
US 20070233866A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2007/0233866A1 

Appleby et al. (43) Pub. Date: Oct. 4, 2007 

(54) METHOD AND SYSTEM FOR (52) U.S. Cl. .............................................................. 709/226 
DYNAMICALLY ALLOCATING SERVERS TO 
COMPUTE-RESOURCES USING CAPACITY (57) ABSTRACT 
THRESHOLDS 

Servers are allocated for use in one of a plurality of 
(76) Inventors: Karen Appleby, Ossining, NY (US); compute-resources or for stand-by storage in a free-pool. 

German Goldszmidt, Dobbs Ferry, NY Server load metrics are selected (e.g., ping-reply time or CP 
(US) utilization) for measuring load in the servers. Metrics are 

measured for the servers allocated to the compute-resources. 
Correspondence Address: Several metrics can be measured simultaneously. The met 
Whitham, Curtis, & Christofferson, P.C., 
Suite 340 rics for each compute-resource are normalized and aver 
11491 Sunset Hills Road aged. Then, the metrics for each compute-resource are 
Reston, VA 20190 (US) combined using weighting coefficients, producing a global 

load value, G, for each compute-resource. The G value is 
(21) Appl. No.: 11/390,369 recalculated at timed intervals. Upper and lower thresholds 

are set for each compute-resource, and the G values are 
compared to the thresholds. If the G value exceeds the upper 
threshold, then a server in the free-pool is reallocated to the 
compute-resource: if the G value is less than the lower 

(51) Int. Cl. threshold, then a server is moved from the compute-resource 
G06F 5/73 (2006.01) to the free-pool. 

(22) Filed: Mar. 28, 2006 

Publication Classification 

Heterogeneous 
compute resources 

Metric Server 
Collector Type C 

Metric Server Resource 
Collector Type B 1 

Resource 
Loads 

Current RT 1C 
Problem 
ldentifier Current 

Metric Values 

Metric Server 
Collector Type A Overload 

Evaluator 
Present Load 

Deriver 1a 

was as are or Metric Server 

Collector Type A 

Metric Server Resource 
Collector Type B 2 

Metric Server 
Server . . tie- Collector Type C Capacity Setter 

Metric Server 
Resource Collector Type C 
Allocator 

Metric Server Resource 
Collector Type A 3 

Metric Server 
Collector Type B 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

    

  

    

  

  



US 2007/0233866 A1 Patent Application Publication Oct. 4, 2007 Sheet 1 of 8 

? ?un61-I 



Patent Application Publication Oct. 4, 2007 Sheet 2 of 8 US 2007/0233866 A1 

D 

O 
N 

O 

O 
s 

2 ; CN 
B.A.----------------------------- 8 
3 S; N 

S) 
8 8 U 

4. Y 

H 
Y 

    

    

  



US 2007/0233866 A1 

Sene/N) †---7-->~~~~???-jººn 5 go 

Z£ 

|-4---.*?---------+-----------------------Jeddn V.THO 
| 88| 

Patent Application Publication Oct. 4, 2007 Sheet 3 of 8 



# ?Inôl-ff peoT 

US 2007/0233866 A1 

punoq 30uep?uoO J?MOTCD punoq eouepiguoo laddn 

Patent Application Publication Oct. 4, 2007 Sheet 4 of 8 





gg eun61-I 

US 2007/0233866 A1 

ZLZ 

Oct. 4, 2007 Sheet 6 of 8 Patent Application Publication 

  

  

  

  







US 2007/0233866 A1 

METHOD AND SYSTEM FOR DYNAMICALLY 
ALLOCATING SERVERS TO 

COMPUTE-RESOURCES USING CAPACITY 
THRESHOLDS 

BACKGROUND OF THE INVENTION 

0001) 
0002 The present invention relates generally to compute 
resources (sets of servers that are logically and physically 
isolated from one another for the purpose of security and 
dedicated usage) and methods for allocating servers between 
compute-resources based on a new capacity threshold. More 
specifically, the present invention relates to a method for 
setting capacity thresholds, monitoring the computation load 
on each compute-resource, and reallocating servers when 
thresholds are exceeded. 

0003 2. Background Description 

1. Field of the Invention 

0004 Compute-resources are commonly used for appli 
cations Supporting large numbers of users, and those that are 
central processor unit (CPU) intensive and highly paralliz 
able. Examples of Such compute-resources include web 
applications hosted by Internet service providers (ISPs), and 
many scientific applications in areas Such as Computational 
Fluid Dynamics Often in Such computing environments, 
load can vary greatly over time, and the peak to average load 
ratios are large (e.g., 10:1 or 20:1). When the load on a 
customer site drops below a threshold level, one of its 
servers is quiesced (removed from service), “scrubbed” of 
any residual customer data, and assigned to a “free-pool of 
servers that are ready to be assigned. Later, when the load on 
another customer exceeds some trigger level, a server from 
the free-pool is primed with the necessary operating system 
(OS), applications, and data to acquire the personality of that 
customer application. Currently, there are few systems that 
Support dynamic allocation of servers. Those that do exist 
depend on manually derived thresholds and measures of 
normal behavior to drive changes resource allocation. There 
are no automated effective and efficient methods for deter 
mining when a particular compute-resource is overloaded or 
under loaded that is relatively independent of application 
modifications. 

