（12）发明专利申请

（10）申请公布号 CN 102151607 A
（43）申请公布日 2011.08.17

（21）申请号 201010611222.9
（22）申请日 2010.12.29

（71）申请人 广州有色金属研究院
地址 510650 广东省广州市天河区长兴路363号

申请人 广东省大宝山矿业有限公司

（72）发明人 喻连香 汤玉和 刘聪 郭冠周
邱显杨 刘文强 何晓梅 梁冬云
王海东 麦国超 朱传明 董天颂
钟国建 张红英

（74）专利代理机构 韶关市雷门专利事务所
44226

代理人 周胜明

（51）Int.Cl.
B03B 7/00 (2006.01)

（54）发明名称
一种含复杂磁铁矿铜硫铁矿石磁浮联合分选的方法

（57）摘要
本发明涉及一种含复杂磁铁矿铜硫铁矿石磁浮联合分选的方法，将一段磁选矿，再优先进铜，再研磨药，然后是铜精矿磁选脱硫铁，再磁选尾矿铜精选，最后是硫铁矿分洗。从优选铜精矿中采用磁选法分离出部分磁性较强的而对选铜干扰作用大的单斜磁铁矿，以减少对铜精选过程的干扰。并在优先进铜时，采用石灰和DB-5组合抑制在低碱介质中来抑制硫铁矿，不仅减少石灰用量，而且在优选铜和铜尾矿中选硫铁的后续工艺流程中可以不使用活化剂而对硫铁矿进行高效回收。采用本发明所获得的铜精矿中铜品位大于18%，回收率大于74%；硫铁精矿中硫品位大于40%，回收率大于86%。
1. 一种含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征在于工艺步骤是：
 第一步为一段磨矿：在铜硫重金属石中加入 6000g/t 的石灰，磨矿至粒度小于 0.074mm 占 80%；
 第二步为优先浮铜：向经第一步处理后的原料中加入抑制剂 D-8 750g/t 和兼有起泡性能的 DY 硫化铜矿捕收剂 75g/t 进行一次铜粗选，得到铜粗精矿和铜精选尾矿；
 第三步为再磨脱药：向经第二步处理后的铜精矿中加入 167g/t 的活性炭进行再磨
 脱药，把铜精矿再磨至粒度小于 0.074mm 占 90% 以上；
 第四步为铜粗精矿磁选脱硫铁：在 0.45T 磁场强度下，对经第三步再磨处理后的铜粗
 精矿进行磁选，脱除部分易磁易浮的单斜磁黄铁矿，减少铜精选时易浮磁黄铁矿对铜精矿
 毒性的影响，同时得一部分硫铁精矿；
 第五步为磁选尾矿铜精选；向经第四步处理后的磁选尾矿中加入抑制剂 D-8 200g/
 t、DB-5 300g/t、ZnSO₄ 750g/t、捕收剂 DY 10g/t 进行第一次铜精选；
 第六步为硫铁矿选别：向经第二步处理后的优先浮铜尾矿中加入丁基黄药 40 g/t、松
 醇油 27 g/t 进行一次硫铁粗选。

2. 如权利要求 1 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 向经第二步处理后的铜粗选尾矿中加入捕收剂 DY 10g/t 进行一次铜扫选。

3. 如权利要求 2 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 向经一次铜扫选处理后的尾矿中加入捕收剂 DY 5g/t 进行二次铜扫选。

4. 如权利要求 3 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 向经二次铜扫选处理后的尾矿中加入捕收剂 DY 2.5g/t 进行三次铜扫选。

5. 如权利要求 1 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 向一次铜精选精矿中加入抑制剂 DB-5 50g/t、ZnSO₄ 200g/t、捕收剂 DY 2.5g/t 进行二次铜
 精选。

6. 如权利要求 5 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 在不加任何药剂情况下，对经二次铜精选精矿进行三次铜精选。

7. 如权利要求 1 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 向经第二步处理后的硫铁粗选尾矿中加入丁基黄药 20 g/t、松醇油 10g/t 进行一次硫铁
 扫选。

8. 如权利要求 1 所述的含复杂磁黄铁矿铜硫重金属石磁浮联合分选的方法，其特征是：
 在第一步中加入石灰后，调整一段磨矿的原料 pH 值为 8-9。
一种含复杂磁黄铁矿铜硫铁矿石磁浮联合分选的方法

技术领域
[0001] 本发明属于选矿技术领域，涉及一种含复杂磁黄铁矿的铜硫铁矿石分离的选矿方法，特别涉及一种优先浮铜与磁选联合处理含复杂磁黄铁矿的铜硫铁矿石的选矿方法。

