发明名称
金属粉末制造用等离子体装置及金属粉末的制造方法

摘要
本发明涉及金属粉末制造用等离子体装置，其具备：反应容器，在与反应容器内由金属原料间生成等离子体，使金属原料蒸发以生成金属蒸汽的等离子体枪；向反应容器供给搬运金属蒸汽的载气的载气供给部；对利用载气从反应容器输送的金属蒸汽冷却以生成金属粉末的冷却管。其中，冷却管具备在不使金属蒸汽和/或金属粉末与冷却用流体直接接触的情况下对其进行冷却的间接冷却区；和配置在间接冷却区后，通过使金属蒸汽和/或金属粉末与冷却用流体接触而对其进行冷却的直接冷却区。冷却管以长度方向下游侧位于上方的方式相对水平方向倾斜 10～80°地设置于反应容器，用于除去附着于冷却管内壁附着物的刮板从冷却管的长度方向下游端撤出到冷却管内。
1. 一种金属粉末制造用电等离子体装置，其具备：
反应容器，其中被供给金属原料；
等离子体枪，该等离子体枪在其与所述反应容器内的金属原料之间生成等离子体，使
所述金属原料蒸发以生成金属蒸汽；
载气供给部，其向所述反应容器内供给用于搬运所述金属蒸汽的载气；
冷却管，其对利用所述载气从所述反应容器输送的所述金属蒸汽进行冷却，以生成金
属粉末；以及
刮板，其包含棒状的轴和设置于所述轴的一端的刮板头，所述刮板头配置于所述冷却
管内，并且，所述轴的至少一配置于冷却管外，
其特征在于，
所述冷却管具备间接冷却区和直接冷却区，所述间接冷却区对利用所述载气从所述反
应容器输送的所述金属蒸汽和／或金属粉末进行间接冷却；所述直接冷却区配置在所述间
接冷却区之后，对所述金属蒸汽和／或金属粉末进行直接冷却，
所述刮板从所述冷却管的长度方向下游端嵌插到所述冷却管内，并且设置成能够除去
附着于所述间接冷却区的所述冷却管的内壁的附着物。
2. 如权利要求1所述的金属粉末制造用电等离子体装置，其特征在于，
将所述冷却管以其长度方向下游侧位于上方的方式相对于水平方向倾斜10～80°地
设置于所述反应容器。
3. 如权利要求2所述的金属粉末制造用电等离子体装置，其特征在于，
将所述冷却管以其长度方向下游侧位于上方的方式相对水平方向倾斜30～60°地设
置。
4. 如权利要求1所述的金属粉末制造用电等离子体装置，其特征在于，
所述冷却管具备引导管，所述引导管将所述载气引导至与所述冷却管的长度方向不同
的方向。
5. 如权利要求4所述的金属粉末制造用电等离子体装置，其特征在于，
所述引导管设置于所述冷却管的下游侧或其附近。
6. 如权利要求5所述的金属粉末制造用电等离子体装置，其特征在于，
所述金属粉末制造用电等离子体装置进一步具有回收上述金属粉末的捕获器，所述引导
管将所述载气运送到所述捕获器中。
7. 如权利要求1所述的金属粉末制造用电等离子体装置，其特征在于，
所述冷却管在其长度方向上游端经由直径比所述冷却管的内径小的导入口与所述反
应容器连通。
8. 如权利要求7所述的金属粉末制造用电等离子体装置，其特征在于，
所述刮板具备将附着于所述导入口的附着物除去的爪部。
9. 如权利要求1所述的金属粉末制造用电等离子体装置，其特征在于，
所述间接冷却区通过用冷却用流体冷却所述冷却管的周围，从而在所述金属蒸汽和／
或金属粉末不与该冷却用流体直接接触的情况下对所述金属蒸汽和／或金属粉末进行间
接冷却；所述直接冷却区通过使冷却用流体与所述金属蒸汽和／或金属粉末接触从而对所
述金属蒸汽和／或金属粉末进行冷却。
10. 如权利要求 1 所述的金属粉末制造用等离子体装置，其特征在于，
通过操作所述冷却管外的轴，使所述刮板进行往复运动和/或驱动，从而去除所述附
着物。

