US 20070233866A1

a2y Patent Application Publication o) Pub. No.: US 2007/0233866 A1

a9y United States

Appleby et al.

43) Pub. Date: Oct. 4, 2007

(54) METHOD AND SYSTEM FOR
DYNAMICALLY ALLOCATING SERVERS TO
COMPUTE-RESOURCES USING CAPACITY
THRESHOLDS

(76) Inventors: Karen Appleby, Ossining, NY (US);
German Goldszmidt, Dobbs Ferry, NY
(Us)

Correspondence Address:

Whitham, Curtis, & Christofferson, P.C.,
Suite 340

11491 Sunset Hills Road

Reston, VA 20190 (US)

(52) US. CL e 709/226

(57) ABSTRACT

Servers are allocated for use in one of a plurality of
compute-resources or for stand-by storage in a free-pool.
Server load metrics are selected (e.g., ping-reply time or CP
utilization) for measuring load in the servers. Metrics are
measured for the servers allocated to the compute-resources.
Several metrics can be measured simultaneously. The met-
rics for each compute-resource are normalized and aver-
aged. Then, the metrics for each compute-resource are
combined using weighting coefficients, producing a global
load value, G, for each compute-resource. The G value is

(21) Appl. No.: 11/390,369 recalculated at timed intervals. Upper and lower thresholds
. are set for each compute-resource, and the G values are
(22) Filed: Mar. 28, 2006 compared to the thresholds. If the G value exceeds the upper
Publication Classification threshold, then a server in the free-pQOI is reallocated to the
compute-resource; if the G value is less than the lower
(51) Imt. CL threshold, then a server is moved from the compute-resource
GO6F 15/173 (2006.01) to the free-pool.
3 : Heterogeneous
/__J——— compute resources
Resource Current RT 1c
Loads o Problem c " Metric Server h
d Identifier urren ICoIIector Type C
Metric Values ype
Metric | Server > Resource
Collector| Type B 1
4 3
/ cl;v‘";ﬁgt [Metric _IS_ervel{
Overload P Present Load Values Collector| = Type J
Evaluator Deriver 1a
N
....... Metric Server
! Collector] TypeA
E 1b ‘
; Metric | Server > Resource
fmmmmmm Collectorf Type B 2
TS
! Metric Server
Server l(-~--—T-—-== Collector] Type C
Capacity Setter J
5 2 1c W
Metric Server
Resource Collector| Type C
Allocator
Metric | Server % Resource
Collector| Type A 3
Metric Server
Collector| TypeB

US 2007/0233866 Al

Patent Application Publication Oct. 4,2007 Sheet 1 of 8

L ainbi4

" |[oodaal4 "
! |
1 |
| |
I qave epe “
|
i
g — — |
_ — — _
I !
e e o e o . = am - ——— - R |
||||||||||||||||| _ I
g %I0MaN ! ! v MIOMeN
| |
| !
0zZ n “ POz a0z
| |
I ' — s
—
— | € > —]
_ I
| |
| |
qce ece I) qo¢ egoc
| i
— — _ ! [—] —
| I

Patent Application Publication Oct. 4,2007 Sheet 2 of 8 US 2007/0233866 Al

(1))
N
o
-
(&)
3
va)
(1))
c
(@)
N
c
(o]
c —
Re) ©
-~ =)
N 0 I N
________ S\ BN e D
8 2 S S
2 2 2
8 @ L
o o

RT

US 2007/0233866 Al

Patent Application Publication Oct. 4,2007 Sheet 3 of 8

¢ ainbiH

I B

[

c
awll) 3
]
|
|
]
|
]
;

40

'y 80In0SaYy 9ndwio)

Jamol g ¥D
Moy D

sanjep 9

laddn g ¥o

Jaddnv uD

US 2007/0233866 Al

Patent Application Publication Oct. 4,2007 Sheet 4 of 8

$ 0inbiH

peo

>

puNOQ S2UBPLUOD JBMO™|

XZ auwll] asuodsay |BWION

punoq asuapyuod Jaddn

e —P"

14

US 2007/0233866 Al

Oct. 4,2007 Sheet 5 of 8

Patent Application Publication

VG 8.nbi

Y pEO| WNWIXew
801 ~ |ay; jo sjueosad ajgemojje se spjoysaly) |eqo|b saddn pue Jamoj 18s

A

Y, JoAIaS-pIEPUE)S BY} JO SWIS} Ul 13w 3y} Joj Jybiam
901 /| Ayoedes ay) Buieinojes ‘oujaw palojiuow yoes Joj pue adA} ;oa1es anbjun yoes oy

A

vor /| JaAIas-pIEpUE]S 8y} SIY} [|BD pue sadA} 1aA1es ay) Jo Suo J08[es

iod siy} Je soujaw pajoajaes auj Jo
yoes ainseaw pue julod peoj wnwixew ay} puy adA} Joa1es anbiun yoes Jo4
A

SOUJON Peo| 199]8S
m Hels v

82.n0sal-2jndwod yoea 1o :ss820id SulyO

oot -’

US 2007/0233866 Al

Oct. 4,2007 Sheet 6 of 8

Patent Application Publication

g6 ainbi

pajqeusa

suoneoso|e
[A%4

ploysaiu

o1z /| #2ddn pue pjoysa.y} 1amoj 3y} 0} O anjeA peo| |eqo|b pajenojes ay) buuedwos

