(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102917454 B
(45) 授权公告日 2015.04.15

(21) 申请号 201210234420.7
(22) 申请日 2012.07.06
(30) 优先权数据
13/194,992 2011.07.31 US
(73) 专利权人 王晓安
地址 美国宾夕法尼亚州阿伦顿亚历山大博士大街 312 号
(72) 发明人 王晓安
(74) 专利代理机构 上海智信专利代理有限公司
代理人 王浩

(51) Int.Cl.
HO4W 56/00(2009.01)
HO4L 25/02(2006.01)

(54) 发明名称
多点传播中通过移动用户反馈的基站间的相位同步方法

(57) 摘要
本发明涉及一种通过移动用户进行下行信道相位反馈而实现基站间相位同步的方法和相应的装置，本发明还描述了使基站间的相位同步独立于多点传播过程的相位反馈的装置，从而减少了相位反馈和改善了网络容量。上述方法和装置所采用的基于模型的下行信道相位反馈消除了绝大部分的相位反馈，本发明所描述的方法和装置的使用包括无线多点传播系统，该系统在长期演进技术的先进版本（Long-Term Evolution, Advanced）中被称为协作多点传输（CoMP, Coordinated Multi-Point transmission），另一应用是组基站间的。
1. 一种在具有一定信号带宽的无线网络中的通讯方法，该无线网络具有一多点传播集，该多点传播集包含一组基站和一组移动用户，一些所述移动用户作为相位反馈移动用户，其特征在于，该方法包括：
 (a) 从所述基站发送下行信道码频信号至所述相位反馈移动用户，
 (b) 在所述相位反馈移动用户端，生成下行信道估计，
 (c) 从所述移动用户发送标准上行信道码频信号至所述基站，
 (d) 在所述基站端，生成上行信道估计，
 (e) 从所述相位反馈移动用户发送下行信道相位信息至所述基站，
 (f) 确定所述基站与所述相位反馈移动用户间的载波相位差，以及
 (g) 通过所述载波相位差确定所述基站间的相位位移。

 据此，当所述相对相位被确定之后，所述基站即实现了相位同步，并且所述基站通过所述上行信道估计和所述相对相位来确定多点传播中所需的编码矩阵。

2. 本发明权利要求1所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述多个传播集只有一个相位反馈移动用户，因此，反馈开销得以减少。

3. 本发明权利要求1所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述传播集至至少两个相位反馈移动用户，因此，所述相对相位的精度得以改进。

4. 本发明权利要求1所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，发送所述下行信道相位信息进一步包括：
 (a) 在每一相位反馈移动用户端，将所述下行信道相位信息嵌入至特殊上行信道码频信号，每一特殊上行信道码频信号对应于每一与该相位反馈移动用户存在相位反馈连接的基站，以及
 (b) 从所述相位反馈移动用户发送所述特殊上行信道码频信号至所述基站，

 据此，所述基站从所述特殊上行信道码频信号中确定所述载波相位差。

5. 本发明权利要求1所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，发送所述下行信道相位信息利用基于模型的下行信道相位反馈，进一步包括：
 (a) 通过所述下行信道相位信息，确定所述载波相位差和/或基站间相对相位的模型之参数，以及
 (b) 在整个所述信号带宽上，通过所述模型确定所述载波相位差和/或相对相位。

 据此，采用所述基于模型的下行信道相位反馈减少了所述相位反馈移动用户所传输的下行信道相位信息的数据量。

6. 本发明权利要求5所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，在整个所述信号带宽上，关于所述载波相位差和/或基站间相对相位的模型为频率的线性函数。

7. 本发明权利要求5所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述模型包含固定或缓变部分和/或变变部分，进一步包括：
 (a) 在多点传播过程开始之前，校准并存储所述模型的固定或缓变部分，以及
 (b) 在所述相位反馈移动用户端，生成所述下行信道相位信息，所述下行信道相位信息的数据量足以使所述基站确定所述模型中缓变部分的参数。

 据此，校准并存储所述模型中固定或缓变部分减少了需要发送的所述下行信道相位信
息的数据量。

8. 根据权利要求5所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述模型包含一非线性部分和一线性部分，进一步包括：
 (a) 在多点传播过程开始之前，校准并存储所述非线性部分，以及
 (b) 在所述相位反馈移动用户端，生成所述下行信道相位信息，所述下行信道相位信息的数据量足以使所述基站确定所述模型中的线性部分的参数，

 据此，校准并存储所述模型中非线性部分减少了需要发送的所述下行信道相位信息的数据量。

9. 一种在具有一定信号带宽的无线网络中的通讯方法，该无线网络具有一组非参考设备和一组参考设备，一些所述参考设备作为相位反馈参考设备，所述非参考设备和参考设备构成一相位可同步集，其特征在于，该方法包括：
 (a) 从所述非参考设备通过下行信道发送下行信道导频信号至所述相位反馈参考设备，
 (b) 在所述相位反馈参考设备端，生成下行信道估计，
 (c) 从所述相位反馈参考设备发送下行信道相位信息至所述非参考设备，
 (d) 所述非参考设备根据所述下行信道相位信息确定所述非参考设备与所述相位反馈参考设备间的载波相位差，以及
 (e) 所述非参考设备通过所述载波相位差确定所述非参考设备间的相对相位，

 据此，在所述相对相位被确定后，所述非参考设备实现了相位同步。

10. 根据权利要求9所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述无线网络为无线移动网络，所述非参考设备为基站，所述参考设备为移动用户，所述相位反馈参考设备为相位反馈移动用户，以及所述相位可同步集包含所述基站、所述移动用户、以及一个或以上的多点传播集，进一步包括：
 (a) 在每一多点传播集，从所述移动用户发送标准上行信道导频信号至所述基站，以及
 (b) 在每一所述多点传播集的基站端，生成上行信道估计，

 据此，在每一所述多点传播集中，以独立于所述多点传播集的方式实现相位同步的基站根据所述上行信道估计来确定多点传播中的预编码矩阵。

11. 根据权利要求9所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，发送下行信道相位信息进一步包括：
 (a) 在每一相位反馈参考设备端，将所述下行信道相位信息嵌入至特殊上行信道导频信号，每一特殊上行信道导频信号对应于每一与该相位反馈参考设备存在相位反馈连接的非参考设备，以及
 (b) 从所述相位反馈参考设备发送所述特殊上行信道导频信号至所述非参考设备，

