A coated, shaped metallic material which comprises a shaped metallic material and a coating film formed on the surface of the shaped metallic material. The coating film contains a polyurethane resin containing a polycarbonate unit. The proportion of the mass of the polycarbonate unit to the total mass of the resin in the coating film is 15-80 mass%. The coating film has a thickness exceeding 1.0 μm.
ABSTRACT

The shaped and coated metallic material comprises a shaped metallic material and a coating film formed on the surface of the shaped metallic material. The coating film comprises a polyurethane resin containing a polycarbonate unit. The ratio of the mass of the polycarbonate unit relative to the total mass of resins in the coating film is 15 to 80 mass%. The thickness of the coating film is larger than 1.0 μm.
DESCRIPTION

Title of Invention

COATED SHAPED METAL MATERIAL

Technical Field

[0001] The present invention relates to a coated shaped metal material suitable for joining to a molded article of a thermoplastic resin composition.

Background Art

[0002] Metal sheets, press-molded products of metal sheets, or so-called "shaped metal materials" molded by casting, forging, cutting, powder metallurgy, or the like are used in various industrial products such as automobiles. A composite including a molded article of a resin composition joined to such a shaped metal material is used in various electronic devices such as cellular mobile phones and personal computers, because the composite is lighter than a part made only of a metal and is stronger than a part made only of a resin.

Such a composite has heretofore been produced by the fitting together the shaped metal material and the molded article of a resin composition. This method for producing the composite by fitting, however, requires a large number of steps of operation and has low productivity. Accordingly, in recent years, the composite has generally been produced by joining the molded article of a resin composition to the shaped metal material by means of insert molding.

[0003] For the production of the composite by insert molding, it is important to improve the adhesion between the shaped metal material and the molded article of a resin composition. For example, the roughening treatment of the surface of the shaped metal material prior to insert molding has been proposed as a method for enhancing the adhesion between the shaped metal material and the molded article of a resin composition (see PTLs 1 to 3). The methods disclosed in PTLs 1 to 3 involve roughening the surface of an
aluminum alloy to thereby improve the joinability of the aluminum alloy to a molded article of a resin composition.

Citation List

5 Patent Literature

[0004]

PTL 1

PTL 2

PTL 3

Summary of Invention

15 Technical Problem

[0005] The composites described in PTLs 1 to 3 produce undesired insufficient adhesion between the shaped metal material and the molded article of a resin composition due to joining based on an anchor effect. In addition, the methods for producing the composites described in PTLs 1 to 3 tend to form a tiny gap between the shaped metal material and a molded article of a resin composition due to the roughening treatment of the surface of the shaped metal material. The composites described in PTLs 1 to 3 therefore have low sealing properties between the shaped metal material and a molded article of a resin composition and may cause gas or liquid leakage from the gap between the shaped metal material and a molded article of a resin composition.

[0006] An object of the present invention is to provide a coated shaped metal material that is excellent in adhesion and sealing properties when joined to a molded article of a
thermoplastic resin composition.

Solution to Problem

[0007] The present inventors have found that the above-mentioned problems can be solved by forming a predetermined coating on the surface of a shaped metal material. The present inventors have further conducted studies and thereby completed the present invention.

[0008] Specifically, the present invention relates to the following coated shaped metal materials:

10 [1] A coated shaped metal material including: a shaped metal material; and a coating formed on the surface of the shaped metal material, the coating including a polyurethane resin containing a polycarbonate unit, in which the mass ratio of the polycarbonate unit to the total resin mass in the coating is 15 to 80 mass%, and the coating has a film thickness larger than 1.0 μm.

15 [2] The coated shaped metal material according to [1], in which the coating includes an oxide, a hydroxide, or a fluoride of a metal selected from the group consisting of Ti, Zr, V, Mo, and W, or a combination thereof.

Advantageous Effects of Invention

[0009] The present invention can provide a coated shaped metal material that is excellent in adhesion and sealing properties when joined to a molded article of a thermoplastic resin composition.

Brief Description of Drawings

[0010]

FIG. 1 schematically illustrates the constitution of a composite for the evaluation of
adhesion; and

FIG. 2 schematically illustrates the constitution of a composite for the evaluation of
gas-sealing properties.

5 Description of Embodiments

The coated shaped metal material of the present invention includes: a shaped metal
material; and a coating formed on the surface of the shaped metal material. The coated
shaped metal material may also have a chemical conversion film formed between the
shaped metal material and the coating. Hereinafter, each component of the coated shaped
metal material will be described.

[0012] (1) Shaped Metal Material

The shaped metal material serving as a base material to be coated is not particularly
limited by its type. Examples of the shaped metal material include: metal sheets such as
cold-rolled steel sheets, zinc-coated steel sheets, Zn-Al alloy-coated steel sheets, Zn-Al-Mg
alloy-coated steel sheets, Zn-Al-Mg-Si alloy-coated steel sheets, aluminum-coated steel
sheets, stainless steel sheets (including austenitic, martensitic, ferritic, and
ferrite-martensite duplex-phase stainless steel sheets), aluminum sheets, aluminum alloy
sheets, and copper sheets; pressed products of metal sheets; and various metal members
shaped by processing methods such as casting (aluminum die-casting, zinc die-casting,
 etc.), forging, cutting, and powder metallurgy. The shaped metal material may be
subjected, if necessary, to coating pretreatment known in the art such as degreasing or
pickling.

[0013] (2) Chemical Conversion Film

As mentioned above, the coated shaped metal material may also have a chemical
conversion film formed between the shaped metal material and the coating. The chemical
conversion film is formed on the surface of the shaped metal material and improves the adhesion of the coating to the shaped metal material and the corrosion resistance of the shaped metal material. The chemical conversion film may be formed on at least a region (junction surface) to be joined with a molded article of a thermoplastic resin composition mentioned later, of the surface of the shaped metal material, and is usually formed on the whole surface of the shaped metal material.