A

anjeA peoj |eqo|b sy} 10} pjoysaiy} 18ddn pue Jamoj ay} isnipe AjjesiweuAp

/
80¢C
9

sanjen peoj |eqo|b ay} ajejnojed
902 -

J0J99A PEO| WNLWIXEW JO Juadiad Jualng ay) ajenojed

/|
0T
1

202 ud anjeA sujew pazijeusiou abesane ue ajendjed

A

SOLJOW Pa)o8|as 8y} Joj JBAISS YIBa JO)UoW

<

221n0s8.1-9)ndWOod YoES 104 :SS8201d Swiuny

US 2007/0233866 Al

DG @inbiH

jood 284} 0} JOAISS UIN}SY

[eAIBul Swi}
uanIb e 10} suoiesojje s|qestq

¢)
[
(=]
r~
3
K-
wn
~
[l
>
< r4X>
- N
S uonenobaN 801nosay 4o Jnsal
© < uo paseq uoleodo||y wioued
+
uojjenjobau adinosal wiopad
N
v oLE

Patent Application Publication

ﬁ N
90€

S19AI9G 20|y

jood
291} Ul 9|qe|iene
SlanIas

N
743

paysies
uonenba
UIBI}Suod pjoysal
Jamo|

paje|joiA

ploysaiy}
1aMo)

0ce

pajejoIA

Pioysaiy}
Jaddn

22.n0s31-9)ndWOod YoED 104 :SS800.1d awnuny

US 2007/0233866 Al

Oct. 4,2007 Sheet 8 of 8

Patent Application Publication

£
20Inosay

[A
82Inosay

b
80In0say

A

A

gedhl [iopa0D 9 kaQ.\H\
Janeg INETRY
vedAlL [10308)10D
JjonIag LINET
l0jeoo|y

nadAl [40198}10D a0INosay
FETNELS sy

o1

y
layag Ajoede)
9 adAl oys|oQf-----5----~ > JONBS
JEETNETS oSl m
J] '
14

geadAl lopsjoo------1 m
laneg ol o m
v oadA] |1o109(j0D m
SETNED) o f----- -

°l J8AlBQg JojenjeAs

peo- juasaid
vadAlL [iop0sj00 Mwﬂ%x_/ PEOOAD
19MSS | MBI Juaung e
godA) [ioyeq00 €
SETVELS INETIY
sanjep U}
DadAL Loje00 grbsm W 1oynuap| P
lenes | dueN | wsa|qo.d A speoT
9l 1y jusungy 851n0SaYy

sa21nosal ajndwod
snoauabolajeH

US 2007/0233866 Al

METHOD AND SYSTEM FOR DYNAMICALLY
ALLOCATING SERVERS TO
COMPUTE-RESOURCES USING CAPACITY
THRESHOLDS

BACKGROUND OF THE INVENTION
[0001]

[0002] The present invention relates generally to compute-
resources (sets of servers that are logically and physically
isolated from one another for the purpose of security and
dedicated usage) and methods for allocating servers between
compute-resources based on a new capacity threshold. More
specifically, the present invention relates to a method for
setting capacity thresholds, monitoring the computation load
on each compute-resource, and reallocating servers when
thresholds are exceeded.

[0003] 2. Background Description

1. Field of the Invention

[0004] Compute-resources are commonly used for appli-
cations supporting large numbers of users, and those that are
central processor unit (CPU) intensive and highly paralliz-
able. Examples of such compute-resources include web-
applications hosted by Internet service providers (ISPs), and
many scientific applications in areas such as Computational
Fluid Dynamics Often in such computing environments,
load can vary greatly over time, and the peak to average load
ratios are large (e.g., 10:1 or 20:1). When the load on a
customer site drops below a threshold level, one of its
servers is quiesced (removed from service), “scrubbed” of
any residual customer data, and assigned to a “free-pool” of
servers that are ready to be assigned. Later, when the load on
another customer exceeds some trigger level, a server from
the free-pool is primed with the necessary operating system
(OS), applications, and data to acquire the personality of that
customer application. Currently, there are few systems that
support dynamic allocation of servers. Those that do exist
depend on manually derived thresholds and measures of
normal behavior to drive changes resource allocation. There
are no automated effective and efficient methods for deter-
mining when a particular compute-resource is overloaded or
under loaded that is relatively independent of application
modifications.

[0005] Parallel computing and Server-Farm facilities
would benefit greatly from an automatic method for moni-
toring available capacity on each compute-resource, and
allocating servers accordingly. Such a system would provide
more efficient use of servers, allowing groups of compute-
resources to provide consistent performance with a reduced
number of total servers. Such a system would be particularly
applicable to large ISPs, which typically have many com-
pute-resources that each experience significant changes in
computing load.