0005 Parallel computing and Server-Farm facilities 
would benefit greatly from an automatic method for moni 
toring available capacity on each compute-resource, and 
allocating servers accordingly. Such a system would provide 
more efficient use of servers, allowing groups of compute 
resources to provide consistent performance with a reduced 
number of total servers. Such a system would be particularly 
applicable to large ISPs, which typically have many com 
pute-resources that each experience significant changes in 
computing load. 

SUMMARY OF THE INVENTION 

0006. According to the present invention, a method and 
system dynamically allocate servers among a plurality of 
connected server compute-resources and a free-pool of 
servers. Each server compute-resource comprises a plurality 
of servers. Each server allocated to a compute-resource is 
monitored for one metric. For each monitored metric and for 
each compute-resource, a normalized average metric value 
P is calculated, and for each compute-resource, a global load 

Oct. 4, 2007 

value G is calculated. This global load value is a linear 
combination of normalized average metric values. For each 
compute-resource, a lower and an upper threshold for the 
global load value are defined. The calculated global load 
value G is compared to the lower and the upper thresholds. 
If a compute-resource has a global load value G which is 
greater than the upper threshold, it is declared overloaded 
and a server is removed from the free-pool and allocated to 
the overloaded compute-resource. If the compute-resource 
has a global load value G which is less than the lower 
threshold, it is declared under loaded and a server is 
removed from it and allocated to the free-pool. If there is an 
under loaded compute-resource with a global load value G 
less than the lower threshold and an overloaded compute 
resource with a global load value G greater than the lower 
threshold, then a server is removed from the under loaded 
compute-resource and allocated to the overloaded compute 
SOUC. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007. The foregoing and other objects, aspects and 
advantages will be better understood from the following 
detailed description of a preferred embodiment of the inven 
tion with reference to the drawings, in which: 
0008 FIG. 1 is a block diagram showing two connected 
compute-resources and a free-pool according to an exem 
plary embodiment of the invention; 
0009 FIG. 2 is a graph showing a plot of response time 
versus load for a particular server or compute-resource; 
0010 FIG. 3 is a graph showing a plot of global load 
values versus time, illustrating the method of the present 
invention; and 
0011 FIG. 4 is a graph showing a plot of response time 
versus load illustrating prediction bounds; 
0012 FIGS. 5A, 5B and 5C, taken together, are a flow 
chart illustrating the process of the method according to the 
invention; and 
0013 FIG. 6 is a block diagram illustrating a system of 
heterogeneous compute-resources and the various system 
components which implement the method of allocating 
servers according to the invention. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT OF THE INVENTION 

0014. The present invention provides a method for com 
puting the maximum load on a compute-resource and for 
allocating resources among a plurality of compute-resources 
in a manner that prevents each compute-resource's maxi 
mum from being exceeded. More specifically, this invention 
embodies a method to derive a Maximum-Load Vector for 
each compute resource and to build allocation threshold 
equations based on the computed current and maximum 
load. 

0015. As an illustrative example we will show how these 
thresholds can be used to drive server allocations in a hosted 
environment. Servers, or more generically resources, are 
allocated according to the load on each compute-resource. In 
the example environment, each server is assigned to one 
compute-resource or to a free-pool. Servers assigned to a 
compute-resource are used for functions specific to the 
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compute-resource (e.g., each compute-resource can be used 
for a particular website, used for a particular application, or 
used for a particular division within a company). Servers 
assigned to the free-pool are typically idle but available for 
allocation to one of the compute-resources. If a compute 
resource becomes overloaded (i.e., if the load on the com 
pute-resource rises above the RT-Transition Point), then a 
server from the free-pool is allocated to the overloaded 
compute-resource. If a compute-resource becomes under 
loaded (i.e., if the load on the compute-resource decreases 
below a pre-established threshold), then a server from the 
under loaded compute-resource is allocated to the free-pool. 
In this way, computing capacity in each compute-resource is 
adjusted in response to changing load demands. 

0016. In the present invention, the compute-resources are 
monitored for signs of overloading or under loading. Moni 
toring is performed by measuring selected load metrics, e.g., 
ping-reply time or central processor (CP) utilization (the 
percentage of a resources capacity which is actually used, 
over some period of time) or other metrics indicative of the 
load. The metric values are normalized, Smoothed, and 
averaged over each compute-resource. The resulting metric 
values are used to determine if a compute-resource is 
overloaded or under loaded. Several metrics may be used in 
combination, with individual weighting factors for each. 
0017 Referring now to the drawings, and more particu 
larly to FIG. 1, there is illustrated two compute-resources 
(generally indicated as Network A and Network B and 
referred to herein as compute-resources A and B) and a 
free-pool 18 according to the illustrative example. In the 
specific illustration of FIG. 1, compute-resource A has four 
servers 20a-20d, compute-resource B has three servers 22a 
22c, and the free-pool 18 has two servers 24a-24b. The 
servers 20, 22 and 24 may be logically isolated from one 
another through programmable hardware such as a virtual 
local area network (LAN). Any of the servers 20, 22 and 24 
can be reallocated to the free-pool. The free-pool can have 
Zero to any number of servers. Servers can be reallocated 
manually or automatically using remotely configurable 
hardware such as virtual LANs. 