[0014] The chemical conversion treatment to form the chemical conversion film is not particularly limited by its type. Examples of the chemical conversion treatment include chromate conversion treatment, chromium-free conversion treatment, and bonderizing treatment. The chemical conversion film formed by the chemical conversion treatment is not particularly limited by its coverage as long as the coverage falls within a range effective for improving the coating adhesion and the corrosion resistance. For example, the coverage of the chromate film can be adjusted such that the coverage attains 5 to 100 mg/m² in terms of the total amount of Cr. The coverage of the chromium-free film can be adjusted such that the coverage of a Ti-Mo composite film falls within a range of 10 to 500 mg/m² or the coverage of a fluoro acid film falls within a range of 3 to 100 mg/m² in terms of the amount of fluorine or in terms of the total amount of metal elements. The coverage of the phosphate film can be adjusted to 0.1 to 5 g/m².

[0015] (3) Coating

The coating includes a polyurethane resin containing a polycarbonate unit and improves the adhesion of a molded article of a thermoplastic resin composition to the shaped metal material. As mentioned later, the coating may further contain a polycarbonate unit-free resin as an optional component. The coating, as with the chemical conversion film, may be formed on at least the junction surface of the surface of the shaped metal material and is usually formed on the whole surface of the shaped metal material (or the chemical conversion film).
[0016] The polyurethane resin containing a polycarbonate unit has a polycarbonate unit in its molecular chain. The "polycarbonate unit" refers to a structure shown below in the molecular chain of the polyurethane resin. The polyurethane resin containing a polycarbonate unit is similar in backbone (such as a benzene ring) and functional group to a thermoplastic resin contained in a molded article of a thermoplastic resin composition mentioned later. Accordingly, in the case of insert-molding the thermoplastic resin composition to the coated shaped metal material, the polyurethane resin containing a polycarbonate unit is uniformly blended with the thermoplastic resin composition to form a strong bond therebetween. Thus, the polyurethane resin containing a polycarbonate unit, contained in the coating, can improve the adhesion of a molded article of the thermoplastic resin composition to the coating.

[0017]

[Formula 1]

[0018] The polyurethane resin containing a polycarbonate unit can be prepared, for example, by steps described below. An organic polyisocyanate is reacted with a polycarbonate polyl and a polyl having a tertiary amino group or a carboxyl group to form a urethane prepolymer. Polyols other than the polycarbonate polyl compound, for example, polyester polyl and polyether polyl, may be used in combination to an extent that does not compromise the objects of the present invention.

[0019] The tertiary amino group of the urethane prepolymer thus produced can be neutralized with an acid or quaternized with a quaternizing agent, followed by chain elongation using water to form a cationic polyurethane resin containing a polycarbonate
unit.

[0020] Alternatively, the carboxyl group of the urethane prepolymer thus produced can be neutralized with a basic compound such as triethylamine, trimethylamine, diethanolmonomethyamine, diethylethanolamine, caustic soda, or caustic potassium for conversion to a carboxylate to form an anionic polyurethane resin containing a polycarbonate unit.

[0021] The polycarbonate polyol is obtained through the reaction of a carbonate compound such as dimethyl carbonate, diethyl carbonate, ethylene carbonate, or propylene carbonate with a diol compound such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, methylpentanediol, dimethylbutanediol, butyl ethyl propanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, or 1,6-hexanediol. The polycarbonate polyol may be obtained by chain elongation from an isocyanate compound.

[0022] The organic polyisocyanate is not particularly limited by its type. Examples of the organic polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, xylene diisocyanate, tetramethylxylene diisocyanate, hydrogenated xylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, and 4,4'-dicyclohexylmethane diisocyanate. These organic polyisocyanates may be used alone or in combination.

[0023] The coating may further contain a polycarbonate unit-free resin as an optional
component. The polycarbonate unit-free resin further improves the adhesion of the coating to the shaped metal material. The polycarbonate unit-free resin is not particularly limited by its type as long as the resin contains no polycarbonate unit in its molecular chain. A polycarbonate unit-free resin containing a polar group is preferred from the viewpoint of improving the adhesion of the coating to the shaped metal material. Examples of the type of the polycarbonate unit-free resin include epoxy resins, polyolefin resins, phenol resins, acrylic resins, polyester resins, and polycarbonate unit-free polyurethane resins. These resins may be used alone or in combination.

[0024] Examples of the epoxy resins include bisphenol A epoxy resins, bisphenol F epoxy resins, and bisphenol AD epoxy resins. Examples of the polyolefin resins include polyethylene resins and polypropylene resins. Examples of the phenol resins include novolac resins and resol resins. The polycarbonate unit-free polyurethane resins are obtained by the copolymerization of diols and diisocyanates. Examples of the diols include diols other than polycarbonate diol, for example, bisphenol A, 1,6-hexanediol, and 1,5-pentanediol. Examples of the diisocyanates include aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates.

[0025] The mass ratio of the polycarbonate unit to the total resin mass is 15 to 80 mass%. A polycarbonate unit at a mass ratio less than 15 mass% may produce insufficient adhesion of a molded article of a thermoplastic resin composition to the coating, also resulting in insufficient sealing properties. On the other hand, a polycarbonate unit at a mass ratio exceeding 80 mass% may produce insufficient adhesion of the coating to the shaped metal material, also resulting in insufficient sealing properties. The mass ratio of the polycarbonate unit to the total resin mass can be determined by nuclear magnetic resonance spectroscopy (NMR analysis) using a sample of the coating dissolved in chloroform.