SUMMARY OF THE INVENTION

[0006] According to the present invention, a method and
system dynamically allocate servers among a plurality of
connected server compute-resources and a free-pool of
servers. Each server compute-resource comprises a plurality
of servers. Each server allocated to a compute-resource is
monitored for one metric. For each monitored metric and for
each compute-resource, a normalized average metric value
P is calculated, and for each compute-resource, a global load

Oct. 4, 2007

value G is calculated. This global load value is a linear
combination of normalized average metric values. For each
compute-resource, a lower and an upper threshold for the
global load value are defined. The calculated global load
value G is compared to the lower and the upper thresholds.
It a compute-resource has a global load value G which is
greater than the upper threshold, it is declared overloaded
and a server is removed from the free-pool and allocated to
the overloaded compute-resource. If the compute-resource
has a global load value G which is less than the lower
threshold, it is declared under loaded and a server is
removed from it and allocated to the free-pool. If there is an
under loaded compute-resource with a global load value G
less than the lower threshold and an overloaded compute-
resource with a global load value G greater than the lower
threshold, then a server is removed from the under loaded
compute-resource and allocated to the overloaded compute-
resource.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The foregoing and other objects, aspects and
advantages will be better understood from the following
detailed description of a preferred embodiment of the inven-
tion with reference to the drawings, in which:

[0008] FIG. 1 is a block diagram showing two connected
compute-resources and a free-pool according to an exem-
plary embodiment of the invention;

[0009] FIG. 2 is a graph showing a plot of response time
versus load for a particular server or compute-resource;

[0010] FIG. 3 is a graph showing a plot of global load
values versus time, illustrating the method of the present
invention; and

[0011] FIG. 4 is a graph showing a plot of response time
versus load illustrating prediction bounds;

[0012] FIGS. 5A, 5B and 5C, taken together, are a flow
chart illustrating the process of the method according to the
invention; and

[0013] FIG. 6 is a block diagram illustrating a system of
heterogeneous compute-resources and the various system
components which implement the method of allocating
servers according to the invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

[0014] The present invention provides a method for com-
puting the maximum load on a compute-resource and for
allocating resources among a plurality of compute-resources
in a manner that prevents each compute-resource’s maxi-
mum from being exceeded. More specifically, this invention
embodies a method to derive a Maximum-Load Vector for
each compute resource and to build allocation threshold
equations based on the computed current and maximum
load.

[0015] As an illustrative example we will show how these
thresholds can be used to drive server allocations in a hosted
environment. Servers, or more generically resources, are
allocated according to the load on each compute-resource. In
the example environment, each server is assigned to one
compute-resource or to a free-pool. Servers assigned to a
compute-resource are used for functions specific to the

US 2007/0233866 Al

compute-resource (e.g., each compute-resource can be used
for a particular website, used for a particular application, or
used for a particular division within a company). Servers
assigned to the free-pool are typically idle but available for
allocation to one of the compute-resources. If a compute-
resource becomes overloaded (i.e., if the load on the com-
pute-resource rises above the RT-Transition Point), then a
server from the free-pool is allocated to the overloaded
compute-resource. If a compute-resource becomes under
loaded (i.e., if the load on the compute-resource decreases
below a pre-established threshold), then a server from the
under loaded compute-resource is allocated to the free-pool.
In this way, computing capacity in each compute-resource is
adjusted in response to changing load demands.

[0016] Inthe present invention, the compute-resources are
monitored for signs of overloading or under loading. Moni-
toring is performed by measuring selected load metrics, e.g.,
ping-reply time or central processor (CP) utilization (the
percentage of a resource’s capacity which is actually used,
over some period of time) or other metrics indicative of the
load. The metric values are normalized, smoothed, and
averaged over each compute-resource. The resulting metric
values are used to determine if a compute-resource is
overloaded or under loaded. Several metrics may be used in
combination, with individual weighting factors for each.

[0017] Referring now to the drawings, and more particu-
larly to FIG. 1, there is illustrated two compute-resources
(generally indicated as Network A and Network B and
referred to herein as compute-resources A and B) and a
free-pool 18 according to the illustrative example. In the
specific illustration of FIG. 1, compute-resource A has four
servers 20a-20d, compute-resource B has three servers 22a-
22¢, and the free-pool 18 has two servers 24a-24b. The
servers 20, 22 and 24 may be logically isolated from one
another through programmable hardware such as a virtual
local area network (LAN). Any of the servers 20, 22 and 24
can be reallocated to the free-pool. The free-pool can have
zero to any number of servers. Servers can be reallocated
manually or automatically using remotely configurable
hardware such as virtual LANSs.

[0018] Compute-resource A and compute-resource B each
support distinct computing tasks. For example, compute-
resource A and compute-resource B can each support dif-
ferent websites or parallel applications like ray tracing.

[0019] FIG. 2 shows a plot of response time versus com-
pute-resource load. Load is defined as the percentage of
allocated compute resources consumed by the current set of
processes being run on the allocated resources. FIG. 2
illustrates that the end-user response time increases very
little in response to changes in load on the target server or
compute-resource (the server or compute-resource the end-
user request is being run on), until the server or compute-
resource reaches its saturation point (utilization is close to
100%). Once saturation is reached, response time (RT) will
degrade exponentially in response to changes in load. This
phenomenon is partially caused by request dropping.
Request dropping triggers request retransmission which
rapidly escalates the overload condition. Once the response
time starts to degrade exponentially, one can expect perfor-
mance to deteriorate rapidly if load continues to climb.
Hence, in the present invention, it is desirable for all the
servers and compute-resources to have loads that are less

Oct. 4, 2007

than the load at which saturation will occur. In other words,
the load should be limited to an amount indicated at 28a or
less, for the idealized server or compute-resource repre-
sented by FIG. 2, we call this the response-time-transition
point (RT transition).

[0020] Tt is important to note that different server types
will become saturated at different levels of load. In other
words, the curve can move to the left or to the right, and its
slope may vary. Thus, each application and server-type pair
will have its own RT curve.

