20147158174 A1) 000 10 00O R0 0

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/158174 A1

2 October 2014 (02.10.2014) WIPOIPCT
(51) International Patent Classification: K2K 3G5 (CA). LIEM, Clifford; 28 Foxleigh Crescent,
GO6F 11/30 (2006.01) Ottawa, Ontario K2M 1B5 (CA).
(21) International Application Number: (74) Agents: SOLOWAY, Norman, P. et al.; ¢/o Hayes Solo-
PCT/US2013/034444 way P.C., 4640 E. Skyline Drive, Tucson, Arizona 85718
S).
(22) International Filing Date: (Us)
28 March 2013 (28.03.2013) (81) Designated States (unless otherwise indicated, for every
25) Filine L) Enelish kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: nglis AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(71) Applicant: IRDETO CANA]?A CORPORATION HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
[CA/CA]; 2500 Solandt Road, Suite 300, Ottawa, Ontario KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
K2K 3G5 (CA). ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(72) Inventors; and NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(71) Applicants (for US only): GRIFFIN, Andy [GB/US]; 199 RW, SC, SD, SE, 8G, 8K, SL, SM, ST, SV, SY, TH, TJ,
New Montgomery Street, #804, San Francisco, California M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
94105 (US). PELIS, Nick [US/US]; 699 Mississippi IM, ZW.
Street, Apt. #103, San Francisco, California 94107 (US). (84) Designated States (unless otherwise indicated, for every

(72

EMMETT, Jonathan [US/US]; 71 164th Avenue NE,
Bellevue, Washington 98008 (US).

Inventors: MURDOCK, Dan; 418 White Birch Avenue,
Waterloo, Ontario N2V 2T3 (CA). EISEN, Phil; 170 Nora
Street, Ottawa, Ontario K1Z 7B3 (CA). MUIR, James; 82
Willow Glen Drive, Kanata, Ontario K2 1T7 (CA). WU,
Jianping; 2500 Solandt Road, Suite 300, Ottawa, Ontario

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR MEDIA PATH SECURITY

Original Media
16

Media
Preparation

Processingon __
the Server-side

Protected
Media +
Content
Code

Processing on h
the Client-side

Protected Media
Playback

Rendered
Media

Media Container may be distributed:
* onanoptical disk
¢ ona USB drive
* onahard drive
on a solid-state disk (SSI)
* inafile or directory
over a connected network

Fig. 1

(57) Abstract: The present disclosure provides a system for media path security includes an authoring system having a content
stream transform and corrupter for corrupting content data and providing decorrupting data, a media container tor conveying the cor-
rupted content data and decorrupting data, and a client system having a fix-up component for fixing the corrupted content data in de-
o pendence upon the decorrupting data. A client system is also provided as having an input for receiving a media container and a fix-
up component tor fixing the corrupted content data in dependence upon the decorrupting data.

WO 2014/1581°74 A1 WK 00N A0 00 T 0O A

Published:
— with international search report (Art. 21(3))

WO 2014/158174 PCT/US2013/034444

e e R Y S S

L W W W W Y NN NN NN NN e

METHOD AND SYSTEM FOR MEDIA PATH SECURITY
Field of the Invention
[0001] The present invention relates to methods and systems for media path security and
is particularly concerned with securing digital media.
Background of the Invention
[0002] Many media playback devices offer a protected media path to ensure that during
playback, audiovisual content cannot be extracted from said device. They all suffer from
the problem that the interface to them is in user-accessible memory. As such, content
that moves from one domain of protection into the media path protection domain must be
exposed to user-space attacks.
[0003] Systems and methods disclosed herein provide method and system for media path
security to obviate or mitigate at least some of the aforementioned disadvantages.
Summary of the Invention
[0004] An object of the present invention is to provide an improved method and system
for media path security.
[0005] [0005] The present disclosure provides an extension of security control that is
associated with digital content that is distributed on an optical disk, on USB drive, on a
hard drive, on a solid-state disk (SSD), or in a file or directory over a connected network.
This extension of control to existing systems provides a point at which transformed (i.e.
corrupted) video data may either be fixed-up and encrypted for the GPU (Graphics
Processing Unit), or fixed up and recorrupted for processing and further fix up by a
software decoder, or fixed up and decompressed for subsequent software decoding. Each
of the fix-up and encryption process, or fix up and recorruption process, or
fixup/decompression process are blended as a single operation and protected in a manner
resistant to white-box attacks. The fix-up/encryption, fixup/decompression, or fix-
up/recorruption operation is diverse per content and is associated and distributed together
with the content. The player invokes the fix-up/encryption, or fix-up/recorruption, or
fixup/decompression operation given the appropriate signalling from the code distributed
with the content. The encryption protection of the video data (through encryption, further
corruption, or decompression is uniquely provided to either the GPU or software
decoder of the video rendering sub-system and is therefore not easily cloned or siphoned
when under attack.
[0006] The present invention describes a method and system for media path protection