 据此，所述非参考设备从所述特殊上行信道导频信号来确定所述载波相位差。

12. 根据权利要求9所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，发送所述下行信道相位信息利用基于模型的下行信道相位信息反馈，进一步包括：
 (a) 通过所述下行信道相位信息，确定所述载波相位差和/或非参考设备间相对相位的模型之参数，以及
 (b) 在整个所述信号带宽上，通过所述模型确定所述载波相位差和/或相对相位。
据此，采用所述基于模型的下行信道相位反馈减少了所述相位反馈参考设备所传输的下行信道相位信息的数据量。

13. 根据权利要求12所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，在整个所述信号带宽上，关于所述载波相位差和/或基站间相对相位的模型为频率的线性函数。

14. 根据权利要求12所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述模型包含固定或缓变部分和一跃变部分，进一步包括：

(a) 在所述相位可同步集中的非参考设备间的相位同步开始之前，校准并存储所述模型的固定或缓变部分，以及

(b) 在所述相位反馈参考设备端，生成所述下行信道相位信息，所述下行信道相位信息的数据量足以使所述非参考设备确定所述模型中跃变部分的参数，

据此，校准并存储所述模型中固定或缓变部分减少了需要发送的所述下行信道相位信息的数据量。

15. 根据权利要求12所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述模型包含非线性部分和一跃变部分，进一步包括：

(a) 在所述相位可同步集中的非参考设备间的相位同步开始之前，校准并存储所述模型的非线性部分，以及

(b) 在所述相位反馈参考设备端，生成所述下行信道相位信息，所述下行信道相位信息的数据量足以使所述非参考设备确定所述模型中非线性部分的参数，

据此，校准并存储所述模型中非线性部分减少了需要发送的所述下行信道相位信息的数据量。

16. 根据权利要求9所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，所述相位反馈参考设备从所述参考设备中动态地选定，选择的准则有多种，包括所述参考设备与所述非参考设备间的信道质量。

17. 根据权利要求9所述的在具有一定信号带宽的无线网络中的通讯方法，其特征在于，每一所述相位反馈参考设备与每一非参考设备间的反馈连接被动态地建立或释放，建立或释放的准则有多种，包括所述相位反馈参考设备与所述非参考设备间的信道质量。
多点传播中通过移动用户反馈的基站间的相位同步方法

技术领域
[0001] 本发明涉及电讯系统以及无线通讯系统领域，特别涉及无线通信载波相位同步技术领域，具体是指一种多点传播中通过移动用户反馈的基站间的相位同步方法。

背景技术
[0002] 多点传播具有数倍提升无线移动网络容量的能力。在传统的移动网络中，相邻小区的信号来自同一小区边缘的移动用户造成很强的干扰。在多点传播中，若干相邻基站以协作的方式向一组移动用户发送信号，使得每一移动用户的信号都得到增强，而干扰信号达到最小。多点传播方案最近被第三代无线移动网络长期演进技术的标准（3rd generation of wireless cellular network, advanced, LTE-A）所采用，并被称为协作多点传输（CoMP, Coordinated Multi-Point transmission）。

[0003] 图1描述了一个示范性的多点传播系统。元素102、104、和106对应于基站1、基站2、以及基站3，元素152、154、和156对应于移动用户1、移动用户2、以及移动用户3。基站1、基站2、以及基站3通过与基站100连接以实现基站间的高速信息交换。在图1中，基站1、基站2、以及基站3构成了一个协作多点发送集即多点传播中的基站集。移动用户1、移动用户2、以及移动用户3构成了一个协作多点传播系统的接收集即多点传播中的移动用户集。基站1、基站2、以及基站3和移动用户1、移动用户2、以及移动用户3一起构成了一个多点传播集。在图1中，基站1、基站2、以及基站3发送的是针对移动用户1、移动用户2、以及移动用户3的信号的组合。对于每个基站来说，每个移动用户的组合权数可以是不一样的。借助精妙复杂的算法，每个移动用户所收到的信号中的干扰均被抵消或被最小化，而该移动用户本身的信号则得到增强。例如，当来自基站1、基站2、以及基站3的信号抵达移动用户1时，针对移动用户2和移动用户3的信号被抵消或被最小化，而针对移动用户1的信号则被最大值或被增强，从而移动用户1的信号质量得到了显著的提高。同理，移动用户2和移动用户3的信号质量在相应的移动用户处也得到了显著的提高。在各个基站处的信号组合被称为“预编码”。对应于每个移动用户和每个基站的组合权数则构成“预编码矩阵”中的元素。

[0004] 在多点传播中，合作基站需要行信道（即从基站至移动用户的信道）信息来实现预编码。在FDD（频分双工）网络中，下行信道信息需要由移动用户经过上行信道反馈至基站。在TDD（时分双工）网络中，理论上检测基站可以通过信道互易原理从上行信道信息得到下行信道信息，因此TDD网络在理论上不需要信道反馈。

[0005] 然而，理想的信道互易只存在于基站天线和移动用户天线之间的无线信道中。一般说来，基站中的发送器和接收器不同于移动用户中的发送器和接收器。因此，下行信道和上行信道之间会存在增益上的和相位上的差异，从而产生信道的非互易。只有增益差和相位差为已知，才能够恢复下行信道和上行信道之间的互易性。一般说来，增益差和相位差可以独立地获取和被补偿。对增益进行校正相对而言并不复杂，而相位差则较难在多点传播时则更为关键，也更不易估计。因此在考虑相位差的获取时，可以认为增益已经完全匹配。
图2描述了一个因基站与移动用户间相位差引起的信道非互易的基本模型。如前所述，增益失配可以独立地被获取和被补偿，因此在下面的描述中不被考虑。这样，收发器之间的失配可以由下面两个随机相位简洁地表示：基站的载波相位 ϕ_b和移动用户的载波相位 ϕ_w。可以证明，更详细的模型可以被图2中的简单模型所包括。具体说来，更详细的模型中的众多参数可以被提炼为等效的载波相位 ϕ_b和 ϕ_w，从而更详细的模型可以被化简为图2中的基本模型。