背景技术
[0002] 对于钢铁铁矿物的分选过程而言，其关键在于如何实现对铜矿物的高效捕收与对硫化铁矿物的有效抑制或剔除的问题。当矿石中硫化铁矿物中既有黄铁矿(FeS₂)，又有磁黄铁矿(Fe₃S₄)，特别是由于磁黄铁矿的磁性和可浮性参差不齐时，其对铜硫分选效果影响较大。在以往的实践中，以增大硫铁矿的抑制剂用量为手段来保证铜精矿指标，但此方法又会最终的硫铁矿活化回收带来困难，往往导致硫铁硫铁回收率低。因此，处理此含复杂多变的磁黄铁矿的铜硫铁矿石，在铜硫有效分离的同时，高效回收硫是选矿领域一直未解决的选矿难题。
[0003] 目前处理铜硫铁矿的生产实践中大都采用全浮工艺，其中包括优先浮铜后再活化硫铁选硫、铜硫浮选后再抑硫浮铜两种工艺流程。传统的铜硫分离方法都是在矿浆中加入大量的石灰，形成高碱高钙介质条件，使黄铁矿、磁黄铁矿表面氧化和吸附钙溶液而沉降，从而实现铜硫有效分离的目的。但如此高碱抑制后的硫铁矿浮选时活化难度加大，特别对于含晶体结构类型复杂的磁黄铁矿矿石而言，因磁黄铁矿中部分Fe³⁺离子被Fe²⁺离子代替，为了保持电价平衡，出现铁原子空位。随着Fe³⁺离子的增加，空位数量（x值）决定了磁黄铁矿有单斜、六方、同质多象变体同时存在于待分选矿石中，这种晶体化学性质的变化使得磁黄铁矿磁性和可浮性参差不齐，而在单一的选别条件或选别手段下难以有效消除呈变化状态的磁黄铁矿对浮铜过程的干扰作用，从而严重影响硫铁矿的回收率，使大量的硫铁矿损失在废弃尾矿中，不仅造成资源的巨大浪费，同时含硫废弃物严重污染环境。

发明内容
[0004] 为了克服现有技术的上述缺点，在对同时存在复杂磁黄铁矿和黄铁矿的铜硫铁矿石中，本发明提供一种在弱碱介质中采用优先浮铜与磁选联合的选别工艺来实现铜和硫铁有效分离的同时，又提高硫铁的回收效果的含复杂磁黄铁矿铜硫铁矿石磁浮联合分选的方法。
[0005] 本发明解决其技术问题所采用的技术方法是：一种含复杂磁黄铁矿铜硫铁矿石磁浮联合分选的方法，其工艺步骤是：
第一步为一段磨矿：在铜硫铁矿石中加入 6000g/t 的石灰，磨矿至粒度小于 0.074mm 占 80%；
第二步为优先浮铜：向经第一步处理后的原料中加入抑制剂DB-5 750g/t 和兼有起泡性能的DY硫化铜矿捕收剂 75g/t 进行一次铜粉选，得到铜粗精矿和铜粗选尾矿；
第三步为再磨脱药：向经第二步处理后的铜粗精矿中加入 167g/t 的活性炭进行再磨
脱药，把铜精矿再磨至粒度小于 0.074mm 占 90% 以上；

第四步为铜精矿磁选脱硫铁；在 0.45T 磁场强度下，经第三步再磨处理后的铜精矿进行磁选，脱除部分易磁易浮的单斜磁黄铁矿，减少铜精选时易磁浮黄铁矿对铜精矿品位的影响，同时得一部分硫精矿。

第五步为磁选尾矿铜精选；向经第四步处理后的磁选尾矿中加入抑制剂 DB-4 200g/t、DB-5 300g/t、ZnSO₄ 750g/t，捕收剂 DY 10g/t 进行第一次铜精选；