from authoring to deployment to many consumers.

1

WO 2014/158174 PCT/US2013/034444

e R o - B = S L S U L N R

W W 2 B R NN RN NN DD e e s bm s e e e e
e = = R N A T B e U R S =2 N= o - TN T N T U UG TR NG S

[6007] In accordance with one aspect of the present disclosure there is provide a system
for media path security comprising an authoring system having a content stream
transform and corrupter for corrupting content data and providing decorrupting data, a
media container for conveying the corrupted content data and decorrupting data, and a
client system having a fix-up component for fixing the corrupted content data in
dependence upon the decorrupting data.

[0008] In accordance with another aspect of the present disclosure there is provided a
method of providing media path security, the method comprising, in an authoring
system, authoring content data, corrupting and transforming the authored content data to
provide corrupted content data and decorrupting data, storing the corrupted content data
and the decorrupting data in a media container, conveying the media container to a client
system, in the client system, fixing the corrupted content data in dependence upon the
decorrupting data.

[0009] In accordance with another aspect of the present disclosure there is provided a
client system comprising an input for receiving a media container and a fix-up
component for fixing the corrupted content data in dependence upon the decorrupting
data.

Brief Description of the Drawings

[0010] The present invention will be further understood from the following detailed
description with reference to the drawings in which:

Fig. 1 illustrates a system overview in accordance with an embodiment of the disclosure;
Fig. 2 illustrates a client system overview in accordance with an embodiment of the
disclosure;

Fig. 3 illustrates authoring-side media preparation in accordance with an embodiment of
the present disclosure;

Fig. 4 illustrates client-side media processing in the client system in accordance with
another embodiment of the present disclosure; and

Fig. 5 illustrates client-side media processing in the client system in accordance with a
further embodiment of the present disclosure.

Fig. 6 illustrates client-side media processing in the client system in accordance with a

further embodiment of the present disclosure.

WO 2014/158174 PCT/US2013/034444

NoR S N W e W R e

WO W W N NN NN RN NN D D — —
WR S DS 0 ®ONA G RAE O =S % e deanEO0 D=

Detailed Description of the Preferred Embodiment

[0011] Referring to Fig. 1 there is illustrated a system overview in accordance with an
embodiment of the disclosure. There are two main parts to the system and method 10,
authoring-side processing 12 and client side processing 14,

[6012] Authoring-side Processing. Taking the original unprotected media 16 as input,

the first step involves preparing 18 the media in a protected, transformed form. Then the
protected media together with content code is released in a media container 20. The
media container 20 may be distributed in many forms. These include, but are not limited
to: on an optical disk, on a USB drive, on a hard drive, on a solid-state disk (SSD), in a
file or directory over a connected network.

[0013] Client-side Processing. The client-side media player then takes a media container

20 and performs protected media playback 22 on the media. The player performs
demultiplexing of the stream and relegates processing of the elementary video stream to
the native content code. The native content code is provided with the protected media in
the media container.

[0014] Referring to Figs. 2 and 3, the currently described system contains three major
components, a media transform component 30, a key exchange component 32 and fix-up
component 34,

[0015] The media transform component 30 includes a demux 24, an elementary stream
transform and corruptor 26 and a mux 28.

[0016] In operation, the media transform component 30 after demuxing, transforms the
original encoded media 16 (e.g. H.264, MPEG, VC-1) by uniquely identifying parts of
the elementary stream, corrupting essential data, encoding said data in tables and the
stream itself, and providing configuration data to a build system for the second
component, the key exchange component 32.