[0026] Preferably, the coating further contains an oxide, a hydroxide, or a fluoride of a metal (valve metal) selected from the group consisting of Ti, Zr, V, Mo, and W, or a
combination thereof. Any of these metal compounds dispersed in the coating can further improve the corrosion resistance of the shaped metal material. Particularly, the fluorides of these metals can also be expected to suppress the corrosion of a film defect area by virtue of their self-repairing effects.

[0027] The coating may further contain a soluble or poorly soluble metal phosphate or complex phosphate. The soluble metal phosphate or complex phosphate further improves the corrosion resistance of the shaped metal material by complementing the self-repairing effects of the metal fluoride(s) mentioned above. The poorly soluble metal phosphate or complex phosphate dispersed in the coating improves film strength. The soluble or poorly soluble metal phosphate or complex phosphate is, for example, a salt of Al, Ti, Zr, Hf, Zn, or the like.

[0028] The coating is not particularly limited by its film thickness as long as the film thickness is larger than 1.0 μm. A coating having a film thickness of 1.0 μm or smaller is not able to sufficiently improve sealing properties. A coating having a film thickness smaller than 0.5 μm is not able to sufficiently improve the adhesion of a molded article of a thermoplastic resin composition to the shaped metal material. The upper limit of the film thickness of the coating is not particularly limited and may be approximately 20 μm. The coating, even if having a film thickness exceeding 20 μm, cannot be expected to further improve the adhesion.

[0029] The coating may be supplemented with an etching agent, an inorganic compound, a lubricant, a color pigment, a dye, and the like in addition to the resin(s) mentioned above. The etching agent improves the adhesion of the coating to the shaped metal material by activating the surface of the shaped metal material. A fluoride such as hydrofluoric acid, ammonium fluoride, fluorozirconic acid, or fluorotitanic acid is used as the etching agent. The inorganic compound improves water resistance by densifying the coating. Examples of the inorganic compound include: sols of inorganic oxides such as silica, alumina, and
zirconia; and phosphates such as sodium phosphate, calcium phosphate, manganese phosphate, and magnesium phosphate. Examples of the lubricant include: organic lubricants such as fluorine-based lubricants, polyethylene-based lubricants, and styrene-based lubricants; and inorganic lubricants such as molybdenum disulfide and talc.

Further addition of an inorganic pigment, an organic pigment, an organic dye, or the like may impart a predetermined color tone to the coating.

[0030] The coated shaped metal material of the present invention is not particularly limited by its production method. The coated shaped metal material of the present invention can be produced, for example, by the following method.

[0031] First, the shaped metal material serving as a base material to be coated is provided. When the chemical conversion film is formed, chemical conversion treatment is performed prior to formation of the coating. When the chemical conversion film is not formed, the coating is formed directly thereon.

[0032] In the case of forming the chemical conversion film on the surface of the shaped metal material, the chemical conversion film can be formed by the application of a chemical conversion treatment solution to the surface of the shaped metal material followed by drying. The method for applying the chemical conversion treatment solution is not particularly limited and can be appropriately selected from methods known in the art. Examples of such application methods include roll coating, curtain flow, spin coating, spraying, and dip-drawing methods. The conditions for the drying of the chemical conversion treatment solution may be appropriately set according to the composition of the chemical conversion treatment solution, etc. For example, the shaped metal material having the chemical conversion treatment solution applied thereon can be placed in a drying oven without being washed with water, and then heated at a peak plate temperature within a range of 80 to 250°C to form a uniform chemical conversion film on the surface of the shaped metal material.
[0033] The coating can be formed on the surface of the shaped metal material (or the chemical conversion film) by the application thereto of a coating material containing the above-mentioned polyurethane resin containing a polycarbonate unit followed by baking. The method for applying the coating material is not particularly limited and can be appropriately selected from methods known in the art. Examples of such application methods include roll coating, curtain flow, spin coating, spraying, and dip-drawing methods. The conditions for the baking of the coating material may be appropriately set according to the composition of the coating material, etc. For example, the shaped metal material having the coating material applied thereon can be placed in a drying oven and dried with a hot-air dryer at a peak plate temperature within a range of 110 to 200°C to form a uniform coating on the surface of the shaped metal material (or the chemical conversion film).

[0034] As described above, the coated shaped metal material of the present invention has the coating containing a predetermined amount of the polyurethane resin containing a polycarbonate unit and having a film thickness of larger than 1.0 μm and is therefore excellent in adhesion to a molded article of a thermoplastic resin composition and the sealing properties between the coated shaped metal material and a thermoplastic resin composition. In addition, the coated shaped metal material of the present invention can be easily produced merely by the application of the coating material containing the polyurethane resin containing a polycarbonate unit followed by baking.

[0035] 2. Composite

A molded article of a thermoplastic resin composition can be joined to the surface of the coated shaped metal material of the present invention to produce a composite.

[0036] The molded article of a thermoplastic resin composition is joined to the surface of the above-mentioned coated shaped metal material (more accurately, the surface of the coating). The shape of the molded article of a thermoplastic resin composition is not
particularly limited and can be appropriately selected according to use.

[0037] The thermoplastic resin constituting the molded article of a thermoplastic resin composition is not particularly limited by its type. Examples of the thermoplastic resin include acrylonitrile-butadiene-styrene (ABS) resins, polyethylene terephthalate (PET) resins, polybutylene terephthalate (PBT) resins, polycarbonate (PC) resins, polyamide (PA) resins, and polyphenylene sulfide (PPS) resins, and combinations thereof. Among them, a thermoplastic resin containing a benzene ring, as with the polycarbonate unit, is preferred, and a PBT resin or a PPS resin is particularly preferred.