0018 Compute-resource A and compute-resource Beach 
Support distinct computing tasks. For example, compute 
resource A and compute-resource B can each Support dif 
ferent websites or parallel applications like ray tracing. 

0.019 FIG. 2 shows a plot of response time versus com 
pute-resource load. Load is defined as the percentage of 
allocated compute resources consumed by the current set of 
processes being run on the allocated resources. FIG. 2 
illustrates that the end-user response time increases very 
little in response to changes in load on the target server or 
compute-resource (the server or compute-resource the end 
user request is being run on), until the server or compute 
resource reaches its saturation point (utilization is close to 
100%). Once saturation is reached, response time (RT) will 
degrade exponentially in response to changes in load. This 
phenomenon is partially caused by request dropping. 
Request dropping triggers request retransmission which 
rapidly escalates the overload condition. Once the response 
time starts to degrade exponentially, one can expect perfor 
mance to deteriorate rapidly if load continues to climb. 
Hence, in the present invention, it is desirable for all the 
servers and compute-resources to have loads that are less 

Oct. 4, 2007 

than the load at which saturation will occur. In other words, 
the load should be limited to an amount indicated at 28a or 
less, for the idealized server or compute-resource repre 
sented by FIG. 2, we call this the response-time-transition 
point (RT transition). 
0020. It is important to note that different server types 
will become saturated at different levels of load. In other 
words, the curve can move to the left or to the right, and its 
slope may vary. Thus, each application and server-type pair 
will have its own RT curve. 

0021 Of course, the load on a server or compute-resource 
cannot be measured directly. Instead, metrics are used to 
indirectly measure the load, so that the load can always be 
maintained below the RT transition limit 28a. In operation, 
we assume there is a management system that collects the 
required monitoring metrics on each server, and makes 
allocation requests using the methods described here or 
Some other method. In the example system, the decision to 
donate or request a server is made independently for each 
compute-resource. Thus, each compute-resource can be self 
managed (in a trusted environment), centrally managed, or 
managed by a distributed management system. Alternate 
schemes that use coordinated allocation decision making can 
also be used. 

0022. In the present invention, the monitoring system 
measures predetermined metrics that are indicative of the 
load on each server and the load on each compute-resource. 
In combination, the metrics can be used to approximate load, 
which itself can not be captured by a single metric. Several 
metrics useful in the present invention include: 

0023 Ping-reply time (HTTP head ping-reply): The 
time required for a server to reply to an empty request, 
i.e., that does not include any server processing time. 
The ping-reply time is a reasonable measure of TCP 
stack delay and is a very good indicator of load. 

0024 Central processor (CP utilization): The percent 
age of time that a machine's processors are busy. The 
CP utilization metric is typically expressed as a per 
centage value. 

0.025 Mbufs denied: The number of message buffers 
requests denied. This metric correspond to the number 
of dropped packets on the network. 

0026 SkBuf: The number of socket buffers actively 
being used in a particular server. This metric correlates 
well with Ping-Reply. 

Some of the other metrics known in the art that can be 
used with the present invention include request-arrival 
rate, transfer control protocol (TCP) drop rate, active 
connections, and request processing time (end-user 
response time minus the time spent in the network and 
in queues). 

0027. In the present invention, the metrics are measured 
for each server. Preferably, several complementary metrics 
are used simultaneously. Generally, it is preferred for the 
metric to be somewhat insensitive to changes in the appli 
cation or traffic mix. Ping-reply and SKBufs are the most 
robust in this way. 
0028. In the method of the present invention, N metrics 
may be used; each metric is designated n, n., n., etc. Each 
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compute-resource has S servers, with each server designated 
as S. S. S., etc. Every server can be of the same type or 
different in a compute-resource. 
0029. In the present invention, each compute-resource 
has a maximum value for each metric on each server type 
supported. This is illustrated in FIG. 2. Specifically, the 
maximum metric value is the average observed value (over 
several runs) of the metric when the response time reaches 
the RT-transition point. For example, if the RT-transition 
point is 1.7x (X being the RT of an unloaded machine), then 
the maximum metric value will be the metric value that 
corresponds with a response time of 1.7X. 
0030. In the present invention, the maximum metric 
value for metric n (n is the metric index) on a server of type 
t, in a compute-resource is Mn. The response time of each 
server type will respond uniquely in response to changes in 
the metric value. Therefore, each server type has a separate 
maximum metric value Mn, for each metric. Mn, will typi 
cally be determined empirically under a typical load mix for 
the compute-resource, by measuring the metric when the 
load is that recorded at the RT-Transition Point. 