11. 如权利要求 1 所述的金属粉末制造用等离子体装置，其特征在于，
在所述冷却管的长度方向上游侧具备开口部，所述开口部将用所述刮板除去的附着物
排出到所述冷却管外。

12. 一种金属粉末的制造方法，其特征在于，
使用权利要求 1 ～ 11 中任一项所述的金属粉末制造用等离子体装置制造金属粉末。
金属粉末制造用等离子体制备及金属粉末的制造方法

【0001】本申请是申请号为201210213479.8，申请日为2012年6月25日，发明名称为“金属粉末制造用等离子体制备及金属粉末的制造方法”的发明专利申请的分案申请。

【0002】本发明涉及制造金属粉末的等离子体制备，特别地，涉及具备管状冷却管并通过利用该冷却管对经过熔融、蒸发而形成的金属蒸汽进行冷却来制造金属粉末的等离子体制备及金属粉末的制造方法。

【0003】为制造这样的等离子体制备，使用的是导电性金属粉末。作为这样的金属粉末所要求的特性、性状，可以列举：杂质少，平均粒径为0.01～10μm左右的细微粉末，粒子形状或粒径均匀、凝聚少、在焊料中的分散性好、结晶性良好等。

【0004】近年来，伴随电子部件、配线基板的小型化，导体被膜及电极的薄层化、细间距化得到发展，因而要求更加细微、球状且高结晶性的金属粉末。

【0005】作为制造这样的等离子体制备的方法之一，已知有下述等离子体制备：利用等离子体金属粉末在反应容器内熔融、蒸发，然后冷却金属蒸汽，使其凝结从而得到金属粉末（参照专利文献1、2）。在这些等离子体制备中，由于使金属蒸汽在气相中凝结，因此能够制造出杂质少、微细、球状且结晶性高的金属粉末。

【0006】这些等离子体制备均具备长的管状冷却管，对包含金属蒸汽的载气进行多个阶段的冷却。例如，在专利文献1中，具备通过将经过预加热的热气直接混合到上述载气中来进行冷却的第1冷却部、和在此之后通过直接混合常温冷却气体而进行冷却的第2冷却部。

【0007】另外，在专利文献2的等离子体制备中具备通过使冷却液用流体在管状体周围循环，从而在不使该流体与上述载气直接接触的情况下将该载气冷却的间接冷却区（第1冷却部）；和在此之后通过直接蒸汽中直接混合冷却液流体而进行冷却的直接冷却区（第2冷却部）。

【0008】特别是在后者的情况而言，可以稳定地进行核的生成、成长及结晶化，可以得到具有经过可控的粒径和粒度分布的金属粉末。

现有技术文献

【0009】专利文献

【0011】专利文献1：美国专利申请公开2007/0221635号说明书

【0012】专利文献2：日本专利3541939号

发明内容

【0013】发明要解决的问题

【0014】但是，就上述文献中记载的等离子体制备而言，当金属蒸汽在冷却管内凝结时，其
中的一部分将不可避免地附着于冷却管的内壁。该附着物缓慢堆积，会逐渐引发堵塞冷却管内载气的流动，某些情况下发生冷却管堵塞的问题。

特别是，与在冷却管内的全部区域皆由冷却用流体的机构的专利文献 1 的装置相比，专利文献 2 记载的等离子体装置存在下列问题：在其冷却管的上游侧（第 1 冷却部侧）的内壁，更容易附着附着物。

以往，为了除去这样的附着物，必须定期和/或不定期地使等离子体装置停止运转，在装置充分冷却后拆解冷却管并除去管内的附着物。

但是，这些等离子体装置在使等离子体发生后，直到能够稳定生成金属蒸汽为止仍需要相当长的时间。因此，为了除去附着物，除了从使等离子体装置停止到拆解冷却管所需的时间和实际进行附着物的除去作业所需要的时间以外，还需要在装置的运转重新启动后，直到能够稳定生成金属蒸汽为止所需要的时间，这从金属粉末的生产效率的观点考虑存在问题。

本发明的目的在于提供能够使上述问题得以解决的等离子体装置及金属粉末的制造方法，其中，在具有冷却管的金属粉末制造用等离子体装置中，可以容易地除去附着、堆积于冷却管的内壁的附着物，获得更高的生产效率。解决问题的方法