[0017] The media transform component 30 is a build-time only component, is never
distributed and is used only in preparation of protected media and associated code/data.
The media transform component 30 is used on the head-end / authoring side 12 of the
system 10. After the media stream is demultiplexed 24, the video is corrupted 26 by
removing blocks of the stream and replacing said blocks with random data. The video
data that is removed from the stream is transformed and placed in a data table. The
corruption is localized based upon the Presentation Time Stamp, which is used to

achieve synchronization of separate elementary streams (e.g. video, audio, subtitles).

Lo

WO 2014/158174 PCT/US2013/034444

O 3 N Wt B W N

WL W L W DN R RN N RN NN NSRS e e e e e e e e e
WO = OO0 NN Y R W N e O 0NN RN O

[0018] The media transform (MT) process is set-up to work together with AES
encryption. The locations where corruption can take place are restricted, based upon how
the compressed stream will ultimately be blocked and encrypted for a graphics card.
Once the location of the corrupted bytes has been determined, a transformation is chosen
that is placed on the uncorrupted bytes as stored in an external table. Data
transformations are produced according to US6,594,761, US6,842,862, and
US7,350,085.

[0019] In MPEG and H.264 video encoding, the timing and navigational information are
relative to both the offset within a clip (M2TS file) and the Presentation Time Stamp (in
the M2TS PES-packet header). Post-demux neither of these are available, and there is no
uniquely identifying information in the H.264 data to say to which Presentation Time or
clip offset any particular H.264 element belongs and therefore to workout where to apply
fix-ups. Within the frame header there are "Frame Number" and "Picture Order Count”
fields, but these are not unique, absolute or monotonically increasing values within the
H.264 stream.

[0020] Depending on what constitutes the output of the demultiplexer 24, the process
may or may not have access to complete and/or aligned H.264 Nal Units. The process
may be only have slice or frame data or may be passed data corresponding to non-frame
H.264 Nal units. The process may have a complete frame or a single slice. Hence a broad
problem for applying fix-ups post-demultiplex is identification, that is deciding which
frame is currently being processed in the demultiplexed stream and synchronization, that
is finding a reference point from which to analyze the data.

[0021] In most demultiplexers surveyed, blocking by multiple Nal units was observed.
Some demultiplexers presented all H.264Nal units, some just those Nal units relating to
frame data. Some included MPEG start codes, whereas some replaced start codes with
length fields. In the worst case and in a pure M2TS stripper one may just have a byte
stream.

[0022] For the case requiring the handling of synchronization and frame identification
from an H.264byte stream, the present solution is to analyze the post-demultiplex byte
stream constantly monitoring for the presence of MPEG start codes. Each time a start
code is observed this was treated a base indexing point and counting bytes was started.
Also at this point the process would initialize the calculation of a 64 bit hash. For fix-
ups, the process is interested in affecting frame data, especially for option three where

frame data is the only thing that the process is allowed to corrupt. Within an H.264 slice

4

WO 2014/158174 PCT/US2013/034444

[e R I« S U | L e U R S R

N s I Y N e N N i o L (o L O R o I S N e T e o S e " Sy
W N = O O 0 N N R W R = O 0 N Nl B W)

header there are various fields that are broadly similar between frames, and broadly
constant across all slices within the same frame. The process needs to ensure that a hash
is calculated sufficiently past the end of the slice header to be certain that video data is
being hashed. Furthermore, whilst these values are non-unique across the whole clip, by
including the Frame Number and Picture Order Count fields from the slice header within
the hash calculation the process is also able to discriminate between different frames that
have similar video data. Afier testing, it was found that good results were achieved using
a CRC-64 over the first 64 bytes of frame data. As frames can casily span over 1000
packets and clearly it is undesirable to hash the full frame for performance reasons. A
hash of 64 bytes was found to give good discrimination.

[0023] In this way, the process can specify fix-ups as a combination of a hash, a byte
offset from the MPEG start code and a 5-byte overwrite. This was shown experimentally
to provide uniqueness in a representative movie clip, and also in cases where hashes are
not unique, uniqueness can be enforces at MT-time by only locating fix-ups in frames
with unique hash values.

