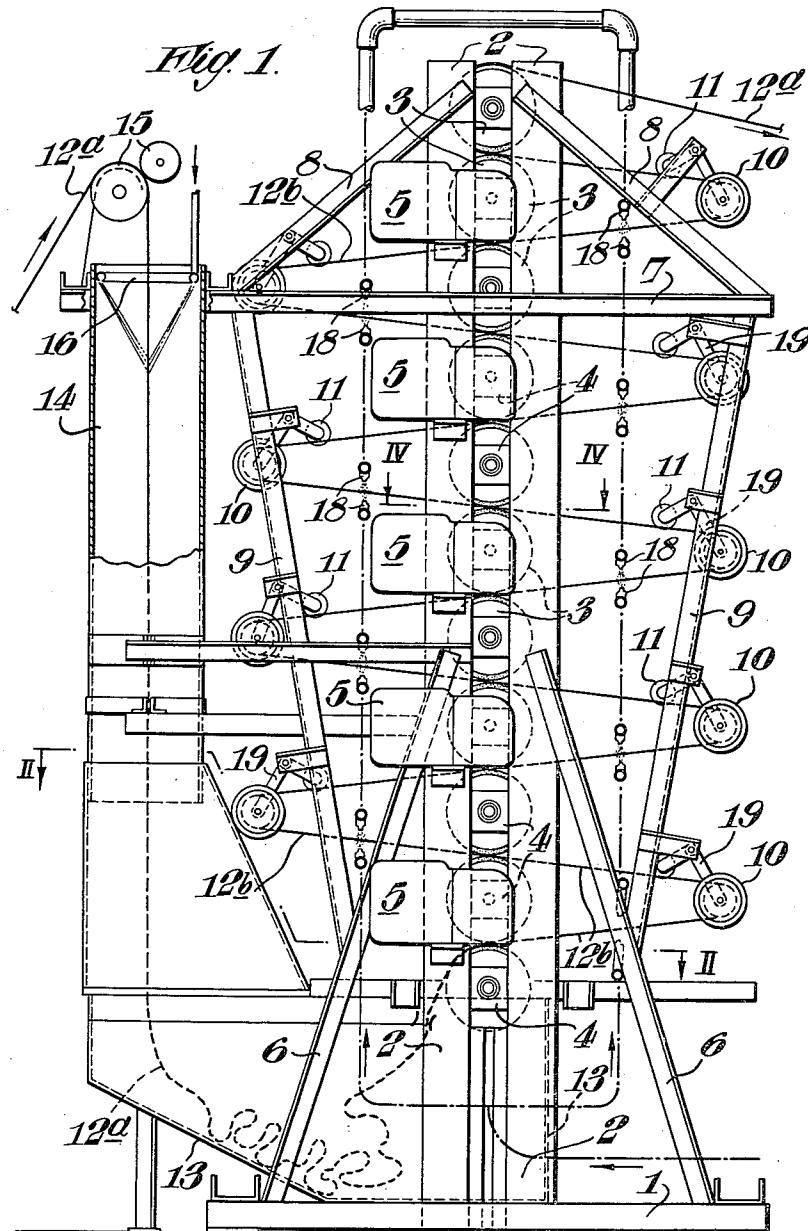


Nov. 20, 1962


R. C. GRIMES

3,064,458

WEB-TOWELLING WASHING APPARATUS

Filed Aug. 14, 1959

3 Sheets-Sheet 1

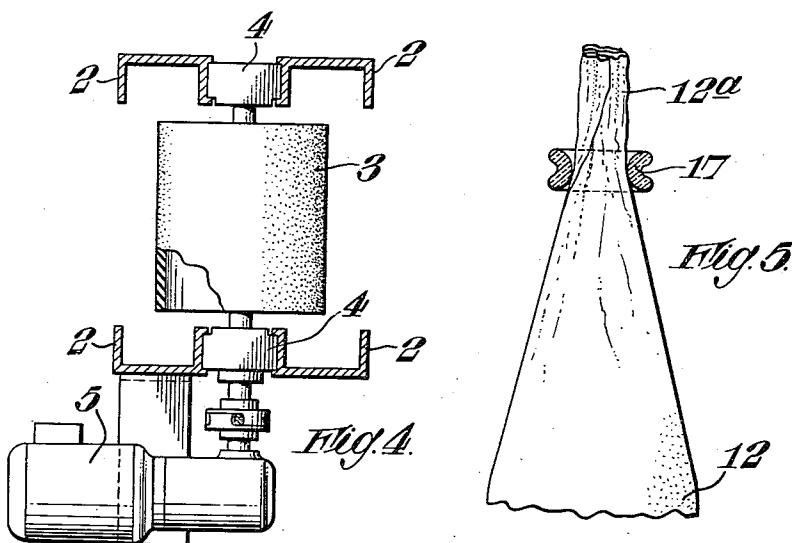
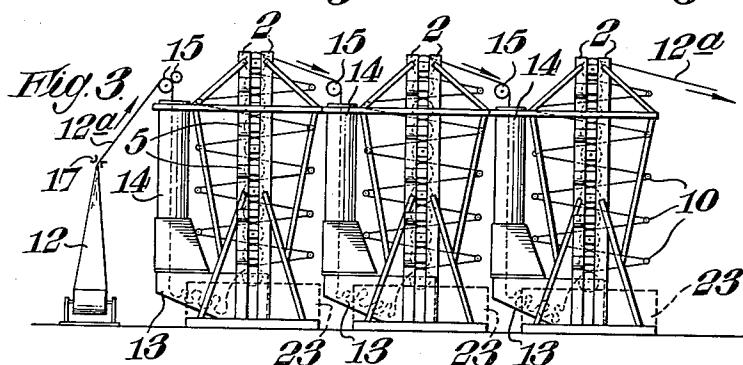
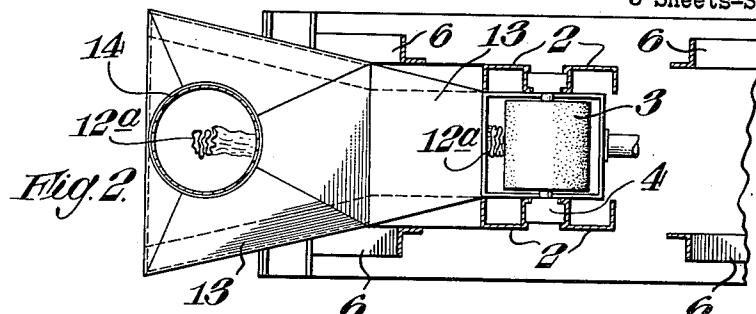
INVENTOR

ROBERT C. GRIMES

By

Emery L. Groff
Atty

Nov. 20, 1962




R. C. GRIMES

3,064,458

WEB-TOWELLING WASHING APPARATUS

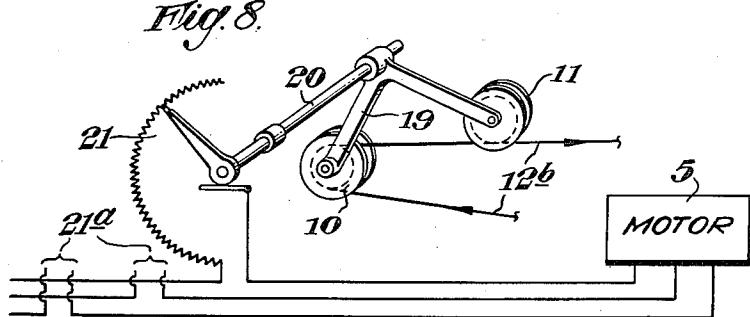
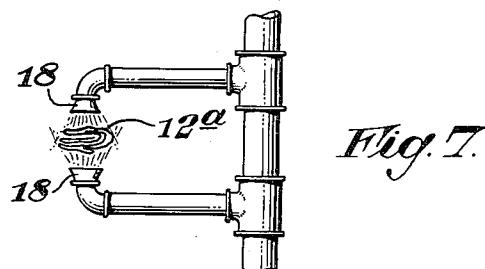
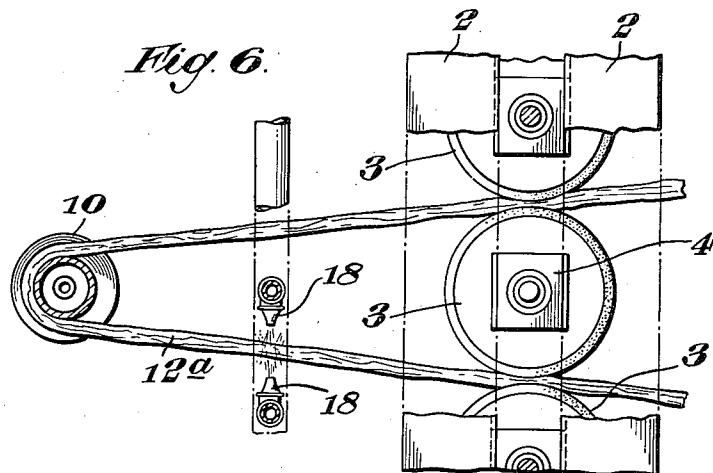
Filed Aug. 14, 1959

3 Sheets-Sheet 2

INVENTOR
ROBERT C. GRIMES

By Emery L. Groff, Atty

Nov. 20, 1962




R. C. GRIMES

3,064,458

WEB-TOWELLING WASHING APPARATUS

Filed Aug. 14, 1959

3 Sheets-Sheet 3

United States Patent Office

3,064,458

Patented Nov. 20, 1962

1

3,064,458

WEB-TOWELLING WASHING APPARATUS
Robert Charles Grimes, Stratton House, Piccadilly,
London W. 1, England

Filed Aug. 14, 1959, Ser. No. 833,797
Claims priority, application Great Britain Aug. 27, 1958
2 Claims. (Cl. 68—22)

This invention relates to apparatus for washing web towelling or other strip material.