[0038] The PBT resin is obtained, for example, by the condensation of 1,4-butanediol with terephthalic acid and has the following structure:

[0039]

[Formula 2]

\[
\begin{array}{c}
\text{O} \quad \text{C} \quad \text{O} \quad \text{C} \\
\end{array}
\]

[0040] The PPS resin is obtained, for example, by the condensation of p-dichlorobenzene with sodium sulfide in an amide solvent and has the following structure:

[0041]

[Formula 3]

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{S} \\
\text{S} \\
\text{S} \\
\end{array}
\]

[0042] The thermoplastic resin composition may also contain an inorganic filler, a thermoplastic polymer, and the like, from the viewpoint of mold shrinkage factors, material strength, mechanical strength, scratch resistance, etc. Particularly, for using the thermoplastic resin having no benzene ring, it is preferred to add thereto a thermoplastic
polymer having a benzene ring.

[0043] The inorganic filler improves the rigidity of the molded article of the thermoplastic resin composition. The inorganic filler is not particularly limited by its type, and a known substance can be used. Examples of the inorganic filler include: fibrous fillers such as glass fibers, carbon fibers, and aramide resins; powder fillers such as carbon black, calcium carbonate, calcium silicate, magnesium carbonate, silica, talc, glass, clay, lignin, mica, quartz powders, and glass spheres; and pulverized carbon fibers or aramide fibers. The content of the inorganic filler is not particularly limited and is preferably within a range of 5 to 50 mass%. These inorganic fillers may be used alone or in combination.

[0044] The thermoplastic polymer improves the shock resistance of the molded article of the thermoplastic resin composition. The thermoplastic polymer is not particularly limited by its type. Examples of the thermoplastic polymer having a benzene ring include acrylonitrile-butadiene-styrene resins, polyethylene terephthalate resins, polybutylene terephthalate resins, polycarbonate resins, polystyrene resins, and polyphenylene ether resins. Examples of the thermoplastic polymer having no benzene ring include polyolefin resins. These thermoplastic polymers may be used alone or in combination.

[0045] The above-mentioned composite can be produced by, for example, 1) providing a coated shaped metal material; 2) inserting the coated shaped metal material into an injection molding die; and 3) joining a molded article of a thermoplastic resin composition to the surface of the coated shaped metal material. Hereinafter, these procedures of the present invention will be described.

[0046] Step (1)

In this step, a coated shaped metal material is provided by the procedures mentioned above.

[0047] Step (2)
The coated shaped metal material thus provided is inserted into an injection molding die. The coated shaped metal material may be processed into a desired shape by pressing or the like.

[0048] Step (3)

A thermoplastic resin composition having a high temperature is injected at a high pressure into the injection molding die having the coated shaped metal material thus inserted therein. In this respect, the injection molding die is preferably provided with a degassing port that allows the thermoplastic resin composition to flow smoothly. The thermoplastic resin composition having a high temperature comes in contact with the coating formed on the surface of the coated shaped metal material. The temperature of the injection molding die is preferably around the melting point of the thermoplastic resin composition.

[0049] After the completion of the injection, the die is opened and released to obtain a composite. The composite obtained by injection molding may be subjected to annealing treatment after the molding to cancel internal strain ascribable to mold shrinkage.

[0050] The composite including the coated shaped metal material of the present invention can be produced by the procedures mentioned above.

[0051] As described above, a molded article of a thermoplastic resin composition can be joined to the surface of the coated shaped metal material of the present invention to produce a composite. The coated shaped metal material of the present invention has a predetermined coating that is excellent in adhesion both to the shaped metal material and to the molded article of a thermoplastic resin composition. The composite of the present invention is therefore excellent in the adhesion between the shaped metal material and a molded article of a thermoplastic resin composition and the sealing properties between the coated shaped metal material and a thermoplastic resin composition.

[0052] Hereinafter, the present invention will be described in detail with reference to
Examples. However, the present invention is not intended to be limited by these Examples.

Examples

5 [0053]

[Example 1]

In Example 1, each coated shaped metal material was provided and examined for its corrosion resistance.

[0054] 1. Preparation of Coated Shaped Metal Material

10 (1) Shaped Metal Material

Stainless steel sheets, a molten Zn-Al-Mg alloy-coated steel sheet, a molten Al-coated steel sheet, and molten Al-containing Zn-coated steel sheets were provided as base materials to be coated for coated shaped metal materials.

[0055] A. Stainless Steel Sheet

15 SUS304 and SUS430 (both 2D-finish) having a sheet thickness of 0.8 mm were provided as stainless steel sheets.

[0056] B. Molten Zn-Al-Mg Alloy-Coated Steel Sheet

A molten Zn-6mass% Al-3mass% Mg alloy-coated steel sheet having a coating coverage of 45 g/m² on one side was provided as a molten Zn-Al-Mg alloy-coated steel sheet. The base steel sheet used was a cold-rolled steel sheet (SPCC) having a sheet thickness of 0.8 mm.

[0057] C. Molten Al-Coated Steel Sheet

A molten Al-9mass% Si alloy-coated steel sheet having a coating coverage of 45 g/m² on one side was provided as a molten Al-coated steel sheet. The base steel sheet used was a cold-rolled steel sheet (SPCC) having a sheet thickness of 0.8 mm.

[0058] D. Molten Al-Containing Zn-Coated Steel Sheet
A molten Zn-0.18mass% Al alloy-coated steel sheet and a molten Zn-55mass% Al alloy-coated steel sheet each having a coating coverage of 45 g/m² on one side were provided as molten Al-containing Zn-coated steel sheets. Both of the base steel sheets used were cold-rolled steel sheets (SPCC) having a sheet thickness of 0.8 mm.