由图2可见，整体下行信道 h_{dl}、整体上行信道 h_{ul}、和基站天线与移动用户天线间的无线信道 h 的关系如下：

$$ h_{dl} = e^{j(\phi_b - \phi_m)}h $$

$$ h_{ul} = e^{j(\phi_m - \phi_b)}h $$

需要指出的是，对于窄带信号或平衰落信道而言，h是一个复标量。对于通过频率选择性信道的宽带信号来说，h, ϕ_b, ϕ_m则为频率的函数。由式(1)，整体下行信道 h_{dl}和整体上行信道 h_{ul}的关系为

$$ h_{dl} = e^{j2(\phi_b - \phi_m)}h_{ul} = e^{j2\Delta\phi}h_{ul} $$

其中 $\Delta\phi = \phi_w - \phi_{\text{CPD}}$被称为载波相位差(CPD)。在不致混淆的情况下，整体下行信道和整体上行信道相应地被简要地称之为下行信道和上行信道。

式(1)和(2)可以推广至图1所示的多点传播系统。对于下行信道而言，

$$
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{bmatrix}
e^{-j\theta_m} & 0 & 0 \\
e^{-j\theta_m} & 0 & 0 \\
e^{-j\theta_m} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{bmatrix}
e^{j\theta_b} & 0 & 0 \\
e^{j\theta_b} & 0 & 0 \\
e^{j\theta_b} & 0 & 0
\end{bmatrix}

=
\begin{bmatrix}
h_{11}e^{j(\phi_b - \phi_m)} & h_{12}e^{j(\phi_b - \phi_m)} & h_{13}e^{j(\phi_b - \phi_m)} \\
h_{21}e^{j(\phi_b - \phi_m)} & h_{22}e^{j(\phi_b - \phi_m)} & h_{23}e^{j(\phi_b - \phi_m)} \\
h_{31}e^{j(\phi_b - \phi_m)} & h_{32}e^{j(\phi_b - \phi_m)} & h_{33}e^{j(\phi_b - \phi_m)}
\end{bmatrix}
$$

对于上行信道而言，

$$
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{bmatrix}
e^{-j\theta_b} & 0 & 0 \\
e^{-j\theta_b} & 0 & 0 \\
e^{-j\theta_b} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
h_{11} & h_{21} & h_{31} \\
h_{12} & h_{22} & h_{32} \\
h_{13} & h_{23} & h_{33}
\end{bmatrix}
\begin{bmatrix}
e^{j\theta_m} & 0 & 0 \\
e^{j\theta_m} & 0 & 0 \\
e^{j\theta_m} & 0 & 0
\end{bmatrix}

=
\begin{bmatrix}
h_{11}e^{j(\phi_m - \phi_b)} & h_{12}e^{j(\phi_m - \phi_b)} & h_{13}e^{j(\phi_m - \phi_b)} \\
h_{21}e^{j(\phi_m - \phi_b)} & h_{22}e^{j(\phi_m - \phi_b)} & h_{23}e^{j(\phi_m - \phi_b)} \\
h_{31}e^{j(\phi_m - \phi_b)} & h_{32}e^{j(\phi_m - \phi_b)} & h_{33}e^{j(\phi_m - \phi_b)}
\end{bmatrix}
$$

$$
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{bmatrix}
e^{-j\theta_m} & 0 & 0 \\
e^{-j\theta_m} & 0 & 0 \\
e^{-j\theta_m} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{12} & h_{12} & h_{13} \\
h_{13} & h_{12} & h_{13}
\end{bmatrix}
\begin{bmatrix}
e^{j\theta_b} & 0 & 0 \\
e^{j\theta_b} & 0 & 0 \\
e^{j\theta_b} & 0 & 0
\end{bmatrix}

=
\begin{bmatrix}
h_{11}e^{j(\phi_m - \phi_b)} & h_{12}e^{j(\phi_m - \phi_b)} & h_{13}e^{j(\phi_m - \phi_b)} \\
h_{12}e^{j(\phi_m - \phi_b)} & h_{12}e^{j(\phi_m - \phi_b)} & h_{13}e^{j(\phi_m - \phi_b)} \\
h_{13}e^{j(\phi_m - \phi_b)} & h_{12}e^{j(\phi_m - \phi_b)} & h_{13}e^{j(\phi_m - \phi_b)}
\end{bmatrix}
$$
下降信道和上行信道关系如下：

$$h_{ij}^{dl} = h_{ij}^{ul} e^{j2(\phi_i - \phi_j)} = h_{ij}^{ul} e^{j2\Delta \phi_{ij}}$$ (5)

其中，$$\Delta \phi_{ij} = \phi_i - \phi_j$$ 为基站 i 和移动用户 j 之间的载波相位差即 CPD，$$h_{ij}^{dl}$$ 为基站 i 和移动用户 j 之间的整体下行信道，$$h_{ij}^{ul}$$ 为基站 i 的天线和移动用户 j 的天线之间的无线信道，$$h_{ij}^{ul}$$ 为基站 i 和移动用户 j 之间的整体上行信道。需要注意的是，式 (3)、(4) 和 (5) 假设基站 i 和移动用户 j 为处于单个天线，但可以很直接地推广到基站和移动用户具有任意数目的天线、任意数目的基站，和任意数目的移动用户的情形。

从式 (3)、(4) 和 (5) 可以看出，基站可以通过上行信道信息和 CPD 而得到下行信道信息。为达到这一目的，基站可以通过上行信道导频信号获取上行信道信息，并通过移动用户的下行信道相位反馈获取 CPD。然而，这种获取下行信道信息的方式有着下列缺点：

1. 在每一次多点传播过程之前，基站都需要获取 CPD。这产生了时域上的 CPD 获取开销，从而减少了网络容量。

2. 下行信道获取取决于于多点传播中的移动用户。一个具有不同移动用户集的多点传播过程则需要重新获取 CPD，从而进一步加大了时域上 CPD 的获取开销。如果若干多点传播过程以时分交织的形式同时存在，时域上 CPD 的获取开销会更加增大。

3. CPD 的获取需要来自于多点传播过程中的所有移动用户的反馈。随着多点传播过程中移动用户数目的增加，反馈对诸如信令信道或数据信道的需求也更大。这增加了反馈开销，以及资源域上的 CPD 的获取开销。资源域上的开销包括 OFDM（正交频分复用）中的导频子载波，CDMA（码分复用）中的导频码道，以及反向用数据信道。这导致了网络容量的减小。