[0021] Of course, the load on a server or compute-resource
cannot be measured directly. Instead, metrics are used to
indirectly measure the load, so that the load can always be
maintained below the RT transition limit 28a In operation,
we assume there is a management system that collects the
required monitoring metrics on each server, and makes
allocation requests using the methods described here or
some other method. In the example system, the decision to
donate or request a server is made independently for each
compute-resource. Thus, each compute-resource can be self-
managed (in a trusted environment), centrally managed, or
managed by a distributed management system. Alternate
schemes that use coordinated allocation decision making can
also be used.

[0022] In the present invention, the monitoring system
measures predetermined metrics that are indicative of the
load on each server and the load on each compute-resource.
In combination, the metrics can be used to approximate load,
which itself can not be captured by a single metric. Several
metrics useful in the present invention include:

[0023] Ping-reply time (HTTP head ping-reply): The
time required for a server to reply to an empty request,
i.e., that does not include any server processing time.
The ping-reply time is a reasonable measure of TCP
stack delay and is a very good indicator of load.

[0024] Central processor (CP utilization): The percent-
age of time that a machine’s processors are busy. The
CP utilization metric is typically expressed as a per-
centage value.

[0025] Mbufs denied: The number of message buffers
requests denied. This metric correspond to the number
of dropped packets on the network.

[0026] SkBuf: The number of socket buffers actively
being used in a particular server. This metric correlates
well with Ping-Reply.

Some of the other metrics known in the art that can be
used with the present invention include request-arrival
rate, transfer control protocol (TCP) drop rate, active-
connections, and request processing time (end-user
response time minus the time spent in the network and
in queues).

[0027] In the present invention, the metrics are measured
for each server. Preferably, several complementary metrics
are used simultaneously. Generally, it is preferred for the
metric to be somewhat insensitive to changes in the appli-
cation or traffic mix. Ping-reply and SKBufs are the most
robust in this way.

[0028] In the method of the present invention, N metrics
may be used; each metric is designated n,, n,, n;, etc. Each

US 2007/0233866 Al

compute-resource has S servers, with each server designated
as s;, s,, 83, etc. Every server can be of the same type or
different in a compute-resource.

[0029] 1In the present invention, each compute-resource
has a maximum value for each metric on each server type
supported. This is illustrated in FIG. 2. Specifically, the
maximum metric value is the average observed value (over
several runs) of the metric when the response time reaches
the RT-transition point. For example, if the RT-transition
point is 1.7x (x being the RT of an unloaded machine), then
the maximum metric value will be the metric value that
corresponds with a response time of 1.7x.

[0030] In the present invention, the maximum metric
value for metric n (n is the metric index) on a server of type
t, in a compute-resource is Mn,. The response time of each
server type will respond uniquely in response to changes in
the metric value. Therefore, each server type has a separate
maximum metric value Mn, for each metric. Mn, will typi-
cally be determined empirically under a typical load mix for
the compute-resource, by measuring the metric when the
load is that recorded at the RT-Transition Point.

[0031] In the present invention, it is necessary to define a
standard server, indicated herein by “std”. A standard server
can be a server of any server type found in the target
compute-resource. A maximum load vector for the compute
resource being profiled is defined and is given in terms of
standard server maximums:

Max LV,

compute__recurce

=Ml -, MNo)

In performing calculations according to the present inven-
tion, all values are converted in to standard server units. For
example if std has a maximum CPU utilization of 45% and
servers of type t have a maximum CPU utilization of 90%,
a CPU utilization of 45% on a server of type t is equivalent
to 25%, which is 50% of the maximum on the standard
server. The maximum value for metric n for the standard
server is given by Mn,,. For any other server, s, the
maximum value for metric n is given by Mn,, and is
dependent on the type of the server.

[0032] In order to combine metrics from heterogenous
servers, a capacity weight for each unique server type t and
compute-resource must be computed. The metric capacity
weight roughly corresponds to how many standard servers
the server type in question is equivalent to for each of the
metrics used to measure load. For a given compute-resource,
the capacity weight for the nth metric for servers of type t is

MW, =
= Mnsiar
[0033] In the present invention, the metrics are collected

from each server in each compute-resource periodically. The
metrics can be collected centrally at predefined timed inter-
vals, or can be maintained locally and forwarded to the
resource allocation component only when their RT-transition
point is reached. Preferably, the metrics are measured every
1-10 minutes, although they can be measured more or less
often as needed.

[0034] The present measured value is updated every time
the metric is measured. The present value Pn, may be noisy

Oct. 4, 2007

and highly variable for reasons other than persistent changes
in the amount of'load (e.g., changes in the request processing
path, or temporary spikes in the load).Therefore, the present
measured value Pn_ should be smoothed according to well
known data smoothing or filtering techniques (e.g., double
exponential smoothing).

[0035] The present value for each metric is first smoothed
and then combined across the compute-resource’s active
server set to create a normalized average compute-resource
metric value, P_. The normalized, smoothed average metric
value P is:

se§

Z measuredfvalueNL(S)

P, =
" > M Wnt(x)
se§

where m is the number of servers in S. Compute-resource A
and compute-resource B each have normalized and
smoothed average metric values PAn and PBn for each
metric. For example, if compute-resource A and compute-
resource B are monitored using three metrics, (e.g., ping-
reply time (n=1), CP utilization (n=2), and Mbuf requests
(n=3)), then compute-resource A will have three metric
values (PA |, PA,, PA;), and compute-resource B will have
three metric values (PB,, PB,, PB,).

