A connector (10) which provides a fluid tight connection between a fluid supply and a drill-string (4), the connector (10) comprising a piston-rod (20) and a cylinder (15), the piston-rod (20) having a seal at or towards its free end which is adapted to sealingly engage the drill-string (4) when the piston-rod (20) is at least partially extended from the cylinder (15).
Abstract

A connector (10) which provides a fluid tight connection between a fluid supply and a drill-string (4), the connector (10) comprising a piston-rod (20) and a cylinder (15), the piston-rod (20) having a seal at or towards its free end which is adapted to sealingly engage the drill-string (4) when the piston-rod (20) is at least partially extended from the cylinder (15).
A drill-string connector

This invention relates to a connector which establishes a fluid tight connection to a drill-string and preferably establishes a fluid tight connection between a drill-string and a top-drive.

Background

It is known in the oil and gas industry to use a top drive motor and a drill-string to drill wells. It is the top drive motor that provides the torque to rotate the drill-string, which in turn rotates the drill bit at the bottom of the well. The drill-string itself consists of a series of hollow pipes, typically 30ft (9.14m) in length, and these are attached to each other via a threaded connection. The top drive is also attached to the drill-string via a threaded connection.

During the drilling process, drilling-mud is pumped through the connection between the top drive and the drill-string. This drilling-mud travels through the drill-string and ensures sufficient lubrication, cooling and the removal of cuttings. It is often necessary to remove the drill-string from the well (to replace the drill bit for example) and under such circumstances drilling-mud is pumped through the drill-string to displace and support the retreating drill-string and maintain hydraulic balance in the well bore. This ensures that a vacuum is not created and that the force required to remove the drill-string is minimised, allowing the removal to occur more quickly. In a conventional arrangement, the drilling-mud is pumped through the same connection, between the top drive and drill-string, as used when drilling.

When removing a drill-string from a well (which in the industry is known as tripping-out), successive sections of the drill-string have to be disconnected from the remaining sections of the drill-string. Furthermore, the section being removed also has to be disconnected from the top drive. A new connection is then established between the top drive and the remaining sections of the drill-string. However, making and breaking these threaded connections is very time consuming and slows down the process of removing a drill-string from a well. This has a serious impact on the productivity of the well.
Previous attempts have been made at speeding up the process of tripping-out. GB2156402A discloses methods for controlling the rate of withdrawal and the drilling-mud pressure to maximise the tripping-out speed. However, the time taken to connect and disconnect each section of the drill-string to the top drive is not addressed. Other attempts include removing several sections at a time, as discussed in GB2156402A. However, this approach is limited by the height of the derrick holding the top drive.

Statements of Invention

According to the present invention, there is provided a connector which provides a fluid tight connection between a fluid supply and a drill-string, the connector comprising a body portion and an extendable seal portion, the seal portion having a seal which is adapted to sealingly engage the drill-string when the seal portion is at least partially extended from the body portion.

The seal may comprise a tapered bung, which may be forced into the open end of the drill-string, when the seal portion is at least partially extended from the body portion.

The seal portion may comprise a piston-rod having a cap and a shaft which are joined together, the shaft being slidably mounted within the cylinder. The cap and part of the shaft may be located inside the cylinder.

The connector may further comprise a piston, the piston being slidably mounted on the shaft within the body portion. The body portion may comprise a cylinder. The piston and cap may divide the cylinder into two chambers: a first-chamber and a second-chamber. The first chamber may contain drilling-mud, whilst the second chamber may contain air.

In one embodiment, the piston-rod may have a central flow passage which provides a flow communication path between the first-chamber and the drill-string. Furthermore, a flow communication path from the inside of the hollow shaft to the cylinder may be provided by a hole in the piston-rod. The inside of the hollow shaft is not in flow communication with the cylinder when the piston covers the hole in the piston-rod.
Brief Description of the Drawings

For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the following drawings, in which:

Figure 1 is a schematic of the connector and shows the connector in position between the top drive and the drill-string;

Figure 2 is a sectional side projection of the connector and shows the connector prior to engagement with the drill-string;

Figure 3 is a sectional side projection of the connector and shows the connector when engaged with the drill-string;

Figure 4 is a more detailed sectional view of the connector and shows the connector in position to transfer drilling-mud to the drill-string.

