　 Cardinality = 0-n;
　　　　 Attribute = m_barsArray;
　　　　 SetFunction = addBarParam [Implement];
　　 }

　　 # The following declaration specifies that a MyFancyTest has
　　 # 　　 - an optional parameter of custom type BinaryOp
　　 #　　 - [represented by C++ type CustomTypes::BinaryOp]
　　 #　　 - stored in a member named m_binaryOp
　　 #　　 - a function to set it named setBinaryOpParam.
　　 # An implementation will be generated for setBinaryOpParam.
　　 BinaryOp BinaryOpParam
　　 {
　　　　 Cardinality = 0-1;
　　　　 Attribute = m_binaryOp;
　　　　 SetFunction = setBinaryOpParam [Implement];
　　 }
}

CPlusPlusBegin

$Inc
namespace

10

20

30

40

50

(92) JP 3939336 B2 2007.7.4

{

class $Class
{
$ParamAryTypes
public:
　　 virtual void preExec();
　　 virtual void exec();
　　 virtual void postExec();
　　 $ParamFns
　　 // ...
private:
　　 double m_someVar;
　　 $ParamAttrs
　　 // ...
};

// ...
$ParamImpls
} // End namespace
CPlusPlusEnd

カスタムタイプを用いるカスタムテストクラスのための C++
【０４１６】
　最後に、一旦コンパイラがこのプリヘッダファイルを処理すると、コンパイラは、 MyFa
ncyTestクラスのための以下の C++ヘッダファイル MyFancyTest.hを作成する。

#include <MyCustomTypes.h>
#include <ITest.h>
#include <FunctionalTest.h>
...
namespace
{
class MyFancyTest : public ITest,
　　　　　　　　　　　　 public FunctionalTest
{
public:
　　 typedef std::vector<CustomTypes::Bar *> BarAry_t;
public:
　　 virtual void preExec();
　　 virtual void exec();
　　 virtual void postExec();
public:
　　 void setName(OFCString &name); # Automatic for all tests
　　 void setPatternTree(PatternTree *);
　　 void addTestCondition(TestCondition *);
　　 void addBarParam(CustomTypes::Bar *);
　　 void setBinaryOpParam(CustomTypes::BinaryOp *);
　　 ...
private:

10

20

30

40

50

(93) JP 3939336 B2 2007.7.4

　　 double m_someVar;
private:
　　 OFCString m_name; # Automatic for all tests
　　 PatternTree *m_pPatList;
　　 TestConditionPtrsAry_t m_testCondnsArray;
　　 BarAry_t m_barsArray;
　　 BinaryOp *m_binaryOp;
　　 ...
}; // End class MyFancyTest
...
inline void
MyFancyTest::addBarParam(CustomTypes::Bar *arg)
{
　　 m_barsArray.push_back(arg);
　　 return;
}
inline void
MyFancyTest::setBinaryOpParam(CustomTypes::BinaryOp *arg)
{
　　 m_binaryOp = arg;
　　 return;
}
} // End namespace

Ｃ８．　パラメータ化
【０４１７】
　上でわかるように、テストクラス、カスタムフローアブルクラス、あるいはカスタム関
数定義のためのプリヘッダは、パラメータ化された仕様セクションを通じて、クラス／関
数に限定されたイントロスペクションを提供する。コンパイラは、クラス／関数のための
パラメータ化されたインタフェースを生成する（ならびにクラス／関数ヘッダ自体を生成
する）ために、このセクションを用いる。テストクラスおよびフローアブルクラスについ
ては、コンパイラは、テストプランコードにおいてコールをその後に生成してそのクラス
のインスタンスを初期化するためにも、このセクションを用いる。プリヘッダおよび対応
する宣言に関連する以下の点に留意しなければならない。
【０４１８】
　１．　どのテストまたはカスタムフローアブルクラス定義も、好ましくは、プリヘッダ
において定義されれる。プリヘッダにおけるパラメータブロックは、好ましくは、このよ
うなクラスのパラメータリストを指定することができる唯一の場所である。（したがって
、必然の結果として、パターンリストおよびテスト条件の指定のような、テストのための
「標準的な」パラメータも、プリヘッダのパラメータブロックに含まれる必要がある。こ
れにより全てのパラメータ、標準およびＣＴが一様に扱われることが可能になる。）
【０４１９】
　２．　テストまたはフローアブルクラスについてのプリヘッダにおいて、オプショナル
ではない（すなわち、ゼロでない濃度（ cardinality）を有する）と定義されたパラメー
タの全ては、そのクラスのインスタンスについてのテストブロックまたはフローアブルブ
ロック宣言において初期化されなければならない。
【０４２０】
　３．　テスト／フローアブルブロックにおけるパラメータの初期化に用いられるオブジ
ェクトは、先に定義されていなければならない。
【０４２１】

10

20

30

40

50

(94) JP 3939336 B2 2007.7.4

　４．　置換インジケータ $Class、 $Inc、 $ParamAryTypes、 $ParamFns、 $ParamAttrsおよ
び $ParamImplsは、対応する生成されたコードが生成されたクラスヘッダファイル内で挿
入されることをユーザが意図する、プリヘッダのユーザコードセクション内の正確な位置
に現れなければならない。これらは、具体的なコードがそれぞれについて生成されるので
、正確に一度現れる。
【０４２２】
　５．　プリヘッダのパラメータブロックにおけるパラメータ指定の名前（上記例におけ
る PListParam、 TestConditionParamあるいは BarParam）は、そのクラスのインスタンスの
宣言において用いられるべきパラメータの名前である。
【０４２３】
　６．　以下は、パラメータ指定において用いられる記述子のセマンティクスである。
【０４２４】
　　　ａ． Cardinality：これはサポートされるこのタイプのパラメータの数を示す。以
下は、一実施形態において可能である数である。
【０４２５】
　　　 i．　１：このパラメータは必須であり、正確に一度指定されなければならない。
このパラメータはパラメータのタイプのオブジェクトへのポインタとして保持される。
【０４２６】
　 ii．　０～１：このパラメータはオプション的であり、指定されるのなら、一度だけ指
定されなければならない。このパラメータはパラメータのタイプのオブジェクトへのポイ
ンタとして保持される。
【０４２７】
　 iii．　１～ｎ：このパラメータは必須である。また、これに対して複数の値を指定す
ることができる。値は指定順で記憶される。
【０４２８】
　 iv．　０～ｎ：このパラメータはオプション的である。これに対して複数の値を指定す
ることができる。値は、指定順で記憶される。
【０４２９】
　　　上の（）および（）について、全ての指定された値は、 STLベクトル <>で記憶され
、パラメータのタイプへのポインタ上でテンプレート化されることに留意されたい。この
ベクトルのタイプは、 $ParamAryTypesによって示された時点で定義、挿入される。これら
のタイプ定義へのアクセスレベルは常にパブリックである。
【０４３０】
　　　ｂ． Attribute：このタイプのパラメータ値について記憶として用いられる C++変数
の名前である。この名前は、 C++クラスのプライベートデータメンバとして、逐語的に再
現され、 C++識別子の要件に合致していな　　ければならない。この属性のタイプは
　 i．　もし単一の値が許容されるのであれば、パラメータのタイプへのポインタ、
　 ii．　もし複数の値が許容されるのであれば、パラメータのタイプへのポインタ上でテ
ンプレート化された、 STLベクトル <>（上の（）を参照）
【０４３１】
　　であることに留意されたい。
【０４３２】
　なお、 Attributeはテストプランによって作成され、占められるオブジェクトへの参照
を保持し、これらのオブジェクトを所有しない。オブジェクトの寿命は常にテストプラン
自体によって管理される。
【０４３３】
　　　ｃ． SetFunction：このパラメータについての値を設定するのに用いる関数の名前
である。以下の点に留意しなければならない。
【０４３４】
　 i．　名前は逐語的に再現され、したがって、 C++言語の要件に合致していなければなら

10

20

30

40

50

(95) JP 3939336 B2 2007.7.4

ない。
【０４３５】
　 ii．　関数へのアクセスレベルは常にパブリックである。
【０４３６】
　 iii．　リターンタイプは常に無効（ void）である。
【０４３７】
　　　 iv．　関数は常に一つだけの、ポインタ対ポインタタイプの引数をとる。
【０４３８】
　値は常に一つで設定されることに留意されたい。すなわち、複数個の値の指定を許すパ
ラメータについて、テストプランにおける生成されたコードは、この関数を繰り返し呼び
出し、一旦どの値も指定されると、それらのそれぞれは、 STLベクトルに追加される（上
述したように）。
【０４３９】
　関数名に続くオプションのキーワード「 [implement]」は、この関数についての自明な
（ trivial）インプリメンテーションが、（ $ParamImplsによって示される時点で挿入され
る）クラスヘッダにおけるインライン方法として利用可能とされることを示している。そ
うでなければ、ユーザはその関数のインプリメンテーションを提供する責任がある。
【０４４０】
　ｄ． Description： GUIツールによって、このパラメータのランタイム変更（ modificati
on）中に助けを与えるために用いられるツールチップである、リテラルな文字列である。
Xxxと名付けられたパラメータについてカスタムクラスにおいて生成された C++メンバ関数
は、
　　 String getXxxDescription () const;
【０４４１】
となり、この関数は指定された文字列を返す。

カスタム化を有するテストプラン例
【０４４２】
　いくつかのカスタム化で装飾されたテストプラン例を以下に示す。

File MyCustomizedTestPlan.tpl

Version 0.1;

#
Imports as before ...

The following import is implicit, but can be explicitly
provided.
Import FunctionalTest.ph;

Import for MyFlowables, MyFunctions and Functions
Import MyFlowables.ph;
Import MyFunctions.ph;
Import Functions.ph;

#--
Start of the test plan

10

20

30

40

50

(96) JP 3939336 B2 2007.7.4

#--
TestPlan Sample;

This block defines Pattern Lists file-qualified names and
Pattern List variables that are used in Test declarations.
The file-qualified names refer to pattern lists in the named
files. The variables refer to String variables which will
hold the pattern list names at run time. User defined Flowable
objects could set the values of these variables through an
API.
PListDefs
{
　　 # File qualified pattern list names
　　 pl1A.plist:pat1Alist,
　　 pl2A.plist:pat2AList,

　　 # Pattern list variables
　　 plistXxx,
　　 plistYyy,
　　 plistZzz
}

SocketDef, UserVars declaration as before ...

Declarations of TestConditions TC1Min, TC1Typ, TC1Max,
TC2Min, TC2Typ, TC2Max as before ...

#
Declare a FunctionalTest. "FunctionalTest" refers to a C++
test class that runs the test, and returns a 0, 1 or 2 as
a Result. The Test Condition Group TCG1 is selected with
the "min" selector by referring to the TC1Min TestCondition.
#
Note that compiler can compile this because of the imported
FunctionalTest.ph file.
#
Test FunctionalTest MyFunctionalTest1Min
{
　　 PListParam = pat1AList;
　　 TestConditionParam = TC1Min;
}

#
Additional FunctionalTest declarations for the following, as before
#　　　　 MyFunctionalTest1Typ
#　　　　 MyFunctionalTest1Max
#　　　　 MyFunctionalTest2Min
#　　　　 MyFunctionalTest2Typ
#　　　　 MyFunctionalTest2Max

10

20

30

40

50

(97) JP 3939336 B2 2007.7.4

#

Here is a declaration of MyFlowable. It uses a PatternList variable
plistXxx which is initialized by the flowable prior to use here.
#
Compiler can compile this because of the imported MyFlowables.ph file:
Flowable MyFlowable MyFlowable1
{
　　 Int1 = 10;
　　 Int2 = 20;
　　 StringItem = "Hello World";
　　 PListParam = plistXxx;
}

Counters for PassCount and FailCount as before ...

Flows as before. Flows FlowTest1 and FlowTest2 are
unchanged from the previous example.
Flow FlowTest1
{
　　 # ...
}

Flow FlowTest2
{
　　 # ...
}
#
Now FlowMain, a main flow, can be presented. It
implements a finite state machine that calls FlowTest1
and FlowTest2 as below:

#　　　　　　　　　　 Result 0　　　　 Result 1

#　　 FlowMain_1　　 FlowMain_2　　 return 1
#　　 FlowMain_2　　 FlowMain_3　　 return 1
#　　 FlowMain_3　　 FlowMain_4　　 return 1
#　　 FlowMain_4　　 FlowMain_5　　 return 1
#　　 FlowMain_5　　 return 0　　　　 return 1
#
Where the IFlowables run by each FlowItem are:
--
#　　　　 FlowItem　　　　　　 IFlowable that is run
--
#　　　　 FlowMain_1　　　　 MyFlowable1
#　　　　 FlowMain_2　　　　 DatalogStartFlow
#　　　　 FlowMain_3　　　　 FlowTest1
#　　　　 FlowMain_4　　　　 FlowTest2
#　　　　 FlowMain_5　　　　 DatalogStopFlow
#

10

20

30

40

50

(98) JP 3939336 B2 2007.7.4

Flow FlowMain
{
　　 #
　　 # The first declared flow is the initial flow to be
　　 # executed. It goes to FlowMain_InitializationFlow
　　 # on success, and returns 1 on failure.
　　 #
　　 FlowItem FlowMain_1 MyFlowable1
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print ("Passed MyFlowable1",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 GoTo FlowMain_2;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Failed MyFlowable1",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 SetBin SoftBins."3GHzLeakage";
　　　　　　 Return 1;
　　　　 }
　　 }

　　 #
　　 # Goes to FlowMain_3 on success
　　 # and returns 1 on failure.
　　 #
　　 FlowItem FlowMain_2 DatalogStartFlow
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Passed DatalogStartFlow",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 GoTo FlowMain_3;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 Property PassFail = "Fail";

10

20

30

40

50

(99) JP 3939336 B2 2007.7.4

　　　　　　 IncrementCounters FailCount;
　　　　　　 MyFunctions.Print("Failed DatalogStartFlow",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 Return 1;
　　　　 }
　　 }

　　 # This FlowItem calls the previously defined FlowTest1
　　 FlowItem FlowMain_3 FlowTest1
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Passed FlowTest1",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 GoTo FlowMain_4;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Failed FlowTest1",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 SetBin SoftBins."3GHzCacheFail";
　　　　　　 Return 1;
　　　　 }
　　 }
　　
　　 # This FlowItem calls the previously defined FlowTest2
　　 FlowItem FlowMain_4 FlowTest2
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Passed FlowTest2",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 GoTo FlowMain_5;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 # FlowTest1 passed, but FlowTest2 failed
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;

10

20

30

40

50

(100) JP 3939336 B2 2007.7.4

　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Failed FlowTest2",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 SetBin SoftBins."3GHzSBFTFail";
　　　　　　 Return 1;
　　　　 }
　　 }

　　 FlowItem FlowMain_5 DatalogStopFlow
　　 {
　　　　 Result 0
　　　　 {
　　　　　　 # All Passed!
　　　　　　 Property PassFail = "Pass";
　　　　　　 IncrementCounters PassCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Passed all!",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 SetBin SoftBins."3GHzAllPass";
　　　　　　 Return 0;
　　　　 }

　　　　 Result 1
　　　　 {
　　　　　　 # FlowTest1 and FlowTest2 passed,
　　　　　　 # but DatalogStopFlow failed
　　　　　　 Property PassFail = "Fail";
　　　　　　 IncrementCounters FailCount;
　　　　　　 # A user function call
　　　　　　 MyFunctions.Print("Failed DatalogStopFlow",
　　　　　　　　　　　　　　　　 Functions.GetDUTID());
　　　　　　 Return 1;
　　　　 }
　　 }
}
【０４４３】
　上記コードについて、以下の点に留意する必要がある。
【０４４４】
　１．　ここで PListDefsセクションは、 PList名をいくつか有し、また PList変数もいく
つか有している。 PList名は、テストにおいて直接用いることができる名前である。 PList
変数は、テストにおいて用いることができる変数であって、その値は、ランタイムでは、
カスタマイズされたフローアブルにおけるコードによって実際の PListに結び付けられて
いる。
【０４４５】
　２．　 PListDefsはオプション的である。もし存在しなければ、その中身は、さまざま
なテスト宣言からのコンパイラによって推測される。もし存在すれば、それは、もっと多
くを宣言しているかもしれないが、テストの使用されている PListパラメータの全てを宣
言しなければならない。
【０４４６】
　３．　ランタイム APIは PList変数に対して値を割り当てるために利用可能である。テス

10

20

30

40

50

(101) JP 3939336 B2 2007.7.4

トプランクラスは関数
　　 Status SetPListVariable(const tester::String& varName,
　　　　 const Tester::String& fiileQualifiedPListName);
【０４４７】
を有する。フローアブルは、 PListVariableを特定の PListに結びつけるために上記関数を
用いることができる。
【０４４８】
　４．　移行のすぐ前に、 FlowItemにおいてユーザ関数および関数を呼び出すことができ
る。この移行は、他の FlowItemへの移動制御か、あるいはリターンである。