[0024] The key exchange component 32 is associated with a player 40. The player 40
loads the content code 36 and native content code 38, which negotiates a session key
with a graphic processing unit (GPU) 42, uniquely protects this key and shares this key
with the third component, the fix-up component 34.

[0025] Key exchange component a Key-Exchange Library. The key exchange

component 32 is associated with each player 40, is unique per player and is
parameterized based upon data provided together with the content. The key exchange
component 34 contains library functions for the secure establishment of keys for the
encryption of video data to the graphics processing unit (i.e. GPU) endpoint. The key-
exchange library 44 supports four different GPU key-exchange protocols: GPU-CP,
AMD/ATI UVD (Unified Video Decoder), Nvidia VP2, and Intel PAVP. Although the
protocols may differ, the general solution is the same for each media path. The intent is
to provide a secure path for encrypted video to be sent to the GPU endpoint. Each of the
key-exchange protocols has different steps to produce a secure encryption-key, but each
arrives at the same conclusion, a secured key for encryption to the GPU. The support for
all foﬁr protocols gives the solution the broadest range of support over operating system
variations (i.e. Win8, Win7, Vista, WinXP) and GPU vendor variations (Nvidia,
AMDY/ATI, Intel). Note that the solution is not limited to these systems and GPUs, but is

WO 2014/158174 PCT/US2013/034444

[B e - I Y Y B S

W L LW L YN N RN NN N N :
SN L E SR IRG RO ST %O 0 R » 0D

easily extended to other operating systems and GPUs, supporting a key-exchange
protocol and hardware-based decryption.

[0026] The key exchange library 44 is an encapsulation of the OS and GPU-specific
protocol needed to establish an AES symmetric key that can be used to encrypt the video
stream. The AES key is established together with data transformations (US6594761)
protecting the key, destined for a WhiteBox implementation of the AES encryption
routine (described in US7464269,US7971064). Information is securely passed between
the key-exchange library and the WhiteBox AES implementation, in a manner that never
reveals the key, neither statically nor dynamically. Furthermore, the video data that is
encrypted may also contain certain corruptions which are corrected, as described in the
next section.

[0027] Referring to Figs 4 and 5 there are illustrated client-side media processing of the
forms fix-up component. The fix-up component 34 can be in one of two forms,
depending upon the environment in which it is running.

[0028] In Fig. 4, there is illustrated a first form 42 of the fix-up component 34. The fix-
up form 42, upon invocation, uniquely fixes-up the stream, while blending this operation
into the first rounds of an AES (Advanced Encryption Standard) encryption 46 destined
for the GPU. The key of the AES operation is never revealed at any point during
operation.

[0029] In Fig. 5, there is illustrated a second form 60 of the fix-up component 34. The
fix-up form 60, upon invocation uniquely fixes-up the stream, while blending this
operation into a recorruption operation 62 in order to protect the video data throughout
its processing in the frequency domain, as per [WO2013/033807 International Patent
Application, Andrew Szczeszynski et al.].

[0030] In Fig. 6, there is illustrated a third form ## of the fix-up component 34. The fix-
up form ##, upon invocation uniquely fixes-up the stream, while blending this operation
into a variable-length decoding operation ## in order to protect the video data throughout
its processing in the compressed domain, as per [W02013/033807 International Patent
Application, Andrew Szczeszynski et al.].

[0031] The first form of the fix-up component - White-Box AES/Fix-up Blending

[0032] The first form 42 of the fix-up component 34 is uniquely prepared per content 36
and is distributed together with the content. The native content code 38 is loaded by the

media player 40 to uniquely playback the media content.