Detailed Description of the Preferred Embodiment

With reference to Figure 1, a drill-string 4 is removed from a well by raising a top drive 2. The drill-string 4 is connected to the top drive 2 in two ways. Firstly, elevators 6 clamp around the drill-string 4, and these transmit the force required to raise (or lower) the drill-string 4. Secondly, the top-most section 3 of the drill-string 4 is provided with a female thread which engages a male threaded connector 5 on the top drive 2 to provide a connection to allow drilling-mud to be pumped into the drill-string 4. Once a section of the drill-string 4 is removed from the well it must then be disconnected from the rest of the drill-string 4 and the top drive 2 before it can be taken away (or racked into the derrick (not shown)). The remaining sections of the drill-string 4 are held in place by conventional slips on a rotary table (not shown). In conventional arrangements, the join between the top drive 2 and the drill-string 4 is a threaded connection. Making and breaking this connection is time consuming, particularly when removing an entire drill-string 4. The present invention relates to an alternative means for establishing this connection.
With reference to Figure 2, a connector 10, according to the present invention, comprises a cylinder 15 and a piston-rod 20, the piston-rod 20 being slidably engaged in the cylinder 15. The piston-rod 20 further comprises a hollow shaft 30, on which is mounted a cap 40, the shaft 30 being slidably engaged in the cylinder 15 such that a first end of the shaft 30 protrudes outside the cylinder 15 and a second end is within the cylinder 15. The cap 40 is mounted on a second end of the shaft 30, whilst on a first end of the shaft 30 there is located a bung 60 and seals 130. The bung 60 is preferably made from nylon and is shaped to fit into the top end of a drill-string 4.

The shaft 30, cylinder 15, bung 60 and cap 40 shown in Figure 2 are arranged such that their longitudinal axes are coincident. At the end of the cylinder 15, beyond which the shaft 30 protrudes, there is mounted an end-cap 110. The end-cap 110 seals the inside of the cylinder 15 from the outside, whilst also allowing the shaft 30 to slide in or out of the cylinder 15. Seals, such as O ring seals 25 are used to seal between the end-cap 110 and shaft 30.

The connector 10 further comprises a piston 50. The piston 50 is slidably mounted on the shaft 30 inside the cylinder 15 and is free to move between the cap 40 and the end-cap 110. The whole assembly 20, 40, 50 and 60 is also able to slide in the cylinder 15.

The inside of the cylinder 15 is divided by the piston 50 to form a first chamber 80 and a second chamber 70. The first and second chambers 80 and 70 preferably hold air and drilling-mud respectively. The piston 50 is sealed against the shaft 30 and cylinder 15, for example by means of O ring seals 52 and 54, to ensure no flow communication between the two chambers 70 and 80. The first chamber 80 is in flow communication with an air supply via a port 100 and the second chamber 70 is provided with drilling-mud via a socket 90. The top drive 2 is connected to the connector 10 via a conventional thread in the socket 90.

In the disposition of components shown in Figure 2, the piston 50 and cap 40 are touching, so that drilling-mud cannot flow from the second chamber 70 to the drill-string 4. Figure 3, shown an alternative disposition of the cap 40 and piston 50. With the cap 40 and piston 50 apart, holes 120 are exposed in the side of the cap 40. These holes 120 provide a flow communication path between the second chamber 70 and the interior of the hollow shaft 30. Thus drilling-mud can flow from the second chamber 70 to the drill-string 4, via the holes 120 in the cap 40 and the hollow shaft 30.
Figure 4 shows further detail of the structure of the cap 40 and piston 50. In particular, the flow communication path between the second chamber 70 and the hollow shaft 30, via the holes 120, is further highlighted.

In operation of the connector 10, the pressure of the air in the first chamber 80 is kept at a constant value of approximately 100psi. By contrast, the pressure of the drilling-mud in the second chamber 70 is varied and it is this pressure that controls the operation of the connector 10.