上述缺点造成了过大的 CPD 的获取开销的累积，削弱了多点传播的优势。

发明内容

本发明的目的是克服上述现有技术中的缺点，提供一种在多点传播中能够通过移动用户反馈有效进行基站间的相位同步的方法。

下面的描述给出了关于本发明的若干方面的概要，以提供对这些方面的基本理解。本概要既不是关于本发明所有可能的方面的全面广泛的介绍，也不是对任何或全部方面所涵盖的范围的界定。本概要的目的乃是：就本发明若干方面的有关概念给以作为后续详细描述之前序的简要介绍。

在公开的发明主旨提供了采用多点传播的无线网络中的一组基站获取下行信道的改进方法。完全的下行信道信息可以通过上行信道信息和所考虑的基站与移动用户间的全部 CPD 值来获得。然而，在多点传播中，基站并不需要获取完全的下行信道信息。这使得基站并不需要依赖多点传播中的所有移动用户进行下行信道反馈。

在本发明的若干方面，多点传播中的基站集只依赖于一个移动用户进行下行信道相位反馈。基站集利用来自该移动用户的反馈来检测 CPD，然后利用检测出的 CPD 实现基站间的相位同步。在这里，相位同步指的是基站集中的每一基站都具有该基站集中的任一基站对之间的相对相位信息。相对相位信息，再加上下行信道传输中为移动用户提供参考相位的导频信号，足以使得基站确定预编码矩阵并实现多点传播。这大大地减少了反馈开销。
[0032] 本发明的其它一些方面提供了改进相位同步精度的方法。基站集可以选边一个以
上的移动用户进行下行信道相位反馈。来自额外移动用户的相位反馈可以被用来减少相位
的估计噪声。由于诸如数据流量、比特误差率、以及帧误码率等重要的系统性能指标对相位
误差比增益失配更为敏感，改进的相位精度会带来多点传播在性能上的改进。

[0033] 本发明的另外一些方面使得下行信道相位反馈与基站间的相位同步独立于多点
传播过程。用于下行信道相位反馈的移动用户可以属于、也可以不属多点传播过程中的
移动用户集。同理，接收下行信道反馈的基站可以构成、也可以不构成多点传播过程中的
基站集。基站和移动用户间的反馈连接可以根据各种准则，例如信道质量、基站与移动用户间
的距离等，而动态地进行切换。这使得无线网络中的基站可以通过移动用户来保持相位同
步。基站可以随时形成多点传播集，并开始多点传播过程，而不需进行依赖于多点传播过程
的 CPD 获取和/或相位同步。因此，同步开销被显著地减少。这个益处对于若干交织的多
点传播过程来说更加明显，因为在交织的多点传播过程中会同时存在若干基站集和移动用
户集。多点传播过程可以通过分式方式在时域上交织，也在频域上交织（如 LTE-A 中互不
相交的子载波集），也可以在其它域上交织（如 CDMA 系统中码道集）。

[0034] 本发明还有一方面使得宽带信号下的基站相位同步效率更高。对宽带信号而
言，两基站间的相位相位随频率而改变。通过对 CPD 和相位相位适当地建模，CPD 和相位
可以借为有限的下行信道相位反馈而确定，避免了具有巨大反馈开销的、在整个信号
带宽上的全部下行信道相位反馈。

附图说明

[0035] 图 1 描述了一个包含一多点传播系统集的无线移动网络。

[0036] 图 2 描述了一个信道非互易的基本模型。

[0037] 图 3 描述了一个示范性的多点传播系统，该系统实现基站集中的基站间的相位同
步。

[0038] 图 4 描述了一示范性相位同步方案，该方案不依赖于无线移动网络中的多点传播
过程。

[0039] 图 5 描述了相位可同步集的例子。

具体实施方式

[0040] 为了能够更清楚地理解本发明的技术内容，特举以下实施例详细说明。

[0041] 在下面，本发明中所公开的发明主旨借助附图被更充分地描述。附图描述了本发
明的一些（但不是全部）方面或具体实现。描述中所引用的数字标记对应于附图中相应的元
素。本发明的种种方面可以通过许多不同的方式实现，因此不应被认为受本发明中所描述
的实现所限。下文中描述了若干用于解释目的的具体细节，以期达到对发明主旨的详细理
解。然而，在许多情况下，将发明主旨付诸实践可能并不一定需要这些具体细节。在另外一
些场合，为了突出对发明主旨的描述，众所周知的方法、步骤、以及组成部分的细节则不再
详述。

[0042] 本发明采用了各种术语来描述在各种无线网络中相互通信的双方。比如无线移动
网络中的“基站”与“移动用户”。更普适的术语，即“参考设备”以及“非参考设备”在更广
泛性的描述中也被用来表示通讯的双方。参考设备和非参考设备之间的区别在于非参考设备可以从中参考设备发出的信号或数据中提取所需的信息，比如 CP 和 / 或相对相位。对于本发明中所描述的相位同步来说，基带属于非参考设备，移动用户属于参考设备。相应地，由非参考设备至参考设备的信道被称为下信信道，由参考设备至非参考设备的信道则被称为上行信道。

[0043] 基站间通过移动用户反馈的相位同步

[0044] 图 1 中的下行信道可以分解如下。由式 (3)、(4)、和 (5)，

\[
H^{dl} = \begin{bmatrix}
 h^d_{11} & h^d_{12} & h^d_{13} \\
h^d_{21} & h^d_{22} & h^d_{23} \\
h^d_{31} & h^d_{32} & h^d_{33}
\end{bmatrix}
\]

[0045]

\[
\begin{bmatrix}
 e^{-j2\phi_{11}^m} & 0 & 0 \\
 0 & e^{-j2\phi_{21}^m} & 0 \\
 0 & 0 & e^{-j2\phi_{31}^m}
\end{bmatrix} \begin{bmatrix}
 h^u_{11} & h^u_{12} & h^u_{13} \\
h^u_{21} & h^u_{22} & h^u_{23} \\
h^u_{31} & h^u_{32} & h^u_{33}
\end{bmatrix} \begin{bmatrix}
 e^{j2\phi_{11}^b} & 0 & 0 \\
 0 & e^{j2\phi_{21}^b} & 0 \\
 0 & 0 & e^{j2\phi_{31}^b}
\end{bmatrix}
\]