ユーザ関数コールのための C++
【０４４９】
　フローにおいてカスタム関数コールを含むことをのぞいて、コンパイラによって生成さ
れるであろう C++コードは、先に提示したさまざまなカスタム化手法について示されてい
る。 FlowItemにおけるユーザ関数コールは、好ましくは、それぞれのフローの IUserCalls
メンバによって扱われる。それぞれのフローは好ましくは、以下に示すように、単一のバ
ーチャルメンバ関数をエクスポートするインタフェース IUserCallsのメンバを有する。

class IUserCalls
{
public:
　　 virtual void exec(const String& flowItemName,
　　　　　　　　　　　　 unsigned int result) = 0;
};
【０４５０】
　ユーザ関数コールを有する Flowに出会うと、 Flowは上記インタフェースをインプリメン
トするクラスのインスタンスに占められる。例えば、フローの例における FlowMainにおい
て、以下のクラスのインスタンスで占められる。

class FlowMain_UserCalls : public IUserCalls
{
public:
　　 virtual void exec(const String& flowItemName,
　　　　　　　　　　　　 unsigned int result)
　　 {
　　　　 if (flowItemName == "FlowMain_1")
　　　　 {
　　　　　　 // ...
　　　　 } else if (flowItemName == "FlowMain_2")
　　　　 {
　　　　　　 // ...
　　　　 } else if (flowItemName == "FlowMain_3")
　　　　 {
　　　　　　 switch (result)
　　　　　　 {
　　　　　　 case 0:
　　　　　　 MyFunctions::Print("Passed FlowTest1",
　　　　　　　　　　　　　　　　　　 Functions::GetDUTID());
　　　　　　　　 return;
　　　　　　 case 1:

10

20

30

40

50

(102) JP 3939336 B2 2007.7.4

　　　　　　 MyFunctions::Print("Failed FlowTest1",
　　　　　　　　　　　　　　　　　　 Functions::GetDUTID());
　　　　　　　　 return;
　　　　　　 default:
　　　　　　　　 return;
　　　　　　 }
　　　　 }
　　　　 else if (flowItemName == "FlowMain_4")
　　　　 {
　　　　　　 // ...
　　　　 }
　　　　 else if (flowItemName == "FlowMain_5")
　　　　 {
　　　　　　 // ...
　　　　 }
　　 }

};
【０４５１】
　 FlowItem::execute()動作は、フローアイテムの名前を知っている。それがポインタで
次のフローに戻る前に、取り囲んでいるフローについて IUserCalls::exec()を呼び出し、
それ自身のフローアイテム名および現在の結果の値を渡す。これにより、必要とされるユ
ーザ定義関数を含む上記コードが実行される。

Ｃ９．　テストプログラムのコンパイル
【０４５２】
　上で説明したように、 Test Plan記述ファイルはテストプランにおいて用いられるオブ
ジェクトとそれらの互いの関係とを指定する。ある実施形態においては、このファイルは
C++コードに変換され、標準的なインタフェース ITestPlanのインプリメンテーションの形
態でサイトコントローラ上で実行される。このコードは、サイトコントローラ上にロード
可能であるウィンドウズダイナミックリンクライブラリ（ DLL）にパッケージ化されるこ
とができる。テストプログラム DLLは、サイトコントローラソフトウェアがそれに含まれ
る TestPlanオブジェクトを生成し、戻すために用いることができる標準的な既知のエント
リポイントを有するように生成される。

Test Plan記述からのコンストラクション
【０４５３】
　テストプラン記述から ITestPlanのインプリメンテーションへの変換プロセスは、テス
トプログラムコンパイラ４００によって達成される。このプロセスは２つの段階、変換お
よびコンパイルで起こる。
【０４５４】
　変換段階４０２において、コンパイラ４００は、テストプランファイル（およびそれが
インポートするさまざまなほかのファイル）、ならびにそのテストプランにおいて用いら
れる全てのテストタイプについてのプリヘッダを処理する。この段階において、コンパイ
ラは、 Test Planオブジェクトについての C++コードと、出会うテストタイプについての C+
+ヘッダとを、 MSVC++（マイクロソフト Visual C++）ワークスペースおよびプロジェクト
ファイル、 DLL「ボイラープレート（ boilerplate）」コード等のような全ての他のサポー
トファイルとともに作成する。コンパイラ４００は、コンパイラタイムエラーメッセージ
が、生成されたコードの代わりに、記述ファイル内の適切な場所を参照し返すことを確実
にするようにファイルおよびライン指令文（ directive）を生成されたコードに挿入する

10

20

30

40

50

(103) JP 3939336 B2 2007.7.4

。
【０４５５】
　コンパイラが必要なファイルを生成した後に起こるコンパイル段階において、 MSVC++コ
ンパイラのような標準的なコンパイラ４０４は、ファイルをコンパイルしてそれらを DLL
にリンクするように呼び出される。
【０４５６】
　コンパイラは、入力として、有効なテストプランファイル（および全ての関連するファ
イル）を取り出して、必要なときに、 TestPlanファイルと、テストプランファイルにおい
て「 Import」指令文によって表される全ての他のファイルとを生成する。また、コンパイ
ラは、 Test Plan DLLをビルドするために MSVC++「ソリューション」を生成する。例えば
、メインファイル（ MyTestPlan.tpl）がタイミング情報を組み込むために Timing1.timを
含んでいれば、コンパイラは以下のファイルを作成（他のものの間で）することになる。

1. MyTestPlan.h
2. MyTestPlan.cpp
3. Timing1.cpp
4. MyTestPlan.sln (MSVC++ "Solution" file)
5. MyTestPlan.vcproj (MSVC++ "Project" file)
【０４５７】
　全てのファイルが作成された（あるいは更新された）後に、コンパイラは、それが作成
した「ソリューション」を指定する MSVC++アプリケーションを呼び出し、 DLLをビルドす
る。いかなるエラーおよび／あるいは警告もユーザに対して示される。
【０４５８】
　もし、 Test Planをビルドした後に、ユーザが Timing1.timに対して変更を行ったら、ユ
ーザはコンパイラを呼び出して、それに MyTestPlan.tplを渡す。コンパイラは、メインテ
ストファイルは変わっていないことを（タイムスタンプ情報によって）認識し、 MyTestPl
an.h/.cppは再作成されない。しかし、メインテストプランファイルを処理している間に
、コンパイラは、 Timing.timファイルが変わったことを見つける。したがって、コンパイ
ラは Timing1.cppファイルを再作成し、 DLLを再ビルドするように MSVC++アプリケーション
を呼び出す。これは MyTestPlan.cppを再コンパイルすることを避け、 Timing1.cppをコン
パイルして、 DLLに再リンクするだけである。このアプローチは、コンパイルにかなりの
時間をとるような大きなテストプランについて、再コンパイル、再リンクの回数を削減す
るのに特に有用である。

Ｄ．　テストプログラムを動作させる
【０４５９】
　サイトコントローラソフトウェアは、テストプログラム DLLをその処理空間にロードし
、 Test Planオブジェクトのインスタンスを作成するために DLL内に「 factory」関数をコ
ールする。一旦 Test Planオブジェクトが作成されると、サイトコントローラソフトウェ
アはテストプランを実行、あるいは他の必要な方法でそれに相互作用することができる。

非インタラクティブビルド
【０４６０】
　ウィンドウズ環境の大半の C++ソフトウェア開発者は、アプリケーション（あるいは DLL
、あるいはライブラリ等）を作ることは、開発環境（ MS Visual C++、 Borland C++、ある
いは類似したもの）を立ち上げ、コードを編集し、そして（しばしば）製品を作るために
ボタンを押すことを意味する。
【０４６１】
　発明の一実施形態のテスト環境は、同様のアクティビティのセットを有する。テストプ
ランの開発者は、コードを編集して、彼らのテストプランを構成する必要がある。しかし

10

20

30

40

50

(104) JP 3939336 B2 2007.7.4

ながら、テスタは、結果としての Test Plan DLLを生成するために C++開発環境を立ち上げ
ることをテストプラン開発者には要求しない。
【０４６２】
　これを実現するために、本発明は、非インタラクティブなビルドの概念を採用する。非
インタラクティブなビルドは、非インタラクティブなモードにおいて MS Visual C++を使
うビルドとして定義される。これは依然として、このようなビルドを管理するために他の
ツールをインタラクティブに用いることを可能にするということに留意されたい。唯一の
暗黙の意味は、 Visual C++を非インタラクティブに用いるということである。

仮定された環境
【０４６３】
　ユーザの環境についてある仮定をする。この仮定とは、
【０４６４】
　１．テストプラン開発者は、上記方法およびルールに従ってテストプランを開発してい
る。
【０４６５】
　２．テストプラン開発者は、 C++の専門化レベルの知識をもっていないかもしれない。
【０４６６】
　３．テストプラン開発者は、ファイルを Test Plan DLLに変換するためにコマンドライ
ンツールあるいは GUIツールへのアクセスを有している。

ボタンなしでアプリケーションを作る
【０４６７】
　非インタラクティブに MS Visual Studioで作業をすることは２つのアプローチのうちの
１つを必要とする。一番目（そして最も単純なもの）は、コマンドラインインタフェース
を用いることである。二番目（そしてより柔軟性のあるもの）はオートメーションインタ
フェースを用いる 。このセクションでは両方のアプローチを説明する。

プロジェクトを作成する
【０４６８】
　非インタラクティブに Visual Studioを用いるためには、一つ以上の有効なプロジェク
トを含む作業ソリューション（ working Solution）で始めないとならない。不運なことに
、これは、コマンドラインのアプローチでもオートメーションのアプローチでも達成する
ことができないタスクである。方法もプロジェクト作成のためのメカニズムも提供しない
。しかし、 Visual Studio用のプロジェクトおよびソリューションは、テンプレートから
作成することができる。したがって、開始するために、プロジェクト名およびテンプレー
トが与えられると、 Visual Studio用のソリューション／プロジェクトを作成することが
できる。

プロジェクトを占有する
【０４６９】
　生成されたプロジェクトに新しいファイルを追加することは、 Visual Studioのオート
メーションモデルを用いる。コマンドラインはこれをサポートしていないからである。我
々は、プロジェクトに新しいファイルおよび既存のファイルを追加するために２つの Visu
al Studioマクロを提供する。類似したコードは、同じタスクを行うために ActiveScript
エンジンを用いる外部のスクリプト（ VBScript、 Jscript、 ActivePerl、 ActivePython等
）によって用いられ得る。したがって、我々のコード生成ツールは、新しいファイルを作
成し、オートメーションモデルを用いて、それらを既存の Visual Studioプロジェクトに
追加することができるであろう。ファイルが生成された後に、それらをツールによって必
要なときに更新することができる。

10

20

30

40

50

(105) JP 3939336 B2 2007.7.4

ことである

プロジェクトを作る
【０４７０】
　一旦ソリューションおよびプロジェクトの準備ができると、テストプランを作るために
非インタラクティブに Visual Studioを用いることに対していくつかの選択肢がある。最
も単純な選択肢は、それをコマンドラインから呼び出すことである。このようなコマンド
ラインは、以下のようであり、

　　 derenv solutionFile /build solutionCfg
【０４７１】
solutionFileは、 Visual Studioソリューションファイルであり、 solutionCfgはそのソリ
ューション内のプロジェクトに適用可能である具体的なコンフィギュレーションである。
他のソリューションは、オートメーションについての Visual Studio Object Modelを用い
ることである。これにより、ビルドプロセスおよびコンフィギュレーションプロセスに対
してよりきめの細かい制御が可能である。上述したように、それはコマンドラインからプ
ロジェクトを作るために Perlスクリプトのリストを含んでいる。このプログラムは、作る
べきプロジェクトおよびコンフィギュレーション（ならびにプロジェクトについてのほか
の情報）を指定するコンフィギュレーションファイルを読んで、それらをオートメーショ
ンモデルを用いて全て作る。スクリプトにおいてオートメーションオブジェクトをどのよ
うに用いるかの例について、このスクリプトにおける $msdvオブジェクトの使用を参照さ
れたい。

デバッガサポート
【０４７２】
　テストクラスの開発者が彼らの作業を検証してデバッグするために、彼らは、彼らがサ
イトコントローラに入り込んでコードをたどることを可能にするデバッガへのアクセスを
必要とする。コンパイラによって生成されたコードは、 MSVC++によってコンパイルされる
C++であるので、我々は、テストクラスインプリメンテーションのデバッグのために MSVC+
+デバッガを用いる。この特徴は、テストクラス開発者についてのみ意味をもつのではな
く、直接 C++で作業する者についても重要であるということに留意されたい。他のメカニ
ズムが、生成された C++コードを直接参照することなく、テストプログラムの動作デバッ
グしたい、あるいはたどりたいと願うテストエンジニアに対して提供される。

システムソフトウェア環境
【０４７３】
　このセクションは、テスタのための一般的なソフトウェア環境、すなわち、ユーザテス
トプランによって要求されるファイルの場所、このようなファイルの代わりの場所を指定
するためのメカニズム、およびテストプランおよびモジュール制御ソフトウェアの配置を
指定する方法を説明する。

テストプランによって要求される環境

　テストプランによって要求されるシステム標準の場所、ならびに
　１．　　パターンリスト
　２．　　パターン
　３．　　タイミングデータ
　４．　　テストクラス DLL
【０４７４】
についてのサーチパスのランタイムコンフィギュレーションは、環境コンフィギュレーシ
ョンファイルによって指定されるように「環境」変数によって構成されてもよい。これら

10

20

30

40

50

(106) JP 3939336 B2 2007.7.4

は、例えば以下のような単純な構文を有するテキストファイルである。

Tester_PATOBJ_PATH = "patterns¥data;D:¥projects¥SC23¥patterns¥data"
【０４７５】
　ネイティブな OSサポートの環境変数を通じてではなく、テキストファイルに定義された
このような「環境」を有することの利点は、 OSサポート環境変数が有する、最大文字列長
等の一般的な限定によってインプリメンテーションが制限されないことである。以下の「
環境」（セットアップ）変数は、上に列挙した構成要素について用いられる。
¥
Pattern lists: Tester_PATLIST_PATH.
Pattern object files: Tester_PATOBJ_PATH.
Pattern source files: Tester_PATSRC_PATH (this is optional; please see).
Timing data files: Tester_TIMING_PATH.
Test class DLLs: Tester_TEST_CLASS_LIBPATH.
【０４７６】
　具体的な事例をサポートするために、有用なデフォルトの振る舞いを維持しつつ、我々
はコンフィギュレーションの３つのレベルを提供する。これらは、優先度が増えていく順
に説明する。
【０４７７】
　まずシステム環境セットアップファイル ?Tester_INSTALLATION_ROOT?cfg?setups?Setup
.envは、「環境」変数のデフォルトの値を指定する。他のコンフィギュレーションメカニ
ズムが利用可能でなければ、このファイルが要求される。一般的に、それはシステム上で
動作する全てのテストプランについて利用可能である。このファイルは、上述した３つの
変数についてのデフォルトの値を割り当てるために、インストーラからの入力とともに、
インストール中にインストールおよびコンフィギュレーション管理（ ICM）システムによ
って作成される。（なお、上記３つの変数についてのシステムデフォルトに加えて、この
ファイルは、次のサブセクションで説明する他のテスタ［環境］変数についてのシステム
デフォルトも含んでいる。）
【０４７８】
　第二に、環境セットアップファイルは、テストプランへのランタイム引数としてユーザ
によって指定されてもよい。このランタイムコンフィギュレーションにおける変数は、デ
フォルトの定義に優先する。
【０４７９】
　最後に、テストプランは、その実行において用いられるべき環境変数を指定するために
特別なブロックを用いてもよい。テストプランにおいて定義された変数は、デフォルトシ
ステムファイルあるいはユーザ定義ファイルにおける変数に優先する。
【０４８０】
　一般的に、全ての必要な変数は、上述したメカニズムのうちの一つを通じて定義される
べきである。もし変数が定義されなければ、ランタイムエラーが生じる。

他の環境セットアップ
【０４８１】
　ユーザテストプランによって要求される［環境］変数に加えて、以下の２つの［環境］
変数がテスト環境によって要求される。
【０４８２】
　１． Tester_TEST_PLAN_LIBPATH：これは、システムコントローラがロードされるべきユ
ーザテストプラン DLLを見つけるために用いるサーチパスを指定する。同じサーチパスが
、ユーザピン記述ファイルおよびソケットファイルを見つけ出すためにも用いられること
に留意されたい。この変数のデフォルト値は、インストール中に ICMに指定され、 ICMによ
ってファイル $Tester_INSTALLATION_ROOT?cfg?setups?Setup.envに記憶される。

10

20

30

40

50

(107) JP 3939336 B2 2007.7.4

【０４８３】
　２． Tester_MODULE_LIBPATH：これは、ベンダ提供のハードウェアモジュール制御ソフ
トウェア DLLをロードするためにシステムが用いるサーチパスを指定する。この情報は、
コンフィギュレーション管理データベース（ CMD）から抽出され、ファイル $Tester_INSTA
LLATION_ROOT?cfg?setups?Setup.envに ICMによって記憶される。
【０４８４】
　ユーザは Tester_TEST_PLAN_LIBPATH変数について Setup.envファイルにおいて与えられ
る値を無効にすることができるが、 Setup.envファイルにおいて Tester_MODULE_LIBPATHに
ついて与えられる値は、ユーザがベンダ提供のハードウェアモジュール制御ソフトウェア
DLLについてのサーチパスを明示的に変更することを望まなければ、ユーザによって変更
されるべきではないことに留意されたい。