When the pressure of the drilling-mud pressure is sufficiently low, so that (accounting for the differences in the projected areas of the two sides of the piston 50), the force exerted on the piston 50 by the drilling-mud is less than the force exerted on the piston 50 by the compressed air, the piston 50 is biased towards the cap 40 and socket 90. The piston 50 forces the retraction of the piston-rod 20 into the cylinder 15. The piston 50 also abuts the cap 40, thereby closing the holes 120 and ensuring no drilling-mud flows out of the connector 10. When the piston-rod 20 is retracted, the bung 60 and the seals 130 are disengaged from the drill-string 4 and the top most section of the drill-string 4 can be removed.

To extend the piston rod 20, so that the bung 60 and seal 130 engage the drill-string 4, the pressure of the drilling-mud is increased. Once this pressure exceeds a certain threshold, the force exerted by the drilling mud on the piston 50 exceeds the force exerted by the compressed air on the piston 50, so that the cap 40 is forced toward the end-cap 110 and the piston-rod 20 extends. As the projected area of the cap 40 is greater than the projected area of the piston 50 and the air pressure is only exposed to the piston 50, the piston 50 remains abutted to the cap 40. Thus, whilst the piston-rod 20 is extending, the holes 120 are not exposed and drilling-mud cannot flow.

Once the bung 60 and seals 130 are forced into the open threaded end of the drill-string 4, thereby forming a fluid tight seal between the piston-rod 20 and the open end of the drill string 4, the piston-rod 20, and hence cap 40, are no longer able to extend. By contrast, as the piston 50 is free to move on the shaft 30, the piston 50 is forced further along by the pressure of the drilling-mud. The holes 120 are thus exposed and drilling-mud is allowed to flow from the second chamber 70, through the piston-rod 20
and into the drill-string 4. The drill-string 4 can then be lifted by clamping the elevators 6 to the drill-string 4 and raising them.

As described above, the connector 10 replaces the traditional threaded connection between a top drive 2 and drill-string 4 during the removal of a drill-string 4 from a well. With this connector, the connection between the top drive 2 and drill-string 4 can therefore be established in a much shorter time and great savings can be achieved.
Claims

1. A connector which provides a fluid tight connection between a fluid supply and a drill-string, the connector comprising a piston-rod and a cylinder, the piston-rod having a seal at or towards its free end which is adapted to sealingly engage the drill-string when the piston-rod is at least partially extended from the cylinder.

2. A connector as claimed in claim 1, wherein the seal between the connector and the drill-string is provided by the location of a tapered bung in the open end of the drill-string.

3. A connector as claimed in claim 1 or 2, wherein the piston-rod consists of a cap and a shaft which are joined together, the shaft being slidably mounted within the cylinder.

4. A connector as claimed in claim 3, wherein the cap and part of the shaft are located inside the cylinder.

5. A connector as claimed in claim 3 or 4, wherein the connector further comprises a piston, the piston being slidably mounted on the shaft within the cylinder.

6. A connector as claimed in claim 5, wherein the piston and cap divide the cylinder into first and second chambers.

7. A connector as claimed in claim 6, wherein the second chamber contains drilling-mud.

8. A connector as claimed in claim 6, wherein the first chamber contains compressed air.

9. A connector as claimed in any one of claims 6-8, wherein the piston-rod provides a flow communication path between the first-chamber and the drill-string.

10. A connector as claimed in claim 9, wherein the shaft is hollow.
11. A connector as claimed in claim 7, wherein the flow communication path from the first chamber into the drill string is blocked, until the piston rod has sealingly engaged the drill string.

12. A connector as claimed in claim 11, wherein the piston and cap act as a valve, such that if the pressure difference on opposite sides of the piston cause the piston to move away from the cap the flow communication path is unblocked.

13. A connector as claimed in claim 12, wherein, a hole is formed in the cap which is sealed by the piston when it engages the cap, the hole opening into the shaft, and together with the shaft comprising the flow communication path.