[0046]

\[
\begin{bmatrix}
 e^{j2(\phi_{11}^b-\phi_{11}^m)} & 0 & 0 \\
 0 & e^{j2(\phi_{21}^b-\phi_{21}^m)} & 0 \\
 0 & 0 & e^{j2(\phi_{31}^b-\phi_{31}^m)}
\end{bmatrix} \begin{bmatrix}
 h^u_{11} & h^u_{12} & h^u_{13} \\
h^u_{21} & h^u_{22} & h^u_{23} \\
h^u_{31} & h^u_{32} & h^u_{33}
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 \\
 0 & e^{j2(\phi_{22}^b-\phi_{22}^m)} & 0 \\
 0 & 0 & e^{j2(\phi_{32}^b-\phi_{32}^m)}
\end{bmatrix}
\]

[0047]

\[
= P_m H^{dl}_{\text{partial}}
\]

[0048] 其中

\[
P_m = \begin{bmatrix}
 e^{j2(\phi_{11}^b-\phi_{11}^m)} & 0 & 0 \\
 0 & e^{j2(\phi_{21}^b-\phi_{21}^m)} & 0 \\
 0 & 0 & e^{j2(\phi_{31}^b-\phi_{31}^m)}
\end{bmatrix}
\]

[0049]

\[
H^{dl}_{\text{partial}} = \begin{bmatrix}
 h^u_{11} & h^u_{12} & h^u_{13} \\
h^u_{21} & h^u_{22} & h^u_{23} \\
h^u_{31} & h^u_{32} & h^u_{33}
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 \\
 0 & e^{j2(\phi_{22}^b-\phi_{22}^m)} & 0 \\
 0 & 0 & e^{j2(\phi_{32}^b-\phi_{32}^m)}
\end{bmatrix} = (H^{u})^T P_b.
\]

[0050] 虽然基站可以利用下行信道的全部信息实现多点传输中的预编码，在实际中，下行信道的部分信息对于预编码来说已经足够了。下行信道的部分信息不包括式 (6) 和 (7) 中的移动用户的载波相位信息。然而，移动用户可以从下行信道的导频信号中提取出的信道相位。对角矩阵 \(P_b\) 代表了缺失的信道相位。比如，如果基站通过 \(H^{dl}_{\text{partial}}\) 而不是 \(H^u\)，采用迫零法 (ZF) 或最小均方误差法 (MMSE)，或 Tomlinson-Harashima 预
编码（THP）来计算预编码矩阵，移动用户j所收到的信号包含了$e^{2j(\theta^i - \phi^m_j)}$的相位旋转或相移。该相位可以从接收到的下行信道信号中的导频信道导出，因此后续的频解调可以对该相位进行补偿。

[0054] 从式（7）可以看到，部分下行信道$H_{d, partial}$需要上行信道信息以及基站间的相对相位。例如，基站i相对于基站1的相位为$\phi^i - \phi^i_1$。如上所述，如果基站间的相对相位都已知，基站就可以认为已实现相位同步。

[0055] 基站间的相对相位可以通过下述方式获得。假设移动用户j被用来进行下行信道的相位反馈。移动用户j则被称为“相位反馈移动用户”。基站i从反馈的下行信道相位可以计算出CPD $\Delta_{ij} = \phi^i - \phi^m_j$ 的估计 $\hat{\Delta}_{ij}$。CPD的计算方法与将在后面详述的反向方式有关。

基站可以通过图1所示的高速主干回路来交换CPD的估计和上行信道信息。注意到

$$\Delta_{ij} - \Delta_{1j} = \phi^i - \phi^i_1$$ \hspace{1cm} (8)

$$\phi^i - \phi^i_1 \approx \hat{\Delta}_{ij} - \hat{\Delta}_{1j}$$ \hspace{1cm} (9)

[0057] 通过式（8），基站间可以达到相位同步，矩阵P_i中的量可以容易地计算出来。

[0058] 在上例中，基站1被用来作为“相位参考”，相应地，P_i中对应于基站1的量为1。然而需要指出的是，多点传输中基站群中的任一基站都可作为相位参考，移动用户群中的任一移动用户都可用来下传信道相位反馈。进一步地，如果若干基站参考基站的量并不必须为1，也可以为一具有任意固定相位的相量。比如，P_i可以取更一般的形式

$$P_i = \begin{bmatrix} e^{j\theta} & 0 & 0 \\ 0 & e^{j(\theta + 2(\phi^i - \phi^m_j))} & 0 \\ 0 & 0 & e^{j(\theta + 2(\phi^i - \phi^m_j))} \end{bmatrix}$$ \hspace{1cm} (10)

[0062] 在式（10）中基站1为相位参考。还需要指出的是，式（6）和（7）可以扩展至包含任意数目的基站、任意数目的移动用户、以及每一基站和每一移动用户具有任意数目的天线的情形。

[0063] 由于多点传输中的基站集只需一个相位反馈移动用户即可实现相位同步，反馈开通可以大大减少。例如，如果一多点传输过程包含四个移动用户，完全的CPD检测需要四倍于基站集相位同步所要求的相位反馈。

[0064] 图3描述了一个典型的多点传输系统，该系统通过上述方法实现基站集中的基站间的相位同步。基站集310包含下行信道信道装置312，上行信道信道装置314，CPD检测器316，以及相位同步装置318。移动用户集350包含下行信道信道装置352，上行信道信道装置354，以及下行信道相位反馈装置356。在上述步骤开始之前，移动用户集中一个或以上的移动用户可以被指定为相位反馈移动用户。下行信道信道装置312发送下行信道信道信号至移动用户集350。下行信道信道装置352通过下行信道信道信号来估计下行信道。上行信道信道装置354发送上行信道信道信号至基站集310。上行信道信道装置314通过上行信道信道信道信号来估计上行信道。相位反馈移动用户中的下行信道相位反馈装置356发送下行信道信道装置352。
信道相位信息至基站集 310。基站集 310 中的 CPD 检测器 316 利用下行信道相位来估计相位反馈移动用户与基站集 310 中所有基站间的 CPD。相位同步装置 318 通过式 (9) 计算基站间的相对相位，从而实现基站间的相位同步。