第六步为硫铁矿选别：向经第二步处理后的浮选尾矿中加入丁基黄药 40 g/t、松醇油 27 g/t 进行一次硫铁粗选。

[0006] 向经第二步处理后的铜精铜矿中加入捕收剂 DY 10g/t 进行一次铜扫选。

[0007] 向经一次铜扫选处理后的尾矿中加入捕收剂 DY 5g/t 进行二次铜扫选。

[0008] 向经二次铜扫选处理后的尾矿中加捕收剂 DY 2.5g/t 进行三次铜扫选。

[0009] 向一次铜精矿中加入抑制剂 DB-5 50g/t、ZnSO₄ 200g/t、捕收剂 DY 2.5g/t 进行二次铜扫选。

[0010] 在不加任何药剂情况下，对经二次铜精铜矿进行三次铜扫选。

[0011] 向经第二步处理后的硫铁矿粗选尾矿中加入丁黄药 20 g/t、松醇油 10g/t 进行一次硫铁扫选。

[0012] 在第一步中加入石灰后，调整一段磨矿的原料 pH 值为 8～9。

[0013] 本发明的有益效果是：本发明根据磁黄铁矿的晶体化学特性，即磁黄铁矿（Fe₉₋₄S）晶体结构中，部分 Fe²⁺ 离子被 Fe³⁺ 离子代替，为了保持电位平衡，出现空位，Fe³⁺ 离子的代替量越大空位数量（x 值）越大，X 值决定磁黄铁矿晶体结构的变化，有方程式 X 值 < 0.111)和单斜 (X 值 ≥ 0.111)两种同质多象变体，X 值同时也要决定磁黄铁矿的磁性和可浮性产生变化，空位数多的单斜磁黄铁矿具有易浮 (即易经黄铜矿进入铜精矿而对富集铜产生干扰) 和易磁 (易于采用磁选分离) 的特点，采用铜精铜矿中采用磁选法分离出部分磁性较强而对选铜干扰作用不大的单斜磁黄铁矿，以减少对精铜过程的干扰，并在优先浮铜精选时采用石灰和 DB-5 组合抑制剂在低硫介质中 (铜分离时 pH=8～9) 来抑制硫铁矿，不仅减少石灰用量，而且在从优先浮铜尾矿中选硫铁的后续工艺流程中可以不使用活化剂而对黄铁矿进行高效回收。

[0014] 采用本发明所获得的铜精矿中铜品位大于 18%，回收率大于 74%；硫铁精矿中硫品位大于 40%，回收率大于 86%。

附图说明

[0015] 图 1 是本发明的工艺流程方框图。

[0016] 图 2 是本发明所述铜精矿及硫铁精矿产品分析结果 1。

[0017] 图 3 是本发明所述铜精矿及硫铁精矿产品分析结果 2。

[0018] 图 4 是本发明所述实例 2 中的药剂制度表。

[0019] 具体实施方式

下面结合附图和实施例对本发明进一步说明。

[0020] 参见图 1，一种含复杂磁黄铁矿铜硫精矿磁浮联合选矿的方法，其工艺步骤是；

第一步为一段磨矿：在铜硫铁矿石中加入 6000g/t 的石灰 (pH=8～9)，磨矿至粒度小于
第二步为先浮选铁：向经第一步处理后的原料中加入抑制剂DB-5 750g/t 和兼有起泡性能的DY硫化铜矿捕收剂 75g/t 进行一次铜粗选，得到铜粗精矿和铜粗选尾矿；向铜粗选尾矿中加入捕收剂DY 10g/t 进行一次铜扫选，然后向经一次铜扫选处理后的尾矿中加入捕收剂DY 5g/t 进行二次铜扫选；再向经二次铜扫选处理后的尾矿中加捕收剂DY 2.5g/t 进行三次铜扫选；

第三步为再磨脱药：向经第二步处理后的铜粗精矿中加入 167g/t 的活性碳进行再磨脱药，把铜粗精矿再磨至粒度小于 0.074mm 占 90% 以上；

第四步为铜粗精矿磁选脱硫铁：在 0.45T 磁场强度下，对经第三步再磨处理后的铜粗精矿进行磁选，脱除部分易磁易浮的单斜磁黄铁矿，减少铜精矿时易浮磁黄铁矿对铜精矿品位的影响，同时得一部分硫铁精矿；

第五步为磁选尾矿铜精选：向经第四步处理后的磁选尾矿中加入抑制剂 DB-4 200g/t、DB-5 300g/t、ZnSO_4 750g/t、捕收剂DY 10g/t 进行第一次铜精选；向一次铜精选精矿中加入抑制剂 DB-5 50g/t、ZnSO_4 200g/t、捕收剂DY 2.5g/t 进行二次铜精选；在不加任何药剂情况下，对经二次铜精选精矿进行三次铜精选；

第六步为硫铁矿选别：向经第四步处理后的先浮铜尾矿中加入丁基黄药 40 g/t、松醇油 27 g/t 进行一次硫铁扫选；向硫铁选尾矿中加入丁黄药 20 g/t、松醇油 10g/t 进行一次硫铁扫选。