[0036] Next, the metric values (e.g., (PA,, PA,, PA;) and
(PB,, PB,, PB,)), are divided by their corresponding maxi-
mum metric value. This gives us the percentage of the
maximum metric value each present metric value is. This
array is called the Current Percent of Maximum [Load Vector
(% CurrMLV), and is given by:

Py Py
Yo CurrMLV =

M s My s

[0037] We can then define a single site Load value that
represents the aggregate load on a compute-resource as the
sum of the % CurrMLV values multiplied by weighting
coeflicients (C,, C,, C,) to produce a global load value G for
each compute-resource:

[0038] For compute-resource A: G,=C,% CurrM-
LV .\, +C,% CurtMLV ,+C,% CurtMLV 4 5

[0039] For compute-resource B: Gp=C,% CurrM-
[V, +C,% CurtMLV,+Cs% CurtMI Vs

This resultant load value is an approximation of the
percent of the maximum the current load is.

[0040] Formally the compute-resource load is given by:

[0041] Let C, be the metric weight of the nth metric
between 0 and 1. This value determines how much the
measured metric contributes to Load

M=
A
I

X
il

US 2007/0233866 Al

-continued

N
Load = Z (C, % CurrMLV,)

n=1

[0042] The weighting coeflicients C, . . . C_ are selected
according to which metrics are most reliable and accurate. If
a metric is highly reliable and accurate for determining load,
then its associated weighting coefficient should be corre-
spondingly large. In other words, the magnitude of a coef-
ficient should be commensurate with the quality of its
associated metric. The weighting coefficients C,, C,, C;
allow several unreliable and fallible metrics to be combined
to create a relatively reliable measurement of load. Values
for the coefficients C,, C,, C; can be selected by a compute-
resource administrator or by software based on the types of
load. If various combinations of the metrics are reliable
more then one G value can be defined. For example if C,
alone is reliable and C, and C; in combination are reliable,
we can define G, as {1, 0, 0} and G, as {0, 0.5, 0.5}. In
this case, we will flag a threshold violation if either one of
these values exceeds the threshold set for the compute-
resource.

[0043] If only one metric is used, then the weighting
coeflicients and linear combination calculation are not nec-
essary. In this case, global load values G, and Gy, are equal
to the normalized average metric values P, and Py

[0044] For compute-resource A: G,=P,, and
[0045] for compute-resource B: G=Pg,
when a single metric is used.

[0046] The global load values G, and Gy are used in the
present invention to determine when servers should be
reallocated.

[0047] Inthe present invention, upper (as a function of the
maximum server load) and lower (as a function of the upper)
global load value thresholds are set for each compute-
resource. In operation, each time the global load values G
and Gy are measured, they are compared to the thresholds.
When G exceeds an upper threshold for a specified time, a
compute-resource is considered overloaded and a server
from the free-pool is reallocated to the overloaded compute-
resource. Similarly, when G is less than a lower threshold,
a compute-resource is considered under loaded and a server
from the under loaded compute-resource is reallocated to the
free-pool.

[0048] This process is illustrated in FIG. 3, which shows
plots of global load values G, and Gy, versus time. Compute-
resource A has lower threshold 31 and upper threshold 33,
while compute-resource B has lower threshold 30 and upper
threshold 32.

[0049] At time 1, G, drops below the lower threshold 31.
Compute-resource A is under loaded. Consequently, a server
from compute-resource A is reallocated to the free-pool.

[0050] At time 2, G exceeds the upper threshold 32.
Compute-resource B is overloaded. Consequently, a server
from the free-pool is reallocated to compute-resource B.

[0051] At time 3, G, exceeds the upper threshold 33.
Compute-resource A is overloaded. Consequently, a server
from the free-pool is reallocated to compute-resource A.

Oct. 4, 2007

[0052] At time 4, Gy drops below the lower threshold 30.
Compute-resource B is under loaded. Consequently, a server
from compute-resource B is reallocated to the free-pool.

[0053] 1In this way, servers in the compute-resources are
reallocated according to where they are needed most, and
reallocated to the free-pool if they are not needed. When
loads are light, the free-pool maintains a reserve of idle
servers that can be reallocated to any compute-resource.

[0054] Tt is important to note that reallocating a server to
or from a compute-resource will slowly change the G value
of'a compute-resource as load is shifted to or from the added
or removed server. A newly added server’s metric values are
not added to the G value until it has had a change to take
over its portion of the compute-resources total load.

[0055] When deciding to add additional capacity, one has
to take into account the current number of resources. Adding
an additional server to a set of two is not the same as adding
an additional server to a set of one hundred. A load of 90%
of the maximum may be fine when you have a server set of
one hundred, but may be too high when it contains only three
servers. This argument also applies to resources of different
capacities. For example, a CPU utilization that is 90% of the
maximum does not have the same implications for proces-
sors with different clock rates (e.g., 600 and 1500 MHz). To
account for these differences in excess capacity we can
provide a threshold range, and then compute our current
threshold based on the current capacity. We may want to
have a CPU utilization threshold that is between 70% and
90%. Once we have ten or more servers we will use the 90%
threshold. If we have between one and ten servers, we set the
threshold to a value between 70% and 90%. The increment
to be added to the threshold is simply set to the threshold
range divided by the number of resources the build up was
to occur over. Giving us:

Threshold_High— Threshold_Low

Threshold_[ncrement= Size_Growth Interval

[0056] The following code snippet shows how the actual
threshold values are adjusted during execution.