0031. In the present invention, it is necessary to define a 
standard server, indicated herein by 'std. A standard server 
can be a server of any server type found in the target 
compute-resource. A maximum load vector for the compute 
resource being profiled is defined and is given in terms of 
standard server maximums: 

Max L. eompute recuree =(M1st . . . , MN) 

In performing calculations according to the present inven 
tion, all values are converted in to standard server units. For 
example if std has a maximum CPU utilization of 45% and 
servers of type t have a maximum CPU utilization of 90%, 
a CPU utilization of 45% on a server of type t is equivalent 
to 25%, which is 50% of the maximum on the standard 
server. The maximum value for metric n for the standard 
server is given by Mind. For any other server, S, the 
maximum value for metric n is given by Mn., and is 
dependent on the type of the server. 
0032. In order to combine metrics from heterogenous 
servers, a capacity weight for each unique server type t and 
compute-resource must be computed. The metric capacity 
weight roughly corresponds to how many standard servers 
the server type in question is equivalent to for each of the 
metrics used to measure load. For a given compute-resource, 
the capacity weight for the nth metric for servers of type t is 

MW = * 
it Minsidr 

0033. In the present invention, the metrics are collected 
from each server in each compute-resource periodically. The 
metrics can be collected centrally at predefined timed inter 
vals, or can be maintained locally and forwarded to the 
resource allocation component only when their RT-transition 
point is reached. Preferably, the metrics are measured every 
1-10 minutes, although they can be measured more or less 
often as needed. 

0034. The present measured value is updated every time 
the metric is measured. The present value Pn may be noisy 
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and highly variable for reasons other than persistent changes 
in the amount of load (e.g., changes in the request processing 
path, or temporary spikes in the load).Therefore, the present 
measured value Pn, should be smoothed according to well 
known data Smoothing or filtering techniques (e.g., double 
exponential Smoothing). 

0035. The present value for each metric is first smoothed 
and then combined across the compute-resource’s active 
server set to create a normalized average compute-resource 
metric value, P. The normalized, Smoothed average metric 
value P, is: 

seS 
X. measured valueM, 

P = 
X M Wnts 
seS 

where m is the number of servers in S. Compute-resource A 
and compute-resource B each have normalized and 
smoothed average metric values PAn and PBn for each 
metric. For example, if compute-resource A and compute 
resource B are monitored using three metrics, (e.g., ping 
reply time (n=1), CP utilization (n=2), and Mbuf requests 
(n=3)), then compute-resource A will have three metric 
values (PA, PA, PA), and compute-resource B will have 
three metric values (PB, PB, PB). 
0036) Next, the metric values (e.g., (PA, PA, PA) and 
(PB, PB, PB)), are divided by their corresponding maxi 
mum metric value. This gives us the percentage of the 
maximum metric value each present metric value is. This 
array is called the Current Percent of Maximum Load Vector 
(% CurrMLV), and is given by: 

P P 
% Citr/ = . . . . 

M1 std 

0037 We can then define a single site Load value that 
represents the aggregate load on a compute-resource as the 
sum of the % CurrMLV values multiplied by weighting 
coefficients (C. C. C.) to produce a global load value G for 
each compute-resource: 

0038 For compute-resource A: G =C% CurrM 
LVA+C.% CurrMLVA+C% CurrMLVA 

0.039 For compute-resource B: G=C% CurrM 
LV+C% CurrMLV+C% CurrMLV 

This resultant load value is an approximation of the 
percent of the maximum the current load is. 

0040 Formally the compute-resource load is given by: 

0041 Let C be the metric weight of the nth metric 
between 0 and 1. This value determines how much the 
measured metric contributes to Load 

W 

XC, = 1 
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-continued 
W 

Load = X. (C. 9% CurriMLV,) 

0042. The weighting coefficients C. . . . C. are selected 
according to which metrics are most reliable and accurate. If 
a metric is highly reliable and accurate for determining load, 
then its associated weighting coefficient should be corre 
spondingly large. In other words, the magnitude of a coef 
ficient should be commensurate with the quality of its 
associated metric. The weighting coefficients C, C, C 
allow several unreliable and fallible metrics to be combined 
to create a relatively reliable measurement of load. Values 
for the coefficients C. C. C. can be selected by a compute 
resource administrator or by software based on the types of 
load. If various combinations of the metrics are reliable 
more then one G value can be defined. For example if C 
alone is reliable and C and C in combination are reliable, 
we can define GA as { 1, 0, 0} and GA as {0, 0.5,0.5}. In 
this case, we will flag a threshold violation if either one of 
these values exceeds the threshold set for the compute 
SOUC. 

0043. If only one metric is used, then the weighting 
coefficients and linear combination calculation are not nec 
essary. In this case, global load values GA and G are equal 
to the normalized average metric values PA and P. 

0044) For compute-resource A: G =PA, and 
0045 for compute-resource B: G =P, 
when a single metric is used. 