(2) Preparation of Coating Material

Each polycarbonate unit-containing resin, each polycarbonate unit-free resin, and various additives were added to water such that the mass ratio of the polycarbonate (PC) unit to the total resin mass attained the predetermined ratio shown in Table 1 to prepare a coating material having 20% nonvolatile components (see Table 1). The contents of the polycarbonate unit-containing resin and the polycarbonate unit-free resin in Table 1 represent their contents (mass%) in the coating material. Each coating material was supplemented with 0.5mass% of ammonium fluoride (Morita Chemical Industries Co., Ltd.) as an etching agent, 2mass% of colloidal silica (Nissan Chemical Industries, Ltd.) as an inorganic compound, and 0.5mass% of phosphoric acid (Kishida Chemical Co., Ltd.).

As for each polycarbonate unit-containing resin shown in Table 1, a product under test (dry solid content: 30mass%) provided by a resin manufacturer was used as a polyurethane resin containing 90mass% of the polycarbonate unit. A resin composition composed of 100mass% of the polycarbonate unit was prepared by the following method: a polycarbonate sheet (TAKIRON Co., Ltd.) having a sheet thickness of 2.0 mm was cut into approximately 5 mm square to obtain polycarbonate pieces. To 200 g of methylene chloride, 30 g of the polycarbonate pieces thus cut was added, and the mixture was stirred for 3 hours under heating to a solution temperature of 40°C to dissolve the polycarbonate pieces in methylene chloride. The resin composition composed of 100mass% of the polycarbonate unit was prepared by this step.

For each polycarbonate unit-free resin shown in Table 1, HUX-232 (dry solid content: 30mass%, ADEKA Corp.) was used as a polycarbonate unit-free polyurethane.
resin. ADEKA Resin EM-0434AN (dry solid content: 30mass%, ADEKA Corp.) was used as an epoxy resin. HARDLEN NZ-1005 (dry solid content: 30mass%, Toyobo Co., Ltd.) was used as a polyolefin resin. TAMANOL E-100 (dry solid content: 52mass%, Arakawa Chemical Industries, Ltd.) was used as a phenol resin.

(3) Formation of Coating

Each base material to be coated was dipped for 1 minute in an aqueous alkali solution for degreasing ($\text{pH} = 12$) having a solution temperature of 60°C to degrease the surface. Subsequently, each coating material was applied to the degreased surface of the base material to be coated using a roll coater and dried with a hot-air dryer at a peak plate temperature of 150°C to form a coating having the film thickness shown in Table 1.
<table>
<thead>
<tr>
<th>Coated shaped metal material No.</th>
<th>PC unit (mass%)</th>
<th>PC unit-containing resin (mass%)</th>
<th>PC unit-free resin (mass%)</th>
<th>Film thickness of coating (μm)</th>
<th>Base material to be coated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>A (11.1)</td>
<td>a (55.5)</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>A (11.1)</td>
<td>a (27.8)</td>
<td>3.2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>A (22.3)</td>
<td>b (44.4)</td>
<td>1.6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>A (22.3)</td>
<td>b (22.2)</td>
<td>2.2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>A (22.3)</td>
<td>b (14.8)</td>
<td>3.0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>A (22.3)</td>
<td>c (22.2)</td>
<td>2.2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>A (22.3)</td>
<td>a (44.4)</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>A (22.3)</td>
<td>a (22.2)</td>
<td>1.1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>A (22.3)</td>
<td>a (22.2)</td>
<td>8.4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>A (37.1)</td>
<td>a (29.6)</td>
<td>4.1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>A (37.1)</td>
<td>b (29.6)</td>
<td>3.3</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>70</td>
<td>A (51.9)</td>
<td>c (14.8)</td>
<td>1.0</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>A (51.9)</td>
<td>d (8.5)</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>A (59.3)</td>
<td>a (7.4)</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>A (59.3)</td>
<td>b (7.4)</td>
<td>1.8</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>A (22.3)</td>
<td>b (44.4)</td>
<td>0.8</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>A (37.1)</td>
<td>a (29.6)</td>
<td>0.4</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>80</td>
<td>A (59.3)</td>
<td>d (4.3)</td>
<td>0.1</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>-</td>
<td>a (66.7)</td>
<td>2.3</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>-</td>
<td>b (33.3)</td>
<td>1.6</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>A (3.7)</td>
<td>a (62.9)</td>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>14</td>
<td>A (10.4)</td>
<td>a (28.1)</td>
<td>3.5</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>85</td>
<td>A (63.0)</td>
<td>a (3.7)</td>
<td>2.4</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>B (20.0)</td>
<td>-</td>
<td>2.0</td>
<td>3</td>
</tr>
</tbody>
</table>

- **PC Unit-Containing Polyurethane Resin**

 A: Polyurethane resin containing 90mass% of the PC unit

 B: Resin composition composed of 100mass% of the PC unit

- **PC Unit-Free Resin**
a: PC unit-free polyurethane resin (HUX-232)
b: Epoxy resin (ADEKA Resin EM-0434AN)
c: Polyolefin resin (HARDLEN NZ-1005)
d: Phenol resin (TAMANOL E-100)

- Base Material to Be Coated
 1: SUS304
 2: SUS430
 3: Molten Zn-6mass% Al-3mass% Mg alloy-coated steel sheet
 4: Molten Al-9mass% Si alloy-coated steel sheet
 5: Molten Zn-0.18mass% Al alloy-coated steel sheet
 6: Molten Zn-55mass% Al alloy-coated steel sheet

[0064] 2. Evaluation of Coated Shaped Metal Material

(1) Corrosion Resistance Test

A test piece (30 mm wide x 100 mm long) was cut out of each coated shaped metal material and subjected to the corrosion resistance test. According to JIS Z 2371, an aqueous NaCl solution of 35°C was sprayed onto each test piece with sealed end faces for 120 hours. After the spraying of the aqueous NaCl solution, each coated shaped metal material was evaluated for its corrosion resistance on the basis of the occurrence of white rust on the surface. The coated shaped metal material was evaluated as "Poor" when the occurrence of white rust was 50area% or larger, as "Fair" when the occurrence of white rust was 20area% or larger and smaller than 50area%, as "Good" when the occurrence of white rust was 10area% or larger and smaller than 20area%, and as "Excellent" when the occurrence of white rust was smaller than 10area%.