IF (current#Servers < min#Servers +
Size_ Growth__interval)
{

current_ Adjustment=current#Servers—
(min#Servers* Threshold__Adjustment);
allocationThresholdValue=minAllocationThreshold
Value+ current_ Adjustment;
deallocation Threshold Value=minDeallocation Thres
holdValue-current_ Adjustment;

[0057] Selecting the size and type of server to allocate will
depend on a number of factors, including the length of time
the server is expected to be needed, and how high the load
may go. Such predictions of future load are not covered in
this paper, but can be found in the open literature.

[0058] To prevent thrashing (i.e., repeatedly allocating and
de-allocating servers) the server de-allocation process

US 2007/0233866 Al

should be disabled for the given site for a fixed period of
time after a server allocation is performed. Additionally the
de-allocation threshold should be chosen carefully. For
example assume that the maximum server load is reached
for a single server site at 300 requests/sec. After an addi-
tional server is added (of equal capacity), each server will
receive approximately 150 requests/sec. In this case, the
de-allocation process should not be triggered unless there
are fewer then 150 requests/sec being routed to each of the
allocated servers. In general no server should be de-allocated
unless:

CurrfTota]m]/m <

ServerﬁMaxn,q/m =(N-1)

— (Server_Max

> e — Server Min)

[0059] Curr_Totalreg/sec: Is the total number of
requests per second currently being received by the site

[0060] Server_Maxreq/sec: Is the maximum number of
requests per second that the standard server can handle

[0061] Server_Maxreq/sec: Is the maximum number of
requests per second that the standard server can handle

[0062] N: Is the normalized number of standard servers
currently allocated, i.e. units of compute capacity.

[0063] DeAllo_Buff_size: Number of requests below
the maximum that should trigger a server de-allocation.

To ensure that normal fluxuations in request rates do not
trigger resource rebalancing the Curr_Totalreq/sec
value should be smoothed. We were able to eliminate
threshing using this de-allocation function.

[0064] Preferably in the invention, the global load values
G, and Gy are smoothed so the thresholds 30, 31, 32, and 33
(FIG. 3) are not repeatedly crossed multiple times when
global load values are close to the thresholds. Smoothing
will tend to decrease the frequency of server reallocations.

[0065] Also, to protect against frequent server realloca-
tions, several consecutive threshold violations are required
before the reallocation process is triggered. For example,
before reallocation of a server to compute-resource A, the
present system may require two, three, four, or more con-
secutive measurements of G, in excess of the upper thresh-
old 33. Requiring several consecutive threshold violations
will tend to reduce the frequency of server reallocations.

[0066] Alternatively, threshold violations for a minimum
period of time may be required before server reallocation.
For example, before reallocation of a server to compute-
resource A, the present system may require one, five, or ten
minutes of G, in excess of the upper threshold 33.

[0067] The upper and lower thresholds for the compute-
resources are easily changeable and programmable. Prefer-
ably, the upper and lower thresholds for each compute-
resource can be adjusted by a compute-resource
administrator. The compute-resource administrator may
wish to adjust the upper and lower thresholds according to
compute-resource conditions and type and amount of load.
Preferably in the invention, the upper thresholds are not
settable to values that correspond to metric values greater

Oct. 4, 2007

than the maximum metric values Mn,. Preferably in the
invention, the maximum metric values Mn, create a maxi-
mum setting for the upper threshold.

[0068] It is noted that servers can also be directly trans-
ferred between compute-resources, without being allocated
to the free-pool. The use or lack of use of a free-pool is not
a requirement of this threshold setting process, as the
allocation procedure itself is not a part of this embodiment.
However, whatever allocation process is used should ensure
that any sensitive data is removed from a server before the
server is allocated to a new compute-resource.

[0069] Also, it is noted that a server allocated to the
free-pool necessarily does not perform functions related to
compute-resources A and B. Servers in the free-pool are
typically idle. Allocation of a server to the free-pool might
not require any special type of allocation. The servers in the
free-pool may be idle machines that are simply not allocated
to any particular compute-resource or function.

[0070] It is noted that reallocation of a server does not
require physical movement of the server. Typically, reallo-
cation is performed by loading the server with a new image
(operating system and application), and assigning it to the
new compute-resource.

[0071] FIGS. 5A, 5B and 5C, taken together, show a flow
diagram illustrating the method of the present invention. The
steps illustrated in the flow diagram are described below:

[0072] Step 100: Metric types that are good representa-
tions of load for the given compute-resource are selected by
the administrator using a standard management interface for
each compute-resource.

[0073] Step 102: The maximum load point for each unique
sever type is found, and the selected metrics are measured.

[0074] Step 104: Set one of the server types as the stan-
dard-server.

[0075] Step 106: calculate the capacity weight for the
metrics in terms of standard servers.

[0076] Step 108: Set the lower and upper global thresholds
as allowable percents of the maximum load.

[0077] Step 200: Metrics are measured at regular intervals
using a standard monitoring system.

[0078] Step 202: Normalized, smoothed average metric
values are calculated.

[0079] Step 204: The current percent of the maximum load
vector is computed.

[0080] Step 206: The global load values G are calculated
from the normalized average metric values P and coefficients
C,, C,, C,. The coeflicients can be selected by a compute-
resource administrator

[0081] Step 208: Thresholds are adjusted based on the
current number of allocated servers.

[0082] Step 210: G values are compared to the upper and
lower thresholds.

[0083] Step 212: A check is made to see if allocations are
enabled.

[0084] Steps 300-324: Servers are reallocated if thresholds
are violated.