本发明提供一种金属粉末制造用等离子体装置，其具备：其中被供给金属原料的反应容器；在与所述反应容器的金属原料之间生成等离子体，使所述金属原料蒸发生成金属蒸汽的等离子体枪；向所述反应容器内供给用于搬运所述金属蒸汽的载气的载气供给部；以及，利用所述载气从所述反应容器输送的所述金属蒸汽进行冷却而生成金属粉末的冷却管，其特征在于，所述冷却管具备间接冷却区和直接冷却区，所述间接冷却区通过用冷却用流体冷却所述冷却管的周围从而在不使用利用所述载气从所述反应容器输送的所述金属蒸汽和/或金属粉末与该冷却用流体直接接触的情况下对所述金属蒸汽和/或金属粉末进行间接冷却；所述直接冷却区配置在所述间接冷却区之后，通过使冷却用流体与所述金属蒸汽和/或金属粉末接触从而对所述金属蒸汽和/或金属粉末进行直接冷却，并且，将所述冷却管以其长度方向（长手方向）下游侧位于上方的方式相对水平方向倾斜 10°～80°地设置于所述反应容器，并将用于除去附着于所述冷却管的内壁的附着物的刮板从所述冷却管的长度方向下游端嵌插到所述冷却管内。

发明的效果

本发明的等离子体装置由于将冷却管以其长度方向下游侧位于上方的方式相对水平方向倾斜地设置于反应容器，并将用于刮下附着于冷却管内壁的附着物的刮板从冷却管的下游端嵌插到冷却管内，因此，通过使该刮板在冷却管内往复运动和/或驱动，不仅能够在不使用装置停止运转的情况下除去附着物，而且可以容易地回收、排出刮下附着物，进而能够提高金属粉末的生产效率。

附图说明

图 1 是示出第一实施方式的等离子体装置的图。

图 2 (A) ～ (C) 是示出第一实施方式的刮板的图。

图 3 (A) (B) 是示出第二实施方式的等离子体装置的图。

图 4 (A) ～ (E) 是示出第二实施方式的刮板的图。
具体实施方式

下面，基于具体实施方式对本发明进行说明，但本发明不限定于此。

图 1 示出了第一实施方式，该第一实施方式在与上述专利文献 2 相同的转移弧等离子体装置中应用了本发明，其中，在反应容器 2 的内部使金属原料熔融、蒸发，将生成的金属蒸汽在冷却管 3 内冷却，使其凝结，从而生成金属粒子。

需要指出的是，在下面的说明中，所述上游侧或下游侧指的是图 1 中的箭头所示的在冷却管 3 的长度方向上的朝向，所述上方或下方指的是图 1 中的箭头所示的在竖直方向上的上下方向。

另外，在本发明中，作为金属原料，只要是含有目标金属粉末的金属成分的导电性物质就没有特别限定，除了纯金属以外，也可以使用包含两种以上金属成分的合金或复合物、混合物、化合物等。作为金属成分的一例，可以列举银、金、铬、铜、铁、镍、钯、铂、铑、钌、钯、铑、钯、铑等。虽然没有特别限定，但操作相对容易出发，优选使用数 mm～数十 mm 左右大小的粒状或块状的金属材料或合金材料作为金属原料。

以下，为了便于理解，以制造镍粉末作为金属粉末，使用金属镍作为金属原料的情况为例进行说明，但本发明并不限定于此。

对于金属镍，在装置开始运转之前预先在反应容器 2 内准备规定量，在装置开始运转之后，根据成为金属蒸汽而从反应容器 2 内减少的量随时从给料口 9 向反应容器 2 内补充。因此，本发明的等离子体装置 1 可以长时间连续制造金属粉末。

在反应容器 2 的上方配置有等离子体枪 4，经由未图示的供给管向等离子体枪 4 供给生成等离子体的气体。等离子体枪 4 将负极 6 作为阴极，将设置于等离子体枪 4 内部的正极作阳极，产生等离子体 7，然后将阳极移至正极 5。由此，在负极 6 和正极 5 之间产生等离子体 7，利用该等离子体 7 的热使反应容器 2 内的金属镍的至少一部分熔融，生成镍的熔融液（溶液）8。进一步，等离子体枪 4 利用等离子体 7 的热使熔融液 8 的一部分蒸发，生成镍蒸汽（相当于本发明的金属蒸汽）。
需要说明的是，根据需要，也可以在载气中混合氢气、一氧化碳、甲烷、氨气等还原性气体，或碳、氯等有机化合物，除此之外，为了改善，应该金属粉末的性能、特性，还可以含有氧气或其它磷、硫等成分。另外，在等离子体的生成中使用的生成等离子体的气体也可以作为载气的一部分发挥功能。