Apparatus is well known for dispensing towelling step by step from a continuous rolled web. As the web is unrolled for use, the soiled portion is rewound on to a take-up roll. The invention is particularly, although not essentially, concerned with the washing of such soiled rolled webs of towelling.

Apparatus for continuously washing web towelling, particularly in roped form according to the invention comprises means forming a soaking chamber, means to guide the web into said chamber, a frame, a plurality of vertically aligned squeezing rolls mounted in said frame, electric motors for driving alternate squeezing rolls, a plurality of jockey rolls disposed on each side of the vertically aligned squeezing rolls, those on one side being staggered in relation to those on the other, said squeezing rolls being aligned with jockey rolls alternately on opposite sides of the frame, the arrangement of jockey and squeezing rolls forming open runs of the web towelling on each side of the squeezing rolls, the said jockey rolls being carried respectively on pivotal mountings which are loaded by a counterweight so that the jockey rolls are displaced outwardly away from the squeezing rolls to maintain a required tension in the web, resoaking means disposed on each side of the squeezing rolls to apply cleansing fluid to the open runs of the web loops between the jockey rolls and the squeezing rolls, the displacement of the jockey rolls controlling the speed of the electric motors, whereby, varying local tensions in the web cause the appropriate jockey rolls to be displaced and effect a change of speed in the related motor to compensate for the change of tension and thus tend to maintain an overall uniform tension throughout the web.

In use a plurality of apparatuses as just described may be arranged end to end with the roll axes of all apparatuses parallel to one another whereby a web issuing from one apparatus is led for continuing treatment in a juxtaposed apparatus, and in this case means can be employed for pumping the liquid used in each apparatus of the plurality (excepting the first) into the re-soaking means of the preceding apparatus.

In order that the said invention may be readily understood, two embodiments thereof will be described in greater detail with the aid of the accompanying drawings wherein:

FIGURE 1 is a side elevation of an apparatus (which may constitute one unit of a plurality) according to one embodiment;

FIGURE 2 is a plan of the sluicing and soaking arrangements, being a section on the line II—II of FIGURE 1;

FIGURE 3 is a diagram to a reduced scale showing the arrangement of a plurality of apparatuses according to FIGURE 1;

FIGURE 4 is a section on the line IV—IV of FIGURE 1 illustrating the mounting of the squeezing rolls;

FIGURE 5 is a view showing a guide eye in which the web is converted from its normal flat form into a transversely bundled "rope";

FIGURE 6 is a detail showing nozzles for the application of re-soaking liquid to the open run of web from the nip between a pair of squeezing rolls around a jockey roll;

2

FIGURE 7 is a view of the nozzles as seen at right-angles to FIGURE 6;

FIGURES 4, 5, 6 and 7 are drawn to an enlarged scale in relation to FIGURE 1;

5 FIGURE 8 is a perspective sketch of a motor control hereinafter referred to.

In both embodiments depicted in (1) FIGS. 1, 2 and 4 to 8 and (2) FIG. 3, respectively, on a suitable base 1 there is erected a framework including four vertical channel irons 2 arranged in pairs with the channels of one pair facing those of the other pair and serving to support an assembly of vertically aligned squeezing rolls 3 resting one on the other. These rolls may be covered with a rubber or other resilient lining and, as will be seen in FIGURE 4, they are carried by fixed spindles mounted in bearing in blocks 4 which fit between the pairs of channels 2. Alternate rolls 3 are driven by electric motors 5.

The framework also includes lower strut frames 6, 20 upper horizontal frames 7, upper struts 8 and side supports 9. The members 8 and 9 support a number of jockey rolls 10 having their bearings in respective arms 19 pivotally mounted on the supports with counterbalances 11 so that they normally tend to swing outwards. 25 The jockey rolls 10 on one side of the squeezing rolls 3 are staggered in relation to the jockey rolls on the other side thereby the squeezing rolls 3 are each aligned with a jockey roll alternately on different sides.

At the front of the apparatus where the web 12a is 30 introduced for washing (i.e. on the left-hand side of FIGURES 1 and 3) there is fitted a soaking chamber 13 from which is erected a vertical sluicing chamber 14 surmounted by driven draw rollers 15 and containing, at the top, a spray ring 16 which showers washing liquid 35 on to the web descending down the sluicing chamber 14.