サーチパス指定セマンティクス
【０４８５】
　サーチパスを指定する「環境」変数について以下の点に留意しなければならない。
【０４８６】
　１．　それぞれは、システムが特定のタイプの参照されるファイルを見つけ出すために
サーチを行うディレクトリ名のセミコロンで区切られたリストでなければならない。
【０４８７】
　２．　このような「環境」変数の値をシステムが最初に参照した後は、その値に対する
ユーザによるいかなる変更（例えば環境コンフィギュレーションファイルを編集すること
による）も、ユーザがそれをする必要があることをシステムに明示的に「知らせる」とき
に、システムによって登録されるのみである。
【０４８８】
　３．　分散環境における「現在の作業ディレクトリ」 CWDの注釈――テスタが作業する
環境等――は、ユーザが直感的にそれが予想するものではないかもしれないために（ CWD
）に関連するパスがあいまいな結果をもたらし得るときに、サーチパスにおける関連する
パス名は、関連する環境変数（ルートを規定する機能を提供する）の特定の設定に関連す
るものとして解釈される。この関連する環境変数は、サーチパスにおける全ての関連パス
名が関連を有すると仮定されるルートを指定するものであるが、これは「 Tester_INSTALL
ATION_ROOT」変数であり、ユーザのシステム上へのテスタのインストールの最上位レベル
（すなわち「ルート」ディレクトリの場所を与える。
【０４８９】
　４．　ディレクトリエントリは、セット [V:*?"<>|;]の文字を含むことができない。セ
ミコロン（ ;）をのぞいてこのセットの他の全ての文字は、ウィンドウズのファイル名で
は不正であることに留意されたい。セミコロンは、サーチパスエントリでは用いるべきで
はない。なぜならこれは、サーチパスにおけるエントリの境界を定めるために用いられる
からである。なお、パス名は埋め込まれた空白を有することができるが、パス名の直前、
直後（すなわちパス名における最初の空白ではない文字の前および最後の空白ではない文
字の後）にくる全ての空白は、パス名の一部とは考えられず、無視される。
【０４９０】
　５．　サーチパスディレクトリは、それらが定義に登場する順番でサーチされる。ファ
イルの最初の登場が選択されるものである。

Ｅ．　テストパターン
【０４９１】
　テストパターンファイルの非常に大きなセットの効率的に管理し、扱い、ロードするこ
とが発明の一実施形態のフレームワークの重要な構造上の局面である。階層的なパターン
リストの考えは、扱いやすい概念化ならびにシステムの使用の容易さをエンドユーザに提
供する有効なツールであるとみなされる。

10

20

30

40

50

(108) JP 3939336 B2 2007.7.4

【０４９２】
　 DUTへの刺激は、テストベクトルを通じてテストシステムに役立てられる。ベクトルは
一般的に、シーケンシャル（あるいはリニア）、スキャン、あるいはアルゴリズムパター
ン生成器（ APG）由来のものに分類可能である。発明の一実施形態のシステムにおいては
、テストベクトルを、テストタイムに DUTに適用されるパターンについて組織化する。パ
ターンは、ユーザのテストプログラムにおけるパターンオブジェクトによって表される。
そのシステムにおいては、パターンは、パターンリストにおいて組織化され、パターンリ
ストオブジェクトによってプログラム的に表される。パターンリストオブジェクトは、順
序付けられたパターンのリストあるいは他のパターンリストを表す。順序付けは、潜在的
にはリストのコンポーネントの宣言の順である。なお、もし一つのパターンだけが必要と
されれば、それは単独でリストにカプセル化される必要がある。
【０４９３】
　ユーザのテストプログラムにおけるパターンリストオブジェクトは、ディスク上のパタ
ーンリストファイルに関連付けられており、それはパターンリストの実際の定義を含んで
いる。したがってパターンリストの内容は、関連付けられているディスクファイルの内容
によって動的に決定される（これについては後でより多くを説明する）。
【０４９４】
　パターンリストの定義は、パターンリストについて明示的な名前を提供し、ファイル名
の関連付けを通じて、順序付けられたパターンのリストおよび／あるいは他のパターンリ
ストを特定する。またそれは、実行オプションの指定も提供する。これについては、この
オプションはパターンリストおよびパターンの両方に適用可能であるので、パターンオブ
ジェクトを述べた後に詳細に説明する。パターンリストは以下のルールに従わなければな
らない。

file-contents :
　　 version-info global-pattern-list-definitions
version-info :
　　 Version version-identifier ;
global-pattern-list-definitions :
　　 global-pattern-list-definition
　　 global-pattern-list-definitions global-pattern-list-definition
global-pattern-list-definition :
　　 global-pattern-list-declaration { list-block }
global-pattern-list-declaration :
　　 GlobalPList pattern-list-name optionso p t
list-block :
　　 list-entry
　　 list-block list-entry
list-entry :
　　 pattern-entry ;
　　 pattern-list-entry ;
　　 global-pattern-list-definition ;
　　 local-pattern-list-definition ;
pattern-entry :
　　 Pat pattern-name optionso p t
pattern-list-entry :
　　 PList pattern-list-reference optionso p t
pattern-list-reference :
　　 pattern-list-qualified-name
　　 file-name ':' pattern-list-qualified-name

10

20

30

40

50

(109) JP 3939336 B2 2007.7.4

pattern-list-qualified-name :
　　 pattern-list-name
　　 pattern-list-qualified-name '.' pattern-list-name
local-pattern-list-definition :
　　 local-pattern-list-declaration { list-block }
local-pattern-list-declaration :
　　 LocalPList pattern-list-name optionso p t
options :
　　 option
　　 options option
option :
　　 [option-definition]
option-definition :
　　 option-name option-parameterso p t
option-parameters :
　　 option-parameter
　　 option-parameters ',' option-parameter
【０４９５】
　以下は、上で用いた未定義の非ターミナルの説明である。
　１．　 version-identifier：　セット [0-9]からの一つ以上の文字の列であり、最初の
文字は数字でなければならない
【０４９６】
　２．　 name：　セット [a-zA-Z_0-9]からの一つ以上の文字の列でり、最初の文字はセッ
ト [a-zA-Z]からの文字でなければならない。
【０４９７】
　３．　 pattern-list-name：　セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、
最初の文字はセット [a-zA-Z_]からの文字でなければならない。
【０４９８】
　４．　 file-name：　有効なウィンドウズファイル名（このファイル名に空白が含まれ
るのであれば二重引用符で挟まれなければならない）。これは単純なファイル名でなけれ
ばならない、すなわちディレクトリコンポーネントを有すべきではないことに留意された
い。 pattern-list-referenceは、同じファイル内のパターンリストへの内部参照か、ある
いは他のファイルのパターンリストへの外部参照のどちらかであり得る。外部参照は、 fi
le-nameによって制限される必要がある。
【０４９９】
　５．　 option-name：　セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、最初の
文字はセット [a-zA-Z_]からの文字でなければならない。
【０５００】
　６．　 option-parameter：　セット [a-zA-Z_0-9]からの一つ以上の文字列である。
【０５０１】
　パターンリストファイルはコメントをサポートする。コメントはパターンリストファイ
ル解析部によって無視されることを意味する。コメントは、「 #」の文字で始まり、行末
まで続く。

Ｅ１．　パターンリストのルール
【０５０２】
　パターンリストについての静的な、あるいはコンパイルタイムルールは名前の宣言と解
決とを支配する。パターンリスト言語における名前は、グローバルパターンリスト定義お
よびローカルパターンリスト定義によって宣言される。それらは、パターンリスト参照に
よって参照される。これらの宣言および参照を支配するルールのいくつかを以下に示す。

10

20

30

40

50

(110) JP 3939336 B2 2007.7.4

【０５０３】
　１．　グローバルパターンリスト定義またはローカルパターンリスト定義は、パターン
リストの名前を宣言する。パターンリスト参照は、宣言されたパターンリストの名前を参
照する。グローバルパターンリストの名前はグローバルに知られる。ローカルパターンリ
ストの名前は、それらが宣言された 内でのみ知られる。それらは、そのリ
ストブロック内では直接制限なしで参照されることができる。より深く繰り込まれた宣言
においては、ローカルパターンリストは制限された名前によって参照される必要があるで
あろう。
【０５０４】
　２．　ローカルパターンリスト名は、周りのパターンリストの範囲内で知られ、グロー
バルパターンリスト名はシステムの範囲内で知られる。例えば、

GlobalPList G1
{
　　 LocalPList L1
　　 {
　　　　 LocalPList L2
　　　　 {
　　　　　　 ...
　　　　 }

　　　　 GlobalPList G2
　　　　 {
　　　　　　 ...
　　　　 }

　　　　 PList L2;　　　　 # OK. Name L2 is known in this scope
　　　　 PList G2　　　　 # OK. Name G2 is global
　　 }

　　 PList L2;　　　　　　 # Error. Name L2 is not known here.
　　 PList L1.L2;　　　　 # OK. Name L1 is known here. L2 is known by
　　　　　　　　　　　　 #　　　　 qualification.
　　 PList G1.L1.L2;　　 # OK. Qualification by G1 is not needed but
　　　　　　　　　　　　 # is allowed.
　　 PList G2;　　　　　　 # OK. Name G2 is global
}
【０５０５】
　３．　グローバルパターンリストは、パターンリストファイルにおける最外レベルで定
義されるか、あるいは周りのパターンリスト内で繰り込まれたものとして定義されてもよ
い。しかしながら、繰り込みは便宜のためにすぎない。それらは概念的には、ファイルの
最外レベルのグローバルパターンリストとして定義される。繰り込まれたグローバルパタ
ーンリストは、同名の最外の（繰り込まれていない）グローバルパターンリストと意味的
には等価である。したがって例えば

 GlobalPList G1
 {
 GlobalPList G2 ...
 }
is semantically equivalent to:

10

20

30

40

50

(111) JP 3939336 B2 2007.7.4

リストブロック

 GlobalPList G1
 {
 PList G2; # References G2
 }

 GlobalPList G2 ...
【０５０６】
　４．　全てのグローバルパターンリストは、固有の名前を付けられる。

 GlobalPList G1
 {
 # Note that this is as if declared at the outermost level
 # with a reference to it right here.
 GlobalPList G2
 {
 ...
 }
 }

 # This declaration will be an error in this or any other file,
 # as the name G2 is already taken.
 GlobalPList G2 # Error. Global name G2 is taken.
 {
 ...
 }
【０５０７】
　５．　ローカルパターンリストは常に、ローカルパターンリストの名前の範囲を決定す
る周りのパターンリスト内に繰り込まれた定義を有している。ローカルパターンリストは
、周りのパターンリスト内で固有の名前をつけられる。ローカルパターンリストは、パタ
ーンリストファイルの最外レベルに登場することを構文的には認められない。

 GlobalPList G1
 {
 LocalPList L1
 {
 }

 LocalPList L2
 {
 LocalPList L1 # OK. No local name L1 is declared directly
 # in the enclosing scope defined by L2.
 {
 }

 PList L1; # OK. Refers to L1 declared in L2
 PList G1.L1; # OK. Refers to L1 declared in G1.
 }

 # Error. Redeclaring name L1 when the enclosing scope
 # defined by G1 already has an L1 declared in it.

10

20

30

40

50

(112) JP 3939336 B2 2007.7.4

 LocalPList L1;
 {
 }

 }
【０５０８】
　６．　各パターンリストファイルは、一つ以上のグローバルパターンリストについての
定義を含んでいる。これは、直接構文から得られる。最外レベルはグローバルパターンリ
スト定義であり、それらの少なくとも一つがなければならない。
【０５０９】
　７．　パターン名はパターンへの参照であり、 Patというキーワードの後に続く。それ
は、その名前がパターン名に接尾辞 .patを連結させることによって得られるようなパター
ンファイル内にあるパターンを参照する。このファイルは、パターンについて定義された
サーチパスに沿って得られるファイルを表している。
【０５１０】
　８．　パターンリスト参照は、 PListキーワードの後に続くパターンリストへの参照で
ある。この参照は、オプションのファイル名からなり、その後に、ドットによって区切ら
れる名前の単なるリストにすぎない制限されたパターンリスト名が続く。したがって、例
えば、ファイル foo.plistにあるグローバルパターンリスト G1に繰り込まれている L1に繰
り込まれている L2に繰り込まれているローカルパターンリスト L3を参照するパターンリス
ト参照は以下のようであり得る。

PList foo.plist:G1.L1.L2.L3;
【０５１１】
上の名前で一番左の名前セグメントは G1である。
【０５１２】
　一番左の名前セグメントは、グローバルパターンリストか、あるいは参照点から見える
ローカルパターンリストのいずれかにならなければならない。
【０５１３】
　パターンリスト参照の名前の解決は以下のように進行する。
【０５１４】
　１．　各名前部分は、その前の接頭辞の中身で宣言される名前になる。
【０５１５】
　２．　もしファイル制限があれば、一番左の名前セグメントは名付けられたファイルに
おいて宣言されたグローバルパターンリストになる。
【０５１６】
　３．　もしファイル制限がなければ、一番左の名前は、取り囲む範囲内のローカルパタ
ーンリストになり得、もしそれが失敗すれば、次の取り囲む範囲、その次の範囲と、取り
囲むグローバルな範囲まで続く。
【０５１７】
　４．　範囲のサーチを最も近い取り囲むグローバルな範囲に限定することは、それらが
パターンリストファイル内の最外レベルで宣言されたかのようにグローバルな範囲のセマ
ンティクスに従うために必要とされる。もし繰り込まれたグローバルな範囲が最外レベル
で（等価的に）原文どおりに宣言されれば、名前の解決のサーチは、その範囲を調べた後
に終了する。
【０５１８】
　５．　もし参照が前述のステップによって解決しなければ、一番左の名前セグメントは
、この同じファイル内のグローバルパターンリストになるとすることができる。
【０５１９】
　６．　もし前述のステップによって参照が解決しなければ、一番左の名前セグメントは

10

20

30

40

50

(113) JP 3939336 B2 2007.7.4

、「 .plist」という接尾辞を一番左の名前セグメントに付加することによってファイルで
名付けられたグローバルパターンリストとなるとすることができる。
【０５２０】
　７．　もし参照が前述のステップによって解決されなければ、参照は間違っている。
【０５２１】
　先に述べたように、上記ルールは、一番左の名前部分は、参照点から見えるローカルパ
ターンリストであるか、グローバルパターンリストになることを決定する。
【０５２２】
　次の例はこれらの考えのいくつかを示す。

 GlobalPlist G1
 {
 PList G3; # OK. Refers to a pattern list later in this file.

 PList G4; # OK. Refers to a pattern list in file "G4.plist"

 # OK. Refers to G1 in the file "my_plists.plist".
 PList my_plists.plist:G1;

 # OK. Refers to a pattern list in file "my_plists.plist". The
 # qualified name refers to a local pattern list named L2 declared
 # in the scope of a local pattern list named L1 declared in the
 # scope of a global pattern list named G1.
 PList my_plists.plist:G1.L1.L2;

 LocalPList L1
 {
 LocalPList L2
 {
 }
 }

 PList L1; # OK. Refers to L1 declared in the
 # enclosing scope of G1

 }

 GlobalPlist G2
 {
 LocalPList L2
 {
 }

 GlobalPList G3
 {
　　　　 LocalPList L3
 {
 }

 PList L1; # Error. No L1 declared in this or any enclosing

10

20

30

40

50

(114) JP 3939336 B2 2007.7.4

 # scope;

 # Error. The name L2 is not declared in this scope. Also
 # though L2 is declared in the enclosing scope, this scope
 # is global, and so no further enclosing scope is examined.
 #
 # Contrast with reference to name L2 in LocalPList L3 below.
 PList L2;

 PList G1.L1; # OK. Refers to L1 in G1.

 # Error. G3 is not really nested inside G1. Since G3
 # is global, it is really declared at an outermost level,
 # and so G1.G3 is meaningless.
 PList G2.G3.L3;
 }

 LocalPList L3
 {
 # OK. Refers to G2.L2. The enclosing global scope is G2
 # and the name L2 is declared in G2.
 PList L2;
 }
 }
【０５２３】
　全てのパターンリストファイル名およびパターンファイル名は、それらを用いるテスト
プランにわたって固有のものであることが要求される。
【０５２４】
　パターンリスト参照は、同じファイルにおける参照の前または後に定義されるパターン
リストを参照することができる。
【０５２５】
　再帰パターンリスト定義および相互に再帰的なパターンリスト定義は許容されない。こ
のような定義をユーザが作成することを妨げるものは、パターンリストファイル構文には
何もなく、解析部はこのような状況を検出するとエラーのフラグを立てる。このような状
況の検出に関連していくらかのコストがかかることに留意されたい。ユーザは、もしユー
ザが入力空間が互いに再帰的な定義を有していないことを保証する責任を負うことができ
るかどうかのチェックをオフに切り替えることができる。

 GlobalPList G1
 {
 LocalPList L2
 {
 LocalPList L3
 {
 # Error. L2 runs L3 which runs L2.
 # This is a recursive reference to L2
 PList L2;

 PList G2;
 }

10

20

30

40

50

(115) JP 3939336 B2 2007.7.4

 }
 }

 GlobalPList G2
 {
 # Error. G1.L2 runs L3 which runs G2 which runs G1.L2.
 # This is a mutually recursive reference to G1.L2.
 PList G1.L2;
 }
【０５２６】
　パターンおよびパターンリストの構文的な記述は、オプションがそれらにおいて指定さ
れることを可能にする。一般的にオプションはベンダに特有のものである。構文は、いか
なるパターンまたはパターンリストが指定されたいくつものオプションを有することを可
能にする。オプションのそれぞれはいくつものパラメータを有する。大半のベンダによっ
て認識されるいくつかのサポートされたオプションを説明する。
【０５２７】
　パターンツリーの動的な（すなわち実行）セマンティクスを、パターン実行シーケンス
を定義した後に説明する。

Ｅ２．　パターン
【０５２８】
　図６は、本発明の一実施形態によるパターンコンパイラ６０２およびパターンローダ６
０４を示す。パターンのユーザによって定義された中身は、プレインテキストファイルで
あるパターンソースファイル６０６において利用可能である。パターンコンパイラは、ソ
ースファイルを、テスタハードウェア上へのロードに適したモジュール特有のフォーマッ
トにコンパイルする任務をもつ。後者のファイルは、パターンオブジェクトファイルとし
て参照される。一般的な属性は以下の通りである。
【０５２９】
　１．　 はユーザによって作成可能ではなく、むしろ、ユーザは常に
パターンリストを扱い、これは他のパターンリストおよび／あるいはパターンの集合体で
ある。パターンリストオブジェクトは、その中に含まれるパターンオブジェクトを、必要
に応じてユーザに対してアクセス可能としつつ、作成し、所有し、保持する。
【０５３０】
　２．　パターンは、テストプラン内で固有の名前を付けられている。すなわち、テスト
プラン内で２つのパターンが同一の名前をもつことはできない。パターンの名前は、それ
を含むファイルの名前とは別個のものである。パターンファイル名は、パターンを参照す
るためにパターンリストファイルにおいて用いられる名前であり、パターンの実際の名前
はパターンファイルにおいて定義される。
【０５３１】
　発明のある実施形態においては、一般的に、単一の DUT（テスト対象装置）が異なるベ
ンダからのテスタモジュールに接続される可能性がある。これは、パターンコンパイル－
ロード－実行のチェーン全体に影響を与える。主な影響をこのセクションで述べる。