US 2007/0233866 Al

[0085] It is important to note that “double exponential
smoothing” or some other kind of data smoothing should
always be used to remove temporary metric peaks and
valleys. Smoothing can be performed at one or more steps
in the method. For example, time smoothing can be per-
formed when metrics are originally measured (before cal-
culation of P values), on P values after the P values are
calculated, and/or on G values after G values are calculated.

[0086] Also, in the present invention, more than one server
can be moved when a threshold is violated. For example, if
a measured G value greatly exceeds an upper threshold, then
more than one server can be moved from the free-pool to the
overloaded compute-resource. Also, since servers are not
necessarily equivalent in the invention, the type of server
can be selected according to the magnitude of the threshold
violation. If a threshold is strongly violated, then a relatively
powerful server can be moved to or from the free-pool.

Thresholds for Fault Detection

[0087] Normal load fluctuations make the use of a single,
fixed problem determination threshold inadequate. The opti-
mal response time threshold for fault identification will vary
as a function of load. In general terms, when the average
request response time does not match those predicted by the
normal RT curve, there may be a fault in the system.

[0088] FIG. 4 shows the response time curve and its
confidence bounds. Using nonlinear regression, we can fit a
model to our normal RT/Load data. We then compute the
simultaneous (based on all observations) prediction bounds
for new observations, as illustrated in FIG. 4. The graph
contains all three of these curves; specifically, the fitted
function, the lower confidence bounds, and the upper con-
fidence bounds. The confidence interval can be set to what-
ever value is desired; 95% is typical. The response time
threshold at any given time should be set to the point along
the upper confidence bounds curve corresponding to the
maximum anticipated response time under the current load
conditions. Each server type will have to have its own
threshold function based on its normal response time curve.
One can additionally compute an aggregate CCR wide
response time curve and use its upper bound curve to
identify faults that may not be limited to a single resource.
A change point detection algorithm can also be used to
detect deviations from the mean or variance.

System Components

[0089] FIG. 6 depicts the various system components for
implementing the method according to the invention. The
dashed lines represent off line flows, and the solid lines
represent runtime flows. Metrics collected from the com-
pute-resource’s designated standard server 1a are used to set
the compute-resource’s capacity or maximum load vector 2.
For each server type and each compute-resource that may be
assigned to a compute-resource, e.g., la, 16 and 1c, a set of
capacity weights which relate the server’s metric values to
the standard server are created. Based on the current set of
allocated servers and the present metric values, the current
percent of maximum capacity is calculated by the present
load deriver 3. These values are fed at runtime into the
overload evaluator 4. Compute-resources and system con-
figuration data are used in combination to identify capacity
overload by the overload evaluator 4. This in turn is used by
the resource allocator 5 and the problem identifier 6, in
addition to state and configuration data, to make allocation
decisions.

Oct. 4, 2007

[0090] While the invention has been described in terms of
a single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-
cation within the spirit and scope of the appended claims.

Having thus described our invention, what we claim as new
and desire to secure by Letters Patent is as follows:

1. A load driven method for allocating servers among a
plurality of compute-resources and a free-pool, wherein
each compute-resource comprises a plurality of servers, the
method comprising the steps of:

for each monitored metric on the standard server and for
each compute-resource, calculating a maximum metric
value at a maximum load point as a maximum load
vector for a compute-resource;

setting lower and upper global thresholds as allowable
percents of the maximum load point;

for each compute-resource and unique server type and for
each monitored metric, calculating a capacity weight
for the monitored metric;

monitoring each server allocated to a compute-resource
for at least one metric;

for each monitored metric and for each compute-resource,
calculating an average normalized metric value P, in
standard server units;

for each monitored metric and for each compute-resource,
calculating a current percent of a corresponding maxi-
mum metric value as a current percent of maximum
load vector;

for each compute-resource, calculating one or more glo-
bal load values G, wherein each global load value is a
linear combination of normalized current percent of
corresponding maximum metric values;

for each compute-resource, dynamically adjusting lower
upper thresholds for the global load value; and

for each compute-resource, comparing the calculated glo-
bal load value G to the lower threshold and upper
threshold, and performing an allocation of servers to
compute-resources based on a comparison outcome.

2. The method of claim 1, wherein following the com-
parison outcome, if a load is not predicted to continue for
more than some minimum amount of time, do nothing.

3. The method of claim 1, wherein following the com-
parison outcome, if some predetermined amount of time has
not elapsed since a last capacity adjustment, do nothing.

4. The method of claim 1, wherein following the com-
parison outcome, if servers are available in the free pool and
an overloaded compute-resource has a global load value G
greater than the upper threshold, then removing a server
from the free pool and allocating it to the overloaded
compute-resource.

5. The method of claim 1, wherein following the com-
parison outcome, if servers are not available in the free pool
and an overloaded compute-resource has a global value G
greater than the upper threshold, perform resource-negotia-
tion.

6. The method of claim 1, wherein following the com-
parison outcome, if an under loaded compute-resource has a
global load value G less than the lower threshold, and the
following inequality is satisfied

US 2007/0233866 Al

CurrfTota]m]/m <

ServerﬁMaxn,q/m =(N-1)

— (Server_Max

> e — Server Min)

then removing a server from the under loaded compute-
resource and allocating it to the free-pool.