The web 12a, weighted by the washing liquid, descends by gravity into the soaking chamber 13 and is thoroughly soaked prior to being led to the nip between the two lower-most squeezing rolls 3.

40 Although the web may be treated in a flat condition, it is preferred to bunch it together transversely into irregular longitudinal folds, and for that purpose it is drawn through a ring 17 (FIGURES 3 and 5) so that it issues in the bunched or "rope" form shown at 12a in FIGURES 5, 6 and 7. For clearness the bunched web 12a is shown as a single line in FIGURES 1 and 3.

The web is led from the nip between the lowermost pair of squeezing rolls 3 around a jockey roll 10 and thence back to the next higher nip making, in so doing, 50 a pair of open runs 12b. From this second nip it is passed around a jockey roll 10 on the other side of the stack of squeezing rolls 3, thence back to the next higher nip and so on up to the topmost nip from which it is delivered around the top roll 3.

55 On its passage upwards through the assembly of squeezing rolls 3 the web is subjected to a re-soaking step between each squeeze. For this purpose the web, on issuing from a squeezing step between a pair of rollers 3 passes between a pair of opposed nozzles 18 (see particularly FIGURES 6 and 7) from which more washing liquid is flooded on to the web.

As shown in FIGURE 8, in order to maintain a uniform tension on the web as it runs from bottom to top of the assembly of squeezing rolls 3, the jockey rolls 10, 65 if they move outwards according to slackening of tension on the open runs 12b, through the shaft 20 on which they are mounted, operate a speed-controlling device e.g., a variable resistance 21 on the next succeeding motor 5 to accelerate the speed of revolution and so take up the slack. Conversely, if the jockey rolls move inwards, with the open run 12b tightening, then the next preceding motor 5 is caused to decelerate. One gang of a 3-gang

resistor 21 is shown, and the leads from the second and third resistors are indicated at 21a.

In certain cases it may be sufficient to pass the web once through a single apparatus working alone, but it is preferred to use a plurality of apparatuses arranged end to end as shown in FIGURE 3. The arrangement is such that the roll axes of all the apparatuses are parallel with one another and the web treated in the first apparatus (i.e. the one on the left of FIGURE 3) continues its treatment in the next.

I claim:

1. Apparatus for continuously washing web towelling, particularly in roped form, comprising means forming a soaking chamber, means to guide the web into said chamber, a frame, a plurality of vertically aligned squeezing rolls mounted in said frame, electric motors for driving alternate squeezing rolls, a plurality of jockey rolls disposed on each side of the vertically aligned squeezing rolls, those on one side being staggered in relation to those on other, said squeezing rolls being aligned with jockey rolls alternately on opposite sides of the frame, the arrangement of jockey and squeezing rolls forming open runs of the web towelling on each side of the squeezing rolls, the said jockey rolls being carried respectively in pivotal mountings which are loaded by a counterweight so that the jockey rolls are displaced outwardly away from the squeezing rolls to maintain a required tension in the web, resoaking means disposed on each side of the squeezing rolls to apply cleansing fluid to the open runs of the web loops between the jockey rolls and the squeezing rolls, means responsive to the displacement of the jockey rolls for controlling the speed of the electric motors, whereby, varying local tensions in the web causes the appropriate jockey rolls to be displaced and effect a change of speed

in the related motor to compensate for the change of tension and thus tend to maintain an overall uniform tension throughout the web.

5 2. Apparatus according to claim 1, wherein the soaking chamber for the web has its inlet constituted by a vertical sluicing chamber disposed alongside a series of jockey rolls on one side of the vertical line of the squeezing rolls and the means to guide the web into said soaking chamber comprises a pair of draw rollers from which the web hangs vertically down the sluicing chamber and through an array of spray devices so that it is soaked with cleansing fluid before it reaches the soaking chamber.

10 References Cited in the file of this patent

UNITED STATES PATENTS

15	324,723	Patrick	-----	Aug. 18, 1885
	1,626,439	Voegeli	-----	Apr. 26, 1927
	1,764,631	Hubinger	-----	June 17, 1930
	1,820,048	Chase	-----	Aug. 25, 1931
20	2,056,141	Myers	-----	Sept. 29, 1936
	2,276,605	Andrews	-----	Mar. 17, 1942
	2,308,511	Hilliard	-----	Jan. 19, 1943
	2,552,078	Williams	-----	May 8, 1951
25	2,603,077	Dungler	-----	July 15, 1952
	2,700,287	Sulzmann	-----	Jan. 25, 1955
	2,721,466	Nash	-----	Oct. 25, 1955

FOREIGN PATENTS

30	17,890	Great Britain	-----	1914
	554,978	Canada	-----	Mar. 25, 1958
	820,781	France	-----	Aug. 9, 1937
	931,182	France	-----	Sept. 22, 1947