Ｅ３．　パターンコンパイル
【０５３２】
　したがって、パターンコンパイラ６０２は、（用いられるベンダ特有のデジタルモジュ
ールに関して）特定のサイトコンフィギュレーションを目標とする必要がある。この議論
の残りについて、「モジュール」という用語は、一例としてのデジタルモジュールを指す
ために用いられるものとする。異なるベンダからのモジュール６０８をシステムに統合す
ることを可能にするために、以下の手順が好まれる。

10

20

30

40

50

(116) JP 3939336 B2 2007.7.4

パターンオジェクト

【０５３３】
　１．　各モジュールベンダは、自身のモジュールに特有なパターンコンパイラ６１０を
、動的にロード可能なライブラリまたは別々の実行ファイル（ executable）の形態で提供
する責任がある。このコンパイラライブラリ／実行ファイルは、最低限でも、引数として
　　　ａ．　（一つ以上の）パターンソースファイルパス名のアレイ
　　　ｂ．　ピン記述ファイル名
　　　ｃ．　ソケットファイル名
　　　ｄ．　コンパイルされたオブジェクトの行先を指定するオプション的なディレクト
リパス名
　　　ｅ．　いかなるベンダ特有パラメータの指定も可能にする文字列名／値のペアのオ
プション的なアレイ（他のベンダは無視することができる）
【０５３４】
をとるよく知られた compile()関数を提供する。
【０５３５】
　２．　パターンソースファイルは、２つの異なるタイプのセクションを収容する。
　　　ａ．　全てのコンパイラがアクセス可能である（しかし必ずしも用いられない）情
報を含む「共通」セクション
【０５３６】
　　　ｂ．　一つ以上のオプション的なベンダ特有のセクション。それぞれ、固有のベン
ダコードで識別され、特定のベンダのコンパイラによって使用可能な情報のためのもので
ある。
【０５３７】
　３．　ベンダのコンパイラはパターンオブジェクトファイルを直接作成しない。代わり
に、テスタが、パターンコンパイラの一部であるオブジェクトファイルマネージャ（ OFM
）６１４によって管理されるパターンオブジェクト「メタファイル（ metafile）」６１２
を提供する。パターンコンパイラは、システムコントローラとして機能するコンピュータ
上に配置されてもよいし、オフライン、例えばシステムコントローラが接続されるネット
ワーク上に配置されてもよい。ここまで抽象的な用語で言及している「パターンオブジェ
クトファイル」は、実際にはこのオブジェクトメタファイルである。オブジェクトメタフ
ァイルは、パターンソースファイルと同じ名前を付けられ、ソースファイルの拡張子はオ
ブジェクトファイルの拡張子に置き換えられる。 OFMはこのファイルを読み書きするため
のアプリケーションプログラミングインタフェース（ API）を提供する。オブジェクトメ
タファイルは、
　　　ａ．　共通ヘッダ情報
　　　ｂ．　対応するモジュールおよびそのモジュールについてのパターンデータの場所
を特定する情報を含む、モジュール特有のヘッダ情報
【０５３８】
　　　ｃ．　モジュールベンダによって要求されるように組織化されたモジュール特有の
パターンデータ。モジュールベンダが解釈可能である。
【０５３９】
を記憶するための規定を有している。
【０５４０】
　 OFM APIは、モジュールベンダのコンパイラが、モジュールに特有なヘッダ情報および
データをオブジェクトメタファイルに書き込むことを可能にする。なお、オブジェクトメ
タファイルのこのレイアウトによって、目標とされるサイトにおける２つ以上のモジュー
ルが同一のものである場合であっても、パターンデータをプレモジュールベースで組織化
することが可能である。
【０５４１】
　ダイレクトメモリアクセス（ DMA）のような効率的なデータ通信を活用するモジュール
特有ハードウェアローディング情報の生成を容易にするために、パターンコンパイラは、

10

20

30

40

50

(117) JP 3939336 B2 2007.7.4

追加のベンダ供給コンフィギュレーション情報を必要とするかもしれないということに留
意されたい。

Ｅ４．　モジュールのためのパターンロード
【０５４２】
　各モジュールベンダは、一般的な手順の後に続く、自身のパターンローディングメカニ
ズム６１５を提供する責任がある。モジュール６０８のパターンオブジェクトメタファイ
ル６１２は、異なるセクション６１６にモジュール特有データを記憶する。ベンダインプ
リメンテーションは、パターンオブジェクトメタファイルからの関連するモジュール特有
セクションにアクセスするために OFM APIを用いる。テスタフレームワークは、メタファ
イルの適切なセクションからモジュール特有データをモジュールにロードするために、各
モジュールのロード方法を呼び出す責任がある。

Ｅ５．　パターンファイル
【０５４３】
　各コンパイラベンダに、パターンに関する完全に異なるプレインテキストフォーマット
を指定させることが可能であり、これは実際に、大半の場合に必要とされる可能性がある
。しかしながら、一般的に、モジュールにわたって整合的で同一のセマンティクスがどの
ベクトルについても必要とされるようなサイクルベースのテスト環境については、パター
ンファイルについての共有され、一般化された構文は望ましいだけでなく、必要であるか
もしれない。この共有された構文は、パターンソースファイルの「共通」セクションにつ
いて何が指定されているかということである。実際、大多数の場合について、「共通」セ
クションがパターンファイルにおいて要求される唯一のセクション（ヘッダ情報以外では
）であるということが想定され、どのベンダのコンパイラも、そのセクションだけととも
に動作する。このセクションは、全てのコンパイラが解釈することができなければならな
いパターンファイルについてのルールを提示している。パターンファイルは以下の通り組
織化される。

file_contents　　　　　　 :　　
　　　　　　　　　　　　 version_info pattern_definitions
version_info　　　　　　 :
 　　 Version version-identifier ';'

pattern_definitions　　　　　　 :
 　　 pattern_definition
　　　　　　　　 pattern_definitions pattern_definition
pattern_definition :
 main_header '{' main_section '}'
 main_header '{' main_section vendor_sections '}'
 subr_header '{' subr_section '}'
 subr_header '{' subr_section vendor_sections '}'
main_header :
 MainPattern identifier
main_section :
 CommonSection '{' common_contents main_section_domai
ns '}'
common_contents :
 timing_reference timing_map_reference
timing_reference :
 Timing file-name ';'

10

20

30

40

50

(118) JP 3939336 B2 2007.7.4

timing_map_reference :
 TimingMap file-name ';'
main_section_domains :
 main_section_domains main_section_domain
 main_section_domain
main_section_domain :
 Domain domain_name '{' main_section_contents '}'
domain_name :
 identifier
main_section_contents :
　　 main_section_contents main_section_content
 main_section_content
main_section_content :
　　 label_spec main_pattern_spec
 main_pattern_spec
label_spec :
 label ':'
label :
 identifier
main_pattern_spec :
 main_operation capture_mask_flag '{' vectors_and_wav
eforms '}'
main_operation : /* empty */
 common_operation
 jal_op
 jsr_op
 jsrc_op
 jsc_op
 exit_op
common_operation :
 idxi_op
 idxin_op
 jec_op
 jech_op
 jff_op
 jffi_op
 jni_op
 ldin_op
 nop_op
 pause_op
 sndc_op
 sndt_op
 stfi_op
 sti_op
 stps_op
 wait_op
/*
 * Instructions specific to the MAIN Patterns
 */
jsr_op :

10

20

30

40

50

(119) JP 3939336 B2 2007.7.4

 JSR identifier
jsrc_op :
 JSRC identifier
jsc_op :
 JSC identifier
jal_op :
 JAL identifier
exit_op :
 EXIT
/*
 * Instructions common to both MAIN and SUBR Patterns
 */
idxi_op :
 IDXI 24-bit number
idxin_op :
 IDXIn index-register
jec_op :
 JEC identifier
jech_op :
 JECH identifier
jff_op :
 JFF identifier
jffi_op :
 JFFI identifier
jni_op :
 JNI identifier
ldin_op :
 LDIN index-register
nop_op :
 NOP
pause_op :
 PAUSE
sndc_op :
 SNDC 8-bit number
sndt_op :
 SNDT 8-bit number
stfi_op :
 STFI 24-bit number
sti_op :
 STI 24-bit number
stps_op :
 STPS
wait_op :
 WAIT
capture_mask_flag : /* empty */
 capture_mask_flag CTV
 capture_mask_flag MTV
 capture_mask_flag MATCH

vectors_and_waveforms : /* empty */

10

20

30

40

50

(120) JP 3939336 B2 2007.7.4

 vectors_and_waveforms vector
 vectors_and_waveforms waveform
vector :
　　 vector_declaration '{' vector_data '}'
vector_declaration :
 Vector
　　 V
vector_data :
 vector_datum
 vector_data vector_datum
vector_datum :
 pin_name '=' vector-value ';'
 pin_name '=' identifier ';'
waveform :
　　 waveform_declaration '{' waveform_data '}'
　　
waveform_declaration :
 Waveform
　　 W
waveform_data :
 waveform_datum
 waveform_data waveform_datum
waveform_datum :
 waveform-table-pin-group-name '=' identifier ';'
pin_name :
 identifier
vendor_sections :
 vendor_sections vendor_section {}
 vendor_section {}
vendor_section :
 VendorSection '{' vendor_section_contents '}'
subr_header :
 SubrPattern
subr_section :
 CommonSection '{' common_contents source_selection_t
able subr_section_domains '}'
 CommonSection '{' common_contents subr_section_domai
ns '}'
subr_section_domains :
 subr_section_domains subr_section_domain
 subr_section_domain
subr_section_domain :
 Domain domain_name '{' subr_section_contents '}'
source_selection_table :
 SourceSelectionTable '{' source_selector_definitions
 '}'
source_selector_definitions:
 source_selector_definitions source_selector_definiti
on
　　 source_selector_definition

10

20

30

40

50

(121) JP 3939336 B2 2007.7.4

source_selector_definition:
　　 SourceSelector source_selector_name '{' source_mappi
ngs '}'
source_selector_name :
 identifier
source_mappings :
　　 source_mappings source_mapping
　　 source_mapping
source_mapping :
　　 pin_name '=' source ';'
source :
　　 MAIN
　　 INVERT_MAIN
　　 SUBR
　　 INVERT_SUBR
subr_section_contents :
　　 subr_section_contents subr_section_content
 subr_section_content
subr_section_content :
　　 label_spec subr_pattern_spec
 subr_pattern_spec
subr_pattern_spec :
 subr_operation capture_mask_flag '{' vectors_and_wav
eforms '}'
subr_operation : /* empty */
 common_operation
 rtn_op
 stss_op
/*
 * Instructions specific to the SUBR Patterns
 */
rtn_op :
 RTN
stss_op :
 STSS identifier
【０５４４】
　上で用いられた未定義の非ターミナルの説明は以下の通りである。
【０５４５】
　１．　 version-identifier：セット [0-9]からの一つ以上の文字の列であり、最初の文
字は数字でなければならない。
【０５４６】
　２．　 identifier：セット [a-zA-Z_0-9]からの一つ以上の文字の列であり、最初の文字
はセット [a-zA-Z_]からのものでなければならない。
【０５４７】
　３．　 vendor-section-contents：ベンダ特有のコンパイラにとってのみ意味のある任
意のテキスト。
【０５４８】
　４．　 file-name：有効なウィンドウズのファイル名（ファイル名に空白が含まれる時
には二重引用符で挟まなければならない）。なお、これは単なるファイル名である、つま

10

20

30

40

50

(122) JP 3939336 B2 2007.7.4

りディレクトリコンポーネントをもつべきではない。
【０５４９】
　５．　 waveform-table-pin-group0name：セット [a-zA-Z_0-9]からの一つ以上の文字の
列であり、最初の文字はセット [a-zA-Z_]からのものでなければならない。この変数は、
どこかで宣言され、ピンのグループに共通の波形テーブルの名前を保持する。
【０５５０】
　６．　 24-bit number：最大 16777215までの有効な十進数。
【０５５１】
　７．　 8-bit number：最大 256までの有効な十進数。
【０５５２】
　８．　 index-register：有効な十進数。モジュールの一実施形態では、これは [1-8]の
値を有することができる。
【０５５３】
　９．　 vector：これは、 STILにおける Vector命令文と類似している。これは信号名およ
び信号グループ名を参照しており、コンパイラがピン記述ファイルへのアクセスを有する
ことを必要とすることに留意されたい。
【０５５４】
　１０． waveform-time-reference：セット [a-zA-Z_0-9]からの一つ以上の文字の列であ
り、最初の文字はセット [a-zA-Z_]からのものでなければならない。
【０５５５】
　パターンファイルはコメントをサポートする。コメントはパターンファイルコンパイラ
によって無視されることを意味する。コメントは「 #」の文字で始まり、行末まで続く。
【０５５６】
　パターンファイルのヘッダおよび［共通］セクションにおけるコンストラクトを参照し
て、以下の点に留意すべきである。
【０５５７】
　１．　 pattern-nameの項目は、パターンファイルがそれに関するデータを含んでいるよ
うなパターンオブジェクトに関連付けられる名前を指定する。これは、対応するパターン
オブジェクトメタファイルにおいてヘッダに繰り越される。
【０５５８】
　２．　 wavaform-time-referenceは、タイミングファイルにおいて、パターンファイル
の外部で定義される特定の波形およびタイミング定義についての名前である。パターンフ
ァイルにおける wavaform-time-referenceの指定は、その特定の名前を、他の wavaform-ti
me-referenceが現れるまで、全てのそれ以降のベクトルに結びつける。
【０５５９】
　３．　サブルーチンコール（例えば JSRおよび JSRC）のオペランドは、同一のパターン
ファイル内で前に登場した pattern-spec labelであるか、外部定義のサブルーチンパター
ンにおける pattern-spec labelである。このオペランドは、最後にはサブルーチンをロー
ドする／扱う目的で解かれる。サブルーチンコールのオペランドについてのラベルは、シ
ステムにわたって固有であることが要求される。
【０５６０】
　 wavaform-time-reference名は構文的に正しいどのようなものであってもよいが、具体
的なハードウェアの影響のために、 waveform-time-reference名は、先に知られているよ
く定義されたセット（追加された読み易さのために、オプション的に、ユーザによってユ
ーザが選んだ名前にマップされることができ、マッピングがオプションファイルに提示さ
れる）に制限される必要がある。
【０５６１】
　また、パターンおよび waveform-time-referenceソースファイルは、物理的なテスタチ
ャネルへの接続を有する全ての DUTチャネルについて初期コンフィギュレーションデータ
を提供すべきであることにも留意されたい。もし後のデータがいずれかの DUTチャネルに

10

20

30

40

50

(123) JP 3939336 B2 2007.7.4

ついて省略されると、パターンコンパイラは、初期レベルからの出力を保持するためにパ
ターンデータを「詰める」。

パターンファイル例
【０５６２】
　 MAINパターンソースファイルの単純な例は、使用法を示す助けとなるであろう。

#
Filename : good1.pat
#
Version 1.0 ;
#--
Main Pattern definition:
#--
MainPattern good1
{
 CommonSection
 {
 MacroDef defaultDataVal (XXXXXXXX)
 MacroDef nopInstr (NOP)
 MacroDef label1 (Label1 :)
 MacroDef jniInst (JNI)

 #--

 # Timing Specifications
 #--
 Timing "productionTiming.tim";
 TimingMap "productionTimingOpenSTARMap.tmap";

 #--
 # Default Domain Cycles
 #--
 Domain default
 {
 #--
 #label: instruction {Vector/Waveform Data}
 #--
 NOP { V { DATA = $defaultDataVal; CLK = 1;} W { D
ATA = wfs1; CLK = wfs1; } }
 JAL myAPG { V { DATA = 00000000; } }
 JSC mySCAN { V { DATA = 10101010; } }
 JSRC mySubroutine { V { DATA = 01010101; } }
 JSR myAPG { V { DATA = 00110011; } }
 STI 100 { }
 labZero: NOP { V { DATA = 00000011; } }
 JNI labZero { V { DATA = 11111100; } }
 IDXI 3000 { V { DATA = 10101010; } }
 IDXIn 3 { V { DATA = 01010101; } }
 $label1 NOP { V { DATA = $defaultDataVal; } }

10

20

30

40

50

(124) JP 3939336 B2 2007.7.4

 IDXI 2000 { V { DATA = 10101010; } }
 NOP { }
 EXIT { V { DATA = LLHHLLHH; } }
 }
 }
 }
【０５６３】
　 SUBROUTINEパターンソースファイルを示す他の例が以下に示される。

#--
Subroutine Pattern mySubrPat1 definition:
#--
SubrPattern mySubrPat1
{

 CommonSection
 {
 #--
 # Timing Specifications
 #--
 Timing "productionTiming.tim";
 TimingMap "productionTimingOpenSTARMap.tmap";

 #--
 # Source Selection Specifications
 #--
 　　 SourceSelectionTable
　　 {
 SourceSelector SrcSelDef
　　 {
　　　　 DATA=SUBR; CLK=SUBR; DATA=SUBR;
　　　　 }
　　　　 SourceSelector SrcSelOne
　　　　 {
　　　　 DATA=MAIN; CLK=MAIN;
　　　　 }
　　 }