在反应容器 2 和冷却管 3 的上游端（图 1 中图示的冷却管上游侧端部的附近）之间设置有直径比冷却管 3 的内径小的导入口 11，反应容器 2 和冷却管 3 经由导入口 11 连通。因此，含有在反应容器 2 内生成的镍蒸汽的载气通过导入口 11 被输送到冷却管 3。

冷却管 3 具备间接冷却含于载气中的镍蒸汽和 / 或镍粉末的间接冷却区 IC 和直接冷却含于载气中的镍蒸汽和 / 或镍粉末的直接冷却区 DC。另外，如后所述，冷却管 3 也可以进一步具备待机用区 AC。

在间接冷却区 IC，使用冷却用流体或外部加热器等对冷却管 3 的周围进行冷却或加热，控制间接冷却区 IC 的温度，由此进行冷却。作为冷却用流体，可以使用上述载气或其它气体，另外，也可以使用水、油水、甲醇、乙醇或它们的混合物等液体。其中，从冷却效率及成本考虑，优选冷却用流体使用油或油水，使其在冷却管 3 的周围循环从而对冷却管 3 进行冷却。

在间接冷却区 IC，保持高温而被输送到冷却管 3 内的载气中的镍蒸汽在辐射作用下以较为缓和的速度被冷却，在进行稳定且均匀的速度控制的气体氛围中进行核的生成、成长、结晶化，由此在载气中生成粒径均匀的镍粉末。

在直接冷却区 DC，对从间接冷却区 IC 输出的镍蒸汽和 / 或镍粉末喷射或混合从未图示的冷却流体供给给冷却用流体，进行直接冷却。需要说明的是，在直接冷却区 DC 使用的冷却用流体可以与在间接冷却区 IC 中使用的冷却用流体相同，也可能不同，但从易于操作及成本方面考虑，优选使用与上述载气相同的气体（以下的实施方式中为氟气）。

在使用气体的情况下，与上述载气相同，可以根据需要而混合使用还原气体或有机化合物、氧、磷、硫等成分。另外，在冷却用流体含有液体的情况下，将该液体以喷雾的状态导入到冷却管 3 内。

间接冷却区 IC 内的载气中含有混合存在有镍蒸汽和镍粉末，但相比于其上游侧，下游侧的镍蒸汽的比例较低。另外，根据装置不同，直接冷却区 DC 内的载气中也可以混合存在镍蒸汽和镍粉末。但是，如上所述，优选核的生成、成长、结晶化在间接冷却区 IC 内进行并完成，因此，优选直接冷却区 DC 内的载气中不含有镍蒸汽。

在等离子体装置 1 的运转中，在上述冷却管 3 中，载气中的镍粉末的一部分或来自于镍蒸汽的析出物会缓慢附着于冷却管 3 的内壁，某些条件下，会形成氧化物或其它化合物而发生堆积。当这些来自镍蒸汽的附着物的堆积进一步增加时，会导致冷却管 3 的内径变窄，或载气的流动紊乱，不仅会对镍粉末的粒径、粒度分布的控制带来不良影响，某些情况下还可能造成冷却管 3 内堵塞。特别是，已发现：在具有间接冷却区 IC 的冷却管 3 的上游侧，存在附着物增多的倾向。

基于上述理由，在本发明中，优选在冷却管 3 的下游端或其附近具备将搬运金属粉末的载气的搬运方向引导为与冷却管 3 的长度方向不同的方向的引导管。

第一实施方式的引导管 13 将载气向着与冷却管 3 的长度方向大致垂直的方向引导。由引导管 13 引导的载气被搬运至未图示的捕集器，在该捕集器中分离出金属粉末和载
气，并回收金属粉末。另外，在捕获器中分离得到的裁气也可以构成为能够在裁气供给部 10 进行再利用的形式。