(@)Y

WO 2014/158174 PCT/US2013/034444

R R I L T ~ e VS L O B

e R R T e S e o o e O S I S S S) —

[0033] As the player 40 encounters a container 20 with the blending feature available,
the player 40 first loads the content code 36 associated with the container 20 during
initialization. Then, the key exchange component 32 negotiates a key for encryption.
This key, along with configuration parameters for the encryption type, are then passed
from the key exchange component 32 to fix-up component 42, in a protected fashion.
Finally, the native content code 38 of the fix-up component 42 performs a blended
White-Box AES encryption and fix-up of the video data destined directly for the GPU.
[0034] The details of the AES encryption are depicted in Fig. 4, where the native content
code 38 does a full blended encryption for the endpoint GPU. Protected video blocks 48
enter into the content code, along with data describing the transformations. Transformed
plaintext 50 is passed to the AES implementation 46, along with a corrupted block,
which adheres to the set of alignment constraints described earlier. These constraints
provide a framework that allows efficient processing within the AES implementation.
[0035] For the transformed case, the process performs operations that compute an xor 52
on bytes of the pre-subcipher 54, round key 56 and transformed plaintext50, where the
plaintext has a 40-bit Mixed Boolean Arithmetic Transform (described further in
Yongxin Zhou, Alec Main, Yuan Xiang Gu, Harold Johnson: “Information Hiding in
Software with Mixed Boolean-Arithmetic Transforms”,Lecture in Computer Science
Volume 4867, 2007, pp61-75).The other inputs may or may not be transformed;
however, the output is untransformed. This is done to ensure playback on the GPU
endpoint.

[0036] A transformed 40-bit xor collection of operations performs the necessary
computations on the pre-subcipher and round key using a byte-wise to word-wise
conversion in the last round of key scheduling and similar conversions after the final
SubBytes step in the AES algorithm.

[0037] For the other bytes in the calculation, the plaintext for these bytes is
untransformed, but the pre-subcipher and round key may both be transformed. There are
two groups of bytes which can be handled by collections of operations of the appropriate
size. This means there are two other byte-wise to word-wise transforms for the last round
of key scheduling and final SubBytes step. A single collection of operations is created
that handles the entire block, by including coefficients that describe the breakdown of the
groups within that block. The untransformed case is not that different from the
transformed case, because even in the transformed case, most of the plaintext bytes are

untransformed.

WO 2014/158174 PCT/US2013/034444

R o R L T S e S

L) W W W W R NN NN N NN NN e e e e e e s e e
FaWN = OO0 N N s W e DD N SN N RN e D

[0038] The key and initialization vector are both transformed in a standard fashion. In
AES CTR mode encryption, the plaintext is only used at the very last step, where it is
xor’ed with the subcipher derived by encrypting the counter. Thus, for the current case,
almost the entire WBAES implementation is identical to one of the Applicant’s existing
dynamic-key implementations, since both size and performance are important
considerations.

[0039] The implementation after the final SubBytes step, is split when there is a pre-
subcipher. At this point, the remaining steps are:

[0040] 1. Final AddRoundKey to produce subcipher.

[0041] 2. Xor subcipher with plaintext to produce the ciphertext 58.

[0042] The second form of the fix-up component - Runtime Distortion/Fix-up Blending

[0043] The second form 60 of fix-up component 34 is shown in Fig. 5. In the second
form 60, includes a blended with a runtime distortion operation 62, instead of an
encryption operation. This is a case that supports the video decode operation performed
in software, instead of directly on a GPU. An advantage to this approach is that the
present system is more generally applicable to different playback systems. However, the
CPU of the system must meet the performance required by the video bitrate.

[0044] A runtime distortion operation 62 is defined as the insertion of a frequency
domain distortion and a corresponding spatial domain fixer as described in detail in
[WO2013/033807 International Patent Application, Andrew Szczeszynski et al.].

[0045] . The distortion of the video content 48 takes place in client code in general. This
can be either part of the player or loaded dynamically with the content. An example of
dynamically loaded client code is the native content code, that is the component
associated and distributed with the content. The dynamically loaded native content code
is the best mode as it provides the security capabilities of renewable protection
mechanisms and diversity. Diversity means that the native content can be made different
per distributed content, making differential attacks more difficult.

[0046] The frequency domain distortion and produces two outputs:

[0047] 1. the distorted video content 64, and

[0048] 2. a set of ‘fixer’ parameter data 66 that may be used to repair the content.
[0049] The distorted video content 64 is passed through the normal video processing
path 70, destined for a display 72. However, untreated, this video is corrupted and not
useful for the consumer. The repair of the content occurs as a call-back 74 into the client

code from the software decode stage after an inverse frequency transformation step 76.

8

WO 2014/158174 PCT/US2013/034444

fev T Ne IR "B T S L e T o

W W W W W NN N NN N NN —

For example, the inverse frequency transformation may be an Inverse Discrete Cosine
Transform, IDCT. This repair of the video occurs in the spatial domain, providing a
lossless fix-up of the video data. The video data then continues along the normal video
processing path to the display 72.