 #--
 # Default Domain Cycles
 #--
 Domain default
 {
 #--
 #label : instruction { Vector and Waveform Data setups }
 #--
 STI 100 { Vector { DATA = 00000000; } }
 IDXI 3000 { Vector { DATA = 00001111; } }
 IDXIn 3 { Vector { DATA = 00110011; } }
 $label1 NOP { Vector { DATA = LLHHLLHH; } }

10

20

30

40

50

(125) JP 3939336 B2 2007.7.4

 NOP { Vector { DATA = LLXXXXXX; } }
 NOP { Vector { DATA = LLHHXXXX; } }
 JNI Label1 { Vector { DATA = LLHHLLHH; } }
 STSS SrcSelOne { Vector { DATA = LHLHLHLH; } }
 RTN { Vector { DATA = LLXXXXXX; } }
 }
 }
}
【０５６４】
　パターンソースファイルにおけるメインヘッダおよび共通セクションからの要約の情報
は、オブジェクトメタファイルのメインヘッダに記憶される。要約は、アドレス等の予め
ロードされた解決を助けるための、あるいはデータロギングを助けるための素早い抽出の
ために典型的には必要とされる情報からなり、共通セクションのセマンティクスは、全て
のコンパイラについて正確に同じであるので、どのコンパイラも同じ要約情報を提供する
ことができ、メタファイルを書く第一のコンパイラがこの情報を記憶する。以下は、記憶
される情報である。
　１．　パターンソースファイル名
　２．　ソースファイルで宣言されたパターンのタイプ
　３．　ソースファイルからのバージョン情報
　４．　パターンソースファイルの共通セクションにおいてもちいられる波形およびタイ
ミング名の全てのリスト
　５．　パターンソースファイルの共通セクションにおける（関連の）ベクトルアドレス
へのサブルーチン参照の全てのマップ
　６．　パターンソースファイルの共通セクションにおける（関連の）ベクトルアドレス
へのラベル参照の全てのマップ
　７．　一般的なブックキーピング（ bookkeeping）情報：ベクトルカウント、インスト
ラクションカウント等
【０５６５】
　オープンアーキテクチャのテストシステムは、明示的で異なる拡張子を有するためにパ
ターンファイルおよびパターンリストファイルの両方を必要とする。パターンファイルに
ついて、これは、プレインテキストソースファイルおよびコンパイルされたオブジェクト
ファイルの両方に適合する。これは、ディレクトリの一覧等において視覚的にファイルタ
イプを素早く識別するために、ならびに拡張子に基づいての関連付けを可能にするために
ユーザにとっては便利なものとしてみられる。パターンリストファイル解析部は、これら
の拡張子を有するファイル名を待つ。

　プレインテキストパターンソースファイル：　　　　　　　　　　 .pat
　コンパイルされたパターンオブジェクトメタファイル：　　　　　 .pobj
　パターンリストファイル：　　　　　　　　　　　　　　　　　　 .plst
【０５６６】
　ユーザはこれらのデフォルトの値を、例えばテスタ環境変数あるいはセットアップオプ
ションを通じて無効にすることができる。
　テスタは、以下の［環境］変数の定義を

　　 Tester_PATLIST_PATH： パターンリストファイルについて
　　 Tester_PATSRC_PATH：　　 パターンソースファイルについて（オプション）
　　 Tester_PATOBJ_PATH： パターンオブジェクトメタファイルについて
【０５６７】
において記述される環境コンフィギュレーションファイルの少なくとも一つにおけるファ
イルサーチパスについて必要とする。

10

20

30

40

50

(126) JP 3939336 B2 2007.7.4

【０５６８】
　もしオプション的な環境／セットアップ変数 Tester_PATSRC_PATHが定義されなければ、
それは Tester_PATOBJ_PATHと同じであると仮定される。一般的に、 Tester_PATSRC_PATHを
定義しないことは、それを Tester_PATOBJ_PATHと同じ値で定義するよりもより効率的であ
る。

Ｅ６．　ソフトウェア表現
【０５６９】
　パターンオブジェクトはユーザによって作成されるのではなく、ユーザは常に、他のパ
ターンリストおよび／あるいは の集合体であるパターンリストオブジェクトを扱
う。パターンリストオブジェクトは、それに含まれるパターンオブジェクトを、ユーザが
アクセス可能な状態にしつつ、作成し、所有し、保持する。ユーザのテストプログラムに
おけるパターンリストオブジェクトは、パターンリストの実際の定義を含んでいる、ディ
スク上のパターンリストファイルに関連付けられている。パターンリストの定義は、パタ
ーンリストに明示的な名前を与え、パターンの順序付けられたリストおよび／あるいは他
のパターンリストをファイル名の関連付けを通じて識別する。このセクションは、パター
ンリストおよびパターンのソフトウェア表現を、それらがどのようにテスタフレームワー
クにおいて操作されるかについての理解に対する除外として、説明する。

パターンリストの関連付け
【０５７０】
　テストシステムにおける単一のテストサイト（および、拡張によって、その中のテスト
プラン）は、複数の最上位レベルのパターンリストに関連付けられる。しかし、任意の時
点ではテストプランについて単一の実行コンテキスト（ context）のみがある。最上位レ
ベルのパターンリストは、それによって参照される（階層的に）パターンについての実行
シーケンスを定義するので、アクティブな実行コンテキストは、現在選択されている最上
位レベルのパターンリストに対応するものである。なお、これは単一のパターンリストに
含まれるパターンのみが一度にハードウェア上にロードされ得るということを暗に示して
いるのではない。むしろ実行シーケンスを実行可能にするためにハードウェア上にロード
されることが要求されるパターンのセットは常に、現在ロードされているパターンの全て
のサブセットでなければならない。

パターンツリー
【０５７１】
　直感的に、最上位レベルのパターンリストを表現するための方法は、何かしらのツリー
データ構造によってであると感じられる。図７は、発明の順番付けられたパターンツリー
の一実施形態を示しており、パターンリストＡが最上位レベルのパターンリストであると
仮定している。

パターンツリー情報の内容
【０５７２】
　以下の情報が、パターンツリーのどのノードにも記憶される。
【０５７３】
　１．　そのノードに関連付けられている構成要素（パターンリストあるいはパターン）
の名前。
【０５７４】
　２．　定義ソースのタイプ。リーフ（パターンノード）については、これは常にパター
ンファイルであり、中間（パターンリスト）ノードについては、「最上位レベルファイル
」（最上位レベルパターンリスト定義に関して）か、あるいは「ファイルに埋め込まれて
いる」（繰り込まれたパターンリスト定義に関して）であり得る。

10

20

30

40

50

(127) JP 3939336 B2 2007.7.4

パターン

【０５７５】
　３．　ノードが関連付けられているディスク上のファイルのタイムスタンプの最後の修
正。
【０５７６】
　以下の追加的な情報は、中間（パターンリスト）ノードにおいてのみ記憶される。
【０５７７】
　１．　そのノードによって表されるパターンリストオブジェクト上に設定された実行オ
プション（もしあれば）――すなわち、そのオブジェクトオプション。
【０５７８】
　２．　そのノードによって表されるパターンリスト内部のそれぞれの子参照上に設定さ
れた実行オプション（もしあれば）――すなわち、その子のそれぞれについての参照オプ
ション。
【０５７９】
　したがって、ルートからある中間ノードまでの固有のパス上に出て来るノードの集合体
、ならびにそれらが出て来るシーケンスは、そのノードによって表される組み合わされた
、有効な実行オプションを決定するために必要な全ての情報を含んでいる。パターンの実
行オプションは、その中間の親がそれについて有しているかもしれない参照オプションと
組み合わされて、その中間の親の有効な実行オプションによって決定される。
【０５８０】
　ここで、パターンリスト解析部がパターンツリーを作成するプロセスにある間、ある実
行オプションは単に文字列として値の初期記憶を要求するかもしれない。なぜなら、それ
らの使用のコンテキストは、後で解決されないかもしれないからである。このようなオプ
ションの一例は、「 mask」オプションであり、これは、パターンリストがソケット情報に
関連付けられていないピンマスク情報を指定し、したがって、ピンマスクオプション（ピ
ンおよびグループ名）は、ロードされるのに先立って解決されるべく、文字列として記憶
される。
【０５８１】
　以下の追加的な情報は、リーフ（パターン）ノードにおいてのみ記憶される。
【０５８２】
　１．そのパターンによって呼び出される全ての（おそらく過渡的な）参照。外部参照、
内部参照の両方ともであり、実行ツリーとして組織化されている。
【０５８３】
　当然のことながら、全てのパターンノードは、オブジェクトメタファイル共通ヘッダに
おいて利用可能である全てのパターンファイル要約情報に対するアクセスをさらに有して
おり、それをキャッシュに格納することを選択する可能性もある。

パターンリストの修正の扱い
【０５８４】
　パターンリストの中身への変更は、概念的には、そのパターンリストへの全ての参照に
影響する。次のルールがこのような変更を管理するために用いられる。これらのルールは
、パターンオブジェクトならびにパターンリストオブジェクトにたいして適切なものとし
て適合する。
【０５８５】
　１．　ディスク上のパターンリストファイルの中身に対する変更は、そのパターンリス
ト上（あるいはそれを参照している他のパターンリスト上）で実行されている load()コマ
ンド上でのみテストシステムを通じて伝播する。言い換えると、ソフトウェアにおけるパ
ターンリストの階層は常に、ハードウェア上に現在ロードされているそれを反映する。
【０５８６】
　２．　ユーザは、ディスクファイルソースにパターンリストを同期させるために、ロー
ド時間中になされたチェックを無効にするモードを設定することができる。これにより、

10

20

30

40

50

(128) JP 3939336 B2 2007.7.4

プロダクションモードにおいてより素早く安全な動作が可能である。

パターンツリーナビゲーション
【０５８７】
　テストサイトに（および、拡張によって、そのサイトに関するテストプランに）関連付
けられている最上位レベルのパターンリストは、パブリック（グローバル）な範囲を有す
る。システムは、ユーザが個々のノードおよびサブツリーにアクセスすることができるよ
うに、最上位レベルのパターンリストを表すパターンツリーをナビゲートするように API
を提供する。

Ｅ７．　パターンリストダイナミクス
【０５８８】
　先に、パターンリストの静的なルールを説明した。ここではパターンリストの動的な（
実行）ルールを説明する。
【０５８９】
　パターンツリーは、一般的なパターン管理に必要不可欠である。例えば、パターンロー
ドシーケンスの開始点は、サイトあるいはテストプランに現在関連付けられているパター
ンツリー上への load()方法のコールである。しかしながら、パターンツリーは孤立しては
動作しない。完全に初期化されたパターンツリーは、以下の２つのフレームワークオブジ
ェクトを作成するように用いられる。
【０５９０】
　１．　最上位レベルのパターンリストは、パターンについてパターン実行シーケンス（
Pattern Execution Sequence）を定義する。これは、どのようにこのような実行シーケン
スがその最上位レベルのパターンリストに対応するパターンツリーから得られるかを述べ
るものである。例えば、図７に示すパターンツリーＡに対応するパターン実行シーケンス
は、 {q, s, t, q, r, q, u, u, v}である。パターン実行シーケンスは概念的には、パタ
ーンツリーを通じて述べられた実効シーケンスを反映する順序付けられたリストである。
フレームワークは、パターンツリーノードとパターン実行シーケンス内の対応するエント
リとの間のいかなる必要なナビゲーションリンクをも、確立して保持する。
【０５９１】
　２．　パターンセット、これは単に、パターンツリー内の固有のパターン（サブルーチ
ンを含む）の全てのリストである。したがって、これは、ハードウェア上にロードされる
べき個々のパターンを決定するために用いられるリストである。フレームワークは、パタ
ーンツリーノードとパターンセットにおける対応するエントリとの間のいかなる必要なナ
ビゲーションリンクをも確立して保持する。図７のパターンツリーについてのパターンセ
ットは、 (q, s, t, r, u, v)である（パターンリストＡにおけるパターンのどれも、サブ
ルーチンコールを含まないものと仮定する）。
【０５９２】
　パターン実行シーケンスおよびパターンセットは両方とも、常にパターンツリーから得
ることができるということに留意されたい。しかし、初期の構成の後に、実行可能である
限り、これらをキャッシュに格納することはしばしば意味がある。

パターンリスト実行オプション
【０５９３】
　上で示したように、各パターンリスト宣言（その定義に先立つ）あるいはパターンリス
ト／パターン参照エントリの後に、いくつかの実行オプションを続けることができる。パ
ターンリスト実行オプションは、パターンリストのランタイム実行を修正する。将来の拡
張を許すために、これらのオプションの名前（およびオプション的な値）は、適切である
特定のバージョンによって解釈されるべく、パターンコンパイラのパターンリストファイ
ル解析部によっては単に文字列として扱われる。テスタは、以下に述べるように、オプシ

10

20

30

40

50

(129) JP 3939336 B2 2007.7.4

ョンのセットおよびそれらの解釈を指示する。しかしながら、ベンダは、そのオプション
セットを拡張することができる。オプション構文の解析時の妥当性確認を可能にするため
に、パターンリスト解析部は、特定のバージョンについての情報ファイルを読むことがで
きるであろう。また、このような情報ファイルは、特定のバージョンがそもそも実行オプ
ションの仕様をサポートしているかどうかを指定するためにも用いられる。
【０５９４】
　実行オプションのセットをサポートしているバージョンに関して、以下の一般的なルー
ルがそれらの使用を支配する。これらのルールを理解するためには、順序付けられたツリ
ーとしてパターンリスト／パターンの階層的な集合体を視覚化することが有用である。
【０５９５】
　１．　パターンリスト定義上（すなわちファイル内の「ローカルパターンリスト宣言、
グローバルパターンリスト宣言」の生成物内に設定されたイントリンシックオプションは
、事実上、ユーザのテストプログラムにおける対応するパターンリストオブジェクト上で
の直接的なオプション設定である。したがって、これらは、そのパターンリストオブジェ
クトへの全ての参照に適合し、オブジェクトオプションとして参照される。
【０５９６】
　２．　パターンリスト／パターンへの参照上（すなわち、ファイルにおける「パターン
エントリ」および「パターンリストエントリ」生成物内）に設定されたリファレンシャル
オプションは、このオプションの範囲を階層中の具体的なパス、つまりツリーのルートか
ら検討中の参照まで至る（パターンリスト／パターンの宣言順によって確立される）パス
に限定する。したがって、これらは具体的なオブジェクト参照上（そしてオブジェクト自
体の上ではない）のオプションであり、参照オプションとして参照される。
【０５９７】
　３．　集合体の階層におけるいかなるリスト／パターンについての有効オプション設定
（パターンリスト／パターンの宣言順によって確立される）は、ツリーのルートからその
リスト／パターンまでのパスに沿って出て来るオブジェクトオプションと参照オプション
との組み合わせである。具体的な組み合わせメカニズム（例えば、セット合併、セット交
差あるいは、他のいかなる競合解決アルゴリズム）はそのオプション自体のプロパティで
ある。
【０５９８】
　上記ルールの結果、ならびに、パターンファイル内のパターン定義上に実行オプション
を設定するための機構はないという事実は、パターンへの全ての参照に適合するオプショ
ンを設定するための直接的なルールはないということである。これを実現するためのメカ
ニズムは、単一パターンパターンリストを用いることである。
【０５９９】
　テスタは、そのバースト動作（ burst behavior）を修正し、その実行シーケンスを修正
するパターンリスト実行オプションのあるセットを指定する。
【０６００】
　パターンリストについての実行シーケンスがハードウェアに提出されると、ハードウェ
アはバーストを作り出す。バーストは、ソフトウェアからのどのような関わりなしでの、
直接ハードウェアによってのパターンのシーケンスの実行である。バーストの不連続は実
行シーケンスにおける、前のバーストが終わる位置であり、新しいバーストが始まる。
【０６０１】
　パターン管理ソフトウェアの目的の一つは、ハードウェアに、それがバーストを作り出
すことを必要とするような実行シーケンスを提供することである。デフォルトによって、
パターンツリーは、実行シーケンスを生み出し、もしこれがハードウェアに提出されれば
、単一のバーストを引き起こす。しかしながらこの動作は、パターンリスト上でオプショ
ンを使用することによって修正され得る。したがって、オプション結果の使用は、バース
トの不連続性という結果になる。
【０６０２】