[0055] 这里，也可以在引导管 13 内或其附近设置导向引导方向突出气体的引导气体制成突出部。在引导气体存在下，可以顺利地进行裁气搬运方向的转换。作为引导气体，可以使用氮气等与上述裁气相同的气体。

[0056] 本发明的不同点之一在于为了除去附着于冷却管 3 内的附着物而具有刮板，并将该刮板从上述冷却管的下游端嵌入。

[0057] 如图 2 所示，第一实施方式的刮板 20 是在棒状的轴 21 的一端具有用于刮落附着物的刮板头 22 的形状，优选刮板 20 的全长大于冷却管 3 的长度方向的长度。在刮板 20 内，刮板头 22 嵌插于冷却管 3 内，并且，轴 21 嵌插于设置在冷却管 3 的下游端的插入口 31，且其至少一部分配置于冷却管 3 外。

[0058] 在现有的具备冷却管的等离子体装置中，捕获器多被设置于管状冷却管的延长线上，配置上述形状的刮板 20 本身较为困难，但通过具备引导管 13，能够在冷却管 3 的延长线上形成空间，从而易于配置刮板 20，因此优选。但如果不介意装置复杂化，也可以不具备引导管而配置刮板 20，在本发明中，引导管并不是必要的构成。

[0059] 由于轴 21 以嵌插于入口 3 的状态安装，因此，轴 21 可以沿冷却管 3 的长度方向自由地进行往复运动，并且，还可以自由地进行以轴 21 的轴为中心的圆周（周回）方向的回转。

[0060] 需要说明的是，刮板头 22 的径向（与轴 21 垂直的方向）的最大长度设定为比冷却管 3 内的最小内径小。

[0061] 在上述构成的第一实施方式中，在定期或不定期地除去附着物时，操纵冷却管 3 外的轴 21，使轴 21 在沿冷却管 3 的长度方向往复运动的同时沿着轴轴向回转。此时，对轴 21 的操纵不限于人手，也可以通过马达等驱动机构进行。接着，通过利用刮板头 22 对冷却管 3 内壁的附着物施加物理力，可以有效地刮落附着物。

[0062] 图 2(A)～(C) 是第一实施方式的刮板头 22 的详细图，图 2(B) 是从图 2(A) 的 I～I 1线观察时的向视图，图 2(C) 是从图 2(B) 的 IIA～IIA’线观察时的向视图。

[0063] 如图示，刮板头 22 具有第一刮板头 22a、第二刮板头 22b，突出爪 27，第一刮板头 22a 和第二刮板头 22b 均呈具有 3 根轴径的环形状。

[0064] 另外，第一刮板头 22a、第二刮板头 22b 分别具齿轮角不同的锯齿形状的爪部 23a 及 23b。因此，使刮板头 22 向冷却管 3 的上游侧移动时，首先通过第一刮板头 22a 的爪部 23a 大致刮落冷却管 3 内壁的附着物，然后通过第二刮板头 22a 的爪部 23b 刮落残留的附着物。

[0065] 此外，由于在与导入口 11 对峙的刮板头 22 上的位置设置有突出爪 27，因此，根据需要，也可以通过使刮板头 22 在冷却管 3 的上游回转和/或往复运动，来除去附着于导入口 11 及其周围附着物。

[0066] 刮板 20 的材质只要具备耐热性即可，优选由例如 SUS、Inconel 合金等形成。另外，可以将轴 21 和刮板头 22 一体地成型，也可以将它们分体接合。另外，轴 21 和刮板头 22 只要可以一体地动作即可，并不一定要将它们固定，例如，可以将它们经由例如包含弹簧等弹性体的减振机构连接。
[0067] 未进行附属物的除去作业时，在例如制造金属粉末时，优选使刮板头 22 在冷却管 3 的下游侧待机。

[0068] 刮板头 22 的待机位置只要在金属粉末的成长基本结束的间接冷却区 IC（第 1 冷却部）的下游侧即可，更优选为下游端附近。通过使刮板头 22 的待机位置为直接冷却区 DC 之后的下游侧，可以抑制附属物向刮板头 22 的附着，另外，可以降低由于刮板头 22 而使载气产生乱流、进而对金属粉末的粒径及粒度分布带来不良影响的风险。