[0050] In the case of runtime distortion, the original corrupted block fix-up of the video
is blended with the frequency domain distortion of the video. This can be done in a
number of ways:

[0051] 1) Data transforms as described in US6,594,761, US6,842,862, and US7,350,085
may be used at each of the data passing steps (i.e. from the input to fix-up, from fix-up to
decompression, and from decompression to frequency domain distortion)

[0052] 2) Fix-up is combined with decompression (¢.g. CABAC decoding) in one
operation.

[0053] 3) Decompression is combined with frequency domain distortion in one
operation.

[0054] 4) Fix-up, decompression for example CABAC decoding, and frequency domain
distortion are combined in one operation.

[0055] Any combination of the above techniques may be used to protect against an
attack of the video stream at a point after the fix-up, the last of which is the best mode.
Furthermore, the ‘fixer’ parameters, being a set of meta-data, which directs how the
stream must be fixed-up in the spatial domain, must also be protected. This data can also
be protected with data transforms (as described in US6,594,761, US6,842,862, and
US7,350,085). Moreover, these transformations may be ‘aggressive’, as this path is not
performance-sensitive when compared with the video path.

[0056] The runtime distortion case may be applied to any spatial domain transformation.
For example, a discrete wavelet transform (DWT) provides a time-frequency
representation of image, video, or audio. The distortion case may equally be applied to
the wavelet representation and subsequently fixed-up in the spatial domain, analogously
to the frequency domain case.

[0057] The third form of the fix-up component - Runtime Fix-up/CABAC Decode

Blending
[0058] The third form 80 of fix-up component is shown in Fig. 6. The third form 80

includes a fixup operation with a variable length decode operation 82, instead of an
encryption or distortion operation. This is a case that also supports the video decode

operation performed in software instead of directly on a GPU, but requires less complex

S

WO 2014/158174 PCT/US2013/034444

Lo R o I T =) S S S O R S

e e e e e e e
Ne2ENe R B = N O, R - S R O

software decode integration. An advantage to this approach is that the present system is
both more generally applicable to different playback systems, but is less secure than
either of the other two systems. The CPU of the system must also meet the performance
required by the video bitrate.

[0059] The decompressed (CABAC or CAVLC, for example) video content is passed
through the normal video processing path 90, destined for a display 92, without the
original compressed video being exposed to attackers.

[0060] In the case of fixup & decompression blending, the original corrupted block fix-
up of the video is blended with the protected decompression of the video with data
transforms as described in US6,594,761, US6,842,862, and US7,350,085 may be used at
each of the data passing steps (i.e. from the input to fix-up, from fix-up to
decompression, and from decompression to frequency domain distortion)

[0061] The fixup and decompression blending can be applied to many different kinds of
video compression. CABAC and CAVLC both supported by the H.264 video encoding
specification, but other compression in other video encodings can also be supported,
[0062] Numerous modifications, variations and adaptations may be made to the
particular embodiments described above without departing from the scope patent

disclosure, which is defined in the claims.

WO 2014/158174 PCT/US2013/034444

What is claimed is:

I.

10.

A system for media path security comprising:

an authoring system having a content stream transform and corrupter for
corrupting content data and providing decorrupting data;

a media container for conveying the corrupted content data and
decorrupting data; and

a client system having a fix-up component for fixing the corrupted content
data in dependence upon the decorrupting data.
The system of claim 1, wherein the media container includes native content code
and the client system includes a processor for running the native content code for
invoking a key exchange between the fix-up component and an encryption key
exchange component.
The system of claim 2, wherein the key exchange component accesses a key
exchange library.
The system of claim 3, wherein the key exchange library provides support for a
plurality of graphic processing unit protocols.
The system of claim 1, wherein the media container includes native content code
and the client system includes a processor for running the native content code for
invoking a blended fix-up and distortion process.
The system of claim 5, wherein the blended fix-up and distortion process outputs
a corrupted or encrypted compressed block of data.
The system of claim 6, wherein the blended fixup and variable-length decoding
process outputs a decompress elementary stream to the software decoder for
display.
The system of claim 1, wherein the media container includes virtualized content
code and the client system includes a processor for running the virtualized
content code for invoking a key exchange between the fix-up component and an
encryption key exchange component.
The system of claim 8, wherein the key exchange component accesses a key
exchange library.
The system of claim 9 wherein the key exchange library provides support for a

plurality of graphic processing unit protocols.