10

20

30

40

50

(130) JP 3939336 B2 2007.7.4

　さらに、ユーザは、どのパターンあるいはどのバーストの前にも、あるいは後にも、プ
ロローグパターンまたはエピローグパターンを動作させることを時折要求する。これは、
ハードウェアに提出されるべき実行シーケンスを修正する。
【０６０３】
　パターン実行シーケンスオブジェクトの作成あるいは修正の間、フレームワークは、指
定された実行オプションとパターンツリーによって具体化された特定の実行シーケンスと
の組み合わせから得られるパターンバーストにおける中断を判断し、必要であれば報告す
るために必要な情報の全てを有している。これをしている間、それは、システムにおける
モジュールのハードウェア能力を調査する必要があるかもしれない。例えば、あるハード
ウェアインプリメンテーションは、ピンマスクについて４つの記憶されたコンフィギュレ
ーションを可能にし、そのうちの２つ（０および３）はデフォルトのマスクされた（ Mask
 This Vecor, MTVをサポートするために）、およびマスクされていない動作に対して用い
られる。したがって、ユーザは、バーストモードを中断することなく、２つの異なるグロ
ーバルピンマスクコンフィギュレーションを許される。
【０６０４】
　なお、もしモジュールベンダがハードウェアにおけるパターンリストインプリメンテー
ションをサポートしていなければ、パターン実行シーケンスのベンダによる処理は、実行
シーケンスにおける全てのパターンの個別の実行という結果になるであろう。サイト互換
のシステムおよびサイト－ヘテロジニアスなシステムの両方において、サイトのバースト
能力は、「最小公分母」によって制限される。テスタはオプションのあるデフォルトセッ
トを提供し、それらのパラメータは以下に説明される。それぞれのオプションは、以下を
述べることによって指定される。
【０６０５】
それがイントリンシックである（すなわち、グローバルあるいはローカルなキーワードを
有する定義に関連付けられている）か、あるいはリファレンシャルである（すなわち、 Pa
tあるいは PListキーワードを有する参照に関連付け　　られている）か。イントリンシッ
クなオプションは定義の時点およびどの参照でも当てはまるが、リファレンシャルオプシ
ョンはそれらが関連付けられている参照でしか適合しない。
【０６０６】
さらに、オプションは、そのオプションが全て静的に（構文的に）あるいは動的に（参照
されることによって意味的に）、繰り込まれたパターンあるいはパターンリストに再帰的
に適合すると仮定されれば、子（ Children）によって受け継がれると考えられる。
【０６０７】
　以下は、オプションのリストである。どの対応（コンプライアント）ベンダも、指定さ
れたこれらのオプションを解釈する。
　１．　 Mask<pin/pin group>
【０６０８】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６０９】
　 PList、 Patに適合したときにはレファレンシャル。
【０６１０】
　子によって受け継がれる。
【０６１１】
　このパターンリストは常に、無効とされている示されたピンあるいはピングループによ
って参照されるピンの比較回路を有している。ハードウェアの制限がバーストの不連続と
いう結果をもたらすことがある。
　２．　 BurstOff
【０６１２】
　　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６１３】

10

20

30

40

50

(131) JP 3939336 B2 2007.7.4

　　 PList、 Patに適合したときにはレファレンシャル。
【０６１４】
　　子によって受け継がれない。
【０６１５】
　このパターンリストは常に非バーストモードで実行される。このオプションは子によっ
て受け継がれないが、 BurstOffDeepオプション（下記）は子によって受け継がれる。
　３．　 BurstOffDeep
【０６１６】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６１７】
　 PList、 Patに適合したときにはレファレンシャル。
【０６１８】
　子によって受け継がれる。
【０６１９】
　このパターンリストは常に非バーストモードで実行される。このオプションは子によっ
て受け継がれるが、 BurstOffオプション（上記）は子によって受け継がれない。なお、 Bu
rstOffDeepオプションは子によってオフにされることができない。
　４．　 PreBurst<pattern>
【０６２０】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６２１】
　指定されたバーストオプションを有していない子ノードによってのみ受け継がれる。
【０６２２】
　示されたパターンは、このパターンリスト内の全てのバーストの前につけられるべきで
ある。 PreBurstパターンは、このパターンリストノードのせいで開始されるどのバースト
の直前でも起こる。このオプションは、同じパターンである PreBurstオプションを有する
バースト内に既にあるときには適用されない。
　５．　 PostBurst<pattern>
【０６２３】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６２４】
　指定されたバーストオプションを有していない子ノードによってのみ受け継がれる。
【０６２５】
　示されたパターンは、このパターンリスト内の全てのバーストの後につけられるべきで
ある。 PostBurstパターンは、このパターンリストノードのせいで開始されるどのバース
トの直後でも起こる。このオプションは、同じパターンである PostBurstオプションを有
するバースト内に既にあるときには適用されない。
　６．　 PrePattern<pattern>
【０６２６】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６２７】
　子によって受け継がれない。
【０６２８】
　示されたパターンは、このパターンリスト内の全てのパターンの前につけられるべきで
ある。
　７．　 PostPattern<pattern>
【０６２９】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６３０】
　子によって受け継がれない。

10

20

30

40

50

(132) JP 3939336 B2 2007.7.4

【０６３１】
　示されたパターンは、このパターンリスト内の全てのパターンの後につけられるべきで
ある。
　８．　 Alpg<alpg object name>
【０６３２】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６３３】
　子によって受け継がれない。
【０６３４】
　名前つきの ALPGオブジェクトは低速 APGレジスタ設定、読み出し待ち時間（ latency）、
即値データ（ immediate data）レジスタ、アドレススクランブル、データ反転、データジ
ェネレータ等の関連情報を記憶する。
　９．　 StartPattern<pattern>
【０６３５】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６３６】
　子によって受け継がれない。
【０６３７】
　パターンリストは、その実行シーケンスにおいて StartPatternが最初に出現したときに
実行開始する。
　１０． StopPattern<pattern>
【０６３８】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６３９】
　子によって受け継がれない。
【０６４０】
　パターンリストは、その実行シーケンスにおいて StopPatternが最初に出現したときに
実行を停止する。
　１１． StartAddr<vector offset or label>
【０６４１】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６４２】
　子によって受け継がれない。
【０６４３】
　これは StartPatternオプションを伴わなければならない。パターンリストは、その実行
シーケンスにおいて StartPatternの最初の出現における StartAddrのときに実行開始する
。
　１２． StopAddr<vector offset or label>
【０６４４】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６４５】
　子によって受け継がれない。
【０６４６】
　これは StopPatternオプションを伴わなければならない。パターンリストは、その実行
シーケンスにおいて StopPatternの最初の出現における StopAddrのときに実行を停止する
。
　１３． EnableCompare_StartPattern<pattern>
【０６４７】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６４８】

10

20

30

40

50

(133) JP 3939336 B2 2007.7.4

　子によって受け継がれない。
【０６４９】
　示されたパターンの最初の出現時にパターン比較が始まる。
　１４． EnableCompare_StartAddr, EnableCompare_StartCycle
【０６５０】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６５１】
　子によって受け継がれない。
【０６５２】
　これは EnableCompare_StartPatternを伴わなければならない。パターン比較が始まるべ
き、パターン内のアドレスまたはサイクルを示す。
　１５． EnableCompare_StopPattern<pattern>
【０６５３】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６５４】
　子によって受け継がれない。
【０６５５】
　示されたパターンの最初の出現時にパターン比較が終わる。
　１６． EnableCompare_StopAddr, EnableCompare_StopCycle
【０６５６】
　 GlobalPList、 LocalPListに適合したときにはイントリンシック。
【０６５７】
　子によって受け継がれない。
【０６５８】
　これは EnableCompare_StopPatternを伴わなければならない。パターン比較が終わるべ
き、パターン内のアドレスまたはサイクルを示す。
　１７． Skip
【０６５９】
　 PList、 Patに適合したときにはレファレンシャル。
【０６６０】
　子によって受け継がれない。
【０６６１】
　パターンリストによって支配されるパターンあるいはシーケンス全体をスキップさせる
。またこれは、このパターンリストサブツリーのルートにおけるすべてのオプションもス
キップさせる。実行目的ではこのパターンサブツリーがそこにないかのようである。

パターンリストバースト制御
【０６６２】
　先に述べたように、パターンリストのための実行シーケンスがハードウェアに提出され
るときに、ハードウェアは、ソフトウェアの関与なしに、パターンシーケンスのバースト
を作り出す。バーストの不連続は、前のバーストが終わる実行シーケンスにおける位置で
あり、新しいバーストが始まる。 PreBurst、 PostBurst、 BurstOffおよび BurstOffDeepオ
プションは、上記オプションリストで説明したように、どこでバーストの不連続が起こる
かを制御する。 PreBurstおよび PostBurstオプションは、以下に説明するある追加のルー
ルに従ってバーストの不連続を決定する。
【０６６３】
　１．　パターンリストが PreBurstおよび PostBurstオプションを有し、繰り込まれたリ
ストが同じ対応するオプションを有するときには、バーストの不連続はなく、繰り込まれ
たリストの PreBurstおよび PostBurstオプションは当てはまらない。パターンリストの Pre
Burstおよび PostBurstを適用するたった一つのバーストがあるのみである。

10

20

30

40

50

(134) JP 3939336 B2 2007.7.4

【０６６４】
　２．　なお、繰り込まれたリストがバーストオプションを有していなければ、それは、
、これらのオプションの記述によって親リストと同じ PreBurstおよび PostBurstオプショ
ンを有していることと等価である。したがって、バーストオプションをもたない繰り込ま
れたリストは、バーストの不連続をもたらさない。
【０６６５】
　３．　もし上のルール１が当てはまらず、親リストの開始から繰り込まれたリストの開
始までのパターン実行シーケンスに対する寄与があれば、繰り込まれたリストの開始時に
バーストの不連続がある。この場合、親リストの PreBurstおよび PostBurstは、親リスト
からのパターン実行シーケンスへのこの寄与に当てはまる。繰り込まれたリストの PreBur
stおよび PostBurstは繰り込まれたリストに適合する。
【０６６６】
　４．　もし上のルール１が当てはまらず、繰り込まれたリストの終わりから親リストの
終わりまでのパターン実行シーケンスへの寄与があれば、繰り込まれたリストの終わりに
バーストの不連続がある。この場合、親リストの PreBurstおよび PostBurstは親リストか
らのパターン実行シーケンスへのこの寄与に当てはまる。繰り込まれた PreBurstおよび Po
stBurstは繰り込まれたリストに適合する。
【０６６７】
　５．　もし上のルール１が当てはまらず、繰り込まれたリスト以外の親リストからのパ
ターン実行シーケンスへの寄与がなければ、親リストの PreBurstおよび PostBurstは当て
はまらない。繰り込まれた PreBurstおよび PostBurstを適用するたった一つのバーストが
あるだけである。
【０６６８】
　以下に、実行シーケンスへのオプションの影響を示す二、三の例を示す。簡略化のため
に、全てのパターンリストは単一のファイルにおいて指定されるものと仮定する。

例１：　 BurstOffの使用
【０６６９】
　この例は BurstOffおよび PreBurstを示している。特に強調されるのは、 BurstOffによっ
て、パターンは、１パターンの長さのバーストにおいて単独で動作することである。した
がって、 PreBurstオプションもまだ当てはまる。入力パターンリストは以下の通りである
。

Global　　 A　　 [BurstOff] [PreBurst pat_z]
{
　　 Pat　　　　 q;
　　 PList　　 B;
　　 Pat　　　　 r;
　　 Pat　　　　 s;

　　 Global C
　　 {
　　　　 Pat　　　　 t;
　　　　 PList　　 D;
　　 };

　　 PList　　 D;
　　 PList　　 E;
};

10

20

30

40

50

(135) JP 3939336 B2 2007.7.4

Global B
{
　　 Pat a;
　　 Pat b;
};

Global D [BurstOff]
{
　　 Pat c;
　　 Pat d;
};

Global E
{
　　 Pat e;
};
【０６７０】
ルートをＡに置くツリーは図８に表され得る。
【０６７１】
　このパターンの実行シーケンスは以下の通りである。「｜」の文字はバースト中断を示
している。このパターンリストは 10個のバーストを実行し、最初のバーストはパターンｚ
およびｑを有し、最後のバーストはパターンｅを有する。

　　ｚｑ｜ａｂ｜ｚｒ｜ｚｓ｜ｔ｜ｃ｜ｄ｜ｃ｜ｄ｜ｅ
【０６７２】
　この実行シーケンスについて、以下のことに留意されたい。
【０６７３】
　１．　Ａについての BurstoffオプションはＢに受け継がれないので、Ｂにおけるパター
ンａおよびｂはバーストとして動作する。
【０６７４】
　２．　Ａについての PreBurstオプションは Bに受け継がれないので、Ｂによるバースト
におけるａおよびｂはｚによって前には付けられない。
【０６７５】
　３．　ｚによるプリフィクスは、ａの直接の子であることによって実行されるパターン
、すなわちパターンｑ、ｒおよびｓについてのみ起こる。これらのパターンは、Ａが Burs
tOffオプションを有するために、バーストにおいて１パターンの長さであるかのように単
独で実行される。 BurstOffは、パターンが１パターンの長さのバーストにおいて個々に動
作されることを要求する。したがって、 PreBurstおよび PostBurstオプションは依然とし
て当てはまる。
【０６７６】
　４．　パターンリストＩＤは、その子ｃおよびｄを単独で実行させるイントリンシック
バーストオフオプションを有している。それらはＡから PreBurstｚを引き継がない。

例２：　 BurstOffDeepの使用
【０６７７】
　この例は BurstOffDeepオプションを示している。パターンリスト定義中の BurstOffDeep
は繰り込まれた定義および参照リストに影響する。しかしながら、 PreBurstおよび PostBu

10

20

30

40

50

(136) JP 3939336 B2 2007.7.4

rstオプションは繰り込まれ、参照されているリストによっては受け継がれない。この例
は例１におけるのと同じパターンＡ、Ｂ、Ｃ、Ｄ、Ｅを用いているが、オプションは異な
る。
　５．　Ａの定義についてのオプション： [BurstOffDeep]、 [PreBurst z]、 [PostBurst y
]
　６．　他のどのノードについても他のオプションはない
【０６７８】
　実行シーケンスは以下の通りである。先に述べたように、「｜」の文字はバースト中断
である。

　　ｚｑｙ｜ａ｜ｂ｜ｚｒｙ｜ｚｓｙ｜ｔ｜ｃ｜ｄ｜ｃ｜ｄ｜ｅ
【０６７９】
　この実行シーケンスについては以下の点に留意されたい。
【０６８０】
　１．　 PreBurstおよび PostBurstは B、 C、 D、 Eによって受け継がれない。
【０６８１】
　２．　 BurstOffDeepは B、 C、 Dおよび Eによって受け継がれる。

例３：　 PreBurstおよび PostBurst抑制
【０６８２】
　ここで例１のパターンリストツリーを考えることにする。オプションは
　１．　Ａの定義についてのオプション： [PreBurst x]、 [PostBurst y]
　２．　Ｃの定義についてのオプション： [PreBurst x]、 [PostBurst z]
　３．　他のどのノードについても他のオプションはない
　実行シーケンスは

　　ｘｑａｂｒｓｔｃｄｃｄｅｙ
【０６８３】
となる。
【０６８４】
　「ｔｃｄ」サブシーケンスが「ｘｔｃｄｚ」ではない理由は以下の通りである。
【０６８５】
　１．　最初のｘは、実施されている現在のバーストに関連付けられているプレバースト
オプションｘに等しいので、抑制される。
　２．　最後のｚは、 PostBurstｚは Dには受け継がれなず、かつｚが加えられ得る Cから
生成されるパターンはないので、抑制される

例４：　 Skipの使用
【０６８６】
　この例は、繰り込まれた定義および参照されるリストへの Skipオプションの影響を示す
。この例は、例１と同じパターンＡ、Ｂ、Ｃ、Ｄ、Ｅを用いているが、オプションは異な
る。
　１．　Ａの定義についてのオプション： [Skip]、 [PreBurst z]、 [PostBurst y]
　２．　ｒへの参照についてのオプション： [Skip]
　３．　 Cの定義についてのオプション： [Skip]
【０６８７】
　実行シーケンスは、以下に示すような中断のない単一のバーストである。

　　ｚｑａｂｓｃｄｅｙ
【０６８８】

10

20

30

40

50

(137) JP 3939336 B2 2007.7.4

　この実行シーケンスについて以下の点に留意されたい。
【０６８９】
　１．　ｒおよびＣについてのノードはスキップされる。
【０６９０】
　２．　バーストの中断は全くない。

例５：　 Maskの使用
【０６９１】
　この例は、 Maskオプションの影響とパターンおよびパターンリスト定義および参照への
その影響とを示す。この例は、例１と同じパターンＡ、Ｂ、Ｃ、Ｄ、Ｅを用いているが、
オプションは異なる。
　１．　Ａの定義についてのオプション： [mask pin1_pin2]、 [PreBurst z]
　２．　 Bの定義についてのオプション： [mask pin3]
　３．　 Bの定義についてのオプション： [mask pin4]
　４．　ｅへの参照についてのオプション： [mask pin5]
【０６９２】
　５．　他のどのノードについても他のオプションはない。
【０６９３】
　「 pin1_pin2」という名前は、 Pin1および Pin2をマスクするグループを指定している。
「 pin3」、「 pin4」および「 pin5」という名前はそれぞれ Pin3、 Pin4および Pin5をマスク
することを指定している。実行シーケンスは以下に与えられるが、「｜」はバーストの中
断を示す。各パターンの下の数字は、そのパターン実行中にマスクされるピンを示してい
る。

z q a b z r z s t c d c d | e
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
 3 3 5
 4 4
【０６９４】
　この実行シーケンスについて以下の点に留意されたい。
【０６９５】
　１．　ベンダのハードウェアは、バーストの中断なしで２個のマスクブロックを収容す
ることができるのみである。ｅが実行されるまでは、２個のマスクブロックはピン｛１，
２｝およびピン｛１，２，３，４｝である。パターンｅが異なるマスクブロックであるピ
ン｛１，２，５｝とともに到着すると、ハードウェアはバーストの中断を要求する。

例６：　受け継がれたオプションおよび参照の使用
【０６９６】
　この例は、定義において受け継がれたオプションは、その定義が参照されるときには当
てはまらないということを示す。以下の例を考える。

Global A
{
　　 Global B [BurstOffDeep]
　　 {
 Global C
 {
 ...
 };

10

20

30

40

50

(138) JP 3939336 B2 2007.7.4

 ...
　　 };
 ...