[0069] 在第一实施方式中，在冷却管 3 中设置有待机用区 AC。在进行除去作业时以外，使刮板头 22 在待机用区 AC 待机。

[0070] 但是，并不一定要设置待机用区 AC，也可以如后所述地在直接冷却区 DC 待机。另外，在使刮板头 22 由不易发生附属物附着的材质及形状的构件构成、或形成为不易发生载气乱流的形状的情况下，也可以进一步使刮板头 22 在上游侧待机。

[0071] 本发明的等离子体装置 1 的特征之一在于将冷却管 3 以其下游侧位于上方的方式相对水平方向以 10 ～ 80° 的范围倾斜。

[0072] 在现有的具备冷却管的等离子体装置中，多将冷却管朝向水平方向或竖直方向设置，但在将冷却管沿水平方向设置的情况下，会导致用刮板 20 割落的附属物滞留在冷却管内，因此需要新设置回收滞留的附属物的机构。

[0073] 在将冷却管沿竖直方向设置的情况下，割落的附属物不滞留在冷却管内，但对于竖直向下（冷却的下游侧位于下方）的冷却管的情况而言，存在割落的附属物混入作为目标物的金属粉末中而导致金属粉末的品质降低的隐患。另外，对于竖直向上（冷却管的下游侧位于上方）的冷却管的情况而言，存在割落的附属物回滚到反应容器内而导致溶液的温度降低、杂质成分增多的隐患。

[0074] 本发明具备上述刮板 20，并同时将冷却管 3 以相对水平方向为 10 ～ 80° 范围内倾斜设置，由此，无需特别地新设置回收机构即可将用刮板 20 割落的附属物收集于冷却管 3 的上游侧。优选的倾斜角度为 20 ～ 70°，更优选的倾斜角度为 30 ～ 60°。

[0075] 图 1 所示的第一实施方式的冷却管 3 以其下游侧位于上方的方式相对水平方向倾斜 45° 设置。

[0076] 由刮板 20 割落的附属物也即使不具备特别的回收机构，也可以仅通过刮板 20 的往复运动和重力收集到冷却管 3 的上游侧。

[0077] 需要说明的是，在第一实施方式中，由于反应容器 2 和冷却管 3 经由直径比冷却管 3 的内径小的导入口 11 连通，因此，收集的附属物不易回滚到反应容器 2 内。这样，在本发明中，优选冷却管 3 的上游端经由直径比冷却管 3 的内径小的导入口 11 与反应容器 1 连通。

[0078] 此外，在第一实施方式中，在冷却管 3 的上游侧具备将附属物排出到冷却管 3 外的开口部 32。在具有冷却流体供给部（未图示）的直接冷却区 DC 设置开口部 32 时，由于冷却流体供给部的构成复杂化，因此优选开口部 32 设置于间接冷却区 IC。

[0079] 在开口部 32 设置有以不会与冷却管 3 的内壁产生高度差的方式形成的开关门 33，其仅在附属物的除去作业时开放。由此，在通常的金属粉末制造时，可以尽可能抑制载气发生乱流。

[0080] 连结部 34 以包围开关门 33 的方式设置，对着连结部 34 安装有可拆装的回收容器 35。在附属物的除去作业时，开闭门 33 开放，附属物从开口部 32 向冷却管 3 外排出，并由
回收容器 35 回收。

【0082】[第二实施方式]

图 3 及图 4 示出了第二实施方式，图中，对与第一实施方式相同的部位赋予与第一实施方式相同的符号，并在以下省略其说明。

【0083】第二实施方式中，等离子电极装置 101 的冷却管 103 以其下游侧位于上方的方式相对水平方向倾斜 70°设置。另外，开关门 133 为沿着冷却管 103 的外壁滑动的拉门型。

【0084】图 3(B) 是从图 3(A) 的 IⅠ～IⅡ线观察时的向视图，如该图所示，在第二实施方式中，弯曲的引导管 113 与冷却管 103 的下游端面相连，由此将包含金属粉末的载气的搬运方向引导至与冷却管 103 的长度方向不同的方向。