0046) The global load values G and G are used in the 
present invention to determine when servers should be 
reallocated. 

0047. In the present invention, upper (as a function of the 
maximum server load) and lower (as a function of the upper) 
global load value thresholds are set for each compute 
resource. In operation, each time the global load values GA 
and G are measured, they are compared to the thresholds. 
When G exceeds an upper threshold for a specified time, a 
compute-resource is considered overloaded and a server 
from the free-pool is reallocated to the overloaded compute 
resource. Similarly, when G is less than a lower threshold, 
a compute-resource is considered under loaded and a server 
from the under loaded compute-resource is reallocated to the 
free-pool. 

0.048. This process is illustrated in FIG. 3, which shows 
plots of global load values GA and G Versus time. Compute 
resource A has lower threshold 31 and upper threshold 33. 
while compute-resource B has lower threshold 30 and upper 
threshold 32. 

0049. At time 1, GA drops below the lower threshold 31. 
Compute-resource A is under loaded. Consequently, a server 
from compute-resource A is reallocated to the free-pool. 
0050. At time 2, G exceeds the upper threshold 32. 
Compute-resource B is overloaded. Consequently, a server 
from the free-pool is reallocated to compute-resource B. 
0051. At time 3, GA exceeds the upper threshold 33. 
Compute-resource A is overloaded. Consequently, a server 
from the free-pool is reallocated to compute-resource A. 
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0.052 At time 4, G drops below the lower threshold 30. 
Compute-resource B is under loaded. Consequently, a server 
from compute-resource B is reallocated to the free-pool. 

0053. In this way, servers in the compute-resources are 
reallocated according to where they are needed most, and 
reallocated to the free-pool if they are not needed. When 
loads are light, the free-pool maintains a reserve of idle 
servers that can be reallocated to any compute-resource. 

0054 It is important to note that reallocating a server to 
or from a compute-resource will slowly change the G value 
of a compute-resource as load is shifted to or from the added 
or removed server. A newly added server's metric values are 
not added to the G value until it has had a change to take 
over its portion of the compute-resources total load. 

0055 When deciding to add additional capacity, one has 
to take into account the current number of resources. Adding 
an additional server to a set of two is not the same as adding 
an additional server to a set of one hundred. A load of 90% 
of the maximum may be fine when you have a server set of 
one hundred, but may be too high when it contains only three 
servers. This argument also applies to resources of different 
capacities. For example, a CPU utilization that is 90% of the 
maximum does not have the same implications for proces 
sors with different clock rates (e.g., 600 and 1500 MHz). To 
account for these differences in excess capacity we can 
provide a threshold range, and then compute our current 
threshold based on the current capacity. We may want to 
have a CPU utilization threshold that is between 70% and 
90%. Once we have ten or more servers we will use the 90% 
threshold. If we have between one and ten servers, we set the 
threshold to a value between 70% and 90%. The increment 
to be added to the threshold is simply set to the threshold 
range divided by the number of resources the build up was 
to occur over. Giving us: 

Threshold High-Threshold Low 
Threshold Increment= Size Growth Interval 

0056. The following code snippet shows how the actual 
threshold values are adjusted during execution. 

IF (currentifServers < miniServers + 
Size Growth interval) 

{ 
current Adjustment=currentifServers 

(miniServers*Threshold Adjustment); 
allocationThresholdValue=minAllocationThreshold 

Value-- current Adjustment; 
deallocationThresholdValue=minDeallocationThres 

holdValue-current Adjustment; 

0057 Selecting the size and type of server to allocate will 
depend on a number of factors, including the length of time 
the server is expected to be needed, and how high the load 
may go. Such predictions of future load are not covered in 
this paper, but can be found in the open literature. 
0058 To prevent thrashing (i.e., repeatedly allocating and 
de-allocating servers) the server de-allocation process 
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should be disabled for the given site for a fixed period of 
time after a server allocation is performed. Additionally the 
de-allocation threshold should be chosen carefully. For 
example assume that the maximum server load is reached 
for a single server site at 300 requests/sec. After an addi 
tional server is added (of equal capacity), each server will 
receive approximately 150 requests/sec. In this case, the 
de-allocation process should not be triggered unless there 
are fewer then 150 requests/sec being routed to each of the 
allocated servers. In general no server should be de-allocated 
unless: 

Curr Totales. 3 

Server Max, : (N - 1) 
- (Server Max N see - Server Minese.) 

0059 Curr Totalreq/sec: Is the total number of 
requests per second currently being received by the site 

0060 Server Maxreq/sec: Is the maximum number of 
requests per second that the standard server can handle 

0061 Server Maxreq/sec: Is the maximum number of 
requests per second that the standard server can handle 

0062 N: Is the normalized number of standard servers 
currently allocated, i.e. units of compute capacity. 

0063. DeAllo Buff size: Number of requests below 
the maximum that should trigger a server de-allocation. 

To ensure that normal fluxuations in request rates do not 
trigger resource rebalancing the Curr Totalreq/sec 
value should be smoothed. We were able to eliminate 
threshing using this de-allocation function. 