[0065] 下行信道估计中的下行信道相位信息可以被量化、压缩、信道编码、并经上行数据信道反馈至基站集 310。基站利用由相位反馈移动用户所反馈的下行信道相位和上行信道 \(h_{uj}^{ul} \) 通过式 (5) 计算 CPD \(\Delta_{ij} = \Phi_{i}^{b} - \Phi_{j}^{m} \)。上行信道 \(h_{ij}^{ul} \) 可以通过上行信道导频信号来估计。为了区分下面即将描述的“特殊上行信道导频信号”，用于上行信道估计的上行信道导频信号被称之为“标准上行信道导频信号”。

[0066] 另外一种下行信道相位反馈方法是采用信令协议。信令协议将下行信道相位信息嵌入一特殊上行信道导频信号。比如，从移动用户 j 至基站 i 的特殊上行信道导频信号可以具有如下形式:

\[P_{\text{special},ij}^{ul} = e^{-j\angle h_{ij}^{ul}} \quad (11) \]

[0067] 其中 \(\angle h_{ij}^{ul} \) 为自基站 i 至移动用户 j 的下行信道之相位。基站 i 所接收到的特殊上行信道导频信号的相位为

\[\angle h_{ij}^{ul} - \angle h_{ij}^{ul} = -2\Delta_{ij} \quad (12) \]

[0070] 因此 CPD \(\Delta_{ij} \) 可从式 (12) 容易地得出。需要指出的是，如果下行信道相位由特殊上行信道导频信号所发送，确定 CPD 则不再需要上行信道的估计。如果一相位反馈移动用户有 N 个反馈连接至 N 个基站，该相位反馈移动用户则需要发送 N 个特殊上行信道导频信号。

[0071] 值得指出的是，相位反馈移动用户所反馈的可以是下行信道相位的任何函数，使得基站可以通过该函数来估计 CPD。

[0072] 相位同步的精度可以通过一个以上的相位反馈移动用户来改善。参见图 1 中的多点传播系统，其中移动用户 1 和移动用户 2 将下行信道相位反馈至基站 1 和基站 2。如此则产生了两个关于基站 2 和基站 1 间相对相位的估计:

\[\Phi_{2}^{b} - \Phi_{1}^{b} \approx \hat{\Delta}_{21} - \hat{\Delta}_{11} \]

\[\Phi_{2}^{b} - \Phi_{1}^{b} \approx \hat{\Delta}_{22} - \hat{\Delta}_{12} \quad (13) \]

[0075] 相对相位的估计因通过对两个单独的估计进行下面的加权平均而得以改进:

\[\Phi_{2}^{b} - \Phi_{1}^{b} \approx a_{1} (\hat{\Delta}_{21} - \hat{\Delta}_{11}) + a_{2} (\hat{\Delta}_{22} - \hat{\Delta}_{12}), \quad a_{1} + a_{2} = 1 \quad (14) \]

[0077] 其中 a1 和 a2 取决于两个单独估计的估计质量。式 (14) 可以扩展到两个以上的相对相位的情形。其它从一组单独相对相位的估计中产生一新的相对相位估计的方法也可以被用来改进估计质量。

[0078] 在某些情况下，被估计的是 CPD \(\Delta_{ij} \) 的相量形式 \(\Phi_{ij} = e^{j\Delta_{ij}} \)。并且，在某些情形下也希望采用相对相位的相量形式。在上述例子中，两个单独的相对相位的相量估计如下所示:
新的相对相位的相量估计可以从下式得出：

\[e^{j \theta_{21}^b} \approx \hat{\phi}_{21} \hat{\Phi}_{11}^* \]
\[e^{j \theta_{22}^b} \approx \hat{\phi}_{22} \hat{\Phi}_{21}^* \] (15)

新的相量估计也可以用来改进估计质量。

式（16）可以扩展到两个以上的相量估计的情形。其它从一组单独的相量估计中产生一新的相量估计的方法也可以用来改进估计质量。

独立于多点传播过程的相位同步

CPD 获取和相位同步常常被用来获取多点传播过程的下行信道。然而，这使得基站间的相位同步成为多点传播过程的一部分，因此每一多点传播过程都必须执行该步骤，从而增加了同步开销和减少了网络容量。

图 4 描述了一示范性相位同步方案，该方案独立于无线移动网络中的多点传播过程。元素 402、404、406、408、410、以及 412 分别代表基站 1、基站 2、基站 3、基站 4、基站 5、以及基站 6。元素 452、454、456、458、460、462、以及 464 分别代表移动用户 1、移动用户 2、移动用户 3、移动用户 4、移动用户 5、移动用户 6、以及移动用户 7。在图 4 中，移动用户 4、移动用户 5、以及移动用户 6 被用作下行信道相位反馈。移动用户 4 发送下行信道相位信息至基站 1、基站 2、以及基站 3，基站 4 上述三个基站可以估计出相对相位 \(\phi_3^b - \phi_1^b \)、\(\phi_4^b - \phi_1^b \) 及 \(\phi_3^b - \phi_4^b \)。移动用户 5 发送下行信道相位信息至基站 1、基站 2、以及基站 5，上上述三个基站可以估计出相对相位 \(\phi_6^b - \phi_2^b \) 和 \(\phi_6^b - \phi_1^b \)、以及 \(\phi_6^b - \phi_5^b \)。移动用户 6 发送下行信道相位信息至基站 1、基站 2、以及基站 6。上述三个基站可以估计出相对相位 \(\phi_6^b - \phi_3^b \)、\(\phi_6^b - \phi_2^b \)、以及 \(\phi_6^b - \phi_5^b \)。基站 1、基站 2、基站 3、基站 4、基站 5、以及基站 6 一共估计出 9 个相对相位。这 9 个相对相位中，有 5 个是相互独立的。所有 \(\binom{9}{5} = 30 \) 个相对相位都可以从 5 个独立的相对相位导出。因此，图 4 所示的反馈方案可使所有 6 个基站间的相位同步。一般说来，如果网络或基站集有 N 个基站，独立相对相位的数目则为 N-1。N-1 个独立相对相位的信息保证了 N 个基站间的相位同步。