WO 2014/158174 PCT/US2013/034444

ol < T = N & T - S R B

Ly W W W N RN B2 NN NN N —
E O R 2 & @ %o 3 & G E O NS S e daaraoD D =

IT.

12.

13.

14.

I5.

16.

17.

18.

19.

20.

21.

The system of claim 1, wherein the media container includes virtualized content
code and the client system includes a processor for running the virtualized
content code for invoking a blended fix-up and distortion process.
The system of claim 11, wherein the blended fix-up and distortion process
outputs a corrupted or encrypted compressed block of data.
The system of claim 12, wherein the blended fixup and variable-length decoding
process outputs a decompressed elementary stream to the software decoder for
display.
The system of claim 6, whercin the client system includes a decode process for
rendering the corrupted compressed block of data to a display.
A method of providing media path security, the method comprising:

in an authoring system, authoring content data;

corrupting and transforming the authored content data to provide
corrupted content data and decorrupting data;

storing the corrupted content data and the decorrupting data in a media
container;

conveying the media container to a client system;

in the client system, fixing the corrupted content data in dependence upon
the decorrupting data.
The method of claim 15, wherein the step of fixing includes exchanging an
encryption key.
The method of claim 16, wherein the step of fixing includes blending encryption
using the encryption key and fixing the data corruption.
The method of claim 15, wherein the step of fixing up the corrupted content data
includes blending fix-up and then distorting the fixed data to produce a corrupted
compressed block of data.
The method of claim 18 further comprising the step of a decoding the corrupted
compressed block of data for rendering to a display.
A client system comprising:

an input for receiving a media container; and

a fix-up component for fixing the corrupted content data in dependence

upon the decorrupting data.
The client system of claim 20, wherein the media container includes native

content code and the client system includes a processor for running the native

12

WO 2014/158174 PCT/US2013/034444

(=B T s Y. T~ US S

10
11
12
13
14

22,

23.

24.

25.

26.

content code for invoking a key exchange between the fix-up component and an
encryption key exchange component.

The system of claim 21, wherein the key exchange component accesses a key
exchange library.

The system of claim 22, wherein the key exchange library provides support for a
plurality of graphic processing unit protocols.

The system of claim 20, wherein the media container includes native content
code and the client system includes a processor for running the native content
code for invoking a blended fix-up and distortion process.

The system of claim 24, wherein the blended fix-up and distortion process
outputs a corrupted compressed block of data.

The system of claim 25, wherein the client system includes a decode process for

rendering the corrupted compressed block of data to a display.

PCT/US2013/034444

WO 2014/158174

1/6

SHM0MISU PSIO2UUOD B IDAO
AJOIQIIP IO ST B UL &
((TSS) JSIP 21BIS-PIOS BUO »
JALUppPIBYyRBUO

QALID S[1BUO &
ysipeondoue uo .

pINGIISIP 9q ABWI JOUTBIUO)) BIPAA]

BIPSIN
paJapuay

1

orqAhe]d
BIPIJA] P2199101J

NN\\

°9pod
JUBIUC)
+ eIpay
pa129104d

uoneredaig
BIPSAN
8L __J
BIPSIA jewdLIO

————

P

v-‘l

R

B

vl

~

¢l

Spis-1ual) sy
UO 3uisS3004d

3pPIS-J9AIDS B3
uo 8uissad0.id

PCT/US2013/034444

WO 2014/158174

2/6

\.