0064 Preferably in the invention, the global load values 
GA and G are smoothed so the thresholds 30, 31, 32, and 33 
(FIG. 3) are not repeatedly crossed multiple times when 
global load values are close to the thresholds. Smoothing 
will tend to decrease the frequency of server reallocations. 
0065. Also, to protect against frequent server realloca 
tions, several consecutive threshold violations are required 
before the reallocation process is triggered. For example, 
before reallocation of a server to compute-resource A, the 
present system may require two, three, four, or more con 
secutive measurements of GA in excess of the upper thresh 
old 33. Requiring several consecutive threshold violations 
will tend to reduce the frequency of server reallocations. 
0.066 Alternatively, threshold violations for a minimum 
period of time may be required before server reallocation. 
For example, before reallocation of a server to compute 
resource A, the present system may require one, five, or ten 
minutes of GA in excess of the upper threshold 33. 
0067. The upper and lower thresholds for the compute 
resources are easily changeable and programmable. Prefer 
ably, the upper and lower thresholds for each compute 
resource can be adjusted by a compute-resource 
administrator. The compute-resource administrator may 
wish to adjust the upper and lower thresholds according to 
compute-resource conditions and type and amount of load. 
Preferably in the invention, the upper thresholds are not 
settable to values that correspond to metric values greater 
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than the maximum metric values Mn. Preferably in the 
invention, the maximum metric values Mn, create a maxi 
mum setting for the upper threshold. 
0068. It is noted that servers can also be directly trans 
ferred between compute-resources, without being allocated 
to the free-pool. The use or lack of use of a free-pool is not 
a requirement of this threshold setting process, as the 
allocation procedure itself is not a part of this embodiment. 
However, whatever allocation process is used should ensure 
that any sensitive data is removed from a server before the 
server is allocated to a new compute-resource. 
0069. Also, it is noted that a server allocated to the 
free-pool necessarily does not perform functions related to 
compute-resources A and B. Servers in the free-pool are 
typically idle. Allocation of a server to the free-pool might 
not require any special type of allocation. The servers in the 
free-pool may be idle machines that are simply not allocated 
to any particular compute-resource or function. 
0070. It is noted that reallocation of a server does not 
require physical movement of the server. Typically, reallo 
cation is performed by loading the server with a new image 
(operating system and application), and assigning it to the 
new compute-resource. 

0071 FIGS.5A, 5B and 5C, taken together, show a flow 
diagram illustrating the method of the present invention. The 
steps illustrated in the flow diagram are described below: 
0072 Step 100: Metric types that are good representa 
tions of load for the given compute-resource are selected by 
the administrator using a standard management interface for 
each compute-resource. 
0073 Step 102: The maximum load point for each unique 
sever type is found, and the selected metrics are measured. 
0074 Step 104: Set one of the server types as the stan 
dard-server. 

0075 Step 106: calculate the capacity weight for the 
metrics in terms of Standard servers. 

0.076 Step 108: Set the lower and upper global thresholds 
as allowable percents of the maximum load. 
0.077 Step 200: Metrics are measured at regular intervals 
using a standard monitoring system. 
0078 Step 202: Normalized, smoothed average metric 
values are calculated. 

0079 Step 204: The current percent of the maximum load 
vector is computed. 
0080 Step 206: The global load values G are calculated 
from the normalized average metric values P and coefficients 
C. C. C. The coefficients can be selected by a compute 
resource administrator 

0081) Step 208: Thresholds are adjusted based on the 
current number of allocated servers. 

0082 Step 210: G values are compared to the upper and 
lower thresholds. 

0083 Step 212: A check is made to see if allocations are 
enabled. 

0084) Steps 300-324: Servers are reallocated if thresholds 
are violated. 
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0085. It is important to note that “double exponential 
Smoothing’ or some other kind of data Smoothing should 
always be used to remove temporary metric peaks and 
Valleys. Smoothing can be performed at one or more steps 
in the method. For example, time Smoothing can be per 
formed when metrics are originally measured (before cal 
culation of P values), on P values after the P values are 
calculated, and/or on G values after G values are calculated. 
0.086 Also, in the present invention, more than one server 
can be moved when a threshold is violated. For example, if 
a measured G Value greatly exceeds an upper threshold, then 
more than one server can be moved from the free-pool to the 
overloaded compute-resource. Also, since servers are not 
necessarily equivalent in the invention, the type of server 
can be selected according to the magnitude of the threshold 
violation. If a threshold is strongly violated, then a relatively 
powerful server can be moved to or from the free-pool. 
Thresholds for Fault Detection 

0087 Normal load fluctuations make the use of a single, 
fixed problem determination threshold inadequate. The opti 
mal response time threshold for fault identification will vary 
as a function of load. In general terms, when the average 
request response time does not match those predicted by the 
normal RT curve, there may be a fault in the system. 
0088 FIG. 4 shows the response time curve and its 
confidence bounds. Using nonlinear regression, we can fit a 
model to our normal RT/Load data. We then compute the 
simultaneous (based on all observations) prediction bounds 
for new observations, as illustrated in FIG. 4. The graph 
contains all three of these curves; specifically, the fitted 
function, the lower confidence bounds, and the upper con 
fidence bounds. The confidence interval can be set to what 
ever value is desired; 95% is typical. The response time 
threshold at any given time should be set to the point along 
the upper confidence bounds curve corresponding to the 
maximum anticipated response time under the current load 
conditions. Each server type will have to have its own 
threshold function based on its normal response time curve. 
One can additionally compute an aggregate CCR wide 
response time curve and use its upper bound curve to 
identify faults that may not be limited to a single resource. 
A change point detection algorithm can also be used to 
detect deviations from the mean or variance. 