在图 4 中的相位同步方案中，如果两个基站收到的下行信道相位反馈来自同样的移动用户，那么这两个基站可以直接相位同步。例如，基站 1 和基站 3 收到来自移动用户 4 的反馈。基站 1 通过下行信道相位来计算 CPD 14i，而基站 3 计算 CPD 34。于是基站 3 和基站 1 间的相对相位 \(\phi_3^b - \phi_1^b \) 可以通过 \(\phi_3^b - \phi_1^b = \Delta_34 - \Delta_14 \) 得出。

如果一对基站没有共同的相位反馈移动用户，这两个基站仍然有可能间接地实现相位同步。比如，图 4 中的基站 4 和基站 6 没有共同的相位反馈移动用户。然而，基站 3 和基站 4 可以通过移动用户 4 而直接实现相位同步，基站 3 和基站 6 可以通过移动用户 6 而直接实现相位同步。因此，相对相位 \(\phi_4^b - \phi_3^b \) 和 \(\phi_6^b - \phi_3^b \) 可以是已知的。那么，基站 6 与基站 4 间的相对相位 \(\phi_6^b - \phi_4^b \) 可以通过下式算出：\(\phi_6^b - \phi_4^b = (\phi_6^b - \phi_3^b) - (\phi_4^b - \phi_3^b) \)。
[0089] 图4中的全部基站，基站1、基站2、基站3、基站4、基站5，以及基站6，可以通过相位反馈移动用户4、相位反馈移动用户5，以及相位反馈移动用户6实现相位同步。因此，基站1、基站2、基站3、基站4、基站5，以及基站6，和移动用户1、移动用户2，移动用户3，移动用户4，移动用户5，以及移动用户6形成一相位可同步集。相位可同步集可以包括或不包括非相位反馈移动用户，例如图4中的移动用户1、移动用户2，以及移动用户3为非相位反馈移动用户。在一相位可同步集中，相位反馈移动用户与基站间的反馈连接保证了该集中所有基站可以相位同步。换句话说，一具有N个基站的相位可同步集应该能够检测出N-1个独立的相对相位。图5给出了更多的相位可同步集的例子。基站502、基站504，以及移动用户552构成一相位可同步集。基站506，基站508，移动用户554，以及移动用户556也构成一相位可同步集。然而基站502、基站504、基站506，基站508，移动用户552，移动用户554，以及移动用户556构成的集合则不是一相位可同步集，一个原因就是基站504和基站506之间不存在适当的反馈连接，它们既不能直接地也不能间接地实现相位同步。

[0090] 图4中相位同步方案的一个优点是相位同步可以独立于多点传播过程中的移动用户。图4示出了两个多点传播集的例子。多点传播集例1包含基站1，基站2，以及基站3，和移动用户1，移动用户2，以及移动用户3。多点传播集例2包含基站1，基站3，以及基站4，移动用户4和移动用户7。可以看出，相位反馈移动用户并不一定与多点传播过程中的移动用户一样。这使得网络可以根据信道条件、反馈质量、移动用户的速度等来灵活地指定相位反馈移动用户。

[0091] 图4中的相位同步方案的另一个优点是相位同步可以独立于多点传播过程。这消除或减少了每一多点传播过程所需的同步时间，从而显著地降低了反馈开销。考虑图4中的多点传播集例1。如果基站1，基站2，基站3，基站4，基站5，以及基站6已经相位同步，多点传播集例1中的基站1，基站2，以及基站3则不必针对多点传播集例1中的多点传播过程再进行相位同步。作为又一个例子，考虑相应于图4中两例多点传播集的两个多点传播过程。如果两个多点传播过程是在时域上交织的，两个过程则会不停地来回切换。如果相位同步与多点传播过程相关，那么每一次的切换都需要CPD获取和相位同步，因此时域交织的多点传播过程较之单独的多点传播过程有着更长的同步开销。考虑图4中的独立于多点传播过程的相位同步方案，因为交织带来的相位同步开销可以被完全消除。由于交织的多点传播过程比起单独的多点传播过程可以有更快的传输调度、更好的链路自适应，以及更有效的资源利用，上述优点显得更有意义。

[0092] 其它类型的交织多点传播过程也受益于独立于多点传播过程的相位同步。例如，频域交织的多点传播分配不同的子载波给不同的多点传播过程。独立于多点传播过程的相位同步消除了每一多点传播过程对相位同步和针对该过程的相位跟踪的需求。

[0093] 独立于多点传播过程的相位同步使得基站可以随时处于多点传播过程的待发状态。任何与多个基站相连的移动用户都可以用来进行下行信道相位反馈，从而实现它所连接的基站间的相位同步。

[0094] 值得指出的是，一个以上的移动用户可以用来反馈下行信道相位至同一基站集，从而改进相位同步精度。图4中独立于多点传播过程的相位同步方案可以推广至更多的基站或无线网络中的全部基站。

[0095] 采用基于模型的下行信道相位反馈的相位同步
为了提高网络容量，无线移动网络使用的带宽越来越窄。在很宽的带宽上，两个基站间的 CPD 和相对相位是随着不同的子载波而不同的。为了获取相对相位，基站需要得到在整个信号带宽上的下行信号相位信息。然而将全部下行信号相位发送至基站会导致过高的反馈开销，因此并不现实。

一般情况下，两通信设备间的 CPD 是由振荡器间的相位差和接收发送链（收发链）的延迟差所造成。振荡器间的相位差通常被认为在整个信号带宽内都是一样的。收发链的延迟差则产生正比于信号频率的相位变化。因此，基站 k 与移动用户 j 间的 CPD Δ_{kj} 可以被建模成在信号带宽内的一关于频率的线性函数：

$$\Delta_{kj} = \beta_{kj} + \alpha_{kj} f$$ \hspace{1cm} (17)

式 (17)，确定整个信号带宽内的 CPD Δ_{kj} 只须确定两个参数 α_{kj} 和 β_{kj}。因此确定 CPD Δ_{ij} 只需要两个下行信道相位。在 LTE 网络中需要用到数个下行信道相位，因此采用如式 (17) 中的 CPD 模型可将反馈开销降至无 CPD 模型时所须反馈开销的极小一部分。如果反馈的下行信道相位多于两个，参数 α_{ij} 和 β_{ij} 的估计精度还会得到改进。