[0065] (2) Results

The occurrence of white rust on the provided coated shaped metal materials is shown in Table 2.
As shown in Table 2, all the provided coated shaped metal materials (coated shaped metal material Nos. 1 to 24) had favorable corrosion resistance. The roughened surface of a shaped metal material cannot be subjected to rust prevention treatment due to the need for exerting an anchor effect on a molded article of a thermoplastic resin composition. The resulting shaped metal material has poor corrosion resistance. By contrast, the coated shaped metal material used in the present invention has a resin coating formed on the surface of a base material to be coated and is therefore excellent in corrosion resistance.
[0068] [Example 2]

In Example 2, each composite of a coated shaped metal material and a molded article of a thermoplastic resin composition was prepared and examined for the adhesion between the coated shaped metal material and the molded article of a thermoplastic resin composition and the gas-sealing properties between the coated shaped metal material and the molded article of a thermoplastic resin composition.

[0069] 1. Preparation of Composite

(1) Coated Shaped Metal Material

Coated shaped metal material Nos. 1 to 24 of Example 1 were provided.

[0070] (2) Thermoplastic Resin Composition

Thermoplastic resin compositions shown in Table 3 were prepared. As for each thermoplastic resin composition shown in Table 3, EXCELLOY CK10G20 (no distinct melting point is confirmed; Techno Polymer Co., Ltd.) was used as an acrylonitrile-butadiene-styrene (ABS) resin composition. A sample (melting point: 230°C) provided by a resin manufacturer was used as a polyethylene terephthalate (PET) resin composition. NOVADURAN 5710F40 (melting point: 230°C; Mitsubishi Engineering-Plastics Corp.) was used as a polybutylene terephthalate (PBT) resin composition. IUPILON GS-2030MR2 (melting point: 250°C; Mitsubishi Engineering-Plastics Corp.) was used as a polycarbonate (PC) resin composition. Amilan CM3511G50 (melting point: 216°C; Toray Industries, Inc.) was used as a polyamide (PA) resin composition. 1130MF1 (melting point: 280°C; Polyplastics Co., Ltd.) was used as a polyphenylene sulfide (PPS) resin composition. Each thermoplastic resin composition contained each filler shown in Table 3. The mold shrinkage factor represents a value measured in the flow direction.

[0071]
[Table 3]

<table>
<thead>
<tr>
<th>Thermoplastic resin composition No.</th>
<th>Thermoplastic resin</th>
<th>Thermoplastic polymer</th>
<th>Filler (mass%)</th>
<th>Mold shrinkage factor (%)</th>
<th>Resin temperature during injection molding (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABS resin</td>
<td>PC resin</td>
<td>Glass fiber (20)</td>
<td>0.1</td>
<td>280</td>
</tr>
<tr>
<td>2</td>
<td>PET resin</td>
<td>PC resin</td>
<td>Glass fiber (30)</td>
<td>0.3</td>
<td>260</td>
</tr>
<tr>
<td>3</td>
<td>PBT resin</td>
<td>PC resin</td>
<td>Glass fiber (40)</td>
<td>0.3</td>
<td>260</td>
</tr>
<tr>
<td>4</td>
<td>PC resin</td>
<td>-</td>
<td>Glass fiber (30)</td>
<td>0.2</td>
<td>310</td>
</tr>
<tr>
<td>5</td>
<td>PA resin</td>
<td>Polyolefin resin</td>
<td>Glass fiber (50)</td>
<td>0.2</td>
<td>280</td>
</tr>
<tr>
<td>6</td>
<td>PPS resin</td>
<td>Polyolefin resin</td>
<td>Glass fiber (40)</td>
<td>0.3</td>
<td>320</td>
</tr>
</tbody>
</table>

[0072] (3) Preparation of Composite for Evaluation of Adhesion

Each coated shaped metal material was inserted into an injection molding die. Each thermoplastic resin composition in a molten state was injected into the injection molding die. The volume of a portion to which the thermoplastic resin composition is injected in the injection molding die is 30 mm wide \(\times \) 100 mm long \(\times \) 4 mm thick. The coating is contacted with the thermoplastic resin composition in a region of 30 mm wide \(\times \) 30 mm long. The thermoplastic resin composition thus injected into the injection molding die was solidified to obtain a composite of the coated shaped metal material and the
molded article of the thermoplastic resin. The constitution of the composite for the evaluation of adhesion is illustrated in FIG. 1.

[0073] (4) Preparation of Composite for Evaluation of Gas-Sealing Properties

Each coated shaped metal material with a through-hole of 10 mm in diameter formed at the center was inserted into an injection molding die. Each thermoplastic resin composition in a molten state was injected into the injection molding die. The volume of a portion to which the thermoplastic resin composition is injected in the injection molding die is 20 mm in diameter × 3 mm thick. The coating is contacted with the thermoplastic resin composition in a region of 5 mm around the through-hole. The thermoplastic resin composition thus injected into the injection molding die was solidified to obtain a composite of the coated shaped metal material and the molded article of the thermoplastic resin. The constitution of the composite for the evaluation of gas-sealing properties is illustrated in FIG. 2.