 PList C;
};

Global D
{
 PList C;
};
【０６９７】
　 BurstOffDeepオプションは、定義の時点ではＣによって受け継がれる。しかしそれはイ
ントリンシックなオプションではなく、したがってその参照時点ではＣには適用されない
。

【０６９８】
　以下の例を考える。

GlobalPList A [PreBurst x] [PostBurst y]
{
 Pat p1;

 LocalPList B [PreBurst x] [PostBurst y]
 {
 Pat p2;
 }

 LocalPList C
 {
 Pat p3;
 }

 LocalPList D [PreBurst x] [PostBurst z]
 {
 Pat p4;
 }

 LocalPList E [PreBurst w] [PostBurst y]
 {
 Pat p5;
 }

 Pat p6;
}

　実行シーケンスは

x p1 p2 p3 y | x p4 z | w p5 y | x p6 y

10

20

30

40

50

(139) JP 3939336 B2 2007.7.4

例７：　繰り込まれたリストを有する PreBurstおよび PostBurst

【０６９９】
である。
【０７００】
　１．　パターン p2は p1と同じバースト内にある。なぜなら繰り込まれたリストの PreBur
stおよび PostBurstオプションが親と同じに指定されているからである。パターン p3もま
た同じバースト内にある。なぜならこれらのオプションは親と同様に引き継がれるからで
ある。これらのオプションは、残りの繰り込まれたリストにおける少なくとも一つの異な
るメンバを有し、バーストの不連続を生じさせる。

タイミング
【０７０１】
　ユーザは、主として、パターンファイルを用いてテストセットアップを定義することに
よってシステムとやり取りを行う。タイミングファイルは、これらのパターンのタイミン
グを記述するために用いられる。このファイルは、定義の根底にある他のシステムファイ
ル（例えば Pin、 SpecSelector）が解決されることを必要とする。さらに、タイミング定
義において用いられるさまざまな変数を解決するのに用いられる Spec-Slectorおよびグロ
ーバル定義は、コンポジット TestConditionGroupオブジェクトにカプセル化される。テス
トプランファイルのようなより上位レベルのファイルは、この TestConditionGroupインス
タンスを用いる。
【０７０２】
　テストプランファイルは、 TestConditionGroupオブジェクトへの参照を含んでいる。パ
ターンソースファイルは、 TimingMapオブジェクト内の WaveformSlectorコンポーネントを
参照する。 Timingオブジェクト自体は Pinオブジェクトを参照する。オプションとして、 T
imingオブジェクトは、 SpecSlectorオブジェクトによって調節される変数も参照し得る。
これらの関係を図９に示す。
【０７０３】
　 Pattern-List内の Patternオブジェクトは、パターンキャラクタのセットについて用い
るための WaveformSelectorの名前を指定する。また、タイミングマップファイルはパター
ンにおいて指定されることに留意されたい。パターンは、このマップが変更されなければ
コンパイルされる必要はない。

Version 1.0;
MainPattern
{
　　 CommonSection
　　 {
　　　　 ...
　　　　 Timing = myGalxy.tim;
　　　　 TimingMap = myGalxyMap.tmap;
　　　　 ...
　　　　 Domain default
　　　　 {
 　　 NOP　　 V　　 {SIG=1; CLK=1; DATA=L; } W {SIG=wfs1; FASTCLK=wfs1; }
 　　　　　　 NOP　　 W　　 {SIG=wfs2;}
　　　　　　　　　　 NOP　　 V　　 {SIG=L; }
 　　　　　　 NOP　　 V　　 {SIG=0; }
　　　　　　
　　　　 }
　　 }
}

10

20

30

40

50

(140) JP 3939336 B2 2007.7.4

【０７０４】
　 TestConditionGroup Fileオブジェクトは、使うべき Timingオブジェクトと使うべき Tim
ingMapオブジェクトとをインポートする。各テストは、 TimingConditionインスタンスの
ための TestConditionGroupオブジェクトから得られたそのインスタンスを用いる。したが
って、波形テーブルの同じセットをサポートする複数の Timingオブジェクトをテスタフレ
ームワークに記憶することができ、必要なときにスワップすることができる。同様に複数
のテストプランファイルは、共通の TestConditionGroupオブジェクトを共有することがで
きる。
【０７０５】
　テストプラン記述ファイルの一例は、タイミングオブジェクトの使用を以下に示す。

Import patlist1.plist;
Import tim1.tim;
Import tim2.tim;
Import tmap1.tmap;
TestConditionGroup tim1_prod
{
　　 SpecSet = prodTmgSpec(min, max, typ)
　　 {
　　　　 period = 10ns, 15ns, 12ns;
　　 }
 Timings
　　 {
　　　　 Timing = tim1;
　　　　 TimingMap = tmap1;
　　 }
}
TestConditionGroup tim2_prod
{
　　 SpecSet = prodTmgSpec(min, max, typ)
　　 {
　　　　 period = 10ns, 15ns, 12ns;
　　 }
　　 Timings
　　 {
 　　 Timing = tim2;
　　　　 TimingMap = tmap1;
　　 }
}
TestCondition tim1_prod_typ
{
　　 TestConditionGroup = tim1_prod;
 Selector = typ;
}
TestCondition tim2_prod_max
{
　　 TestConditionGroup = tim2_prod;
 Selector = max;

10

20

30

40

50

(141) JP 3939336 B2 2007.7.4

}

Test FunctionalTest MyFunctionalTestSlow
{
　　 PListParam = patlist1;
　　 TestConditionParam = tim1_prod_typ;
}

Test FunctionalTest MyFunctionalTestFast
{
　　 PListParam = patList1;
　　 TestConditionParam = tim2_prod_max;
}
【０７０６】
　「 tim1」および「 tim2」は、先に定義された異なるタイミングオブジェクトを用いるテ
ストプラン内の２つのテストである。 Timingオブジェクトは、ピン一つ一つにさまざまな
波形を定義する。タイミングファイルおよびタイミングマップファイルで用いられるピン
は、ピン記述ファイルにおいて適切に定義される必要がある。
【０７０７】
　 Timingオブジェクトは、 waveformオブジェクト内で値を定義するために SpecificationS
etオブジェクトを用いることができる。 Timingオブジェクトは、さまざまな属性について
ハードコードされた値を含むことができるが、ユーザがさまざまな属性を変数を用いる値
に割り当てさせるのが通常である。これらの変数は SpecificationSetオブジェクトに依存
し得る。この使用法の一例を以下に示す。

Version 1.0;
Timing basic_functional
{
　　 . . .
 Pin SIG
 {
 WaveformTable wfs1
 {
 { 1 { U@t_le ; D@t_te D; Z@45ns;} }
 };
 };
 Pin CLK
 {
 WaveformTable wfs1
 {
 { 0 { U@20ns; D@40ns; }};
 };
 };
}
【０７０８】
　変数 U@t_leは、エッジ配置（ placement）を定義するものであるが、これはどこかで定
義され、 SpecificationSetに依存している。 SpecSelectorは以下に示すように定義される
。

SpecificationSet prodTmgSpec(min, max, typ)

10

20

30

40

50

(142) JP 3939336 B2 2007.7.4

{
　　 t_le = 10ns, 14ns, 12ns;
　　 t_te = 30ns, 34ns, 32ns;
　　 ...
}
【０７０９】
　 specを変更することによって用いられるタイミングを変更することは、以下の例に示さ
れている。

TestCondition prodTmp_typ
{
　　 TestConditionGroup = prodTmgSpec;
 SpecSelector = typ;
}

TestConditionGroup prodTmp_max
{
　　 TestConditionGroup = prodTmgSpec;
 SpecSelector = max;
};

Ｆ２．　テスタのタイミングコンポーネントへのマッピング
【０７１０】
　タイミング「 typ」および「 max」は、 SpecSelectorにおける典型的な／最大の仕様を用
いる。テスタモジュールの２つのコンポーネントは、波形およびそれらに関連するタイミ
ングの生成に直接関与する。２つのモジュールは、パターンジェネレータ（ PG）およびフ
レームプロセッサ（ FP）である。図１０に、オープンアーキテクチャのテストシステムア
ーキテクチャ内のフレームプロセッサによる波形フォーマットとタイミング生成とを示す
単純化したブロック図が示されている。以下、波形生成を簡単に説明する。
【０７１１】
　パターンジェネレータ１００２は、モジュール内の全てのピンに共通のタイミングセッ
トを生成する。このタイミングセットはグローバルタイミングセット（ GTS）と呼ばれる
。パターンジェネレータをセットアップすることができるモードは３つある。これらの３
つのモードは、 GTSを記述するために用いることができるビットの数に影響する。また、
これらのセッティングも、バンクを選択し、かつ Capture This Vector（ CTV）ビットおよ
び Mask This Vector（ MTV）ビットがセットされているかどうかを選択するために用いる
ことができるビットの数に影響する。テスタにこのベクトルの結果を取り込むように指示
するために、ユーザはパターンファイルにおいて CTVフラグを用いる。同様に、ユーザは
、現在のベクトルの結果をマスクするようにテスタに指示するために、パターンにおいて
MTVフラグを用いる。これを以下の表１に示す。パターンジェネレータ１００２は、波形
キャラクタ（ WFC）の生成する役目も有している。 WFCはピン一つずつに生成される。テス
タモジュールは、 WFCを記述するために固定数のビットを用いる。

10

20

30

40

(143) JP 3939336 B2 2007.7.4

【表１】
　
　
　
　
　
　
　
　
　
　
　
【０７１２】
　テスタモジュールは、ピンごとにフレームプロセッサ１００４を提供する。各フレーム
プロセッサは、タイミングセットスクランブラ（ TSS）１００６を含んでおり、これがこ
の例においては 1024までのトータルの深度を有している。 TSS１００６は、先に述べ、そ
して図１０に示したように、パターンジェネレータのモードに依存していくつものバンク
１００８をパーティションで区切り、バンクごとに６４個のエントリの１６個のバンクが
用いられる。 TSSは、各ピンについて波形テーブルを定義する能力においてより柔軟性を
与えるように設けられる。「 FP」モードにおいては TSSは 2ビットを用いてタイミングセッ
トを出力する。したがって TSSは、ピンごとに合計で４つの物理的なタイミングセットを
生成する。これらのタイミングセットは、ローカルタイミングセット（ LTS）と呼ばれる
。
【０７１３】
　フレームプロセッサ１００４は LTSと WFCとを組み合わせて、波形メモリ１０１２および
タイミングメモリ１０１４にインデックス１０１０を作成する。「 FP」モードにおいて、
5ビットの値は、 LTSによって生成される２ビットと WFCによって生成される３ビットとに
分割さえる。したがって、物理的な波形メモリおよびタイミングメモリの深度は、最大４
つの物理的タイミングセットが用いられ得るが、ピンごとに 32 deepである。波形メモリ
は、波形を形成するイネーブルにされたタイミングエッジを含んでいる。イネーブルのエ
ッジについてのタイミングの値は、タイミングメモリから得られる。したがって、フレー
ムプロセッサは波形をフォーマットする。

マッピング方法
【０７１４】
　この方法は、全ての WaveformTableブロックをピンごとにテスタ内の LTSにマップするこ
とである。もしテスタのハードウェアが４つの LTSをサポートしていれば、ユーザは最大
４つの WaveformTableブロックを定義することができる。各 WaveformTableブロックは、テ
スタデジタルモジュールについて最大ｎ個の波形定義を有することができる。
【０７１５】
　 Timing-Mapファイルは、オープンアーキテクチャテストシステムにおけるモジュール用
の WaveformTableへの Timing-Mapブロックにおいて定義された Logical WaveformSelector
のマッピングを提供する。この場合、テスタは、 256個までの Logical WaveformSelector
をサポートする。オープンアーキテクチャのテストシステムにおいては、 Logical Wavefo
rmSelectorは直接 GTSにマップされる。パターンコンパイラは、 Timing-Mapおよび Timing
ブロックの両方に依存し、パターンファイルをコンパイルすることができる。しかしなが
Timingブロックの WaveformTableにおける波形キャラクタが変更されなければ、または Tim
ing-Mapブロックにおける WaveformSelectorのマッピングが変更されなければ、パターン
をコンパイルしなおす必要はない。

10

20

30

40

50

(144) JP 3939336 B2 2007.7.4

　このマッピング方法を用いる例
【０７１６】
　テスタのデジタルモジュールへのマッピングを示すために、以下を仮定する。フレーム
プロセッサは FPモードにセットされ、 CTVおよび MTVビットは、 GTSビットの総数が６とな
り、タイミングバンクセレクタのビットの総数が４となるようにセットされる。
【０７１７】
　 Timingブロックにおいて定義された各 WaveformTableは、 Timingファイル内の別個の LTS
にマップされる。これはピンごとに行われる。したがって、 WaveformTable seq1は LTS1に
マップされる。「 SIG」ピンの場合には、８個の可能な波形エントリの全てが使い切られ
る。しかし「 CLK」ピンは単一の波形を必要とし、したがって波形メモリ（ WFT）および波
形タイミングメモリ（ WTM）における単一の行を使い切る。
【０７１８】
　「 SIG」ピンの最初の２つの物理的な波形のマッピングを図１１に示す。この WaveformT
ableはエッジの別々のコンフィギュレーションを必要とする２つの波形キャラクタをマッ
プするので、我々は、波形メモリ（ WFT）１１１２および波形タイミングメモリ（ WTM）１
１１４における２つのエントリを割り当てることで終わることになる。波形の形は、 WFM
に記憶され、タイミングの詳細は WTMに記憶される。モジュールの一実施形態は、合計で
６個のタイミングエッジ T1、 T2、 T3、 T4、 T5および T6を有する。これらは、タイミングブ
ロックのエッジリソースセクション内の波形において定義されるイベント E1、 E2、・・・
に直接マップされる。６個より多いイベントがタイミングブロック内で定義され、かつこ
れが上記モジュールとともに用いられれば、それは結果としてエラーをもたらす。
【０７１９】
　図１１の例において、最初の波形キャラクタ「０」は、周期的に 10nsで起こる「 Force
Down」あるいは「 D」イベントをプログラムするためにタイミングエッジ T1を用いる。タ
イミングエッジ T2も 30nsで「 Force Down」または「 D」イベントを生成するために用いら
れる。最後にタイミングエッジ T3は 45nsで「 Force Off」あるいは「 Z」イベントを生成す
るために用いられる。
【０７２０】
　第二の波形キャラクタ「１」は、周期的に 10nsで起こる「 Force Up」あるいは「 U」イ
ベントをプログラムするためにタイミングエッジ T1を用いる。タイミングエッジ T2も 30ns
で「 Force Down」または「 D」イベントを生成するために用いられる。最後にタイミング
エッジ T3は 45nsで「 Force Off」あるいは「 Z」イベントを生成するために用いられる。
【０７２１】
　このようなやり方で、 WFCはフレームプロセッサの WFMメモリおよび WTMメモリにマップ
される。ピン「 SIG」についての LTS1の波形メモリ WFMの最終セットアップを下の表２に示
す。

10

20

30

(145) JP 3939336 B2 2007.7.4

【表２】
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
【０７２２】
　ピン「 SIG」についての LTS1の波形タイミングメモリ WTMの最終セットアップを下の表３
に示す。

10

20

(146) JP 3939336 B2 2007.7.4

【表３】
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
【０７２３】
　「 CLK」ピンは単一の波形を使いきり、したがってこのピンについての WFMおよび WFTは
非常に単純である。「 CLK」ピンについての LTS1の波形メモリ WFMの最終セットアップを下
の表４に示す。

10

20

30

40

(147) JP 3939336 B2 2007.7.4

【表４】
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
【０７２４】
　 LTS2の波形タイミングメモリ WTMの最終セットアップを下の表５に示す。

10

20

(148) JP 3939336 B2 2007.7.4

【表５】
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
【０７２５】
　 TimingMapブロックは、 Timingブロックの波形テーブルに WaveformSelectorを明示的に
マップする。テスタシステムについて、これはタイミングセットスクランブラ（ TSS）メ
モリのセットアップを縮める。 TSSは基本的には、セッティングを保持する GTSから LTSへ
のマッピングを含んでいる。ピン SIGについての我々の例に関する TSSのセットアップは下
の表６のようになる。

10

20

30

(149) JP 3939336 B2 2007.7.4

【表６】
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
【０７２６】
　 TSSおよび LTSのセットアップマッピングが解決した後に、パターンコンパイラは、正し

10

20

30

40

50

(150) JP 3939336 B2 2007.7.4

い波形テーブル（ LTS）および用いるべき正しい波形キャラクタとともにパターンをプロ
グラムするためにこの情報を用いることができる。したがって、ピン「 SIG」だけを考え
る我々の例の擬似パターンが図１１に示される。このコンパイルはタイミングブロックと
は依存関係をもたず、 Timing-Mapブロックに依存しているのみであることに留意されたい
。

Ｇ．　テスタ動作
【０７２７】
　このセクションは、テスタオペレーティングシステム（ TOS）の基本動作を説明する。
このセクションで検討されるアクティビティは
システム初期化
テストプランをローディング
パターンローディング
テストプランを動作させること
個々のテストを動作させること
【０７２８】
である。

システム初期化
【０７２９】
　一実施形態においてシステムを初期化するために、ある仮定が満足されなければならず
、かつある条件が満たされなければならない。以下のサブセクションはこれらを列挙する
。

前提条件
【０７３０】
　関連するシステムソフトウェアコンポーネントのコピーは中央記憶を有しており、それ
の場所はシステムコントローラには知られている。これは、システムコントローラ自体の
上であってもよく、あるいは、システムが機能することができる前に、全てのソフトウェ
アがシステムコントローラにとって利用可能とされなければならないようなどのようなメ
カニズムであっても、ネットワークマウントディレクトリを有する他のシステム（あるい
は他のメカニズムを介して SYSCに知られている上であってもよく）上であってもよい。こ
のソフトウェアは以下を含む。
　　　ベンダハードウェア制御（すなわちモジュールソフトウェア） DLL、
　　　標準あるいはユーザテストクラス DLL、および
　　　ユーザテストプラン DLL
【０７３１】
　システムモジュールコンフィギュレーションファイルはシステムコントローラ上で利用
可能である。このファイルはユーザがテスタの物理的なコンフィギュレーション、例えば
システムシャーシにおける各モジュールの物理的な位置およびタイプ、ならびにモジュー
ルソフトウェア DLLの名前を指定することを可能にすることを思い出してほしい。
【０７３２】
　システムコンフィギュレーションファイルは、システムコントローラ上で利用可能であ
る。このファイルは、システムにおけるサイトコントローラのリスト、ならびにスイッチ
マトリクス入力ポートアドレスに対するサイトコントローラホスト名のマップを含んでい
ることを思い出してほしい。
【０７３３】
　サイトコントローラは、サイトコンフィギュレーションマネージャ（ SCM）と呼ばれる
サービスを動作させる。このサービスは、「ハードウェアディスカバリ」という用語で呼
ばれるプロセスによって、各スロット内にインストールされるハードウェアが るか