System Components 
0089 FIG. 6 depicts the various system components for 
implementing the method according to the invention. The 
dashed lines represent off line flows, and the solid lines 
represent runtime flows. Metrics collected from the com 
pute-resource's designated Standard server 1a are used to set 
the compute-resource's capacity or maximum load vector 2. 
For each server type and each compute-resource that may be 
assigned to a compute-resource, e.g., 1a, 1b and 1c, a set of 
capacity weights which relate the server's metric values to 
the standard server are created. Based on the current set of 
allocated servers and the present metric values, the current 
percent of maximum capacity is calculated by the present 
load deriver 3. These values are fed at runtime into the 
overload evaluator 4. Compute-resources and system con 
figuration data are used in combination to identify capacity 
overload by the overload evaluator 4. This in turn is used by 
the resource allocator 5 and the problem identifier 6, in 
addition to state and configuration data, to make allocation 
decisions. 
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0090 While the invention has been described in terms of 
a single preferred embodiment, those skilled in the art will 
recognize that the invention can be practiced with modifi 
cation within the spirit and scope of the appended claims. 

Having thus described our invention, what we claim as new 
and desire to secure by Letters Patent is as follows: 
1. A load driven method for allocating servers among a 

plurality of compute-resources and a free-pool, wherein 
each compute-resource comprises a plurality of servers, the 
method comprising the steps of 

for each monitored metric on the standard server and for 
each compute-resource, calculating a maximum metric 
value at a maximum load point as a maximum load 
vector for a compute-resource: 

setting lower and upper global thresholds as allowable 
percents of the maximum load point; 

for each compute-resource and unique server type and for 
each monitored metric, calculating a capacity weight 
for the monitored metric; 

monitoring each server allocated to a compute-resource 
for at least one metric; 

for each monitored metric and for each compute-resource, 
calculating an average normalized metric value P, in 
standard server units; 

for each monitored metric and for each compute-resource, 
calculating a current percent of a corresponding maxi 
mum metric value as a current percent of maximum 
load vector; 

for each compute-resource, calculating one or more glo 
bal load values G, wherein each global load value is a 
linear combination of normalized current percent of 
corresponding maximum metric values; 

for each compute-resource, dynamically adjusting lower 
upper thresholds for the global load value; and 

for each compute-resource, comparing the calculated glo 
bal load value G to the lower threshold and upper 
threshold, and performing an allocation of servers to 
compute-resources based on a comparison outcome. 

2. The method of claim 1, wherein following the com 
parison outcome, if a load is not predicted to continue for 
more than some minimum amount of time, do nothing. 

3. The method of claim 1, wherein following the com 
parison outcome, if some predetermined amount of time has 
not elapsed since a last capacity adjustment, do nothing. 

4. The method of claim 1, wherein following the com 
parison outcome, if servers are available in the free pool and 
an overloaded compute-resource has a global load value G 
greater than the upper threshold, then removing a server 
from the free pool and allocating it to the overloaded 
compute-resource. 

5. The method of claim 1, wherein following the com 
parison outcome, if servers are not available in the free pool 
and an overloaded compute-resource has a global value G 
greater than the upper threshold, perform resource-negotia 
tion. 

6. The method of claim 1, wherein following the com 
parison outcome, if an under loaded compute-resource has a 
global load value G less than the lower threshold, and the 
following inequality is satisfied 
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Curr Totales. 3 

Server Max, : (N - 1) 
- (Server Max N see - Server Minese.) 

then removing a server from the under loaded compute 
resource and allocating it to the free-pool. 

7. The method of claim 1 wherein the maximum load 
values contained in the maximum-load-vector correspond to 
the values measured on the standard server when load 
reaches the response time transition point 

Max L. compute resource-elstdr 

8. The method of claim 1, wherein a capacity weight of an 
nth metric on a given compute-resource is calculated accord 
ing to the equation 

9. The method of claim 1, wherein each normalized 
average metric value P is calculated according to the equa 
tion 

seS 
X. measured valueM, 

P = 
X MWnt 
seS 

wherein P, is the present value of metric n on servers in 
standard server units, m is the number of servers assigned to 
the compute resource. 