[0021] 本发明采用原矿_iv_矿石原矿含铜 0.52%，含硫 18.66%。首先添加石灰至球磨机内将原矿磨至 -0.074mm 占 80%；按表 3 的药剂制度添加抑制剂 DB-5 搅拌 3 分钟、添加 DY硫化铜矿捕收剂搅拌 2 分钟进行先浮铜矿 (pH=8-9)；浮铜尾矿添加捕收剂 DY 进行三次铜扫选；优先浮铜精矿加入活性碳进行再磨脱药，铜粗精矿再磨至 -0.074mm 占 90% 左右；在 0.45 T 磁场强度下，对再磨铜精矿进行磁选脱除部分磁黄铁矿，并得硫铁精矿 1；磁选尾矿添加抑制剂 DB-4 搅拌 5 分钟、DB-5 和 ZnSO_4 搅拌 3 分钟、捕收剂DY 搅拌 2 分钟进行一次铜精选；添加抑制剂 DB-5 和 ZnSO_4 搅拌 3 分钟、捕收剂DY 搅拌 2 分钟进行二次铜精选；再进行一次空白精选，得到最终铜精矿；对优先浮铜扫选尾矿添加丁基黄药搅拌 2 分钟、松醇油搅拌 1 分钟进行一次硫铁扫选；添加丁基黄药搅拌 2 分钟、松醇油搅拌 1 分钟进行一次硫铁扫选，得到硫铁精矿 2 和最终尾矿。得到的铜精矿中铜品位为 18.26%，回收率为 74.81%；硫铁精矿 (硫铁精矿 1 和硫铁精矿 2 合并) 中硫品位为 40.10%，回收率为 90.76%。铜精矿及硫铁精矿产品分析结果见图 2 和图 3。矿山全浮工艺流程硫铁精矿回收率为 60% 左右。

[0023] 实例 2：对铜硫铁矿石含铜 0.66%，含硫 15.86% 的原矿应用上述工艺在相同的步骤和药剂制度条件下进行了试验，首先添加石灰至球磨机内将原矿磨至 -0.074mm 占 80%；按图 4 中的药剂制度添加抑制剂DB-5搅拌 3 分钟，添加DY硫化铜矿捕收剂搅拌 2 分钟进行优先浮铜矿 (pH=8-9)；浮铜尾矿添加捕收剂DY 进行三次铜扫选；优先浮铜精矿加入活性碳进行再磨脱药，铜粗精矿再磨至 -0.074mm 占 90% 左右；在 0.45 T 磁场强度下，对再磨铜精矿进行磁选脱除部分磁黄铁矿，并得硫铁精矿 1；磁选尾矿添加抑制剂 DB-4 搅拌 5 分钟、DB-5
和 ZnSO₄ 搅拌 3 分钟、捕收剂 DY 搅拌 2 分钟进行一次铜精选 ;添加抑制剂 DB-5 和 ZnSO₄ 搅拌 3 分钟、捕收剂 DY 搅拌 2 分钟进行二次铜精选 ;再进行一次空白精选, 得到最终铜精矿 ;对优先浮铜扫选尾矿添加丁基黄药搅拌 2 分钟、松醇油搅拌 1 分钟进行一次硫铁粗选 ;添加丁基黄药搅拌 2 分钟、松醇油搅拌 1 分钟进行一次硫铁扫选, 得到硫铁精矿 2 和最终尾矿。最终铜精矿铜品位达 18.17%, 回收率为 80.60%; 硫铁精矿 (硫铁精矿 1 和硫铁精矿 2 合并) 中硫品位达 43.96%, 回收率为 86.65%。
<table>
<thead>
<tr>
<th>产品名称</th>
<th>产率%</th>
<th>品位%</th>
<th>回收率%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cu</td>
<td>S</td>
</tr>
<tr>
<td>铜精矿</td>
<td>2.12</td>
<td>18.26</td>
<td>27.91</td>
</tr>
<tr>
<td>硫铁精矿</td>
<td>42.24</td>
<td>0.15</td>
<td>40.10</td>
</tr>
</tbody>
</table>

图 2

<table>
<thead>
<tr>
<th>产品名称</th>
<th>产率%</th>
<th>品位%</th>
<th>回收率%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cu</td>
<td>S</td>
</tr>
<tr>
<td>铜精矿</td>
<td>2.94</td>
<td>18.17</td>
<td>27.37</td>
</tr>
<tr>
<td>硫精矿</td>
<td>31.26</td>
<td>0.14</td>
<td>43.96</td>
</tr>
</tbody>
</table>

图 3
<table>
<thead>
<tr>
<th>作业及药剂</th>
<th>实例1</th>
<th>实例2</th>
</tr>
</thead>
<tbody>
<tr>
<td>优先浮铜</td>
<td></td>
<td></td>
</tr>
<tr>
<td>石灰</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>DB-5</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>Dy</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>钢扫选一</td>
<td>Dy</td>
<td>10</td>
</tr>
<tr>
<td>Dy</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>钢扫选二</td>
<td>Dy</td>
<td>2.5</td>
</tr>
<tr>
<td>活性炭</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>钢精一</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB-4</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>DB-5</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>Dy</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>钢精二</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB-5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Dy</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>钢精三</td>
<td></td>
<td></td>
</tr>
<tr>
<td>碳选</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>硫精选</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D基黄药</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>硫精选</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D基黄药</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>硫扫选</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D基黄药</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>极限值</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

图 4