7. The method of claim 1 wherein the maximum load
values contained in the maximum-load-vector correspond to
the values measured on the standard server when load
reaches the response time transition point

Max LV, ., MN_)

ompute_resource-M Lstar « -

8. The method of claim 1, wherein a capacity weight of an
nth metric on a given compute-resource is calculated accord-
ing to the equation

9. The method of claim 1, wherein each normalized
average metric value P is calculated according to the equa-
tion

se§

Z measuredfvalueNL(S)

P, =
" 2 MWay
se§

wherein P_ is the present value of metric n on server s in
standard server units, m is the number of servers assigned to
the compute resource.

10. The method of claim 1, wherein the Current Percent
of Maximum Load Vector (% CurrMLV), is calculated
according to the equation

Py Py
Yo CurrMLV =

My star My star

11. The method of claim 1, wherein one or more global
load values G are computed for each compute-resource, as
a linear combination of normalized current percent of the
corresponding maximum values according to the following
equation

N
Load = Z (Cp + GoCurrMLV,,)

n=1

12. The method of claim 1, wherein dynamic upper and
lower thresholds for the global load value are adjusted using
the following equation

Oct. 4, 2007

Threshold_High— Threshold_Low
Size_Growth Interval

Threshold_Adjustment=

13. The method of claim 1, wherein a deallocation process
is inhibited unless following inequality is satisfied

CurrfTota]n,q, oe <

ServerfMaxmq,sec =(N=1)
N

_ (Server,MaX,gq/m — Server_Min,,, m)

14. A computer readable medium containing code which
enables a computer to perform a method for allocating
servers among a plurality of connected compute-resources
and a free-pool, wherein each compute-resource comprises
a plurality of servers, the method comprising the steps of:

for each monitored metric on the standard server and for
each compute-resource, calculating a maximum metric
value at a maximum load point as a maximum load
vector for the compute-resource;

monitoring each server allocated to a compute-resource
for at least one metric;

for each monitored metric and for each compute-resource,
calculating an average normalized metric value P, in
standard server units;

for each monitored metric and for each compute-resource,
calculating a current percent of a corresponding maxi-
mum metric value as a current percent of maximum
load vector;

for each compute-resource, calculating one or more glo-
bal load values G, wherein each global load value is a
linear combination of normalized current percent of the
corresponding maximum metric values;

for each compute-resource, defining dynamically calcu-
lated lower threshold and an upper threshold adjust-
ments for the global load value; and

for each compute-resource, comparing the calculated glo-
bal load value G to the lower threshold and upper
threshold, and performing a server allocation according
to a comparison outcome.

15. The computer readable medium of claim 14, wherein
the method, following the comparison outcome, determines
if load is not predicted to continue for more then some
minimum amount of time, and if so, does nothing.

16. The computer readable medium of claim 14, wherein
the method, following the comparison outcome, determines
if some predetermined amount of time has not elapsed since
the last capacity adjustment, and if so, does nothing.

17. The computer readable medium of claim 14, wherein
the method, following the comparison outcome, determines
if servers are available in the free pool and an overloaded
compute-resource has a global load value G greater than the
upper threshold, and if so, removes a server from the
free-pool and allocating it to the overloaded compute-
resource.

18. The computer readable medium of claim 14, wherein
the method, following the comparison outcome, determines

US 2007/0233866 Al

if servers are not available in the free pool and an overloaded
compute-resource has a global load value G greater than the
upper threshold, and if so, performs resource-negotiation.

19. The computer readable medium of claim 14, wherein
the method,

following the comparison outcome, determines if an
under loaded compute-resource has a global load value
G less than the lower threshold, and if so, removes a
server from the under loaded compute-resource and
allocating it to the free-pool.

20. A system for allocating servers among a plurality of
connected server compute-resources and a free-pool,
wherein each server compute-resource comprises a plurality
of servers, the system comprising:

monitoring means for monitoring each server allocated to
a compute-resource for a plurality of metric values;

calculating means for calculating a normalized average
metric value P for each monitored metric value and for
each server compute-resource;

combining means for linearly combining the normalized
metric values to create a global load value G for each
compute-resource;

storage means for storing a defined lower threshold and a
defined upper threshold for the linear combination
value;

comparing means for comparing the global load value to
the lower threshold and upper threshold; and

allocating means for allocating servers among compute-
resources and the free-pool.

21. The system of claim 20, wherein the allocating means

responds to the comparing means in the case where an

Oct. 4, 2007

overloaded compute-resource has a global load value greater
than the upper threshold by removing a server from the
free-pool and allocating it to the overloaded compute-
resource.

22. The system of claim 20, wherein the allocating means
responds to the comparing means in the case where an under
loaded compute-resource has a global load value less than
the lower threshold by removing a server from the under
loaded compute-resource and allocating it to the free-pool.

23. The system of claim 20, wherein the allocating means
responds to the comparing means in the case where an under
loaded compute-resource has a global load value G less than
the lower threshold and an overloaded compute-resource has
a global load value G greater than the upper threshold by
removing a server from the under loaded compute-resource
and allocating it to the overloaded compute-resource.

24. The system of claim 20, further comprising means for
calculating a capacity weight of each server type for each
compute-resource.

25. The system of claim 24, wherein server capacity
weights are klused in combination with current metric
values to compute a present load as represented by each
metric type.

26. The system of claim 20, wherein a Current Percent
Maximum Load vector is linearly combined with metric
reliability weights to generate one or more global compute-
resource weights for each compute-resource.

27. The system of claim 20, wherein each compute-
resource upper and lower thresholds are dynamically
adjusted.