如果移动用户 j 也通过基于线性 CPD 模型的高效反馈方式向基站 k 发送下行信道相位，整个信号带宽内的 CPD Δ_{k} 可以类似地确定。从 CPD Δ_{ij} 和 Δ_{k} 的估计值可以计算出基站 k 相对于基站 i 的相位：

$$\phi_k^b - \phi_k = \Delta_{kj}$$ \hspace{1cm} (18)

从而达到 k 和基站 i 实现了相位同步。从式 (18) 可以看出，如果 CPD 为频率的线性函数，相对相位也为频率的线性函数：

$$\phi_k^b - \phi_k = \Delta_{kj} = (\beta_{kj} - \beta_{ij}) + (\alpha_{kj} - \alpha_{ij}) f = b_{kj} + a_{kj} f$$ \hspace{1cm} (19)

需要指出的是，尽管相对相位 $\phi_k^b - \phi_k$ 是借助于移动用户 j 而计算出，相对相位 $\phi_k^b - \phi_k$ 模型中的参数 a_{kj} 和 b_{kj} 只依赖于基站 k 和基站 i，而独立于移动用户 j。

式 (19) 中的参数 b_{kj} 反映了相位噪声和两个振荡器之间的相位失配。参数 a_{kj} 取决于两个基站间收发链的延迟失配。相对于 b_{kj} 来说，a_{kj} 可以认为是固定或者缓变的。因此 a_{kj} 可以在多点传播过程开始前被校准并存储。如果 a_{kj} 有更新的需要，更新的间隔会比正常的间隔更长。这使得参数 b_{kj} 成为唯一需要在正常间隔下被估计的参数。这意味着移动用户只需要在正常间隔下反馈一个下行信道相位至基站，从而进一步降低了反馈开销。如果移动用户发送一个以上的下行信道相位至基站，那么在 a_{kj} 为已知的条件下，b_{kj} 的估计精度会得到改进。从一组在不同频率上得到的下行信道相位或 CPD 值来估计参数 a_{kj} 和 b_{kj}，或在 a_{kj} 为已知的条件下估计 b_{kj}，有着众多的具有不同优化准则的算法可供选择。

如果相对相位中的固定或缓变部分包含频率的非线性函数，非线性部分也可以在多点传播过程开始前被校准和存储至基站中，并根据需要而更新。固定或缓变的特性保证了更新频率不会太频繁。

相对相位中的固定或缓变部分的校准可以依据上文所述的本发明的各个方面和 / 或测来实现。在校准过程中，为了提高校准精度，CPD 和相对相位的估计可能需要更多的反馈数据和更长的时间。由于校准只需要出现一次或很少几次，校准过程所占用的反馈开销和时间对网络效率的影响可以忽略不计。
[0108] 上面所述的下行信道相位反馈方案被称为基于模型的下行信道相位反馈。CPD和/或相对相位在整个信号带宽内的模型包括了式(17)和式(19)所示的线性模型，具有固定/缓变部分和非线性部分的分解模型，以及具有非线性部分与分解模型之组合的组合模型。

[0109] 结论，派生结果与范围

[0110] 通过上文的描述可以看出，基站间的相位同步为多点传送中的预编码提供了必要信息。同时，与多点传送集中的任一基站和任一移动用户间的CPD的完全获取相比，基站间的相位同步显著地减少了反馈开销。在多点传送中，基站只需要部分下行信道信息而不需要拥有完全的下行信道信息。基站所需要的部分下行信道信息可以由基站间的相位同步而获得。多点传送集中的所有基站最少只需要多点传送集中的移动用户的上行信道相位反馈就可以实现相位同步。作为比较，完整的CPD获取需要来自多点传送集中的全部移动用户的反馈。

[0111] 一个以上的相位反馈移动用户则可以改进基站间的相位同步精度。

[0112] 本发明另一显著点是基站间的相位同步可以独立于多点传播过程。这完全消除了每一多点传播过程自身的同步开销。更进一步地，独立于多点传播过程的相位同步方案使得网络中所有基站可以同时保持相位同步，因此网络可以实时规划任意基站集和任意移动用户集之间的多点传播过程。这种灵活性使得交织多点传播过程变得更加可行，网络资源的使用更加高效，网络容量进一步得到了改进。

[0113] 借助于模型的下行信道相位反馈，基站间的相位同步可以在整个信号带宽内经济地实现。通过CPD和相应相位的线性模型，移动用户只须发送非常有限数据的下行信道相位。通过对相位相位固定或缓变部分的预校准并将结果存储在基站，每个基站-移动用户链最少只须传输一个下行信号相位。预校准可以包括非线性固定或缓变部分，从而基站间的相位同步可以适用于具有任意特性的发送链。

[0114] 需要提出和强调的是，权力要求中的分组主旨并不限于无线移动网络。本发明可以应用于相当广泛的，含有若干非参考设备和若干参考设备的无线通讯系统。在这些系统中，一些参考设备作为参考设备反馈相反的一方至参考设备，而非参考设备能够通过高速主干回路来交换信息。一个例子就是特殊用途的(adj-hoc)无线定位系统。在该系统中，一组分布式分布的测量基站接收来自目标设备的信号以确定目标设备的位置。目标设备的位置可以通过测量信号的抵达时间来计算。测量信号的抵达时间需要所有测量基站具有一共同的频率基准或时间基准，而测量基站间的相位同步提供了这一基准。按照上述所描述的本发明的各个方面和/或体现，至少一个相位反馈设备发送下行信道相位至测量基站。相位反馈设备可以来自目标设备的子集，也可以是专用的反馈装置。相位反馈设备和测量基站应当构成一相位同步。在更一般的术语中，测量基站为非参考设备，相位反馈设备为参考设备。

[0115] 上文对本发明的各个方面和/或体现给出了解说性的描述。需要强调的是，对于熟悉相关背景的专业人士来说，本发明中的权利要求定义了本发明的各个方面和/或体现的范围。在不偏离该范围的条件下，存在着等理由的可能的变动和修改。另外，除特别说明外，本发明的任一方面和/或体现的全部或一部分可以与本发明的其它任一方面和/或体现的全部或一部分进行组合。因此，所有这样的修改、变动、以及组合，只要它们落入所公
开的发明主旨的精神实质和范围，均为本发明中的权利要求所包括。
图 3