10. The method of claim 1, wherein the Current Percent 
of Maximum Load Vector (% CurrMLV), is calculated 
according to the equation 

% Citr/ = ( P 
M1 star Mn side 

11. The method of claim 1, wherein one or more global 
load values G are computed for each compute-resource, as 
a linear combination of normalized current percent of the 
corresponding maximum values according to the following 
equation 

W 

Load = X. (C: %CurriMLV) 

12. The method of claim 1, wherein dynamic upper and 
lower thresholds for the global load value are adjusted using 
the following equation 

Oct. 4, 2007 

Threshold High-Threshold Low 
Threshold Adjustment= Size Growth Interval 

13. The method of claim 1, wherein a deallocation process 
is inhibited unless following inequality is satisfied 

Curr Total sec is 

Server Max. : (N - 1) 
N (Server Maxqf sec T Server Minqi c.) 

14. A computer readable medium containing code which 
enables a computer to perform a method for allocating 
servers among a plurality of connected compute-resources 
and a free-pool, wherein each compute-resource comprises 
a plurality of servers, the method comprising the steps of: 

for each monitored metric on the standard server and for 
each compute-resource, calculating a maximum metric 
value at a maximum load point as a maximum load 
vector for the compute-resource: 

monitoring each server allocated to a compute-resource 
for at least one metric; 

for each monitored metric and for each compute-resource, 
calculating an average normalized metric value P, in 
standard server units; 

for each monitored metric and for each compute-resource, 
calculating a current percent of a corresponding maxi 
mum metric value as a current percent of maximum 
load vector; 

for each compute-resource, calculating one or more glo 
bal load values G, wherein each global load value is a 
linear combination of normalized current percent of the 
corresponding maximum metric values; 

for each compute-resource, defining dynamically calcu 
lated lower threshold and an upper threshold adjust 
ments for the global load value; and 

for each compute-resource, comparing the calculated glo 
bal load value G to the lower threshold and upper 
threshold, and performing a server allocation according 
to a comparison outcome. 

15. The computer readable medium of claim 14, wherein 
the method, following the comparison outcome, determines 
if load is not predicted to continue for more then some 
minimum amount of time, and if so, does nothing. 

16. The computer readable medium of claim 14, wherein 
the method, following the comparison outcome, determines 
if some predetermined amount of time has not elapsed since 
the last capacity adjustment, and if so, does nothing. 

17. The computer readable medium of claim 14, wherein 
the method, following the comparison outcome, determines 
if servers are available in the free pool and an overloaded 
compute-resource has a global load value G greater than the 
upper threshold, and if so, removes a server from the 
free-pool and allocating it to the overloaded compute 
SOUC. 

18. The computer readable medium of claim 14, wherein 
the method, following the comparison outcome, determines 
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if servers are not available in the free pool and an overloaded 
compute-resource has a global load value G greater than the 
upper threshold, and if so, performs resource-negotiation. 

19. The computer readable medium of claim 14, wherein 
the method, 

following the comparison outcome, determines if an 
under loaded compute-resource has a global load value 
G less than the lower threshold, and if so, removes a 
server from the under loaded compute-resource and 
allocating it to the free-pool. 

20. A system for allocating servers among a plurality of 
connected server compute-resources and a free-pool, 
wherein each server compute-resource comprises a plurality 
of servers, the system comprising: 

monitoring means for monitoring each server allocated to 
a compute-resource for a plurality of metric values; 

calculating means for calculating a normalized average 
metric value P for each monitored metric value and for 
each server compute-resource: 

combining means for linearly combining the normalized 
metric values to create a global load value G for each 
compute-resource: 

storage means for storing a defined lower threshold and a 
defined upper threshold for the linear combination 
value; 

comparing means for comparing the global load value to 
the lower threshold and upper threshold; and 

allocating means for allocating servers among compute 
resources and the free-pool. 

21. The system of claim 20, wherein the allocating means 
responds to the comparing means in the case where an 

Oct. 4, 2007 

overloaded compute-resource has a global load value greater 
than the upper threshold by removing a server from the 
free-pool and allocating it to the overloaded compute 
SOUC. 

22. The system of claim 20, wherein the allocating means 
responds to the comparing means in the case where an under 
loaded compute-resource has a global load value less than 
the lower threshold by removing a server from the under 
loaded compute-resource and allocating it to the free-pool. 

23. The system of claim 20, wherein the allocating means 
responds to the comparing means in the case where an under 
loaded compute-resource has a global load value Gless than 
the lower threshold and an overloaded compute-resource has 
a global load value G greater than the upper threshold by 
removing a server from the under loaded compute-resource 
and allocating it to the overloaded compute-resource. 

24. The system of claim 20, further comprising means for 
calculating a capacity weight of each server type for each 
compute-resource. 

25. The system of claim 24, wherein server capacity 
weights are klused in combination with current metric 
values to compute a present load as represented by each 
metric type. 

26. The system of claim 20, wherein a Current Percent 
Maximum Load vector is linearly combined with metric 
reliability weights to generate one or more global compute 
resource weights for each compute-resource. 

27. The system of claim 20, wherein each compute 
resource upper and lower thresholds are dynamically 
adjusted. 