10

20

30

40

50

(151) JP 3939336 B2 2007.7.4

何であ

を判断する任務を有している。また、システムコントローラとともにシステム初期化プロ
セスに参加する任務も有している。なお、一実施形態においては、スイッチマトリクスオ
ペレーションプロトコルは、単一のサイトコントローラ上の SCMは常に、スイッチマトリ
クス入力ポート接続アドレス１とともに、モジュールへのスイッチマトリクス接続を構成
するために用いられるべきであるということを指示する。この「特別な」サイトが SITEC-
1と呼ばれることを思い出してほしい。
【０７３４】
　システムコントローラは、各サイトコントローラの SCMにスイッチマトリクス接続アド
レスを与えることを担っている。
【０７３５】
　各サイトコントローラの SCMは、テストプランサーバ（ TPS）と呼ばれるプロセスを開始
することができる。各サイトコントローラ上のテストプランサーバは、最後には、ユーザ
のテストプラン（あるいは、単一のサイトコントローラが複数の DUT上でテストを作動さ
せている場合には複数のテストプラン）を含み、実行する責任がある。

初期化段階 I：　システムの検証
【０７３６】
　上記仮定および前提条件が一旦満足されると、システムの初期化はまず、以下のように
システム検証ステップに進む。
【０７３７】
　１．　システムコントローラは、システムのユーザ指定ビューを初期化するために、シ
ステムおよびモジュールコンフィギュレーションファイルを読み出す。
【０７３８】
　２．　指定されたシステムコンフィギュレーション情報を用いて、システムコントロー
ラは、指定されたサイトコントローラが生きており、到達可能であり、準備ができている
こと（すなわち SCMが動作していること）を検証する。この検証ステップ中のどのような
エラーも、システムエラーを生じさせ、初期化を途中停止する。
【０７３９】
　３．　その後システムコントローラは、 SITRC-1の SCMサービスに、全てのハードウェア
モジュールへのアクセスを有するようにスイッチマトリクスを構成するよう指示し、それ
にハードウェアディスカバリを行うことを要求する。
【０７４０】
　４．　 SITEC-1における SCMサービスは、｛ベンダ、ハードウェア｝のタプルについて全
ての利用可能であるモジュールスロット（既知のハードウェア位置）をポールし、スロッ
トに対する｛ベンダ、ハードウェア｝のタプルのマップを生成する。最後に、このポール
はこのようにして、完成したシステムに存在する｛ベンダ、ハードウェア、スロット｝の
結合のセット全体を特定する。このポールの結果はシステムコントローラに送られる。
【０７４１】
　５．　システムコントローラは上記ハードウェアディスカバリステップの結果がモジュ
ールコンフィギュレーションファイルにおけるユーザ指定コンフィギュレーションに合致
することを検証する。この検証ステップ中のどのようなエラーもシステムエラーを生じさ
せ、初期化を途中停止する。
【０７４２】
　６．　その後システムコントローラは、既知の場所で環境セットアップファイルからデ
フォルトの環境（モジュール DLL、パターンリスト、パターン、テストプラン DLL、テスト
クラス DLLについてのサーチパス等）をロードする。
【０７４３】
　７．　システムコントローラは、全ての識別されたモジュールソフトウェア DLLが存在
することを保証する。もしシステムコントローラ上で利用可能でなければ、それは可能で
あれば中央記憶から取り出され、そうでなければシステムエラーが生じ、初期化を途中停

10

20

30

40

50

(152) JP 3939336 B2 2007.7.4

止する。

初期化段階 II：サイトコンフィギュレーション（オプション）
【０７４４】
　サイトコンフィギュレーション、あるいはサイトを区切ることは、利用可能なシステム
ハードウェアモジュールを異なるサイトに（すなわち複数の DUTにサービスを するた
めに）ソフトウェアレベルで割り当てることを含んでいる。サイトを区切るための情報は
ソケットファイルにおいて提供されることを思い出してほしい。
【０７４５】
　テスタシステムは、サイトの（再）区切りが、テストプランロードの一部として（なぜ
なら各テストプランは特定のソケットに関連付けられているので）、および独立したユー
ザが呼び出し可能なステップとしての両方で行われることを可能にする。後の場合には、
ユーザは、システムを区切るために単独で用いられるソケットファイルを提供することに
よってサイト区切りを始動させる。これは、各サイトが異なる DUTタイプをテストする複
数の DUTテストの場合におけるシステムの初期化中に特に有用である。しかしながら、こ
のステップは、初期化のステージではオプション的であり、ユーザはそれを行わせないこ
とを選び、代わりにテストプランロードがシステムを適切に区切ることを可能にすること
を選ぶこともできる。
【０７４６】
　（独立したコールあるいはテストプランロードを通じて暗黙のうちに）サイト区切りを
達成するためにどのような手段が選ばれようと、このメカニズムを以下説明する。
【０７４７】
　１．　ソケットが与えられると、システムコントローラはまず、現在存在するシステム
パーティションはソケットと互換性があるか、あるいは再区切りが必要かを判断する。初
期化中のデフォルトのパーティションは、全ての利用可能なモジュールが SITEC-1に接続
されているようなパーティションである。以下の残りのステップは、もしパーティション
を切りなおす必要がある場合のみ行われる。
【０７４８】
　２．　システムコントローラは、新しいソケットの元でそれについて有効にされている
DUTサイトの数および識別で自身を再構成するために各サイトコントローラの SCMにコンフ
ィギュレーションメッセージを送る。なおこれは一般的な手順であり、サイトコントロー
ラによって制御される DUTサイトの数が一つである場合を扱う。新しいソケット情報も SCM
に運ばれる。
【０７４９】
　３．　各 SCMは、もしあれば動作している TPSを停止し、それを新しいものを開始して、
それを新しいソケット、ならびにその新しいソケットの元でそれに対して有効にされてい
る DUTサイトの数および識別で初期化する。
【０７５０】
　４．　システムコントローラは、どのサイトが、要求されているシステムモジュールの
どのサブセットを必要としているかを判断する。これをしている間、サイトについてのハ
ードウェアスロット情報の準備もする。最終結果は、各サイトについて、スロット対その
サイトに割り当てられたモジュール DLLのリストである。このサイト特有のリストは、サ
イトモジュール DLLスロットリスト（ SITE-MDSL）と表される。
【０７５１】
　５．　システムコントローラは適切な SITE-MDSL、ならびに必要なモジュール DLLを各 SC
Mに提供する。各 SCMはこの情報を新しく開始された TPSに役立つようにする。
【０７５２】
　６．　その後システムコントローラは、 STRC-１に、適切なサイト－スロット接続につ
いて、すなわちサイトが区切られた動作についてのスイッチマトリクスを構成するように
要求する。

10

20

30

40

50

(153) JP 3939336 B2 2007.7.4

提供

【０７５３】
　７．　サイト１～ｎについての TPSはそれらの SITE-MDSLにおいて指定される DLLをロー
ドする。これらの DLLのそれぞれは、スロットメンバのアレイを取り出す initialize()と
いう名前の関数を有している。 TPSはそのモジュールタイプについての適切なスロットリ
ストとともに initialize()を呼び出す。この時点で何らかの不具合があれば、システムエ
ラーが生じ、初期化を途中で終わる。この initialize()方法は以下を行う。
【０７５４】
　　　ａ．　標準インタフェース IXXXModuleに基づいて具体的なクラスを作成する。例え
ば、デジタルモジュールに関連付けられている DLLは、それに関連付けられている各スロ
ットにサービスを提供するように単一の IPinModuleベースのオブジェクトを作成する。
【０７５５】
　　　ｂ．　インタフェース IResourceに基づいて具体的なクラスを、モジュールにおけ
る各「リソースユニット」について一つ作成する。また、デジタルモジュールについて、
各 IPinModuleベースオブジェクトは、デジタルモジュールによって占められるスロットの
集合体における全てのピンについて ITesterPinベースオブジェクトを作成する。
【０７５６】
　８．　サイト１～ｎについての TPSはその後、モジュールコンテンツ情報を取得するた
めに各ロードされたモジュール DLL上に getXXXModule()を呼び出す。
【０７５７】
　９．　 getXXXModule()へのそれぞれのコールは、 IModuleポインタ（例えば AdvantestPi
nModule）として <VendorHWType>Moduleクラスオブジェクトを返す。このような IModuleポ
インタのそれぞれは TPSによってキャッシュに記憶され、これらをフレームワーク／ユー
ザコードにとって利用可能にする。 IModule、 IResource等の集合体は持続する（少なくと
も TPSの寿命の間）ということに留意されたい。
【０７５８】
　１０．上記ステップが一旦完了すると、 TPSはその割り当てられた（既知の）ポート上
で listen()を開始する。これはシステムコントローラに、 TPSが通常の（すなわちサイト
が区切られた）動作を開始する「用意ができて」いることを伝える。

５．テストプランロード
【０７５９】
　このセクションは、そのステップによってユーザテストプラン DLLがサイトコントロー
ラ上にロードされるようなステップを（単一あるいは複数の DUTテストについて）説明す
る。
【０７６０】
　システムの初期化（およびオプションとして最初のサイト区切り）が一旦完了すると、
ユーザテストプランをロードすることができる。サイトコントローラ上へのユーザテスト
プランのロードは次のようにして進行する。
【０７６１】
　１．　システムコントローラはまず、それ自身の処理空間にテストプラン DLLをロード
し、それの関連付けられているソケットファイルおよび DUTタイプ識別子について質問を
行う。この情報は、このテストプランを動作させるサイト、ならびに、したがってこのテ
ストプランがロードされるサイトコントローラを識別するのに用いられる。
【０７６２】
　２．　その後システムコントローラは、上で概略を説明したように再区切りプロセスを
始動させるためにテストプランに関連付けられたソケット情報を用いる。
【０７６３】
　３．　システムコントローラは、テストプランによって用いられるテストクラス DLLの
リストをテストプラン DLLから抽出し、一旦システムコントローラが TPSは通常の（すなわ
ちサイトが区切られた）動作を始める準備ができていると検証すると、適切な TPSに対し

10

20

30

40

50

(154) JP 3939336 B2 2007.7.4

て、テストクラス DLLを送り、最後にテストプラン DLL自体を送る。
【０７６４】
　４．　 TPSは、その処理空間にそれをロードするための LoatLibrary()を呼び出す。それ
は、それがサービスを提供しているサイト（すなわち DUT）の数と同じ数の TestPlanオブ
ジェクトを作成するために DLL上に既知の関数を呼び出す。
【０７６５】
　５．　 TPSは、必要なテスタフレームワークオブジェクトで TestPlanオブジェクトを初
期化する。初期化中に、 TPSは処理空間内に、 TestPlanオブジェクトによって用いられる
テストクラスのための適切な DLLをロードし、テストクラスインスタンスを作成する。
【０７６６】
　６．　 TPSは、システムコントローラへ／からの通信チャネルを TestPlanオブジェクト
にセットアップする。
【０７６７】
　７．　システムコントローラは TPSと通信し、 TestPlanオブジェクトのためのそのプロ
キシを作る。
【０７６８】
　これで、サイトコントローラ上へのユーザのテストプランの正常なロードを終了する。

テストプランを動作させる
【０７６９】
　先に定義したフローロジックにしたがってテストプランにおける全てのテストを実行す
る方法は以下の通りである。
【０７７０】
　１．　ユーザのアプリケーションが TPSに RunTestPlanメッセージを送信する。 TPSは全
ての接続されているアプリケーションに ExecutingTestPlanメッセージを送る。そして TPS
はテストプラン上に execute()を呼び出す。
【０７７１】
　２．　単一のサイトコントローラで複数の DUTをテストすることは、そのサイトコント
ローラ上で、一つの DUTに一つの複数のスレッドを用いて、行われる。各スレッドは、同
一の TestPlanオブジェクトの異なる独立したインスタンスを動作させる。この場合、モジ
ュール制御ソフトウェア DLLは DUT間で共有されているかもしれないので、ハードウェア通
信についてのモジュールコマンドは、 DUT識別子パラメータをとることが要求される。
【０７７２】
　３．　 TestPlanオブジェクトは、各テストをその集合体において反復し（あるいは、そ
の Flowオブジェクトにフローロジックにしたがって各テストを処理するように言い）、 pr
eExec()、 execute()および postexec()を呼び出す。
【０７７３】
　４．　各テストの実行の際に、ステータスメッセージが全ての接続されたアプリケーシ
ョンに対して送り返される。

単一のテストを実行する
【０７７４】
　ユーザは、全てのテストの代わりに、テストプランにおける単一のテストを実行するこ
とを望むかもしれない。単一のテストの実行については、方法は以下の通りである。
【０７７５】
　１．　ユーザアプリケーションが TPSに RunTestメッセージを送信し、 TPSは全ての接続
されたアプリケーションに ExecutingTestメッセージを送る。 TPSはその後テストプラン上
に execute()を呼び出し、動作すべきテストプランを指定する。
【０７７６】
　２．　テストプランオブジェクトは、そのテストオブジェクト上に preExec()、 execute

10

20

30

40

50

(155) JP 3939336 B2 2007.7.4

()および postExec()を呼び出すことによって指定されたテストを実行する。
【０７７７】
　３．　テスト実行時に、それは全ての接続されたアプリケーションにステータスメッセ
ージを送り返す。
【０７７８】
　発明を特定の実施形態に関連して説明したが、当業者は発明の精神および範囲から逸脱
することなくさまざまな改変および修正を行い得ることが理解されるであろう。発明は、
前述の例示的な詳細に限定されるべきではなく、クレームの範囲にしたがって解釈される
べきである。
【図面の簡単な説明】
【０７７９】
【図１】図１は従来のテスタアーキテクチャを示している。
【図２】図 2は本発明の一実施形態によるテスタアーキテクチャを示している。
【図３】図３は本発明の一実施形態によるテスタソフトウェアアーキテクチャを示してい
る。
【図４】図４は本発明の一実施形態によるテストプログラムコンパイラを示している。
【図５】図５は、本発明の一実施形態による、どのようにして単一のテストクラスから異
なるテストインスタンスが得られるかを示している。
【図６】図６は本発明の一実施形態によるパターンコンパイラを示している。
【図７】図７は本発明の一実施形態による順序決めされたパターンツリー例を示している
。
【図８】図８は本発明の一実施形態による他の順序決めされたパターンツリー例を示して
いる。
【図９】図９は本発明の一実施形態による、テストプログラムによって必要とされるファ
イル間の関係を示している。
【図１０】図１０は本発明の一実施形態による波形生成を示している。
【図１１】図１１は本発明の一実施形態によるタイミングのために用いられるマッピング
を示している。
【図１２】図１２は本発明の一実施形態によるタイミングのために用いられる他のマッピ
ングを示している。
【符号の説明】
【０７８０】
６０２　　　パターンコンパイラ
６０８　　　モジュール
６１０　　　パターンコンパイラ
６１２　　　パターンオブジェクトメタファイル
６１４　　　オブジェクトファイルマネージャ
１００２　　パターンジェネレータ
１００４　　フレームプロセッサ
１０１０　　インデックス
１０１２　　波形メモリ
１０１４　　タイミングメモリ
１１１２　　波形メモリ
１１１４　　波形タイミングメモリ

10

20

30

40

(156) JP 3939336 B2 2007.7.4

【 図 １ 】 【 図 ２ 】

【 図 ３ 】 【 図 ４ 】

【 図 ５ 】

(157) JP 3939336 B2 2007.7.4

【 図 ６ 】 【 図 ７ 】

【 図 ８ 】 【 図 ９ 】

(158) JP 3939336 B2 2007.7.4

【 図 １ ０ 】 【 図 １ １ 】

【 図 １ ２ 】

(159) JP 3939336 B2 2007.7.4

フロントページの続き

(31)優先権主張番号 10/403,817
(32)優先日　　　　 平成15年3月31日(2003.3.31)
(33)優先権主張国　 米国(US)
(31)優先権主張番号 10/404,002
(32)優先日　　　　 平成15年3月31日(2003.3.31)
(33)優先権主張国　 米国(US)

早期審査対象出願

(72)発明者 エルストン　マーク
 東京都練馬区旭町１丁目３２番１号　株式会社アドバンテスト内
(72)発明者 チェン　リーオン
 東京都練馬区旭町１丁目３２番１号　株式会社アドバンテスト内
(72)発明者 足立　敏明
 東京都練馬区旭町１丁目３２番１号　株式会社アドバンテスト内
(72)発明者 田原　善文
 東京都練馬区旭町１丁目３２番１号　株式会社アドバンテスト内

 審査官 久保　正典

(56)参考文献 米国特許出願公開第２００２／００７３３７５（ＵＳ，Ａ１）
 米国特許第０５４８８５７３（ＵＳ，Ａ）
 米国特許第０６１９５７７４（ＵＳ，Ｂ１）
 米国特許出願公開第２００３／０００５３７５（ＵＳ，Ａ１）

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F11/22-11/277
 G01R31/28-31/319

(160) JP 3939336 B2 2007.7.4

	bibliographic-data
	claims
	description
	drawings
	overflow