[0074] 2. Evaluation of Composite

(1) Evaluation of Adhesion

The coated shaped metal material and the molded article of the thermoplastic resin composition in the composite for the evaluation of adhesion were both pulled at a rate of 100 mm/min in the coplanar direction, and the strength at break (peel strength) was measured. The composite was evaluated as "Poor" when the peel strength was less than 1.0 kN, as "Fair" when the peel strength was 1.0 kN or more and less than 1.5 kN, as "Good" when the peel strength was 1.5 kN or more and less than 2.0 kN, and as "Excellent" when the peel strength was 2.0 kN or more. The adhesion of "Good" or "Excellent" was regarded as acceptable.

[0075] (2) Evaluation of Gas-Sealing Properties

The composite for the evaluation of gas-sealing properties was dipped in water of 35°C for 24 hours and then fixed in a stainless closure. Helium gas was filled at a
pressure of 0.3 MPa into the closure from a gas inlet, while the amount of helium leak near
the junction between the coated shaped metal material and the molded article of the
thermoplastic resin composition was measured. The helium leak test was conducted
using a leak detector (HELIOT714; ULVAC, Inc.) according to Appendix 3 (normative)
Sniffer Method) of JIS Z 2331:2006 (Method for helium leak testing). The composite
was evaluated as "Poor" when the amount of helium leak was 1.0×10^{-3} Pa·m3/s or larger,
as "Fair" when the amount of helium leak was 1.0×10^{-5} Pa·m3/s or larger and smaller than
1.0×10^{-3} Pa·m3/s, as "Good" when the amount of helium leak was 1.0×10^{-7} Pa·m3/s or
larger and smaller than 1.0×10^{-5} Pa·m3/s, and as "Excellent" when the amount of helium
leak was smaller than 1.0×10^{-7} Pa·m3/s. The gas-sealing properties of "Good" or
"Excellent" were regarded as acceptable.

[0076] (3) Evaluation Results

The results of evaluating the adhesion and the gas-sealing properties of each
composite are shown in Tables 4 and 5.

[0077]
<table>
<thead>
<tr>
<th>Segment</th>
<th>Coated shaped metal material No.</th>
<th>Thermoplastic composition No.</th>
<th>PC unit (mass%)</th>
<th>Film thickness of coating (μm)</th>
<th>Peel strength (kN)</th>
<th>Gas-sealing properties (Pam²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>3.2</td>
<td>1.5 (Good)</td>
<td>7.2 × 10⁻⁸ (Excellent)</td>
</tr>
<tr>
<td>Example 2</td>
<td>4</td>
<td>4</td>
<td>30</td>
<td>2.2</td>
<td>2.0 (Excellent)</td>
<td>2.0 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 3</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>3.0</td>
<td>2.2 (Excellent)</td>
<td>1.9 × 10⁻⁸ (Excellent)</td>
</tr>
<tr>
<td>Example 4</td>
<td>6</td>
<td>6</td>
<td>30</td>
<td>2.2</td>
<td>2.1 (Excellent)</td>
<td>4.8 × 10⁻⁸ (Excellent)</td>
</tr>
<tr>
<td>Example 5</td>
<td>7</td>
<td>1</td>
<td>30</td>
<td>2.5</td>
<td>1.8 (Good)</td>
<td>1.6 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 6</td>
<td>8</td>
<td>2</td>
<td>30</td>
<td>1.1</td>
<td>1.7 (Good)</td>
<td>2.3 × 10⁻⁸ (Excellent)</td>
</tr>
<tr>
<td>Example 7</td>
<td>9</td>
<td>3</td>
<td>30</td>
<td>8.4</td>
<td>2.0 (Excellent)</td>
<td>6.4 × 10⁻⁶ (Good)</td>
</tr>
<tr>
<td>Example 8</td>
<td>10</td>
<td>4</td>
<td>50</td>
<td>4.1</td>
<td>1.6 (Good)</td>
<td>7.8 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 9</td>
<td>11</td>
<td>5</td>
<td>50</td>
<td>3.3</td>
<td>1.6 (Good)</td>
<td>3.6 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 10</td>
<td>14</td>
<td>5</td>
<td>80</td>
<td>1.4</td>
<td>1.6 (Good)</td>
<td>2.4 × 10⁻⁶ (Good)</td>
</tr>
<tr>
<td>Example 11</td>
<td>15</td>
<td>6</td>
<td>80</td>
<td>1.8</td>
<td>2.0 (Excellent)</td>
<td>1.8 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 12</td>
<td>3</td>
<td>6</td>
<td>30</td>
<td>1.6</td>
<td>1.6 (Good)</td>
<td>1.1 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 13</td>
<td>6</td>
<td>3</td>
<td>30</td>
<td>2.2</td>
<td>2.0 (Excellent)</td>
<td>4.8 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 14</td>
<td>9</td>
<td>1</td>
<td>30</td>
<td>8.4</td>
<td>2.7 (Excellent)</td>
<td>4.2 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 15</td>
<td>10</td>
<td>3</td>
<td>50</td>
<td>4.1</td>
<td>2.3 (Excellent)</td>
<td>6.1 × 10⁻⁶ (Excellent)</td>
</tr>
<tr>
<td>Example 16</td>
<td>15</td>
<td>3</td>
<td>80</td>
<td>1.8</td>
<td>2.8 (Excellent)</td>
<td>6.4 × 10⁻⁶ (Good)</td>
</tr>
</tbody>
</table>