【0085】图 4(A)～(E) 是第二实施方式的刮板头 122 的详细图，图 4(B) 是从图 4(A) 的 IV～IV线观察时的向视图，图 4(C) 是从图 4(B) 的 IVA～IVA’线观察时的向视图，图 4(D) 及图 4(E) 是从图 4(B) 的 IVB～IVB’线观察时的向视图。

【0086】如图 4(A) 所示，在第二实施方式的刮板 120 的一端部附近具有用于使利用手对轴 121 的操作变得容易的手柄 128。

【0087】另外，如图 4(B)～图 4(E) 所示，刮板头 122 由 4 根辐射条，突出长度不同的 2 个爪部 125、126，及环状的爪部 124 形成的形状，所述 4 根辐射条以轴 121 为中心成放射状延伸，刮板头 122 的外径形成为比冷却管 103 的内径稍小。

【0088】另外，如图 3(A) 所示，在冷却管 103 的下游端具备刮板头 120 进行往复运动的运动加以引导的轴导承（シャフトガイド）140，在本实施方式中，刮板 120 嵌插于轴导承 140 的插入孔 131。

【0089】在第二实施方式中，除去附着物时，利用手操作手柄 128 使刮板 120 发生回转和/或往复运动。

【0090】需要说明的是，由于刮板头 122 具有三种爪部，因此在刮板头 122 朝向冷却管 103 的上游侧移动时，可以首先利用最突出的第一突出爪 125 大致刮落附着物，然后利用第二突出爪 126 和环状爪部 124 将残留的附着物均匀地刮落，从而能够用较小的力有效去除附着物。

【0091】[第三实施方式]

图 5 及图 6 示出了第三实施方式，图中，对与第一～二实施方式相同的部位赋予与第一～二实施方式相同的符号，并在以下省略其说明。

【0092】第三实施方式中，等离子电极装置 201 的冷却管 203 以其下游侧位于上方的方式相对水平方向倾斜 20°设置。本实施方式中，就引导管 213 而言，其剖面形状及直径与冷却管 203 大致相同，通过从冷却管 203 的下游端连续弯曲，将包含金属粉末的载气的搬运方向引导至与冷却管 203 的长度方向不同的方向。

【0093】本实施方式中，不具备待机用区 AC，刮板头 222 在直接冷却区 DC 待机。

【0094】另外，在本实施方式中，冷却管 203 的倾斜角度较少，为 20°，因此在反应容器 2 和冷却管 203 之间未设置导入口。

【0095】在冷却管 203 的上游设置有开关门 33，可拆装的回收容器 235 不经由连结部而直接以覆盖该开关门 33 的方式安装于冷却管 203。在回收容器 235 的内部设置有分隔板 236，其可以抑制在开关门 33 开放时流入回收容器 235 的载气的存在下导致回收容器 235 内的
附着物返回到冷却管 203 内。
0097 嵌入于轴承 140 的轴 221 的一端与刮板驱动部 240 连接，刮板驱动部 240 具备
边使刮板 220 回转，变使其在长度方向上进行往复运动的驱动机构（未图示）。
0098 图 6(A) ～ (C) 是第三实施方式的刮板头 222 的详细图，图 6(B) 是从图 6(A) 的
VI ～ VI线观察时的向视图，图 6(C) 是从图 6(B) 的 V1A ～ V1A’线观察时的向视图。
0099 如图 6(A) ～ (C) 所示，第三实施方式的刮板 220 具有突顶（ドーム）形状的刮板
头 222。如图所示，就刮板头 222 而言，从轴 221 的一端附近延伸的四根弧状辐条与环状的
爪部 223 连结。
0100 [其它变形例]
0101 本发明包括其它各种变形例。
0102 作为一例，刮板头只要可以除去附着物，不一定必须有爪部，刮板头及爪部的形
状、个数也不受限制。
0103 若在刮板头内部、轴内部设置使水等流体循环的水冷机构，则可以抑制刮板由热
引起的变形。
0104 设置于冷却管的开口部的位置及个数也不受限制，可根据冷却管的倾斜、刮板的
形状等而适当变更。
0105 另外，就引导管的形状而言，只要能够在冷却管的延长线上形成配置刮板的空间
即可，除了上述例以外，也可以为例如 S 字状、曲柄（crank）状、螺旋状。
图 1
图 6