Joulejuo)
eIpaA

4
ﬁ XNJAL
% ~— 8¢
wondniio)) 79 SWIOJSURI],
weang Arejuswo[g oz
XOWS(]
q — ¥
SLY9TH 8

eIpalN [euiSlO [~ 91

PCT/US2013/034444

3/6

WO 2014/158174

s odans) ™

A 4 uondAiou]
7 09PIA
\ > P — 4 ap0o) U0
Idv Wdd n-X14 e
[dV 09pIAQIn | O9PIA .
v,
waIsAsqng P! d Wa (<
Kerdsiq IdV dAVd = M < be ﬁ
sorgdeln) =
. 1dV d0-NdD || —
- Buijeusig
/f \ L J N\\Nm. M h 2P0 WUNUOD)
_

1roddng sorgdex
r 5 POHIEED K 98—

woIsAsqng r—" %

ompny
o
XON=(d ey 1dA109(]
SOVV

Joke|d e1pan

yoegAeid
uodn
papeoT

{1s1p
jesindo "8'9)

JBuUIBIu0)

[
i wealJls | eipoy

_ Hodsued) eipsin A
| oc

PCT/US2013/034444

WO 2014/158174

4/6

NdS

T
yoddng IIN\

sorydein

Aresqny

uondAioug g dn-xi4
S3V papusid

a8ueyox3
A9y

—pp

1x919ydd ,\\mm cr
D
[UV
0T A® punoy
punes SHY
96—’ w
Jaydiagns-aid
rG—"
guinpayas 1dAroug sAV
Ao pUnoy-6 PeYIPON
0
9
Aoy pasdueyox3
J3unos 3JUON

xauie|d

Qmj

AI01q
paidnuiod

CJu} uonewojsues|

8¢
3P0 JUs0D
sya0|g .
O3PIA Pa13R104d

-

]

PCT/US2013/034444

WO 2014/158174

5/6

mvoUmnj

2JEM1]0S
D T B R I e Bl e R
; ! [Ot)
erdsi(y Aln ”rn MMMMM <+ 03 Yorg-[[eD mAI 9SI9AU] Allm ml ~ - sseadwooa(y
X | L1
S : R ol g
2 ﬁf 7 9. A
\
oo passarduron ~04
> paydnron
—~V9
m oo o — (8p0D Wws1u0) aAnep "8 9)
"vll....i..“ IaX1g //@@ Sp0D JUdD
uojniolsig / dn-xi4 papusaig)
uolssaiduwon) uorssardwiodd |egg— dn-xig “
i
— e - o — R 4
29

-

¥o0ig pardniion

09 —*

$320j9

09pIA Po13910.d

_

__-8F

]

|

PCT/US2013/034444

WO 2014/158174

6/6

PO

SUBMIJOS
100 1 oo
H H i |
uonon < - —— e
os1o0t] B SO S
96 _ / _¥6

20[g paidnaiod

$420(q

O9PIA PR1I2104(

_

i

P07 U0 aAneN ‘§°9)

A

uotssaxdwoosg

i
€ dn-xiy ||
I
I

‘;//

3po) Jual|)

/_\mv

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US13/34444

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOGF 11/30 (2013.01)

USPC - 709/219

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) Classification(s): GO6F 11/30, 15/16, 17/30, GO6T 1/00 (2013.01)
USPC Classification(s): 709/219, 231, 203, 204, 220, 228, 707/687, 704/500, 380/201, 713/164

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MicroPatent (US-G, US-A, EP-A, EP-B, WO, JP-bib, DE-C,B, DE-A, DE-T, DE-U, GB-A, FR-A); DialogPRO; IEEE/IEEEXplore;
Google/Google Scholar; IP.com; Search Terms Used: Media, multimedia, path, secure, author, system, content, data, information,
stream, transform, corrupt, contain, decorrupt, fix, repair, interface, computer, dependence, reconstruct, encode, decode, encrypt

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2004/084020 A2 (VENTERS, CV et al.) September 30, 2004, abstract, column 3, line 23, 1-4, 8-10, 15-17, 20-23
- column 4, line 1, column 4, lines 18-24, column 5, lines 1-3, column 22, lines 1-5, column 23,

Y lines 19-24, column 24, lines 1-6, column 26, lines 3-16 5-7, 11-14, 18,19, 24-26
Y US 2007/0053513 A1 (HOFFBERG, SM) March 8, 2007, paragraphs {1214], [1641], [1649] 5-7,11-14, 18, 19, 24-26
Y US 2005/0210145 A1 (KIM, H et al.) September 22, 2005, paragraphs [0421]-[0424] 7,13

EI Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P" document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

30 June 2013 (30.06.2013)

Date of mailing of the international search report

16 JUL 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - wo-search-report