[0078]
<table>
<thead>
<tr>
<th>Segment</th>
<th>Coated shaped metal material No.</th>
<th>Thermoplastic composition No.</th>
<th>PC unit (mass%)</th>
<th>Film thickness of coating (μm)</th>
<th>Peel strength (kN)</th>
<th>Gas-sealing properties (Pam%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example 1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>1.0</td>
<td>1.5 (Good)</td>
<td>2.8 × 10⁴ (Fair)</td>
</tr>
<tr>
<td>Comparative Example 2</td>
<td>17</td>
<td>3</td>
<td>50</td>
<td>0.4</td>
<td>1.1 (Fair)</td>
<td>7.2 × 10⁻² (Poor)</td>
</tr>
<tr>
<td>Comparative Example 3</td>
<td>12</td>
<td>6</td>
<td>70</td>
<td>1.0</td>
<td>2.2 (Excellent)</td>
<td>2.1 × 10⁴ (Fair)</td>
</tr>
<tr>
<td>Comparative Example 4</td>
<td>13</td>
<td>4</td>
<td>70</td>
<td>1.0</td>
<td>1.8 (Good)</td>
<td>7.2 × 10⁴ (Fair)</td>
</tr>
<tr>
<td>Comparative Example 5</td>
<td>13</td>
<td>6</td>
<td>70</td>
<td>1.0</td>
<td>1.8 (Good)</td>
<td>1.1 × 10⁴ (Fair)</td>
</tr>
<tr>
<td>Comparative Example 6</td>
<td>18</td>
<td>5</td>
<td>80</td>
<td>0.1</td>
<td>0.6 (Poor)</td>
<td>2.0 × 10⁻¹ (Poor)</td>
</tr>
<tr>
<td>Comparative Example 7</td>
<td>19</td>
<td>3</td>
<td>0</td>
<td>2.3</td>
<td>0.0 (Poor)</td>
<td>1.9 × 10² (Poor)</td>
</tr>
<tr>
<td>Comparative Example 8</td>
<td>20</td>
<td>4</td>
<td>0</td>
<td>1.6</td>
<td>0.0 (Poor)</td>
<td>4.8 × 10² (Poor)</td>
</tr>
<tr>
<td>Comparative Example 9</td>
<td>21</td>
<td>5</td>
<td>5</td>
<td>1.1</td>
<td>0.6 (Poor)</td>
<td>1.6 × 10⁸ (Poor)</td>
</tr>
<tr>
<td>Comparative Example 10</td>
<td>22</td>
<td>4</td>
<td>14</td>
<td>3.5</td>
<td>1.3 (Fair)</td>
<td>2.3 × 10⁻² (Poor)</td>
</tr>
<tr>
<td>Comparative Example 11</td>
<td>23</td>
<td>5</td>
<td>85</td>
<td>2.4</td>
<td>1.3 (Fair)</td>
<td>6.4 × 10⁻² (Poor)</td>
</tr>
<tr>
<td>Comparative Example 12</td>
<td>24</td>
<td>6</td>
<td>100</td>
<td>2.0</td>
<td>0.0 (Poor)</td>
<td>7.8 × 10⁸ (Poor)</td>
</tr>
</tbody>
</table>
[0079] The composites of Comparative Examples 1 to 6 had poor gas-sealing properties, because their coatings had a film thickness of 1.0 μm or smaller. The composites of Comparative Examples 7 to 10 had poor adhesion between the coated shaped metal material and the molded article of the thermoplastic resin composition and accordingly poor gas-sealing properties, because the mass ratio of the polycarbonate unit to the total resin mass in their coatings was less than 15 mass%. The composites of Comparative Examples 11 and 12 had poor adhesion between the coated shaped metal material and the molded article of the thermoplastic resin composition, because the mass ratio of the polycarbonate unit to the total resin mass in their coatings exceeded 80 mass%. In addition, the composites also had poor gas-sealing properties, because their coatings swelled due to dipping in water of 35°C so that the molded article of the thermoplastic resin composition came off the coated shaped metal material.

[0080] By contrast, the composites of Examples 1 to 16 were excellent in the adhesion between the coated shaped metal material and the molded article of the thermoplastic resin composition and the gas-sealing properties between the coated shaped metal material and the molded article of the thermoplastic resin composition, because their coatings had a film thickness that fell within the predetermined range and the mass ratio of the polycarbonate unit to the total resin mass in their coatings fell within the predetermined range.

[0081] The present application claims the priority based on Japanese Patent Application No. 2013-204251 filed on September 30, 2013, the entire contents of which including the specifications and drawings are incorporated herein by reference.

Industrial Applicability

[0082] The composite including the coated shaped metal material of the present invention is excellent in the adhesion between the coated shaped metal material and the molded article of a thermoplastic resin composition and gas- and liquid-sealing properties. The
composite thus can shut out humidity, corrosive gas, or the like and is useful for, for example, inverter cases or ECU (engine control unit) cases for automobiles, and precision electronic component cases for electric products.
CLAIMS

Claim 1 A coated shaped metal material comprising:

a shaped metal material; and

a coating formed on a surface of the shaped metal material, wherein

the coating comprising a polyurethane resin containing a polycarbonate unit,

a mass ratio of the polycarbonate unit to a total resin mass in the coating is 15 to
80mass%, and

the coating has a film thickness larger than 1.0 μm.

Claim 2 The coated shaped metal material according to claim 1, wherein the coating
comprises an oxide, a hydroxide, or a fluoride of a metal selected from the group
consisting of Ti, Zr, V, Mo, and W, or a combination thereof.
FIG. 1